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Abstract
Contrastive learning (CL) has emerged as a power-
ful technique for representation learning, with or
without label supervision. However, supervised
CL is prone to collapsing representations of sub-
classes within a class by not capturing all their fea-
tures, and unsupervised CL may suppress harder
class-relevant features by focusing on learning
easy class-irrelevant features; both significantly
compromise representation quality. Yet, there is
no theoretical understanding of class collapse or
feature suppression at test time. We provide the
first unified theoretically rigorous framework to
determine which features are learnt by CL. Our
analysis indicate that, perhaps surprisingly, bias
of (stochastic) gradient descent towards finding
simpler solutions is a key factor in collapsing sub-
class representations and suppressing harder class-
relevant features. Moreover, we present increas-
ing embedding dimensionality and improving the
quality of data augmentations as two theoreti-
cally motivated solutions to feature suppression.
We also provide the first theoretical explanation
for why employing supervised and unsupervised
CL together yields higher-quality representations,
even when using commonly-used stochastic gra-
dient methods.

1. Introduction
Learning high-quality representations that generalize well
to a variety of downstream prediction tasks has been a
long-standing goal of machine learning (Hinton et al.,
2006; Ranzato et al., 2006). Contrastive learning (CL) has
emerged as an effective approach for solving this problem,
both with and without supervision (Chen et al., 2020;
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Chuang et al., 2020; Grill et al., 2020; Khosla et al., 2020).
Unsupervised CL learns representations of training exam-
ples by maximizing agreement between augmented views
of the same example. Similarly, supervised CL maximizes
agreement between augmented views of examples in the
same class. Despite their empirical success, both supervised
and unsupervised contrastive learning fail to capture all
semantically relevant features in the data. In particular, su-
pervised CL can fall prey to class collapse (Graf et al., 2021;
Chen et al., 2022), where representations of subclasses
within a class may no longer be distinguishable from each
other; thus, yielding a poor classification performance at the
subclass level. Similarly, unsupervised CL can be afflicted
with feature suppression (Chen et al., 2021; Robinson et al.,
2021) where easy but class-irrelevant features suppress
the learning of harder class-relevant ones; deteriorating the
generalizability of the obtained representations.

In spite of the significance of these failure modes, there is no
clear theoretical understanding of them and consequently,
no rigorous solution. Feature suppression has not been
studied theoretically by prior work and the only theoretical
work on class collapse (Graf et al., 2021) cannot explain
why we observe class collapse at test time.

Addressing class collapse and feature suppression requires
a theoretical understanding of which features CL learns.
However, existing CL theory (Wang & Isola, 2020; Graf
et al., 2021; Lee et al., 2021; Tosh et al., 2021a;b; Arora
et al., 2019b; Tsai et al., 2020; HaoChen et al., 2021; Wen
& Li, 2021; Ji et al., 2021) only explains how semantically
relevant features are learned. The implicit assumption is
that all semantically relevant features are learned, but the
occurrence of class collapse and feature suppression proves
otherwise. We propose the first unified (i.e. for both su-
pervised and unsupervised CL) framework to answer which
semantically relevant features are learned. We then leverage
this framework to characterize class collapse and feature
suppression. Table 1 summarizes the main findings in this
paper, which are detailed below.

Class Collapse in Supervised CL. We prove that, perhaps
surprisingly and in contrast to the current understanding
(Graf et al., 2021), global minimizers of the supervised con-
trastive loss do not necessarily collapse the representations
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Table 1. A concise overview of the key findings in this research. In the table, ‘CC’ and ‘FS’ refers to class collapse and feature suppression,
respectively. ‘Thm’ and ‘Exp’ refers to theorem and experiment, respectively.

Loss Finding Thm/Exp Implication

SCL

min loss ̸⇒ CC Thm 4.3
Simplicity bias of (S)GD
contributes to CC

(min loss & min norm) ⇒CC Thm 4.4 & 4.7
(S)GD learns subclasses early in training Thm 4.5 & Exp
(S)GD eventually unlearns subclasses, leading to CC Exp

UCL With insufficient embedding size, (min loss & min
norm) ⇒ FS

Thm 5.1 & Exp Simplicity bias of (S)GD
contributes to FS; Larger
embedding size/better
augmentation alleviates FS

With imperfect data augmentation, (min loss & min
norm) ⇒ FS, even with sufficient embedding size

Thm 5.4

Joint Joint loss can avoid both CC and FS Thm 6.1 & Exp Justification of joint loss

of the subclasses at test time. We find, however, that the
minimum norm global minimizer does suffer from class
collapse on test data.

We then study minimizing the supervised contrastive loss
using (S)GD and show that, interestingly, subclass features
are learned early in training. However, we verify empirically,
that as training proceeds, (S)GD forgets the learned subclass
features and collapses class representations.

Altogether, our findings indicate that the bias of SGD to-
wards finding simpler solutions (Lyu et al., 2021) is the main
deriving factor in collapsing class representations.

Feature Suppression in Unsupervised CL. We provide
the first theoretical characterization of feature suppression
in unsupervised CL. In particular, we show that the mini-
mum norm global minimizer of the unsupervised contrastive
loss results in feature suppression, when the embedding di-
mensionality is small or when data augmentations preserve
class-irrelevant features better than class-relevant features.
Again, our results identify the simplicity bias of (S)GD as a
key factor in suppressing features of the input data. In addi-
tion, our findings suggest practical solutions to the problem
of feature suppression: increasing embedding dimensional-
ity and/or improving the quality of data augmentations.

Theoretical Justification for Combining Supervised and
Unsupervised CL to Obtain Superior Representations.
Finally, we prove that the minimum norm global minimizer
of the joint loss (weighted sum of the supervised and unsu-
pervised contrastive loss) does not suffer from class collapse
or feature suppression, explaining why Chen et al. (2022);
Islam et al. (2021) observes this empirically (i.e. even when
using SGD).

2. Related Work
Theory of CL. While there has been much progress in
theoretically understanding CL, most prior work (Wang &
Isola, 2020; Graf et al., 2021; Lee et al., 2021; Tosh et al.,
2021a;b; Arora et al., 2019b; Tsai et al., 2020; HaoChen

et al., 2021) are focused on understanding how CL clusters
examples using semantically meaningful information or
providing generalization guarantees on downstream tasks.
Feature learning has only been studied by (Wen & Li, 2021;
Ji et al., 2021) which show that CL learns semantically
meaningful features from the data. In contrast, we show that
CL may not learn all semantically relevant features.

Other important recent work (Saunshi et al., 2022; HaoChen
& Ma, 2022) studied the role of inductive bias of the function
class in the success of CL. Our analysis, however, is focused
on understanding failure modes of CL i.e. class collapse
and feature suppression.

Class Collapse in Supervised CL. Chen et al. (2022) empir-
ically demonstrates class collapse on test data, but does not
offer any rigorous theoretical explanation. Graf et al. (2021)
proves that optimizing the supervised contrastive loss leads
to class-collapsed training set representations. However,
we show that there exist many minimizers with such class-
collapsed training set representations and not all of them
suffer from class collapse at test time. We also present the
first theoretical characterization of class collapse at test time.

Feature Suppression in Unsupervised CL. Feature sup-
pression has been empirically observed by Tian et al. (2020);
Chen et al. (2021); Robinson et al. (2021) but we lack a
theoretical formulation of this phenomenon. Li et al. (2020)
shows that InfoNCE has local minimums that exhibit feature
suppression, thus attributing this phenomenon to failure of
optimizing the loss. However, Robinson et al. (2021) shows
that the InfoNCE loss can be minimized by many models,
some of which learn all task-relevant features, while others
do not. We put forth the only theoretical characterization of
feature suppression and consequently, use this understand-
ing to suggest practical solutions to remedy this problem.

Joint Supervised and Unsupervised Contrastive Loss.
Recently, several versions of loss functions that combine
supervised and unsupervised contrastive losses (Islam et al.,
2021; Chen et al., 2022) have been empirically observed
to have superior transfer learning performance, by avoiding
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class collapse. We provide the first theoretically rigorous
analysis of which features the minimum norm global mini-
mizer of the joint loss learns, provably demonstrating that it
can avoid class collapse and feature suppression. To the best
of our knowledge, this is the only theoretical result that can
be used to understand the empirical success of joint losses.

3. Problem Formulation
3.1. Data distribution

We define data distribution Dorig below. Each example
(x, y, ysub) ∈ Dorig is generated as follows:

x =u+ ξ, where
u = (yϕ1 + µ1)v1+(ysubϕ2 + µ2)v2 + (ρkϕk + µk)vk,

and k is uniformly selected from 3, . . . ,K; and y, ysub, ρk
are uniformly sampled from {−1, 1}.

Features and Noise. We assume features and noise form
an orthonormal basis of Rd, i.e., a set of unit orthogonal
vectors {v1, . . . ,vd} in Rd. W.l.o.g., one can let v’s be the
standard basis, where the first K basis are feature vectors.
{ϕ1, . . . , ϕK} are constants indicating the strength of each
feature, and {µ1, . . . , µK} are the means of the correspond-
ing entries in the feature vectors. In particular:

• Class Feature: v1.
• Subclass Feature: v2.
• (Class and subclass) irrelevant features:1 v3, . . . ,vK .
• Noise ξ ∼ Dξ: Dξ is a uniform distribution over features
σξv1, . . . , σξvd, where σξ indicates the variance of the
noise.2

We sample n examples from Dorig to form the original
dataset D̂orig.

Assumption 3.1 (Balanced Dataset). All combinations of
(yi, ysub,i, ki, ρi) are equally represented in D̂orig.3

A Concrete Example of the Above Data Distribution. Let
y = 1 be dogs and y = −1 be cats, ysub = 1 if they are fluffy
and ysub = −1 if they are not-fluffy. Then (ϕ1 + µ1)v1 +
(ϕ2 +µ2)v2 denotes a fluffy dog. Here, the background can
be interpreted as an irrelevant feature: let ρ3 = 1 for grass
and ρ3 = −1 for forest. Then (ϕ1+µ1)v1+(ϕ2+µ2)v2+
(ϕ3 + µ3)v3 represents a fluffy dog on grass. Note that each

1In the rest of the paper, we use irrelevant features to refer to
features that may have semantic meaning but are irrelevant to class
and subclass.

2This definition of noise is nearly identical to Gaussian noise

N (0,
σ2
ξ

d
Id) in the high-dimensional regime but keeps the analysis

clear. Our results can be extended to the Gaussian noise setting.
3This can be approximately achieved when n is sufficiently

larger than K. While our analysis can be generalized to consider
imbalanced data, this is outside the scope of this work.

example only selects one irrelevant feature, which mimics
the real world, where examples do not necessarily have all
types of objects in the background i.e. many examples have
neither grass or forests as their background.

Rationale for Including Feature Means µi. In general, it
is unreasonable to expect all features to have 0 expectation
over entire data, thus we introduce µ to further generalize
our analysis. We find that considering a non-zero mean for
the subclass feature is sufficient to provide novel insights
into class collapse (Theorem 4.5). Therefore, for clarity, we
set all the µ’s except µ2 to zero.

Relation to Sparse Coding Model. This data distribution
is a variant of the sparse coding model which is usually
considered as a provision model for studying the feature
learning process in machine learning (e.g., (Zou et al., 2021;
Wen & Li, 2021; Liu et al., 2021)). It naturally fits into
many settings in machine learning, and in general mimics
the outputs of intermediate layers of neural networks which
have been shown to be sparse (Papyan et al., 2017). It is also
used to model the sparse occurrences of objects in image
tasks (Olshausen & Field, 1997; Vinje & Gallant, 2000;
Foldiak, 2003; Protter & Elad, 2008; Yang et al., 2009;
Mairal et al., 2014) and polysemy of words in language
tasks (Arora et al., 2018).

3.2. Data Augmentation A (·)

For each example in D̂orig, we generate m augmentations
to form D̂aug. We consider the following augmentation
strategy: given an example x = u + ξ, its augmentation
is given by A (x) = u + ξ′, where ξ′ is a new random
variable from Dξ independent of ξ. This is an abstract of
augmentations used in practice where two augmentations
from the same example share certain parts of the features
and have the correlation between their noise parts removed
or weakened.

Assumption 3.2 (High dimensional regime). d is at least
ω(n2m2).

Assumption 3.3 (Sufficient sample size). The noise-to-

sample-size ratio is not too large
σ2
ξ

mn = o(1).

3.3. Linear Model

We consider a linear model with p outputs. The model has
weights W ∈ Rp×d and bias b ∈ Rp where p ≥ 3. The
function represented by the model is fΘ(x) = Wx + b,
where we define Θ ∈ Rp×(d+1) as the concatenated param-
eter [W b]. We establish theoretical proofs of class collapse
and feature suppression for linear model, and also empiri-
cally verified them for (non-linear) deep neural networks.
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3.4. Loss function

For unsupervised contrastive learning, we use the unsuper-
vised spectral contrastive loss popular in prior theoretical
and empirical work (HaoChen et al., 2021; Saunshi et al.,
2022; HaoChen & Ma, 2022) and for supervised contrastive
learning, we consider the natural generalization of this loss
to incorporate supervision. Let Ai denote the set of aug-
mentations in D̂aug generated from the i-th original example
with A (·). Let S+1 and S−1 denote the set of augmen-
tations in D̂aug with class labels +1 and −1, respectively.
Let Ê denote the empirical expectation. Then we have the
following loss functions:

LUCL(Θ) =− 2Êi∈[n],x∈Ai,x+∈Ai

[
fΘ(x)

⊤fΘ(x
+)
]

+Êx∈D̂aug,x−∈D̂aug

[
(fΘ(x)

⊤fΘ(x
−))2

]
(1)

LSCL(Θ) =− 2Êc∈{−1,1},x∈Sc,x+∈Sc

[
fΘ(x)

⊤fΘ(x
+)
]

+Êx∈D̂aug,x−∈D̂aug

[
(fΘ(x)

⊤fΘ(x
−))2

]
. (2)

4. Simplicity Bias Contributes to Class
Collapse in Supervised CL

We make two key observations through our theoretical
analysis and experiments (henceforth we refer to class
collapse at test time simply as ‘class collapse’):

1. Theoretically, not all global minimizers exhibit class
collapse, but the minimum norm minimizer does.

2. Theoretically and empirically, when the model is
trained using (S)GD, some subclasses are provably
learned early in training. Empirically, however, those
subclasses will eventually be unlearned i.e. S(GD)
converges to minimizers that exhibit class collapse.

Altogether, these observations suggest that class collapse,
which has been observed in practice when certain gradient-
based algorithms are used to minimize the loss, cannot
be explained by simply analyzing the loss function. This
highlights the importance of studying the dynamics and
inductive bias of training algorithms in contrastive learning.

4.1. What Minimizers Have Class Collapse?

We first define class collapse in terms of the alignment
between the model weights and the subclass feature.

Definition 4.1 (Exact class collapse). We say exact class
collapse happens at test time when:

∀β ∈ Rp, Pr
(x,y,ysub)∼Dorig

(ysubβ
⊤fΘ(x) > 0) = 1/2.

The definition means that no linear classifier on the embed-
dings of examples drawn from Dorig can predict the subclass

label with accuracy beyond random guess.4

This is different from class collapse on the training set which
is not defined on the population set Dorig but on the training
samples D̂orig.
Proposition 4.2. For any Θ∗ ∈ minΘ LSCL(Θ), we
havefΘ∗(xi) = fΘ∗(xj) for all xi,xj in the training set
D̂aug such that yi = yj .

This directly implies that minimizing the loss results in class
collapse on the training set. However, the following theorem
4.3 shows that minimizing the loss does not necessarily lead
to class collapse on the test set. To determine whether class
collapse occurs, we need to determine whether the model
learns the subclass feature. With a linear model, this exactly
corresponds to constant alignment between weights and the
subclass feature.
Theorem 4.3 (Minimizing LSCL ̸⇒ Class Collapse). With
high probability i.e. at least 1−O(m

2n2

d ) = 1−o(1), there
exists Θ∗ = [W ∗ b∗] such that Θ∗ ∈ minΘ LSCL(Θ)W ∗

has constant alignment with subclass feature v2 i.e.

∥W ∗v2∥ = Ω(1).

Hence, there exists a linear classifier in the embedding space
that can predict subclass labels almost perfectly. I.e.,

∃β, s.t. Pr
(x,y,ysub)∼Dorig

(ysubβ
⊤W ∗x > 0|y) = 1− o(1).

We prove the theorem in Appendix D. The proof uti-
lizes Lemma C.1 which implies that, due to the high-
dimensionality, the noise vectors have non-trivial effects
on the empirical covariance matrix by rotating its kernel
space. This results in the kernel space to have a Θ(

σξ√
mn

)

alignment with the subclass feature. Since minimizers of
the loss can behave arbitrarily on this kernel space, without
any additional restriction, they can have any alignment with
the subclass feature.

Next, we show that, the minimum norm minimizer exhibits
class collapse.
Theorem 4.4 (Minimizing LSCL + Minimum Norm =⇒
Class Collapse). Assume µ2 = 0. Let Θ∗∗ = [W ∗∗ b∗∗]
be the minimum norm minimizer of LSCL, i.e.,

Θ∗∗ = argmin
Θ∗

∥Θ∗∥F s.t.Θ∗ ∈ argmin
Θ

LSCL(Θ).

Then with high probability i.e. at least 1 − O(m
2n2

d ) =
1−o(1), W ∗∗ has no alignment with subclass feature v2 i.e.

∥W ∗∗v2∥ = 0.

4Actually we are able to analyze a stronger ver-
sion of class collapse: Pr(x,y,ysub)∼Dorig(fΘ(x)|ysub) =

Pr(x,y,ysub)∼Dorig(fΘ(x)), which means the distributions of
embeddings given and not given the subclass label are exactly the
same. Nonetheless, we present this simpler formulation for clarity.
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Figure 1. Visualization of the embedding space at different epochs. We let p = 3 so that we can see the whole embedding space from
a 3D plot. Other parameters: n = 1000,m = 5, d = 2000,K = 4, ϕ1 = ϕ2 = ϕ3 = ϕ4 = 1, µ = 1, σ = 2, σ0 = 0.001, η = 0.05.
Colors represent combinations of class and subclass labels (y, ysub). We use test examples for the plots. At epoch 45, the four groups of
examples are well separated in the embedding space. However groups in the same classes are merged afterwards.
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(b) p = 500

Figure 2. ∥Wtv1∥ and ∥Wtv2∥ at different epochs. Both features
are learned early in training, but v2 is unlearned later.

This means class collapse occurs at test time (Definition
4.1), and no linear classifier does better than random guess
for predicting subclass labels.

Theorems 4.3 and 4.4 show that minimizing the training loss
does not necessarily lead to class collapse on test data, but
does with additional constraint on the weights of the model.
This is not due to a degenerate solution, as we show that both
minimizers learn the class feature v1 (see corollary C.5).

4.2. Intriguing Properties of GD

We now further our theoretical characterization of class col-
lapse by investigating the setting where LSCL is minimized
by GD. This is an important step toward understanding class
collapse in practice, where similar optimization algorithms
are used to minimize the loss. Our findings indicate that it
is likely the simplicity bias of commonly used optimization
algorithms that eventually leads to class collapse.

We consider GD with a constant learning rate η. The weights
are initialized from a Gaussian distribution, i.e., the initial
weight Θ0 has each of its element drawn from N (0,

σ2
0

d ).
And the weights at training epoch t are given by:

Θt = Θt−1 − η∇ΘLSCL(Θt−1).

Early in Training Some Subclasses are Provably
Learned. By analyzing the training dynamics of GD, we
find that subclasses are learned early in training.

Theorem 4.5 (Early in training subclass features are
learned). Assume σ0

√
p
d = o(1) and σξ = o(1). If the

subclass feature has a constant non-zero mean such that
1 + µ2 > ϕ21, then with probability at least 1−O(m

2n2

d +
1

poly(p) ) = 1− o(1) the following holds:
• ∥W0v2∥ = o(1).

• ∃t = O(ln( 1
σ0

√
d
p )), s.t. ∥Wtv2∥ = Ω(1), and

• ∃β, s.t. Pr(x,y,ysub)∼Dorig(ysubβ
⊤Wtx>0|y)=1−o(1).

The above theorem shows that there exists an epoch where
the weights have constant alignment with the subclass
feature and produce distinguishable subclass embeddings
(proof in Appendix G).

The key step of our analysis is showing that early in train-
ing, GD aligns the weights with the first eigenvector of the
covariance matrix of class centers. This alignment grows ex-
ponentially faster than alignments with any other directions.
When 1 + µ2 > ϕ21, the subclass feature has a constant
projection onto the first eigenvector and is therefore learned
by the model.

More importantly, the same phenomenon can be observed in
neural networks. We use SGD to train a ResNet18 (He et al.,
2016) on CIFAR-100 (Krizhevsky et al., 2009) with super-
vised CL loss (Khosla et al., 2020) with 20 class (superclass)
labels, and perform linear evaluation on embeddings of test
data with 100 subclass (class) labels (see details in Appendix
H). We observe that the subclass accuracy increases during
the first 200 epochs before it starts to drop (Figure 3(a)).
Some subclasses can even achieve a high accuracy around
80% (Figure 3(b)). This is surprising as it confirms that
models trained with commonly used loss functions do learn
subclass features early in training.
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Figure 3. (a) Average subclass accuracy and class accuracy. (b)
Accuracy in subclasses ‘road’, ‘rocket’ and ‘sea’. In both plots, the
subclass accuracy increases and then decreases, which confirms
that subclasses are learned early in training before class collapse
happens. The class accuracy only increases during training.

Empirical Evidence Showing that Class Collapse
Eventually Happens in (S)GD. We simulate our
theoretical analysis using numerical experiments to show
that gradient descent converges to a minimizer that exhibits
class collapse, despite learning subclasses early in training.
We visualize the embeddings of test data at different epochs
in Figure 1, and plot the alignment between weights and
class/subclass features in Figure 2. Subclasses are perfectly
separated and the weights align with both v1 and v2 after
around 100 epochs of training. The model then starts
unlearning v2 which causes the alignment to drop, thus
subclasses are merged in the embedding space. We also
confirm that same conclusion holds for neural networks
in realistic settings. In Figure 3, we see that the subclass
accuracy drops after around 200 epochs of training and
eventually reaches a low value. In contrast, the class
accuracy does not drop during training.

Minimum Norm Minimizer Exhibits Class Collapse.
Note that in Theorem 4.5, assuming µ ̸= 0 leads us to
discovering that subclasses are learned early in training.
Here, we extend Theorem 4.4 to this setting under
asymptotic class collapse.

Definition 4.6 (Asymptotic Class Collapse). We
say asymptotic class collapse happens when
∥Wv2∥ = O(

σξ√
mn

) = o(1).

This definition implies that: (1) representations of sub-
classes are not well separated, hence it is nearly impossible
to distinguish between them, and (2) the distinguishability
of subclasses is at odds with generalization, which improves
as number of augmented views per example m and size
of training data n increase. Thus, while this definition is
a relaxation of Definition 4.1, practically, this results in
equally severe class collapse.

Theorem 4.7 (Extension of Theorem 4.4 for µ2 ̸= 0). Let
Θ∗∗=[W ∗∗ b∗∗] be the minimum norm minimizer of LSCL:

Θ∗∗ = argmin
Θ∗

∥Θ∗∥F s.t.Θ∗ ∈ argmin
Θ

LSCL(Θ).

Then with probability at least 1 − O(m
2n2

d ) = 1 − o(1),
asymptotic class collapse happens, i.e.,

∥W ∗∗v2∥ = O(
σξ√
mn

) = o(1).

4.3. Simplicity Bias of (S)GD

We reiterate our main findings:

1. Minimizing the supervised contrastive loss does not
necessarily lead to class collapse.

2. However, simpler minimizers of the supervised
contrastive loss (e.g. minimum norm) do suffer from
class collapse.

3. Optimizing with (S)GD does learn the subclass
features early in training, but eventually unlearns them,
resulting in class collapse.

These coupled with the fact that (S)GD is known to have
a bias towards simpler solutions (Kalimeris et al., 2019)
prompt us to conjecture:

The simplicity bias of (S)GD leads it to unlearn subclass
features, thus causing class collapse.

The simplicity bias of (S)GD has not been rigorously stud-
ied for CL, and our results indicate the surprising role it
may play in class collapse. Note that, the supervised con-
trastive loss is different than common supervised objectives,
where the role of such bias of (S)GD is understood better
(Gunasekar et al., 2018; Soudry et al., 2018; Ji & Telgar-
sky, 2019; Wu et al., 2019; Lyu et al., 2021). Rather, the
supervised CL objective can be reformulated as a matrix fac-
torization objective (Eq. 39), where the debate on the bias of
(S)GD (e.g., minimum norm (Gunasekar et al., 2017) or rank
(Arora et al., 2019a; Razin & Cohen, 2020)) is still ongoing.

5. Understanding Feature Suppression in
Unsupervised CL

Empirically, feature suppression can be observed due to a
variety of reasons (Li et al., 2020; Chen et al., 2021; Robin-
son et al., 2021). Easy features for unsupervised CL are
those that allow the model to discriminate between exam-
ples (highly discriminative). Here, we consider different
ways irrelevant features can be easy (highly discriminative)
and characterize how this can lead to feature suppression.
We show that the types of feature suppression we consider
can be largely attributed to insufficient embedding dimen-
sionality and/or poor data augmentations. Surprisingly, we
find again that the minimum norm simplicity bias is critical
in explaining this phenomenon.
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5.1. Feature Suppression due to Easy Irrelevant
Features and Limited Embedding Space

In Theorem 5.1, we show that easy (discriminative) irrele-
vant features can suppress the class feature when the embed-
ding dimensionality is limited. For clarity, we let µ2 = 0.
Theorem 5.1 (Feature Suppression 1). Assume p ≤ K. Let
L be the (K+1)-element tuple

[
1, ϕ21, ϕ

2
2,

ϕ2
3

K−2 , . . . ,
ϕ2
K

K−2

]
whose last K elements are the variances of features. If
ϕ21 is not among the p largest elements in L, then with
probability at least 1−O(m

2n2

d ) = 1−o(1): (1) there exists
a global minimizer Θ∗ of LUCL such that ∥W ∗v1∥ = Ω(1),
(2) However, the minimum norm minimizer Θ∗∗ satisfies
∥W ∗∗v1∥ = 0.

We prove the theorem in Appendix E. The elements ex-
cept the first one in tuple L can be interpreted as the vari-
ance of examples at each coordinate vk, k = 1, 2, . . . ,K,
which indicates how much the examples are discriminated
by each feature. The theorem shows that when the embed-
ding space is not large enough to represent all theK features
(which requiresK+1 dimensions), the minimum norm min-
imizer only picks the most discriminative ones. In practice,
the embedding space in unsupervised CL is relatively low-
dimensional (compared to input dimensionality) and thus the
model cannot fit all the information about inputs into the em-
bedding space. As is suggested by Theorem 5.1, if the train-
ing algorithm prefers functions with certain simple struc-
tures, only the easiest (most discriminative) features that can
be mapped into the embedding space by less complex func-
tions (e.g., smaller norm) are learned. The class features are
suppressed if they are not amongst the easiest ones.
Remark 5.2. Following the same analysis we can also show
that when ϕ1 is among the p largest elements in L, i.e., the
class feature is among the easiest (most discriminative) ones,
the class feature v1 is learned by the minimum norm mini-
mizer; when ϕ1 is exactly on par with some other element as
the p-th largest, there exist both minimum norm minimizers
that learn and do not learn the class feature v1.

Numerical Experiments with GD. Our theory for the
minimum norm minimizer matches the experimental results
for models trained with GD. We let p = K and let 1 ≥
ϕ22 ≥ ϕ2

3

K−2 ≥ · · · ≥ ϕ2
K−1

K−2 > ϕ21 so that ϕ21 must be among
the smallest two variances i.e. v1 is among the two most
difficult features. Then we vary ϕK and see how the trained
weights align with v1. Consistent with Theorem 1, Figure 4
shows that v1 is suppressed when ϕ2

K

K−2 > ϕ21. Interestingly,

we also see that the result at ϕ2
K

K−2 = ϕ21 diverges, indicating
that GD can find both minimizers that learn and do not learn
v1 when the variances at v1 and vK are the same.

Empirically Verifying Benefits of Larger Embedding
Size. Theorem 5.1 also provides one practical solution for
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Figure 4. The irrelevant feature suppresses the class feature
when its variance is beyond the variance of the class feature
(the red vertical line). We let d = 2000, p = K, ϕ1 = 0.8, ϕ2 =

1, µ = 0, ϕ2
k

K−2
> ϕ1, ∀k ∈ [K − 1] and vary ϕK . Thus whether

ϕ2
1 is among the p largest variances only depends on ϕK . We train

the linear model to convergence. Plots show that the alignment
between the trained weights and v1 drops when ϕK increases. We

report the average of 10 runs. The result diverges at ϕ2
K

K−2
= ϕ2

1

indicating that the model can learn either v1 or vK in this case.
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Figure 5. Effect of embedding size on feature suppression in
MNIST RandBit(Chen et al., 2021). Legends show the number
of bits in the extra channel which indicates how easy (discrimina-
tive) the irrelevant features are. We observe that (1) increasing the
easiness of irrelevant features exacerbates feature suppression; (2)
increasing the embedding size alleviates feature suppression.

Table 2. Effect of embedding size on feature suppression in CIFAR-
10/100 RandBit. ‘Acc’ refers to class accuracy and ‘Sub Acc’
refers to subclass accuracy. We see that increasing embedding size
alleviates feature suppression, improving class/subclass accuracy.

w
CIFAR-10 RandBit CIFAR-100 RandBit
Sub Acc Acc Sub Acc Acc

4 34.38 86.73 11.67 23.53
64 71.96 96.82 34.11 52.32

128 76.69 97.65 38.51 57.40

feature suppression due to limited embedding size: increas-
ing the embedding size so that every feature can be learned
by the model. To provide empirical evidence for this, we
conduct two sets of experiments:

First, we train 5-layer convolutional networks on the
RandomBit dataset with the same setup as in (Chen et al.,
2021), but we vary the embedding size (see details in
Appendix H). Varying the # bits in the extra channel
intuitively controls how discriminative the irrelevant feature
are, i.e., how easy-to-learn it is for CL. In this setting, the

7
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random bit can suppress the MNIST digits. We make two
observations in Figure 5.1: (1) with a fixed embedding
size, increasing easiness (number of random bits) of the
irrelevant features exacerbates feature suppression; (2)
with a fixed easiness of irrelevant features, increasing the
embedding size alleviates feature suppression.

Second, we train ResNet18 (He et al., 2016) on the
CIFAR-10/100 RandBit Dataset, constructed similarly to
the MNIST RandBit dataset but with images from CIFAR-
10/100 (Krizhevsky et al., 2009) (see Appendix H.1). For
CIFAR-10, we use 2 random bits, and for CIFAR-100, we
use one random bit as the class irrelevant features. Table
2 presents the test performance for different values of
the model width w, where a larger w indicates a larger
embedding size (see Appendix H.3 for details). On both
datasets, increasing the embedding size alleviates feature
suppression, leading to improvements in both class and
subclass accuracies. We also provide additional experiments
and discussion in Appendix H.3. Both experimental results
confirm the conclusion drawn from the theoretical analysis.

5.2. Feature Suppression due to High-dimensional
Irrelevant Features and Imperfect Augmentation

Empirically, another form of feature suppression has been
observed that cannot be remedied by larger embedding di-
mensionality (Li et al., 2020). We characterize this form of
feature suppression by defining easy irrelevant features as
being: (1) drawn from a high dimensional space so that the
collection of irrelevant features is large and discriminating
based on irrelevant features is easier, (2) less altered by data
augmentation compared to the class feature.

For (1), formally we assume K = ω(n2), as opposed to
assumption 3.1 which implies that K is smaller than n. A
consequence of this assumption is that with high probabil-
ity the n original examples each have a unique irrelevant
feature. For (2) we consider the following imperfect data
augmentation:
Definition 5.3 (Imperfect data augmentation A ′(·)). For
a given example x = µ+ ξ ∈ D̂orig,

A ′(x) =u+ ζ ′v1 + ζ ′′v2 + ξ′,

where ζ ′ ∼ N (0, σ′2
ζ ), ζ ′′ ∼ N (0, σ′′2

ζ ), σ′2
ζ , σ

′′2
ζ ̸= 0 and

ξ′ is a new random variable drawn from N (ξ,Σξ) with
rank(Σξ) ≤ m

2 .

In the definition, the data augmentation adds small pertur-
bations (ζ ′ and ζ ′′) to class and subclass features, weakly
alters the noise, but preserves the irrelevant features. For
example, on Colorful-Moving-MNIST (Tian et al., 2020)
constructed by assigning each MNIST digit a background
object image selected randomly from STL-10, the colorful
background objects are high-dimensional and the colors are
invariant to data augmentations without color distortion.

Theorem 5.4 (Feature Suppression 2). If K = ω(n2) and
augmentation is A ′(·), with probability ≥ 1 − o(n

2m2

d +
1
n ) = 1 − o(1), the minimum norm minimizer Θ∗ =
[W ∗, b∗] satisfies ∥W ∗v1∥ = 0.

This theorem shows that feature suppression can happen
even when embedding dimensionality p is arbitrarily large
and helps understand empirical observations made both
in our work (Figure 5.1, the line with 15 bits) and previ-
ous work. For example Li et al. (2020) showed that on
Colorful-Moving-MNIST, the colorful background can sup-
press learning the digits especially when color distortion is
not used in augmentation, and increasing embedding size
does not address the issue.

In conclusion, Theorem 5.4 highlights that designing data
augmentations that disrupt the highly-discriminative irrele-
vant features is a key to addressing feature suppression.

6. Combining Supervised and Unsupervised
CL Losses Can Avoid Both Class Collapse
and Feature Suppression

We now consider the following loss which is a weighted
sum of the supervised and unsupervised CL loss functions:

Ljoint,β(Θ) = βLSCL(Θ) + (1− β)LUCL(Θ).

Similar loss functions have been proposed recently with
notable empirical success. For example, Chen et al. (2022)
put forth a weighted sum of supervised CL loss and class-
conditional InfoNCE (which has similar effect as LUCL in
our setting) to avoid class collapse. Islam et al. (2021) em-
pirically observed that the joint objective of supervised and
unsupervised contrastive loss leads to better transferability
of the learned models than their supervised counterparts.
However, we still lack a theoretical understanding of why
this weighted sum of losses can outperform both losses.

From our investigation of class collapse and feature
suppression, the benefit of the joint objective Ljoint becomes
evident: the unsupervised term in Ljoint increases the chance
of learning features that do not appear relevant to the
labels but might be useful for downstream tasks, while the
supervised term in Ljoint ensures that even hard-to-learn
class features are learnt. Thus, Ljoint can learn rich
representations capturing more task relevant information
than either LUCL(Θ) or LSCL(Θ). We show below that
with an appropriate choice of β, Ljoint can provably succeed
where LSCL fails due to collapse and LUCL fails due to
feature suppression (for clarity, we let µ = 0).

Theorem 6.1. W.L.O.G., assume ϕ3 ≥ ϕ4 ≥ · · · ≥ ϕK .

If p ≤ K, ϕ22 >
ϕ2
p−2

K−2 and ϕ21 <
ϕ2
p−1

K−2 , then by Theorem
4.4 the minimum norm minimizer of LSCL suffers from class
collapse and by Theorem 5.1 the minimum norm minimizer

8
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Table 3. Joint loss alleviates class collapse on CIFAR-100.
Loss Subclass Acc
SCL 26.11

Joint loss (β = 0.8) 41.37

Table 4. Joint loss alleviates feature suppresion on MNIST Rand-
Bit.

Loss Class Acc
UCL 61.21

Joint loss (β = 0.5) 79.37

Table 5. Joint loss alleviates both class collapse and feature sup-
presion on CIFAR-100 RandBit.

Loss Subclass Acc Class Acc
SCL 28.13 61.10
UCL 34.11 52.32

Joint loss (β = 0.8) 35.72 63.94

of LUCL suffers from feature suppresion. However, for con-
stant β ∈ (0, 1), the minimum norm minimizer of Ljoint,β ,
denoted by Θ∗ = [W ∗ b∗], satisfies ∥W ∗v1∥ = Ω(1) and
∥W ∗v2∥ = Ω(1).

Empirically Verifying Benefits of the Joint Loss. We
empirically examine the impact of the joint loss on MNIST
RandBit, CIFAR-100, and CIFAR-100 RandBit. The
training details are in Appenidx H.2. The results indicate
that the joint loss significantly improves performance in
scenarios where SCL suffers from class collapse (Table
3) and UCL suffers from feature suppression (Table 4).
Furthermore, on CIFAR-100 RandBit dataset, where
both phenomena can occur simultaneously, the joint loss
effectively alleviates both issues (Table 5).

7. Discussion
Negative Impact of Simplicity Bias in Deep Learning.
The simplicity bias of optimization algorithms has been
studied as a key beneficial factor in achieving good gener-
alization (Gunasekar et al., 2017; 2018; Soudry et al., 2018;
Ji & Telgarsky, 2019; Wu et al., 2019; Lyu et al., 2021).
However, our study reveals the negative impact of simplicity
bias in CL. In fact, it has also been conjectured to lead to
undesirable outcomes in other scenarios, such as learning
spurious correlations (Sagawa et al., 2020) and shortcut
solutions (Robinson et al., 2021). We hope our study can
inspire further theoretical characterization of the negative
role of simplicity bias in these scenarios, thereby deepening
our understanding and fostering potential solutions.

Connection to Neural Collapse. Neural collapse (NC) (Pa-
pyan et al., 2020) refers to the collapse of representations
within each class in supervised learning. Similar to the ra-
tionale in this study, overparameterized models that exhibit
NC on training data can demonstrate different behaviors on
test data due to their capacity to implement training set NC

in various ways, and it is worth considering whether current
theoretical frameworks (Han et al., 2021; Zhu et al., 2021;
Zhou et al., 2022b;a; Lu & Steinerberger, 2022; Fang et al.,
2021) can effectively capture NC on test data. In fact, the
empirical results in (Hui et al., 2022) emphasize the distinc-
tion between NC on training and test data, as there can be an
inverse correlation between the two. Our results suggest that
analyzing the learned features and considering the inductive
bias of training algorithms can aid in this distinction.

Theoretical Characterization of Class Collapse in (S)GD.
The results in Section 4.2 highlight the need for theoretical
characterization of class collapse in (S)GD. We provide two
potential approaches for future investigation. (1) Given that
the objective can be reformulated as matrix factorization (Eq.
39), and our Theorems 4.4 and 4.7 on minimum norm mini-
mizer, it is reasonable to investigate whether the implicit bias
of (S)GD is to seek the minimum norm solution. We note
that understanding the implicit bias in matrix factorization
is a longstanding pursuit in the machine learning commu-
nity, with no consensus reached thus far (see Appendix I.1).
Hence, further effort is still needed. (2) As elaborated in Ap-
pendix I.2, the gradient consists of two terms with distinct
roles. One promotes alignment with the subclass feature,
while the other counteracts its influence. The relative scale
of these two terms undergoes a phase transition (Figure 6),
and analyzing this can provide insights into class collapse.

8. Conclusion
To conclude, we present the first theoretically rigorous char-
acterization of the failure modes of CL: class collapse and
feature suppression at test time. We explicitly construct
minimizers of supervised contrastive loss to show that opti-
mizing this loss does not necessarily lead to class collapse.
Then we show that the minimum norm minimizer does ex-
hibit class collapse. Our analysis also reveals a peculiar phe-
nomenon for supervised CL, when optimized with (S)GD:
subclass features are learned early in training and then un-
learned. To analyze feature suppression, we consider two
formalisms of easy features that can prevent learning of class
features and provably attribute feature suppression to insuffi-
cient embedding space and/or imperfect data augmentations;
thus, motivating practical solutions to this problem. The
unified framework we develop to determine which features
are learnt by CL allows us to also offer the only theoreti-
cal justification for recent empirical proposals to combine
unsupervised and supervised contrastive losses. Perhaps,
most surprisingly, our findings from this theoretical study
indicate that simplicity bias of (S)GD is likely the driving
factor behind class collapse and feature suppression.
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A. Preliminaries
A.1. Effective dataset

Analyzing training a linear model with bias on the data is equivalent to analyzing trainng a linear model without bias on:

{
[
1
xi

]
: xi ∈ Daug}. Equivalently we can consider a dataset distribution where

x =u+ ξ,

where u =v0 + yϕ1v1 + (ysubϕ2 + µ)v2 + ρϕkvk.

The definitions are identical to the one in Section 3.1 except that each data now is in Rd+1 and has one constant feature v0

orthogonal to other v’s. We train a linear model f(x) = Wx on such data. The definition of other notations such as D̂aug in
the following analysis are also adapted to this dataset accordingly. Other notations such as D̂aug in the subsequent analysis
are adjusted accordingly to accommodate this dataset.

A.2. Loss functions

The loss functions can be rewritten as follows

LSCL =− 2Êi∈[n],x∈Ai,x+∈Ai

[
x⊤W⊤Wx+

]
+ Êx∈D̂aug,x−∈D̂aug

[(
x⊤W⊤Wx−)2] (3)

=− Tr(2M+WW⊤) + Tr(MW⊤WMW⊤W )

LUCL =− 2Êc∈{−1,1},x∈Sc,x+∈Sc

[
x⊤W⊤Wx+

]
+ Êx∈D̂aug,x−∈D̂aug

[(
x⊤W⊤Wx−)2] (4)

=− Tr(2M̃WW⊤) + Tr(MW⊤WMW⊤W )

Ljoint =(1− β)LSCL + βLUCL (5)

=− Tr(2M̄WW⊤) + Tr(MW⊤WMW⊤W ),

where we define the following
Definition A.1. M ,M+,M̃ are the covariance matrices of training examples, class centers and augmentation centers,
respectively

M =
1

mn

mn∑
i=1

xix
⊤
i

M+ =
1

2

∑
c∈{−1,1}

(
2

mn

∑
x∈Sc

x)(
2

mn

∑
x∈Sc

x)⊤

M̃ =
1

n

n∑
i=1

(
1

m

∑
x∈Ai

x)(
1

m

∑
x∈Ai

x)⊤,

and

M̄ =(1− β)M+ + βM̃ .

B. Minimizers of Loss Functions
We start with a technical lemma which we will need:
Lemma B.1. The product of two positive semidefinite matrices is diagonalizable.

Next, we present a lemma that facilitates the analysis of minimizers for various contrastive loss functions. To apply the
lemma, simply substitute the respective covariance matrices (M , M+, M̃ ) into P and Q as indicated.
Lemma B.2. Let P ,Q ∈ Rd+1 be positive semidefinite matrices such that colsp(P ) ⊂ colsp(Q). Consider the function
L : Rp×(d+1) → R given by

L(W ) = Tr[−2W⊤WP +W⊤WQW⊤WQ] (6)
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Then W is a global minimizer of L if and only if

W⊤WQ = [Q†P ]p

where notation [A]p represents the matrix composed of the first p eigenvalues and eigenvectors of a positive semidefinite A
(if p ≥ rankA then [A]p = A).

Moreover, if p ≥ rank(P ), then W ∗∗ is a minimum norm global minimizer if and only if

W ∗∗⊤W ∗∗ = Q†PQ†

Proof. First consider points that satisfy the first order condition

∇W (L) = −4WP + 4WQW⊤WQ = 0 (7)

where ∇W (L) is the matrix of partial derivatives of L with respect to each entry of W .

Since Q is positive semidefinite, it decomposes Rd+1 into the orthogonal direct sum ker(Q) ⊕ colsp(Q). Observe that
both subspaces are invariant under both P and Q.

Now let v ∈ colsp(Q) ∩ ker(WQ). Note that Pv ∈ colsp(Q), so P v = QQ†P v. Then from equation 7,

0 = (WP −WQW⊤WQ)v = WQ(Q†P −W⊤WQ)v (8)

If in addition we assume v ∈ ker(WQ), then

0 = WQ(Q†Pv)

namely Q†Pv ∈ ker(WQ). But colsp(Q) is also Q†-invariant, so Q†Pv ∈ colsp(Q). We conclude that ker(WQ) ∩
colsp(Q) is Q†P -invariant. Since Q† and P are positive semidefinite, by B.1 Q†P is diagonalizable. The only invariant
subspaces of a diagonalizable operator are spans of its eigenvectors, so ker(WQ) ∩ colsp(Q) is the span of eigenvectors of
Q†P .

Let colsp(Q) = ker(WQ)∩ colsp(Q)⊕U , where U is the span of the remaining eigenvectors of Q†P in colsp(Q). Then
by equation 8, W⊤WQ = Q†P on U .

Thus we have a basis v1, . . . ,vr, . . . ,vs, . . . ,vd s.t. Span(v1, . . . ,vr) = U, Span(vr+1, . . . ,vs) = ker(WQ) ∩

14
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colsp(Q), Span(vs+1, . . . , vd+1) = kerQ, and in this basis

Q†P =



λ1
. . .

λr
λr+1

. . .
λs

0
. . .

0



W⊤WQ =



λ1
. . .

λr
0

. . .
0

0
. . .

0



W⊤WP =



λ21
. . .

λ2r
0

. . .
0

0
. . .

0


with λ1, . . . , λr, . . . , λq ̸= 0 for some r ≤ q ≤ s, where r = rankW ≤ p, q = rank(P ).

Then for all such W ,

L = Tr[−2W⊤WP +W⊤WQW⊤WQ]

= −2

r∑
i=1

λ2i +

r∑
i=1

λ2i

= −
r∑

i=1

λ2i

It is clear from the above expression that the minimum among critical points is achieved if and only if

W⊤WQ = [Q†P ]p

(note that if matching anything beyond the qth eigenvalue is trivial since all such eigenvalues are zero).

It remains to check the behavior as ∥W ∥F grows large. Equivalently, W⊤W has a large eigenvalue λ. Let w be a
corresponding eigenvector. If w ∈ kerQ, then Qw = Pw = 0, so we see that the loss is unchanged. Otherwise, w has
some nonzero alignment with colsp(W ). But then Tr[W⊤WQW⊤WQ] grows quadratically in λ, but Tr[−2W⊤WP ]
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grows at most linearly in λ, hence the loss is large. We conclude that the previously found condition in fact specifies the
global minimizers of L.

From now on, assume that p ≥ q. Then the global minimum is achieved if and only if

W⊤WQ = Q†P (9)

Let us now consider the minimum norm solution, i.e. the one that minimizes Tr(W⊤W ). Note that W⊤W and Q†PQ†

are positive semidefinite. Let B be an orthonormal basis of eigenvectors for colsp(Q), C an orthonormal basis for kerQ.
Then in the orthonormal basis B ∪ C, we have the following block form of Q†PQ†

Q†PQ† =

(
A 0
0 0

)
(10)

where A is positive semidefinite.

Now equation 9 implies that WW⊤ has the form

W⊤W =

(
A B
B⊤ C

)
(11)

where C is also positive semidefinite matrix. Then ∥W ∥F = Tr[W⊤W ] is minimized exactly when Tr[C] = 0. But this
holds if and only if C = 0. Now suppose for the sake of contradiction B ̸= 0, say bij ̸= 0 for some i, j. Then W⊤W
contains a submatrix (

aii bij
bij 0

)
(12)

which has negative determinant. But this implies that W⊤W is not positive semidefinite, a contradiction. We conclude that
B = 0 so that the minimum norm solution is precisely

W ∗∗⊤W ∗∗ = Q†PQ†.

This completes the proof.

C. Some Properties of The Covariance Matrices

We assume
σ2
ξ

mn = o(1).

With probability ≥ 1−O(m
2n2

d ), we have that ξ⊤i vk = 0, ∀k, i and ξ⊤i ξj = 0, ∀i, j. The following discussion focuses on
the properties of M , M+, and M̃ when this condition is met.

Write X = V

[
S

σξImn

]
where V = [v0,v1 . . . vK . . .vK+1 . . .vmn+K ] where vK+i is the noise vector selected by

example xi, and

S =



1 1 . . . 1
y1ϕ1 y2ϕ1 . . . ymnϕ1

µ+ ysub,1ϕ2 µ+ ysub,2ϕ2 . . . ysub,mnϕ2
ρ11k1=3ϕ3 ρ21k2=3ϕ3 . . . ρmn1kmn=3ϕ3
ρ11k1=4ϕ4 ρ21k2=4ϕ4 . . . ρmn1kmn=4ϕ4

...
...

. . .
...

ρ11k1=KϕK ρ21k2=KϕK . . . ρmn1kmn=KϕK


=S′Ȳ , (13)
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where

S′ :=



√
mn 0 0 0 . . . 0
0

√
mnϕ1 0 0 . . . 0√

mnµ 0
√
mnϕ2 0 . . . 0

0 0 0
√

mn
K−2ϕ3 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . .
√

mn
K−2ϕK


,

and

Ȳ :=



1√
mn

1√
mn

. . . 1√
mn

y1
1√
mn

y2
1√
mn

. . . ymn
1√
mn

ysub,1
1√
mn

ysub,2
1√
mn

. . . ysub,mn
1√
mn

ρ11k1=3

√
K−2
mn ρ21k2=3

√
K−2
mn . . . ρmn1kmn=3

√
K−2
mn

ρ11k1=4

√
K−2
mn ρ21k2=4

√
K−2
mn . . . ρmn1kmn=4

√
K
mn

...
...

. . .
...

ρ11k1=K

√
K−2
mn ρ21k2=K

√
K−2
mn . . . ρmn1kmn=K

√
K−2
mn


It should be noted that the rows of Ȳ are orthonormal due to the assumption of a balanced dataset. Consequently, to obtain
the singular value decomposition (SVD) of S, it suffices to find the SVD of S′ = P ′Λ′Q′⊤. Moreover, the right singular
vectors of S with non-zero singular values are given by the rows of Q′⊤Ȳ .

We write M as V GV ⊤ where G is given by [
1

mnSS
⊤ σξ

mnS
σξ

mnS
⊤ σ2

ξ

mnImn

]
.

Now we are ready to show the following lemma which describes the SVD of G.
Lemma C.1. Let S ∈ R

K×nm be a rank-K matrix with SVD PΛQ⊤, where P ∈ R
K×K ,Λ ∈ R

K×mn and Q ∈
R

mn×mn. The mn none-zero eigenvalues of the following matrix G[
1

mnSS
⊤ σξ

mnS
σξ

mnS
⊤ σ2

ξ

mnImn

]

are given by
σ2
ξ

mn +
λ2
1

mn ,
σ2
ξ

mn +
λ2
2

mn , . . . ,
σ2
ξ

mn +
λ2
K

mn ,
σ2
ξ

mn , . . . ,
σ2
ξ

mn , with the corresponding eigenvectors 1√
1+r21

p1

r1√
1+r21

q1

 ,
 1√

1+r22
p2

r2√
1+r22

q2

 , . . . ,
 1√

1+r2K
pK

rK√
1+r2K

qK

 , [ 0K

qK+1

]
, . . . ,

[
0K

qmn

]
, where rk =

σξ

λk
.

Proof. Let
[
Pa
Qb

]
where a ∈ RK and b ∈ Rmn be an eigenvector of G. By the definition of eigenvector there should exist

α such that G
[
Pa
Qb

]
= α

[
Pa
Qb

]
, i.e., {

1
mnPΛΛ⊤a+

σξ

mnPΛb = αPa
σξ

mnQΛ⊤a+
σ2
ξ

mnQb = αQb,

which reduces to {
(αIK − 1

mnΛΛ⊤)a =
σξ

mnΛb
σξ

mnΛ
⊤a = (α− σ2

ξ

mn )b.
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Firstly, we observe that the rank of G is at most mn because G = 1
mn

[
S

σξImn

] [
S

σξImn

]⊤
. Then it is easy to check that

the eigenvalues and eigenvectors in Lemma C.1 satisfy the above conditions and the eigenvectors are indeed orthonormal,
which completes the proof.

Corollary C.2. The projection of v2 onto kerM has magnitude Θ(
σξ√
mn

).

Corollary C.3. . Assuming the dataset is balanced, then√
v⊤
2 M

†M+M †v2 =

{
0, if µ = 0

O(
σξ√
mn

), if µ ̸= 0 and µ = Θ(1).

Proof. Let LAL⊤ be the eigendecomposition of G. Then

M †v2 = V LA†L⊤



0
0
1
0
...
0


.

When µ = 0, we can express the SVD of S (equation 13) and apply Lemma C.1 to obtain the following result.

λ3 =
√
mnϕ2, a3 =

σ2
ξ

mn
+ ϕ22, r3 =

σξ√
mnϕ2

pk = ek, ∀k ∈ [K] and q3 =


1√
mn

ysub,1
1√
mn

ysub,2

...
1√
mn

ysub,mn

 , and l3 =

 1√
1+r23

p3

r3√
1+r23

q3

 .
Thus

M †v2 =
1

a3
√
1 + r23

V l3

=
1

a3
√
1 + r23

(
1√

1 + r23
v2 +

r3√
1 + r23

mn∑
i=1

1√
mn

ysub,ivK+i).

Let x̄y be the average of examples with label y and let Sy collects indices of examples with label y. Then

x̄y = v0 + v1 +
2σξ
mn

∑
i∈Sy

vK+i, (14)

and

x̄⊤
y M

†v2 =
r3

a3(1 + r23)

2σξ
mn

∑
i∈Sy

1√
mn

ysub,i = 0.

Write M+ as

M+ =
1

2
(x̄+1x̄

⊤
+1 + x̄−1x̄

⊤
−1).

Then

v⊤
2 M

†M+M †v2 =
1

2
((v⊤

2 M
†x̄+1)

2 + (v⊤
2 M

†x̄−1)
2) = 0.
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When µ ̸= 0, then there are at most two of pk’s that are not orthogonal to e3 (say p1 and p3). Additionally, all of their
elements, except for the first one, are zero. The remaining corresponding quantities satisfy.

λ1, λ3 = Θ(
√
mn),

a1 =
λ21
mn

+
σ2
ξ

mn
, a3 =

λ23
mn

+
σ2
ξ

mn

r1 =
σξ
λ1
, r3 =

σξ
λ3
,

and q1 and q3 are just linear combinations of ȳsub and 1√
mn

1, where ȳsub is a vector whose i-th element is 1√
mn

ysub,i. Then

M †v2 =V

[
1

a1

1√
1 + r21

c3,1l1 +
1

a3

1√
1 + r23

c3,3l3

]

where ci,j = p⊤
j ei are constants. For i = 0, 2

v⊤
0 M

†v2 =e⊤1

[
1

a1

1√
1 + r21

c3,1l1 +
1

a3

1√
1 + r23

c3,3l3

]

=
1

a1

1

1 + r21
c3,1c1,1 +

1

a3

1

1 + r23
c3,3c1,3

=(
mn

λ21
−Θ(

σ2
ξ

mn
))(1−Θ(

σξ
λ1

))c3,1c1,1 + (
mn

λ23
−Θ(

σ2
ξ

mn
))(1−Θ(

σξ
λ3

))c3,3c1,3

=

where |ϵ1| = O(
σξ√
mn

). Similarly,

v⊤
2 M

†v2 =
mn

λ21
c3,1c3,1 +

mn

λ23
c3,3c3,3 + ϵ2,

where |ϵ2| = O(
σξ√
mn

). For i > K

v⊤
i M

†v2 =viV

[
1

a1

1

1 + r21
c3,1l1 +

1

a3

1

1 + r23
c3,3l3

]
=e⊤i

[
1

a1

1

1 + r21
c3,1l1 +

1

a3

1

1 + r23
c3,3l3

]
=ϵ3,

where |ϵ3| = O(
σξ

mn ). Additionally,

x̄y = v0 + v1 + µv2 +
2σξ
mn

∑
i∈Sy

vK+i.

Then

x̄⊤
y M

†v2 =
mn

λ21
c3,1c1,1 +

mn

λ23
c3,3c1,3 +

mn

λ21
c3,1c3,1 +

mn

λ23
c3,3c3,3 +O(

σξ√
mn

).

By straightforward calculation, we can verify that mn
λ2
1
c3,1c1,1 +

mn
λ2
3
c3,3c1,3 +

mn
λ2
1
c3,1c3,1 +

mn
λ2
3
c3,3c3,3 = 0. This equation

can be equivalently examined as the satisfaction of the following condition:

[1 µ]

[
1 µ
µ µ2 + ϕ22

]−1 [
0
1

]
= 0.

Therefore |x̄⊤
y M

†v2| = O(
σξ√
mn

), and consequently
√
v⊤
2 M

†M+M †v2 = O(
σξ√
mn

).
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Corollary C.4. Similar to Corollary C.3, we also have
√
v⊤
k M

†M+M †vk = 0, k = 3, 4, . . . ,K.

Corollary C.5.
√
v⊤
1 M

†M+M †v1 = Θ(1). It can be proved using the same strategy as in Corollary C.3.

Lemma C.6. (1) The first K eigenvectors/eigenvalues of M̃ match those of M . (2) M †M̃ is identity on colsp(M̃) and
null on ker(M̃), i.e., M †M̃ = M̃ †M̃ .

Proof. We assign indices to the training examples such that the augmented examples from the same original example are
indexed from (l− 1)×m+ 1 to l×m, where l ranges from 1 to n. Next, we define matrix Ṽ = [ṽ1, ṽ2, . . . , ṽn] ∈ Rd×n,
where

ṽi =vi, ∀1 ≤ i ≤ K,

ṽi =
1√
m

m∑
j=1

vK+(i−1)×m+j , ∀K + 1 ≤ i ≤ n.

In other words, Ṽ can be written as

Ṽ = V T ,

where

T =


IK 0K×n

0mn×K


1√
m
1m×1 0 0 . . . 0

0 1√
m
1m×1 0 . . . 0

0 0 1√
m
1m×1 . . . 0




Note that, by the definition of our augmentation, the center of augmentations of the i-th original example, i.e., x̃i =
1
m

∑m
j=1 xK+(i−1)×m+j , can be considered as an example with the same features as xi but with an added noise term of

σξ√
m
ṽi. Therefore we can change the basis to Ṽ and express M̃ as

M̃ = Ṽ G̃Ṽ ⊤,

where

G̃ =

[
1
n S̃S̃

⊤ 1
n

σξ√
m
S̃

1
n

σξ√
m
S̃⊤ 1

n

σ2
ξ

m In

]

and

S̃ = S̃′Ȳorig, (15)

where

S̃′ :=



√
n 0 0 0 . . . 0
0

√
nϕ1 0 0 . . . 0√

nµ 0
√
nϕ2 0 . . . 0

0 0 0
√

n
K−2ϕ3 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . .
√

n
K−2ϕK


,
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and

Ȳorig :=



1√
n

1√
n

. . . 1√
n

y1
1√
n

y2
1√
n

. . . yn
1√
n

ysub,1
1√
n

ysub,2
1√
n

. . . ysub,n
1√
n

ρ11k1=3

√
K−2
n ρ21k2=3

√
K−2
n . . . ρn1kn=3

√
K−2
n

ρ11k1=4

√
K−2
n ρ21k2=4

√
K−2
n . . . ρn1kn=4

√
K
n

...
...

. . .
...

ρ11k1=K

√
K−2
n ρ21k2=K

√
K−2
n . . . ρn1kn=K

√
K−2
n


orig

. (16)

We note that we use the subscript ‘orig’ of a matrix to indicate that its elements represent the corresponding quantities on
the original dataset (e.g., yi is the label of the i-th original example). Let P̃ ′Λ̃′Q̃′⊤ be the SVD of S̃. Similar to equation
13, we observe that P̃ ′Λ̃′(Q̃′⊤Ȳorig) serves as an eigendecomposition of S̃.

Now we make the following observations:

1. By Lemma C.1 (with G replaced by G̃) and the fact that Λ̃′ collects the eigenvalues of S̃, the eigenvalues of G̃ are
σ2
ξ

mn +
λ′2
1

n ,
σ2
ξ

mn +
λ′2
2

n , . . . ,
σ2
ξ

mn +
λ′2
K

n ,
σ2
ξ

n , . . . ,
σ2
ξ

n , which are also the eigenvalues of M̃ because Ṽ has orthonormal
columns. With the observation that S̃′ = 1√

m
S′ (S′ is defined in equation 13), we further conclude that the above

eigenvalues equal eigenvalues of G and therefore M .

2. Let q̃i be the i-th column of Ȳ ⊤
origQ̃

′. By Lemma C.1 (substitute G with G̃), the i-th (i ≤ K) eigenvector of G̃ is given

by

[ 1√
1+r̃2i

p̃′
i

r̃i
1+r̃2i

q̃i

]
=

[ 1√
1+r̃2i

pi

r̃i
1+r̃2i

q̃i

]
, where r̃i =

σξ√
mλ′

i
=

σξ

λi
. The corresponding eigenvector of M̃ is V T

[ 1√
1+r̃2i

pi

r̃i
1+r̃2i

q̃i

]
.

Observe that T Ȳ ⊤
orig = Ȳ ⊤, therefore V T

[ 1√
1+r̃2i

pi

r̃i
1+r̃2i

q̃i

]
= V

[ 1√
1+r2i

pi

ri
1+r2i

qi

]
which is the i-th eigenvector of M .

Combining the above two leads to the conclusion that the firstK eigenvectors/eigenvalues of M̃ and M match. Additionally,
we observe that colsp(M̃) ⊆ colsp(M). Therefore the span of the last n−K eigenvectors of M̃ is a subspace of the span
of the last mn−K eigenvectors of M . Since Lemma C.1 tells us that the remaining mn−K eigenvalues of M are equal,
M is identity on the span of the last mn−K eigenvectors. Thus M is identity on the span of the last n−K eigenvectors
of M̃ . Now we can conclude that M †M̃ = M̃ †M̃ .

Lemma C.7. Suppose that the first mn
2 examples have class label +1 and the others have class label −1. Let L+A+L+⊤

(where L+ ∈ Rd×2) be the eigendecomposition of M+, then

l+1 = V



1√
1+µ2+

σ2
ξ

mn

0
µ√

1+µ2+
σ2
ξ

mn

0(K−2)×1
σξ

mn

√
1+µ2+

σ2
ξ

mn

1mn
2 ×1

σξ

mn

√
1+µ2+

σ2
ξ

mn

1mn
2 ×1


, l+2 = V



0
ϕ1√

ϕ2
1+

σ2
ξ

mn

0
0(K−2)×1
σξ

mn

√
ϕ2
1+

σ2
ξ

mn

1mn
2 ×1

−σξ

mn

√
ϕ2
1+

σ2
ξ

mn

1mn
2 ×1


, a1 = 1 + µ2 +

σ2
ξ

mn
, a2 = ϕ21 +

σ2
ξ

mn
(17)
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D. Class Collapse in Supervised CL
D.1. Proof of Theorem 4.3

Let l⊥ be the projection of v2 onto kerM . By Corollary C.2, ∥l⊥∥ = Θ(
σξ√
mn

). Let a = mn
σ2
ξ
l⊥. We can construct a W ∗

that satisfies the following

W ∗⊤W ∗ = M †M+M † + aa⊤,

which, by Lemma B.2, satisfies the condition for being a minimizer of the loss. In the meantime, W ∗ also satisfies
∥W ∗v2∥ = Θ(1) by Corollary C.2. Note that both v2 and the projection of v2 onto colsp(M) is orthogonal to vk (1 ≤
k ≤ K, k ̸= 2) as well as vk (k > mn) by Lemma C.1, therefore

l⊥is also orthogonal to vk, for any k s.t. 1 ≤ k ≤ K, k ̸= 2 and k > mn. (18)

Then, for x from Dorig the following holds true

W ∗x = c0v0 + c1yv1 + ysubc2v2 + hx +W ∗ξ,

where c1, c2 are Θ(1), and hx is orthogonal to vk, k = 0, . . . ,K and hx ∈ colsp(M) (by Lemmas C.1, C.5, C.4, equation
18 and that ∥W ∗v2∥ = Θ(1)). Let β = c2v2, then

β⊤W ∗x = ysubc
2
2 + β⊤W ∗ξ.

With probability ≥ 1− mn
d , ξ /∈ {vk}mn

k=1, which indicates that W ∗ξ = 0 by Lemma C.1 and equation 18. Therefore we
can conclude

Pr(ysubβ
⊤W ∗x > 0|y) ≥ 1− mn

d
= 1− o(1).

D.2. Proof of Theorems 4.4 and 4.7

Theorems 4.4 and 4.7 and can be proved by invoking Lemma B.2 and Corollary C.3.

E. Feature Suppression in Unsupervised CL
E.1. Feature Suppression 1

By Lemmas B.2 and C.6, when p < K, any global minimizer of LUCL satisfies

W⊤WM =

p∑
i=1

rir
⊤
i , (19)

where {ri}pi=1 can be an orthonormal basis of any p-dimensional subspace of colsp(M̃). By equation 13 and Lemmas C.1

and C.6, M and M̃ each have an eigenvector c1 with eigenvalue
σ2
ξ

mn + ϕ21 and a 1√
1+

σ2
ξ

mnϕ2
1

alignment with v1, with the

other eigenvectors having no alignment with v1. Thus if we include c1 in {ri}pi=1 and let W⊤W be null on kerM , then
the constructed W is a minimizer of LUCL with Θ(1) alignment with v1. Now let’s look at the minimum norm minimizer,
which should satisfy

W⊤W =

p∑
i=1

rir
⊤
i M

†,

where {ri}pi=1 is selected such that W has the smallest norm. By Lemma C.6, {ri}pi=1 should be the p-
eigenvectors of M with largest eigenvalues (so that the inverse of the eigenvalues are among the smallest). If among
(1+µ2+ϕ2

2)+
√

(1+µ2+ϕ2)2−4ϕ2
2

2 ,
(1+µ2+ϕ2

2)−
√

(1+µ2+ϕ2)2−4ϕ2
2

2 , ϕ3√
K−2

, . . . , ϕK√
K−2

there are p elements larger than ϕ1, then
σ2
ξ

mn + ϕ21 is not among the p largest eigenvalues of M . Thus c1 is not included in {ri}pi=1 and the corresponding W is
orthogonal to v1.
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E.2. Feature Suppression 2

We first present our result under slightly technical conditions.

Lemma E.1. Let v1, . . . ,vC ∈ Rd be nonzero and orthogonal, U,A are subspaces that are orthogonal to each other and
all the vi. Suppose we have a data distribution D = {(vyi +uyi +ai, yi)}ni=1 ⊂ Rd×{1, . . . , C}, where ui ∈ U,ai ∈ A
for all i ∈ {1, . . . , n} (namely all examples in the same class c share the same vc and uc).

Denote zyi
= vyi

+ uyi
, and let M ,M+ be the matrices defined for this dataset, and let Z,Z+ and A,A+ be the

corresponding matrices when the data is {(zyi
, yi)} and {(ai, yi)}, respectively. Suppose that (A −A+)v ̸= 0 for all

v ∈ Rd s.t. Av ̸= 0 and the output dimension p ≥ C. Then W⊤W = Z† is the minimum norm solution to the contrastive
learning objective on D.

Proof. In this proof, we will use E to represent the empirical expectation over the dataset D. Also, let nc denote the number
of examples in class c.

We first derive the following expression for A+:

A+ = E[aiz
⊤
yi
]Z†

E[zyia
⊤
i ] (20)

Define B = [
√
n1z1 . . . ,

√
nCzC ] ∈ Rd×C ,C = [a∗

1, . . . ,a
∗
C ] ∈ Rd×C , where nc is the number of examples in class c

and a∗
c = 1√

nc

∑
yi=c ai. Then

E[aiz
⊤
yi
]Z†

E[zyia
⊤
i ] =

1

n
CB⊤

(
1

n
BB⊤

)†
1

n
BC⊤ (21)

Now B has full column rank, so B⊤(BB⊤)†B = I . Thus

E[aiz
⊤
yi
]Z†

E[zyia
⊤
i ] =

1

n
CC⊤ (22)

=

C∑
c=1

nc
n
Eyi=c[ai]Eyi=c[ai]

⊤ (23)

= A+ (24)

Now we show that W⊤W = Z† is a global minimizer. It suffices to show that MW⊤WM = M+. Note that by
assumption, we have ⟨zi,aj⟩ = 0 for all i ∈ {1, . . . , C}, j ∈ {1, . . . , n}, so we have

MZ†M = E[(zyi + ai)(zyi + ai)
⊤]M †

∗E[(zyi + ai)(zyi + ai)
⊤] (25)

= (Z +E[zyia
⊤
i ] +E[aiz

⊤
yi
] +A)Z†(Z +E[zyia

⊤
i ] +E[wiz

⊤
yi
] +A) (26)

= ZZ†Z +ZZ†
E[zyi

a⊤
i ] +E[aiz

⊤
yi
]Z†Z +E[aiz

⊤
yi
]Z†

E[zyi
a⊤
i ] (27)

= Z +E[zyia
⊤
i ] +E[aiz

⊤
yi
] +A+ (28)

= Z+ +E[zyi
a⊤
i ] +E[aiz

⊤
yi
] +A+ (29)

= M+ (30)

We now want to show that this is the minimum norm solution. It is sufficient to show that im(W⊤W ) = im(Z†) =
im(Z) ⊂ im(M). Note that im(M) ⊂ im(A)⊕ im(Z), so we can restrict M to this subspace. We will show that M is
invertible on im(A)⊕ im(Z). Suppose v = z + a with z ∈ im(Z),a ∈ im(A),Mv = 0. This implies that

Zz +E[zyia
⊤
i ]a = 0 (31)

E[aiz
⊤
yi
]z +Aa = 0 (32)
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Left-multiplying the first equation by E[ n
nyi

∥vyi
∥2aiv

⊤
i ], by orthogonality we have

0 = E

[
n

nyi
∥vyi

∥2
aiv

⊤
yi

] (
E[zyi

z⊤
yi
]z +E[zyi

a⊤
i ]a

)
= E

[
n

nyi
∥vyi

∥2
aiv

⊤
yi

] (
E[(vyi

+ uyi
)z⊤

yi
]z +E[(vyi

+ uyi
)a⊤

i ]a
)

= E

[
n

nyi∥vyi∥2
aiv

⊤
yi

] (
E[uyi(z

⊤
yi
z + a⊤

i a)] +E[vyi(z
⊤
yi
z + a⊤

i a)]
)

= E

[
n

nyi
∥vyi

∥2
aiv

⊤
yi

]
E[vyi

(z⊤
yi
z + a⊤

i a)]

=

C∑
c=1

1

nnc∥vc∥2

(∑
yi=c

ai

)
v⊤
c vc

(
ncz

⊤
c z +

∑
yi=c

a⊤
i a

)

=

C∑
c=1

1

nnc

(∑
yi=c

ai

)(
ncz

⊤
c z +

∑
yi=c

aia

)

=
1

n2

C∑
c=1

1

n

(∑
yi=c

ai

)
z⊤
c z +

1

nnc

(∑
yi=c

ai

)(∑
yi=c

ai

)⊤

a

= E[aiz
⊤
yi
]z +A+a

Now substituting into the second equation, we find that

(A−A+)a = 0 (33)

But our assumptions imply that a = 0. Returning to the first equation, we now have Zz = 0. But since Z is diagonalizable,
Z must be invertible on its image, hence z = 0. We conclude that v = 0. This completes the proof.

We now want to show that we can simplify some of the conditions of the previous lemma to linear independence.

Lemma E.2. Suppose d ≥ 3n − 2 and x1, . . . ,xn ∈ Rd are linearly independent. Then there exists a set of nonzero
orthogonal vectors v1, . . . ,vn s.t. xi = vi + ui and vi,uj are orthogonal for all i,∈ {1, . . . , n}.

Proof. WLOG assume the xi are contained in the span of the first n basis vectors. The lemma amounts to finding an

orthonormal matrix Ω =

(
A B
C D

)
s.t.

(
A B
C D

)(
X
0

)
=

(
AX
CX

)
=

(
Σ
F

)
(34)

where Σ is diagonal. Since the xi are linearly independent, X is invertible, so there exists A′ s.t. A′X is diagonal.

We now want to construct a matrix C such that
(
A′

C ′

)
has orthogonal columns, all with norm l > 0. Note that C ′ has at

least 2n − 2 rows. Set C ′
11 = 1, and the remaining entries in the first row so that when considering A and the first row

of C ′, the first column is orthogonal to every other column. Now leave C ′
21 = 0, set C ′

22 = 1, and fill out the remaining
entries in the second row so that when considering A and the first two rows of C ′, the second column is orthogonal to the
remaining columns. Note that the first column remains orthogonal to all other columns. Continuing in this fashion, we can
use the first n− 1 rows of C ′ to guarantee that all n columns are orthogonal. Finally, suppose without loss of generality that
whhen considering the A′ and the first n− 1 rows of C ′, the first column has the largest norm l. For each of the remaining
n − 1 rows, set the jth row to have all zero entries except possibly in the (j + 1)-th column, which is set so that the jth
column will also have norm l. Note that the columns remain orthogonal under this construction.
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Now 1
l

(
A′

C ′

)
has orthonormal columns and 1

lA
′X is still diagonal. By Gram-Schmidt, we can fill out the remaining

columns of Ω to construct an orthonormal matrix.

We now present the feature result with simplified assumptions.

Lemma E.3. Let Z,A be orthogonal subspaces. Suppose we have a data distribution D = {(zyi + ai, yi)}ni=1 ⊂
Rd × {1, . . . , C}, where zi ∈ Z,ai ∈ A for all i ∈ {1, . . . , n}, and the zi are linearly independent.

Let M ,M+ be the matrices defined for this dataset, and let Z,Z+ and A,A+ be the corresponding matrices when the
data is {(zyi , yi)} and {(ai, yi)}, respectively. Suppose that (A−A+)v ̸= 0 for all v ∈ Rd s.t. Av ̸= 0 and the output
dimension p ≥ C. Then W⊤W = Z† is the minimum norm solution to the contrastive learning objective on D.

Proof. Assume that d ≥ 3C−2, otherwise embed the distribution in a space of sufficiently large dimension. By Lemma B.2,
the minimum norm minimizer is unaffected by adding extra dimensions. Then Lemma E.2 applies, so linear independence
of the zyi is sufficient to be able to construct v1, . . . ,vC ,y1, . . . ,yC satisfying Lemma E.1, from which the conclusion
follows.

F. Minimizer of The Joint Loss
For simplicity we assume µ = 0. Same strategy can be applied to prove the theorem when µ ̸= 0 but a more detailed
discussion on the selection of β may be required.

By Lemmas C.7 and C.1 and the expression of S (equation 13), we observe that the two eigenvectors of M+ match two of
the eigenvectors of M . By combining this with Lemma C.6, we obtain that βM †M+ +(1−β)M †M̃ = l+1 l

+⊤
1 + l+2 l

+⊤
2

on span({l+1 , l
+
2 }) and βM †M+ + (1 − β)M †M̃ = (1 − β)M̃ †M̃ on span({l+1 , l

+
2 })⊥. Thus the eigenvalues of

βM †M+ + (1 − β)M †M̃ are 1, 1, 1 − β, 1 − β, . . . , 1 − β. When β ∈ (0, 1), l+1 and l+2 are the two eigenvectors
of βM †M+ + (1 − β)M †M̃ with largest eigenvalues. For the remaining eigenvectors, since they have equally large
eigenvalues (same as analyzed in E), the minimum norm minimizer will select the largest p− 2 of them. In the setting of

Theorem 6.1 (1− β)(ϕ22 +
σ2
ξ

mn ) is one of the p− 2 largest of the remaining. As a result, both components aligned with v1

and v2 are selected by the minimum norm minimizer of the joint loss.

G. Early in Training Subclasses Are Learned
We assume σξ = O(1).

G.1. Lemmas

Lemma G.1 (Laurent-Massart (Laurent & Massart, 2000) Lemma 1, page 1325). Let v1, . . . , vd be i.i.d. Gaussian variables
drawn from N (0, 1). Let a = (a1, . . . , ad) be a vector with non-negative components. Let Z =

∑d
i=1 ai(v

2
i − 1). The

following inequalities hold for any positive t:

Pr(Z ≥ 2∥a∥2
√
t+ 2∥a∥∞t) ≤ e−t,

Pr(Z ≤ −2∥a∥2
√
t) ≤ e−t. (35)

Lemma G.2 (Mills’ ratio. Exercise 6.1 in (Shorack & Shorack, 2000).). Let v be a Gaussian random variable drawn from
N (0, 1). Then for all λ > 0,

λ

λ2 + 1

1√
2π
e−

λ2

2 < Pr(v ≥ λ) <
1

λ

1√
2π
e−

λ2

2 .

Corollary G.3. Given a vector q, and a random vector z drawn from N (0, σd Id), w.p. ≥ 1 − O( δ√
log 1/δ

), |z⊤q| =

O(
∥q∥σ

√
log 1

δ√
d

).
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Proof. This can be proven by considering the fact that q⊤z is a Gaussian variable and applying Lemma G.2.

Lemma G.4. Let each element of W0 ∈ Rp×d be randomly drawn from N (0,
σ2
0

d Id). Let u ∈ Rd be a unit vector. With
probability at least 1− δ, we have

∥W0u∥ ≥σ0
√
p

d

√√√√1− 2

√
ln 2/δ

p

∥W0u∥ ≤σ0
√
p

d

√√√√1 + 2

√
ln 2/δ

p
+ 2

ln 2/δ

p
.

Proof. Firstly rewrite ∥W0u∥ as

∥W0u∥ =

√√√√ p∑
i=1

(w
(i)⊤
0 u)2 = σ0

√
p

d

√√√√1

p

p∑
i=1

(

√
d

σ0
w

(i)⊤
0 u)2.

By spherical symmetric, each
√
d

σ0
w

(i)⊤
0 u is a random Gaussian variable drawn from N (0, 1). By lemma G.1 we have

Pr

(
1

p

p∑
i=1

(

√
d

σ0
w

(i)⊤
0 u)2 ≤ 1− 2

√
ln 2/δ

p

)
≤δ/2

Pr

(
1

p

p∑
i=1

(

√
d

σ0
w

(i)⊤
0 u)2 ≥ 1 + 2

√
ln 2/δ

p
+ 2

ln 2/δ

p

)
≤δ/2

which completes the proof.

G.2. Proof of Theorem 4.5

We assume the dataset satisfies the condition in Section C (wich holds with probability 1−O(m
2n2

d )). Let LAL⊤ (where
C ∈ Rd×mn) be the eigendecomposition of M . By equation 13 and Lemma C.7 and Lemma C.1, we observe that when
µ ̸= 0 all but three of M ’s eigenvectors are orthogonal to l+1 , l+2 . W.L.O.G., let l1, l2 and l3 be those three eigenvectors.
The corresponding three eigenvalues are all constants. Let l+3 be a unit vector in span({l1, l2, l3}) − span({l+1 , l

+
2 }).

Decompose v2 as µ√
1+µ2+

σ2
ξ

mn

l+1 +

√
1+

σ2
ξ

mn√
1+µ2+

σ2
ξ

mn

l⊥ where l⊥ is a unit vector that is orthogonal to l+1 . Since v2 ⊥ l+2 , we

have l⊥ ⊥ l+2 thus M+l⊥ = 0.
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Define

√
M :=L

√
A

Γi(t) :=∥Wtl
+
i ∥, i = 1, 2, 3

Γ⊥(t) :=∥Wtl⊥∥

Γ:3(t) :=

√√√√ 3∑
i=1

∥Wtl
+
i ∥2

B :=[
√
a4l4

√
a5l5 . . .

√
amnlmn]

ΓB(t) :=∥WtB∥F
s :=∥

√
M∥ = O(1)

h :=∥
√
M

⊤
B∥ =

√√√√mn∑
i=4

a2i =

√√√√ K∑
i=3

(
σ2
ξ

mn
+

ϕ2i
(K − 2)

)2 + (mn−K)
σ4
ξ

m2n2

=O(

√
σ2
ξ

mn
+

1

K
+

σ4
ξ

mn
) = O(1)

Then we bound ∥Wt

√
M∥F

∥Wt

√
M∥F =∥WtL

√
A∥F

=∥[Wt

√
a1l1 Wt

√
a2l2 . . . Wt

√
amnlmn]∥F

=

√√√√ 3∑
i=1

∥Wt

√
aili∥2 +

mn∑
i=4

∥Wt

√
aili∥2

≤
√
cΓ:3(t)2 + ΓB(t)2,

where c is a constant because a1, a2, a3 are all O(1) (by Lemma C.1) and each li (i = 1, 2, 3) is a linear combination of
l++
1 , l++

2 , l+3 with O(1) coefficients, with l++
1 , l++

2 representing the projections of l+1 , l
+
2 onto span({li}3i=1).

By the rule of gradient descent we have

Wt+1 =Wt + η(4WtM
+ − 4WtMW⊤

t WtM) (36)

=Wt + 4ηWtM
+ − 4ηWtMW⊤

t WtMm

This is followed by Lemma G.5.

Lemma G.5. By the update rule of GD we have the following recurrence relations

Γ1(t+ 1) ≥(1 + 4ηa+1 )Γ1(t)− 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ1(t+ 1) ≤(1 + 4ηa+1 )Γ1(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ2(t+ 1) ≤(1 + 4ηa+2 )Γ2(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ3(t+ 1) ≤Γ3(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ⊥(t+ 1) ≤Γ⊥(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

ΓB(t+ 1) ≤ΓB(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2h.

Then we prove the following Lemma
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Lemma G.6. At initialization the following holds with probability ≥ 1−O( 1
poly(p) )

ΓB(0)

Γ1(0)
=O(1)

Γi(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)
, i = 1, 2, 3

Γ⊥(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)

Proof. We first bound ΓB(0)

ΓB(0) =

√√√√mn∑
i=4

ai∥W0li∥2

=

√√√√mn∑
i=4

ai

p∑
j=1

∥w⊤
0,jli∥2

≤

√√√√ ϕ2max

K − 2

K+1∑
i=4

p∑
j=1

∥w⊤
0,jli∥2 +

σ2
ξ

mn

mn∑
i=K+2

p∑
j=1

∥w⊤
0,jli∥2

=O(

√
pσ2

0

d
+ σ2

ξ

pσ2
0

d
) 1⃝

=O(σ0

√
p

d
).

Inequality 1⃝ holds with probability ≥ 1−O( 1
poly(mnp) ). It is obtained by obsreving that w⊤

0,jli’s are independent Gaussian
variables (by the orthogonality of li’s) and applying Lemma G.1 to the sum of ∥w⊤

0,jli∥2’s.

By Lemma G.4 and the above, at initialization the following holds with probability ≥ 1−O( 1
poly(p) +

1
poly(mnp) )

ΓB(0)

Γ1(0)
=O(1)

Γi(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)
, i = 1, 2, 3

Γ⊥(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)
.

Let ψ,ψB be constants. Define

π :=
ΓB(0)

Γ1(0)
= O(1) by Lemma G.6

τ :=(c(1 + 2(1 + ψ)2) + (π + ψB)
2)3/2 = Θ(1).

Let γ be a constant satisfying the following

γ ≤ min


√

(a+1 − a+2 )ψ

τ(s+ sψ)
,

√
a+1 ψ

τ(s+ sψ)
,

√
a+1 ψB

τ(h+ sψB)
,

√
a+1 − a+2
τs

 .
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Note that a+1 − a+2 > 0 because µ2 + 1 > ϕ21. Additionally, we define the following shorthand

ϵ :=4ητγ2s,

ϵB :=4ητγ2h

α :=1 + 4ηa+1 − ϵ

α̂ :=1 + 4ηa+1 + ϵ

κ2 :=
1 + 4ηa+2

α
< 1 because µ2 + 1 > ϕ21

κ3 :=
1

α

κ⊥ :=
1

α

κB :=
1

α
.

Now we are ready to prove the following Lemma.

Lemma G.7. If ∀t ≤ T , Γ1(t) ≤ γ. For any constants ψ,ψB , the following holds ∀t ≤ T + 1 with probability
1−O( 1

poly(p) ),

• Γ1(t) ≥ αtΓ1(0)

• Γ1(t) ≤ α̂tΓ1(0).

• Γi(t) ≤ (κti + ψ)Γ1(t), i = 2, 3.

• Γ⊥(t) ≤ (κt⊥ + ψ)Γ1(t).

Proof. Let S(k) be the following statement: ∀t′ such that 0 ≤ t′ ≤ k, the following holds

• Γ1(t
′) ≥ αt′Γ1(0),

• Γ1(t) ≤ α̂tΓ1(0),

• Γi(t
′) ≤ (κt

′

i + ψ)Γ1(t
′), i = 2, 3,

• Γ⊥(t
′) ≤ (κt

′

⊥ + ψ)Γ1(t
′),

• ΓB(t
′) ≤ (κt

′

Bπ + ψB)Γ1(t
′).

By Lemma G.6, S(0) holds with high probability. Next we show that, ∀t ∈ [0, T + 1], if S(t − 1) holds then S(t) also
holds. By Lemma G.5, the induction hypothesis and κ2, κ3, κ⊥, κB < 1 , Γ1(t− 1) ≤ γ, we have the following

Γ1(t) ≥αΓ1(t− 1) (37)
Γ1(t) ≤α̂Γ1(t− 1) (38)

Γ2(t) ≤
(
(1 + 4ηa+2 )(κ

t
2 + ψ) + ϵ

)
Γ1(t)

Γ3(t) ≤
(
(κt3 + ψ) + ϵ

)
Γ1(t)

Γ⊥(t) ≤
(
(κt⊥ + ψ) + ϵ

)
Γ1(t)

ΓB(t) ≤
(
(κtBπ + ψB) + ϵB

)
Γ1(t).

By the construction of our κ’s, α’s, ϵ’s and ψ’s, the last three items in statement S(t) hold. Combining the induction
hypothesis with equations 37 and 38 yields the first two items in S(t), which completes the proof.

Now we are ready to prove the theorem.
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Theorem G.8. If σ0
√

p
d = o(1) and σξ = o(1), with probability at least 1−O(m

2n2

d + 1
poly(p) ) = 1− o(1), the following

holds

• ∥W0v2∥ = o(1).

• ∃t = O(ln( 1
σ0

√
d
p )), s.t. ∥Wtv2∥ = Ω(1).

Proof. ∥W0v3∥ = o(1) follows Lemma G.4 and the assumption that σ0
√

p
d = o(1). Select a constant ψ such that

ψ < µ√
1+

σ2
ξ

mn

. Note that µ√
1+

σ2
ξ

mn

− ψ = Θ(1). Let T = ⌊ ln(γ/Γ1(0))
lnα ⌋ = Θ(ln 1

σ0

√
d
p ). There are two cases to consider.

• If ∀t ≤ T , Γ1(t) ≤ γ, by Lemma G.7 we have Γ1(T + 1) ≥ γ and Γ⊥(T + 1) ≤ (o(1) + ψ)Γ1(T + 1). Then

∥WT+1v2∥ ≥ µ√
1 + µ2 +

σ2
ξ

mn

∥WT+1l
+
1 ∥ −

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

∥WT+1l⊥∥

≥(
µ√

1 + µ2 +
σ2
ξ

mn

−

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

ψ − o(1))γ

=Ω(1).

• If ∃t ≤ T s.t. Γ1(t) > γ, we define T ∗ =
ln( γ

Γ1(0)
)

ln α̂ and t∗ = min t s.t. Γ1(t) > γ. It follows that ∀t ≤ t∗−1,Γ1(t) ≤
γ. Then we can apply Lemma G.7 to obtain Γ1(t

∗) ≤ α̂t∗Γ1(0). If t < T ∗, the above yields Γ1(t
∗) < γ, which

contradicts the definition of t∗. Therefore we conclude t∗ ≥ T ∗. Lemma G.7 also tells that Γ⊥(t
∗) ≤ (κt

∗

⊥ +ψ)Γ1(t
∗).

Since t∗ ≥ T ∗ and κ⊥ < 1, we have κt
∗

⊥ ≤ (Γ1(0)
γ )

ln(1/κ3)
ln α̂ = o(1). Therefore Γ⊥(t

∗) ≤ (o(1) + ψ)Γ1(t
∗). By the

definition of t∗, Γ1(t
∗) > γ. Then we can lower bound ∥Wt∗v2∥ in the same way as in the previous case

∥Wt∗v2∥ ≥ µ√
1 + µ2 +

σ2
ξ

mn

∥Wt∗l
+
1 ∥ −

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

∥Wt∗l⊥∥

≥(
µ√

1 + µ2 +
σ2
ξ

mn

−

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

ψ − o(1))γ

=Ω(1).
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Table 6. increasing k improves both subclass and class accuracies on CIFAR-10 RandBit.

k Sub Acc Acc
1 34.38 86.73

16 58.12 94.09

H. Experimental Setup and Additional Experimental Results
H.1. Datasets

CIFAR-10/100. The two datasets each consist of 60000 32x32 colour images (Krizhevsky et al., 2009). In the case of
CIFAR-10, the ‘classes’ refer to the original 10 classes defined in the dataset, while we define ‘subclasses’ as two subclasses:
vehicles (airplane, automobile, ship, truck) and animals (bird, cat, deer, dog, frog, horse). On CIFAR-100, we refer to the
10 super-classes (e.g. aquatic mammals, fish, flowers) as our ’classes’ and the 100 classes as our ’sub-classes’. These two
datasets illustrate a natural setting where class collapse is extremely harmful, as it results in learning representations that do
not capture much of the semantically relevant information from the data.

MNIST RandBit. The MNIST RandBit dataset Chen et al. (2021) is created by setting n, the # of bits that specifies how
easy the useless feature will be. Larger n makes the feature more discriminative, thus ‘easier’ and more problematic for
feature suppression. An extra channel is concatenated to MNIST images where each value in the feature map corresponds to
a random integer between 0 and 2n.

CIFAR-10/100 RandBit. The two datasets are constructed in a similar way as MNIST RandBit, but with images from
CIFAR-10/100.

H.2. Training details

For the experiments on CIFAR-10/100 or CIFAR-100 RandBit, we use a ResNet-18 trained with (Momentum) SGD using
learning rate = 0.01 and momentum = 0.9. We train with batch size set to 512 for 1000 epochs. For data augmentations, we
consider the standard data augmentations from Chen et al. (2020).

For the feature suppression experiments on MNIST RandBit, we directly use the code provided by Chen et al. (2021). We
consider a 5-Layer convolutional network. For our data augmentations, we consider the standard set of data augmentations
for images and do not alter the useless feature (extra channel concatenated of RandBits).

H.3. Details and additional experiments on varying embedding size

In the experiments presented in Table 2, we vary the width, denoted by w, of the ResNet, which is controlled by the number
of convolutional layer filters. For width w, there are w, 2w, 4w, 8w filters in each layer of the four ResNet blocks.

In addition, we explore an alternative way of varying the embedding size, which isolates the effect of the last layer’s
embedding size from the size of the lower layers. Specifically, we set the width parameter w = 4 and multiply the width
of only the last ResNet block by a factor k. It is worth noting that doing this requires a much smaller total number of
parameters. Table 6 presents the results on CIFAR-10 RandBit. We observe that increasing k also effectively improves the
accuracy. Although the improvement is not as substantial as in the previous case where we increase w, it confirms the same
trend predicted by the theory, supporting the conclusion that increasing the embedding size alleviates feature suppression.

I. Potential Approaches to Theoretical Characterization of Class Collapse in (S)GD
The most crucial aspect that remains to be tackled is how (S)GD unlearns subclass features that have already been learned
early in training. We offer two potential approaches that could help in achieving this goal.

I.1. Through implicit bias of (S)GD in matrix factorization

The contrastive loss we are considering can be reformulated as a matrix factorization objective:

min f(W⊤W ) =
1

n2

∑
i,j

(x⊤
i W

⊤Wxj − aij)
2, (39)
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Figure 6. We plot the ratio between norms of term 1 and term 2 in orange, and the projection of the weights W onto the subclass feature
(∥Wv2∥) in blue. The ratio between the two norms initially starts at a very large value, then decreases until it reaches a plateau around 1.
The point at which the ratio dropped to around 1 coincided almost precisely with the peak of ∥Wv2∥.

where

aij :=

{
2, if xi and xj are from the same class
0. else

This opens up the possibility of leveraging the rich literature on matrix factorization to find a solution. Since we have already
proven in Theorems 4.4 and 4.7 that the minimum norm minimizer of the loss function exhibits class collapse, and our
experiments confirm that (S)GD does converge to a minimizer that exhibits class collapse, it is reasonable to investigate
whether the implicit bias of (S)GD in our setting, specifically matrix factorization, is to seek the minimum norm solution.

We note that understanding the implicit bias in matrix factorization is a longstanding pursuit in the machine learning
community. (Gunasekar et al., 2017) have provided empirical and theoretical evidence that under certain conditions, gradient
descent converges to the minimum nuclear norm solution. Therefore, one can examine whether similar existing results can
be applied to our setting and then combine that with our Theorems 4.4 or 4.7 to show class collapse in GD. However, (Arora
et al., 2019a) and (Razin & Cohen, 2020) suggested that the implicit bias may be explained by rank rather than norm when
the depth of a network ≥ 2.

I.2. Through analyzing the two terms in the gradient

Let’s take a closer look at the update of the weights in GD, i.e., learning rate times minus gradient 4WM+ −
4WMW⊤WM (see Equation ). There are two terms 4WM+ and −4WMW⊤WM which play different roles
in the high level. Here M+ is the covariance of class centers, and M is the covariance of all training examples, as defined
in Definition A.1.

Term 1 (4WM+): The first term aligns the weights with M+ which has alignment with the subclass feature. This aligning
effect of term 1 has already been theoretically characterized in our proof (Appendix G) for Theorem 4.5.

Term 2 (−4WMW⊤WM ): Although the effect of the second term is not entirely straightforward, we can gain some
intuition by considering the simplest case where the embedding is one-dimensional. In this case, the second term takes the
form of a negative scalar times WM , which can be seen as trying to ‘discourage’ alignment with M , the covariance of all
training examples.

In our numerical experiment, we observe that the ratio between norms of term 1 and term 2 initially starts at a very large
value, then decreases until it reaches a plateau around 1, as shown in Figure 6. Interestingly, the point at which the ratio
dropped to around 1 coincided almost precisely with the peak of the projection of the weights W onto the subclass feature.
This leads us to the following intuition, which may serve as a proof sketch for showing class collapse at the end of training.
In the following, we first describe what happens in the early phase (which we have already proven in the paper), then outline
the high-level idea of how subclasses are eventually unlearned.

Phase I where the model learns the subclass feature: We have already proved this part in Appendix G. In summary, the
intuition is that early in training, the scale of term 1 dominates over term 2, aligning the model with M+, which in turn
aligns with the subclass feature. Therefore, the model learns the subclass feature during this phase.
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Phase II where the model unlearns the subclass feature but the class feature remains: Note that the scale of the second
term also increases during Phase I as M and M+ share certain components. Once the scale of term 2 reaches that of term
1, the effect of term 2 becomes more pronounced and Phase II begins. Since M exhibits a stronger correlation with the
subclass feature than M+ does, the overall effect of the sum of term 1 and term 2 is to reduce alignment with the subclass
feature. Thus, over time, the model unlearns the subclass feature. In contrast, for the class feature, M+ has a stronger
correlation, causing GD to continue aligning the model with the class feature.
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