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Abstract

Trustworthy methods for medical image segmentation should come with a reliable mecha-
nism to estimate the quality of their results. Training a separate component for confidence
prediction is relatively fast, and can easily be adapted to different quality metrics. However,
the resulting estimates are usually not sufficiently reliable under domain shifts, for example
when images are taken with different devices. We introduce a novel adversarial strategy for
training confidence predictors for the widely used U-Net architecture that greatly improves
such generalization. It is based on creating adversarial image perturbations, aimed at sub-
stantially decreasing segmentation quality, via the gradients of the confidence predictor,
leading to images outside of the original training distribution. We observe that these per-
turbations initially have little effect on segmentation quality. However, including them in
the training gradually improves the confidence predictor’s understanding of what actually
affects segmentation quality when moving outside of the training distribution. On two dif-
ferent medical image segmentation tasks, we demonstrate that this strategy substantially
improves estimates of volumetric and surface Dice on out-of-distribution images.

Keywords: Failure Detection, Domain Shift.

1. Introduction

Algorithms for medical image segmentation always have remaining failure cases, making
quality control mandatory (Fournel et al., 2021). Training a neural network that directly
predicts segmentation confidence is a simple and computationally efficient solution, and can
be adapted to various metrics, differentiable or not. Domain shifts, arising from differences
in imaging hardware, patient populations, or acquisition protocols, often derail segmentation
models (Guan and Liu, 2022). Unfortunately, in this situation, where error detection is
needed the most, direct confidence prediction is the least reliable: Not only does it have to
deal with inputs that differ from those it has been trained on; when segmentations degrade
markedly, it also needs to extrapolate beyond the training range of its outputs.

In this work, we address these challenges and substantially increase the robustness of
direct confidence prediction for medical image segmentation, with the goal of turning this
simple and efficient strategy into a practicable solution. We achieve this with a novel ap-
proach to training such predictors, augmenting the training data with adversarial examples
that are outside of the original distribution and lead to lower segmentation quality. These
adversarial examples are derived from the predictor itself, so that including them in the
training along with their true effects establishes a feedback loop in which the predictor
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learns which perturbations actually affect segmentation quality. We demonstrate that this
greatly improves confidence prediction under scanner changes in two real-world cardiac and
prostate MRI datasets. Our approach does not require any modification of the underlying
segmentation network, and can be adapted to predict different quality metrics.

Our proposed strategy differs substantially from established adversarial training ap-
proaches (Bai et al., 2021) in both its goal and implementation. While typical methods
focus on increasing robustness against adversarial attacks, our aim is to improve general-
ization to new domains. This shift necessitates extrapolation beyond the original output
distributions—a requirement in our context due to lower segmentation accuracy in new
domains compared to the training data. Consequently, we propose a method to generate
adversarial examples that reduce segmentation accuracy by a pre-specified amount. Addi-
tionally, our approach aligns two networks - one for segmentation and one for confidence
prediction - unlike standard adversarial training.

2. Related Work

The use of one neural network to directly predict the confidence of another is an active
topic of research (Corbière et al., 2019; Fournel et al., 2021; Besnier et al., 2021; Rahman
et al., 2022). Similar to the ConfidNet (Corbière et al., 2019), our approach predicts confi-
dence from activation maps. Our main contributions are an extension of that framework to
image-level predictions of segmentation quality, and a novel training scheme that includes
adversarial perturbations, increasing robustness to domain shifts.

Adversarial perturbations have been shown to be a useful strategy for learning segmen-
tation quality previously (Besnier et al., 2021). However, that previous work made localized
changes to street scenes, to improve robustness with respect to unknown objects. Our work
is concerned with global changes that arise in medical images when changing acquisition
devices or protocols, and therefore derives perturbations in a completely different way, from
the confidence predictor itself.

Indirect confidence estimation methods often perform better than direct prediction in
out of distribution scenarios. Unfortunately, they can be a computational burden during
inference (Valindria et al., 2017) or require specialized architectures, e.g., dropout layers for
approximate Bayesian inference (Roy et al., 2018). As part of our experiments, we compare
our approach against the latter in terms of quality and computational effort.

3. Methodology

3.1. Confidence Predictor

We adapt the ConfidNet architecture (Corbière et al., 2019) to the task of per-image con-
fidence prediction for medical image segmentation. Specifically, we attach a confidence
predictor Cϕ at the penultimate resolution level of a U-Net fθ and train Cϕ to predict
fθ’s true confidence score g. To illustrate that Cϕ can be trained to predict both overlap-
and boundary-based confidence scores, our experiments include volumetric and surface dice
(Maier-Hein et al., 2024) as choices of g. In our main experiments, fθ is frozen, so that the
original segmentation network remains intact, and Cϕ can re-use the results of its forward
pass. In an ablation study, we demonstrate that fine-tuning a copy of fθ for the purpose of
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Algorithm 1 Adversarial Perturbation Scheme

1: Notation:
2: U-Net fθ, penultimate resolution level features zθ
3: Confidence predictor Cϕ, true confidence g : Rn × Rn → [0, 1]
4: Loss function L : [0, 1]× [0, 1]→ R
5: Initialize θ, ϕ, α← 0.8, η ← 0.01
6: Initialize ADV BUFFER[0]← (x0, y0) ∈ D
7: while not converged do
8: 1. Form a batch of size 2B:
9: New input (xi, yi) ∈ D as clean half C.

10: (x′i−1, yi−1)← ADV BUFFER[i] as adversarial half A.
11: 2. Forward Pass:
12: for all (x, y) ∈ C ∪ A do
13: ŷ ← fθ(x), z ← zθ(x)
14: ŝ← Cϕ(z), s← g(ŷ, y)
15: end for
16: loss =

∑
x∈C∪A

L
(
ŝ, s

)
17: Update ϕ by backpropagating ∇ϕ(loss)
18: 3. Compute Next Iteration’s Adversarial Perturbations:
19: for all (x, y) ∈ C do

20: ∇x ←
∂ Cϕ

(
zθ(x)

)
∂x

21: ϵ∆s ← Cϕ

(
z
)
− Cϕ

(
z′
)
−∆s, α← α− η · ϵ∆s

22: δ ← −α
∇x

∥∇x∥2 + ϵ
, x′ ← x+ δ

23: end for
24: ADV BUFFER[i+ 1]← (x′i, yi)
25: end while

confidence prediction, as in the ConfidNet, slightly improves confidence prediction further,
at an increased computational cost. Details of our architecture are given in Section 3.4.

3.2. Learning the Effects of Adversarial Perturbations

After pre-training the confidence predictor Cϕ for 100 batches on the same data, and with
the same (non-adversarial) augmentations that were used to train fθ, we start adding ad-
versarial perturbations, as detailed in Algorithm 1. Our perturbations are based on the
negative gradient of the predicted confidence score with respect to the input image, i.e.,
they represent a change to the image that Cϕ expects to decrease segmentation quality. By
processing these adversarial examples with fθ, and supervising the training of Cϕ with the
resulting confidence scores, we establish a feedback loop in which Cϕ learns which deviations
from the original training distribution actually affect segmentation quality.

Adversarial perturbations are computed in lines 18–22: In line 21, each image x is
modified according to a single gradient step with factor α, divided by the squared gradient
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Figure 1: Left: Effects of adversarial perturbations on segmentation network fθ and con-
fidence predictor Cϕ. Over time, the predictor learns to generate perturbations
that actually affect the segmentation. Right: The gradient factor α evolves dif-
ferently over five runs, illustrating the need to adapt it during training.

norm. In line 20, α is automatically adjusted to reduce the predicted confidence, on average,
by a pre-specified amount ∆s, whose choice is discussed in Section 3.3. Division by the
squared gradient norm is motivated by a first-order Taylor expansion of Cϕ, where it leads
to a constant change in value. A small positive ϵ guarantees numerical stability.

Figure 1 (left) illustrates our training process for five runs with ∆s = 0.1. Cϕ(z)−Cϕ(z
′)

is the predicted difference in segmentation quality, based on activations z from the original
image and z′ from the perturbed one. Adjusting α makes it approximate the desired value
∆s = 0.1. Interestingly, the actual difference g(fθ(x), y)−g(fθ(x′), y) between segmentations
of the original image x and perturbed image x′, as rated by the quality metric g with respect
to the ground truth y, is very low initially, indicating that the predictor does not yet manage
to create effective adversarial perturbations. This shows that it lacks an understanding
of which deviations from the input distribution lead to a deterioration of segmentation
quality. After a few dozen iterations, our feedback loop successfully aligns the predictor
with the actual behavior of the segmentation network. This alignment is further illustrated
in Figure 4, which shows examples of perturbations created with or without adversarial
training along with their actual effects on the segmentation.

Much of the remaining code in Algorithm 1 is devoted to an efficient implementation of
our training scheme, which saves computation by using each image twice, once with, once
without adversarial perturbation. This allows us to update the predictor for the current
batch and, in the same forward pass, generate adversarial perturbations which are cached in
a buffer to be included in the next batch, leading to a 50:50 ratio of original and perturbed
images in each batch. For computing weight updates and image perturbations, we can retain
the same computation graph to reduce redundant operations and end up with a minimal
overhead that integrates well into modern automatic differentiation frameworks.
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3.3. Learning the Strength of Adversarial Perturbations

We introduce a hyperparameter ∆s to control the effect of adversarial perturbations on the
predictor, thereby making the process both interpretable and consistent during training. We
run an ablation study for ∆s ∈ {0.05, 0.1, 0.2} (see Table 3) and find that the framework is
rather robust for these settings. For simplicity, we choose ∆s = 0.1 for all experiments.

Control over the effect is realized by continuously updating α during adversarial per-
turbation steps. For a sufficiently small α, we assume the effect on Cϕ is monotonic and
thus use a simple update rule described in line 20 in Algorithm 1. For five runs with similar
hyperparameters, we report α-values over time in Figure 1 (right). After some iterations,
the error in offset e∆s(z, z

′) stabilizes close to zero, while the gradient factor α continues to
evolve over time, illustrating the need to continuously adapt this factor during training.

3.4. Implementation Details

Since the original ConfidNet (Corbière et al., 2019) cannot be used for image-level confidence
prediction from segmentation features, we propose a simple, wide but shallow, model: Two
3× 3 convolution blocks reduce the number of channels from 64 to 8, followed by two fully
connected layers which reduce the remaining feature dimension (642 × 8 for M&M and
962 × 8 for PMRI images) via a hidden dimension of 128 to confidence scores. We train
score predictors by attaching them to the penultimate resolution level of a U-Net, which is
frozen during training. We use the MSE loss L between ŝ and s, the Adam optimizer with
a learning rate of 10−5 and default parameters, and a batch size of 32 that is effectively
doubled in step 7 of Algorithm 1. We train all score predictors for at most 100 epochs with
100 batches each and terminate if the validation loss stops improving, with a patience of
20 epochs, retaining the checkpoint from 20 epochs earlier if no improvement is seen. We
select volumetric and surface dice as confidence scores g and train a separate predictor for
each of them. In multi-class settings, we predict class-wise scores and aggregate later.

4. Experimental Setup and Results

4.1. Datasets

We employ two MRI datasets to evaluate domain generalization in segmentation tasks. In
a preprocessing step, we homogenize voxel-spacings and pad or crop images to a uniform
size within each dataset. For both datasets, we use the domain with the most subjects as
the source domain and the remaining domains as target domains. The exact number of
subjects and slices in each domain is listed in Table 2.

Heart MRI. The second version of the M&Ms Challenge dataset (Campello et al., 2021;
Mart́ın-Isla et al., 2023) consists of 8128 annotated cardiac MRI slices across 360 subjects
from sites in different countries, acquired using seven different scanning devices, which
we use to define our domains. Each image is annotated with three segmentation classes
(left ventricle, right ventricle, and myocardium), resulting in a detailed dataset with good
support that is well suited for deep learning applications. In our experiments, we refer to
it as the M&M dataset.
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Figure 2: Segmentation quality in terms of volumetric and surface Dice on training and
validation data from the source domain, as well as on different target domains.
A massive domain shift is observed in PMRI, a more subtle one in M&M.

Prostate MRI. (Liu et al., 2020) collect T2-weighted MRI scans of the prostate and their
respective binary segmentation masks from six institutions spanning three public datasets.
Each institution has distinct imaging devices, protocols and field strengths, resulting in a
rich collection of domain shifts with relatively small case numbers. In total, the dataset
contains 1773 annotated slices across scans from 116 subjects. In our experiments, we refer
to it as the PMRI dataset.

4.2. Image Segmentation with U-Nets

To reduce the impact of confounding factors as much as possible, we use the same U-Net
architecture and confidence predictor across datasets and tasks. We use MONAI (Cardoso
et al., 2022) to implement a U-Net with 32 initial channels and a depth of four with four
residual units per level. Furthermore, we use dropout with a dropout rate of 0.1 per ADN
layer to ensure a fair comparison to a previous described indirect confidence estimation
technique (Roy et al., 2018). We train the U-Net with a mixed loss of Dice and cross-entropy,
using the Adam optimizer with a learning rate of 10−3 and default settings. We copy the
default data augmentations from the nnU-Net (Isensee et al., 2021) and train with learning
rate scheduling and early stopping based on a held-out validation set. Albeit following
standard strategies to address potential domain shifts, we still observe a moderate drop in
performance on M&M and essentially a complete shift in confidence score distribution for
PMRI, see Figure 2. In combination with the diverse dataset characteristics and our two
confidence scores, we hope to provide a convincing test bed for confidence prediction in
medical image segmentation.
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4.3. Confidence Prediction

The goal of our proposed adversarial perturbation scheme is to improve the confidence
predictor’s generalization capabilities. To quantify whether this goal has been met, we
report Pearson correlation, excess area under the risk-coverage-curve (eAURC) (Geifman
et al., 2018) and mean absolute error for volumetric and surface dice scores, specifying mean
and standard deviation across five runs.

In Figure 3, we compare our proposed framework for direct confidence prediction, with
and without our adversarial perturbation scheme, to an approximate Bayesian method that
we refer to as score agreement (Roy et al., 2018), and that has been identified as a robust
baseline for failure detection in a recent comparative benchmark (Zenk et al., 2025). It
is based on taking Monte Carlo samples of segmentation masks with test-time dropout,
and measuring the agreement between them by averaging pairwise quality metrics, in our
case, volumetric or surface Dice. Following the same setup as the authors, we take N = 15
samples to saturate performance, resulting in 105 pairwise comparisons. This procedure
results in a confidence score that correlates to segmentation accuracy, but does not estimate
the corresponding quality metric directly. Therefore, it does not make sense to compute
mean absolute error for it.

On most domains, for both datasets and confidence measures, our adversarial perturba-
tion scheme significantly improves the predictor’s ability to generalize in terms of achieving
higher correlation, lower eAURC, and lower mean absolute error. Our approach also nar-
rows the gap to the computationally much more expensive score agreement methodology,
even outperforming it in several cases. Additionally, we run score agreement with only
N = 2 samples, to make its computational complexity more comparable to direct confi-
dence prediction. In this scenario, direct prediction is mostly superior.

We also explored average aggregated predictive entropy over N = 15 dropout samples as
another baseline, but found its results too weak to include them in the Figure. On average
over datasets and confidence metrics, it achieved a Pearson correlation below 0.3.

In addition to the comparisons in Figure 3, we also investigate benefits of fine-tuning the
segmentation network’s backbone alongside the confidence predictor but find only marginal
improvements, at the cost of increased computational and implementation complexity, see
Table 3.

4.4. Computation Times

Table 1 compares the running times of our proposed approach (top row) to those of com-
puting score agreement. Due to its shallow architecture, our confidence predictor adds
negligible overhead to the segmentation network itself. Fine-tuning (second row) roughly
doubles our running time, with marginal benefits reported in Table 3.

In any case, our running times are much shorter than for the 15 forward passes that
are required to compute saturated score agreement and still considerably shorter than score
agreement with two forward passes. Most importantly, inference times in our approach are
independent of the computational complexity of the selected quality metric, which by far
dominates the overall running time of score agreement.
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Figure 3: Evaluation of our proposed direct confidence prediction. Adversarial perturba-
tions increase correlation, and decrease excess area under the risk-coverage-curve,
as well as mean absolute error, in almost all cases. In several cases, it even pro-
vides better correlation and eAURC than the computationally much more expen-
sive score agreement approach, which does not provide absolute predictions.

5. Discussion

In this work, we presented an adversarial perturbation scheme that strengthens direct con-
fidence prediction in medical image segmentation under domain shifts. It is based on the
idea that the alignment between predicted and actual accuracy of a segmentation model
on out-of-distribution data can be improved by learning the effects of adversarial perturba-
tions. At the same time, our training scheme widens the value range of quality metrics that
are observed during training, and thus facilitates prediction of scores that are lower than
those from the original training images.
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Method M&M PMRI

fθ + Cϕ 0.0009 0.0020
+ fθ after fine-tuning 0.0018 0.0038

Volumetric Dice Agreement (N=2) 0.0059 0.0062
Volumetric Dice Agreement (N=15) 0.1011 0.0802
Surface Dice Agreement (N=2) 0.0230 0.0153
Surface Dice Agreement (N=15) 1.8964 1.0683

Table 1: Inference times in seconds per image, averaged across 100 runs on a single NVIDIA
A40 GPU. We use MONAI’s metric implementations and calculate agreements
in a single batch. Our proposed approach (top row) is much faster than score
agreement (row two and below), especially with expensive quality metrics such as
surface Dice.

Our approach does not require any changes to the underlying segmentation network and
has negligible computational overhead during inference. Moreover, we describe an efficient
algorithm for training, re-using computations that are anyway required for training the
predictor to generate adversarial perturbations.

On two MRI datasets and for an overlap- and a boundary-based quality score, our
adversarial scheme improves the confidence prediction baseline across all metrics. In terms
of correlation and eAURC, which do not require absolute estimates, it narrows the gap
to the more computation-heavy score agreement method (Roy et al., 2018) and sometimes
even surpasses it.

While the relative improvement from our contribution is evident, it does not yet establish
a new benchmark for failure detection, and we observe a limitation with respect to the
remaining absolute errors on the PMRI dataset (Figure 3). The fact that they are still
substantially larger than in M&M is unsurprising, given that the degradations that our
adversarial perturbations aim for (∆s = 0.1) are far lower than the real shift we observe in
the data (see Figure 2). Extending our framework to include more severe perturbations is
thus an obvious goal for future work. It is clear from our ablation that this cannot simply
be achieved by scaling up ∆s, but will require a procedure that is more complex than taking
a single gradient step.

In summary, we believe that our work demonstrates the potential of suitably trained
direct confidence prediction, even in cases of domain shift. Considering that inference
time is up to three orders of magnitude faster than for score agreement, and that we
obtain absolute estimates of segmentation quality, which score agreement cannot provide,
we consider further refinement of this approach to be a worthwhile goal of future research.

9



Lennartz Schultz

References

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial
training for adversarial robustness. In Zhi-Hua Zhou, editor, Proc. Int’l Joint Conf. on
Artificial Intelligence (IJCAI), pages 4312–4321, 2021. doi: 10.24963/IJCAI.2021/591.

Victor Besnier, Andrei Bursuc, David Picard, and Briot Alexandre. Triggering failures:
Out-of-distribution detection by learning from local adversarial attacks in semantic seg-
mentation. In Proc. IEEE International Conference on Computer Vision, pages 15681–
15690. 2021. doi: 10.1109/ICCV48922.2021.01541.

Vı́ctor M. Campello, Polyxeni Gkontra, Cristian Izquierdo, Carlos Mart́ın-Isla, Alireza
Sojoudi, Peter M. Full, Klaus Maier-Hein, Yao Zhang, Zhiqiang He, Jun Ma, Mario
Parreño, Alberto Albiol, Fanwei Kong, Shawn C. Shadden, Jorge Corral Acero, Vaanathi
Sundaresan, Mina Saber, Mustafa Elattar, Hongwei Li, Bjoern Menze, Firas Khader,
Christoph Haarburger, Cian M. Scannell, Mitko Veta, Adam Carscadden, Kumarade-
van Punithakumar, Xiao Liu, Sotirios A. Tsaftaris, Xiaoqiong Huang, Xin Yang, Lei
Li, Xiahai Zhuang, David Viladés, Mart́ın L. Descalzo, Andrea Guala, Lucia La Mura,
Matthias G. Friedrich, Ria Garg, Julie Lebel, Filipe Henriques, Mahir Karakas, Ersin
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Appendix A. Data Splits

M&M Dataset
Sym. (train/val) Trio Avanto HDxt Excite Explorer Achieva

Cases 172 5 42 25 27 1 88
Slices 2699/299 94 695 426 459 18 1422

PMRI Dataset
RUNMC (train/val) BMC I2CVB UCL BIDMC HK

Cases 30 30 19 13 12 12
Slices 378/41 324 505 171 197 157

Table 2: Total slice counts for the M&M and PMRI datasets. Training and validation splits
are consistent across U-Net and predictor trainings.
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Appendix B. Gradient Visualization

Figure 4: Example from the M&M dataset comparing the behavior of confidence predictors
trained with and without our adversarial perturbation scheme on volumetric dice
prediction. In both cases, adversarial perturbations affect the whole image, but
are difficult to visually discern. Both perturbations decrease predicted confidence
(0.94 → 0.87 top, 0.92 → 0.70 bottom). However, only the perturbation from
our method actually results in a degradation of the segmentation quality (0.90→
0.81), while the one from a predictor without adversarial training has little effect
on the segmentation (0.90→ 0.90).
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Appendix C. Ablation Study

Pearson Correlation
Method Achieva Avanto EXCITE Explorer HDxt Trio
∆s

0.05 .675± .018 .736± .018 .662± .032 .847± .019 .608± .035 .624± .035
0.1 .718± .024 .749± .015 .700± .013 .856± .033 .619± .012 .654± .015
fine-tuned .730± .033 .754± .013 .716± .017 .858± .036 .632± .014 .668± .011
0.2 .719± .037 .779± .023 .695± .016 .850± .041 .631± .019 .616± .044

eAURC

0.05 .019± .003 .012± .001 .023± .003 .004± .001 .025± .002 .018± .002
0.1 .017± .002 .012± .001 .021± .002 .005± .001 .024± .002 .016± .003
fine-tuned .016± .002 .012± .001 .020± .002 .005± .001 .023± .002 .015± .001
0.2 .017± .001 .012± .001 .022± .002 .007± .004 .023± .002 .017± .001

MAE

0.05 .076± .002 .064± .004 .088± .004 .078± .005 .078± .006 .071± .002
0.1 .074± .002 .061± .002 .086± .002 .075± .006 .078± .003 .068± .003
fine-tuned .075± .003 .061± .002 .086± .002 .074± .008 .076± .004 .074± .004
0.2 .073± .003 .060± .002 .083± .003 .075± .006 .077± .004 .067± .003

Table 3: Ablation exploring different values of ∆s, as well as fine-tuning of the segmentation
network’s parameters for confidence prediction (with ∆s = 0.1) for volumetric Dice
prediction on test domains of the M&M dataset. Correlation and eAURC improve
for our default setting ∆s = 0.1 compared to a reduced ∆s = 0.05, but increasing
it to ∆s = 0.2 does not always yield further improvement. Overall, results are
stable with respect to variations in ∆s. Fine-tuning leads to a small benefit in
correlation and eAURC, but also to higher complexity and running times. MAE
benefits from larger ∆s, but less clearly from fine-tuning.
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