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Abstract

The slow processes of stochastic dynamical systems can be captured by Molecular1

Dynamics (MD) simulations, which approximate transition matrices describing2

how probabilities evolve over metastable conformations. Standard approaches such3

as Markov State Models (MSMs) extract dominant conformations and transition4

statistics via eigendecomposition, but face scalability and generalization limits.5

Here, we introduce Schrödinger Bridge with Doob’s h-Transform (ScooBDoob),6

a discrete bridge-matching framework that models metastable dynamics by7

tilting MSM transition rates through Doob’s transform to generate optimal8

stochastic paths between prescribed initial and terminal ensembles. We show that9

ScooBDoob preserves spectral stability of slow modes during training, recovers10

rare transition pathways with density-aware regularization, and generalizes11

zero-shot across temperatures. Experiments on the Müller-Brown potential and12

the Aib9 peptide demonstrate accurate kinetics and robust endpoint-conditioned13

rollouts, highlighting broad applicability to biomolecular dynamics.14

1 Introduction15

Simulating molecular dynamics (MD) trajectories accurately and efficiently remains a fundamental16

challenge in computational chemistry, particularly when predicting rare transition events between17

metastable states [Lewis et al., 2025a]. Such events are crucial for understanding biological processes18

like protein folding, ligand binding, and conformational dynamics, but occur over long timescales,19

making direct computational simulations prohibitively expensive [Ghosh and Ranjan, 2020, Vincoff20

et al., 2025]. Markov State Models (MSMs) have emerged as a popular approach for approximating21

these slow processes by representing continuous trajectories as discrete microstates and modeling22

transitions between these states as Markovian jumps [Chodera and Noé, 2014, Trubiano and Hagan,23

2024, Pande et al., 2010]. By deriving transition probability matrices from MD data, MSMs efficiently24

summarize long-term dynamical behavior, significantly reducing computational complexity and25

enabling more tractable analysis of complex biomolecular systems [Chodera and Noé, 2014, Trubiano26

and Hagan, 2024, Pande et al., 2010].27

However, MSMs face substantial challenges in practice. First, eigendecomposition of transition28

matrices is a crucial step for extracting dynamical information, but can lead to numerical instability29

and inaccuracies if eigenvectors are unconstrained [Frank et al., 2022]. Unstable eigenvectors can30

produce physically unrealistic predictions, which undermines the reliability of MSMs for critical31

biological applications. Furthermore, MD simulation data is inherently sparse in regions of conforma-32

tional space that correspond to rare transitions, resulting in poorly estimated transition probabilities33

and limited predictive accuracy [Konovalov et al., 2021, Frank et al., 2022]. Sparse data render34

MSM-derived trajectories highly sensitive to sampling variability and noise, thereby limiting their35

generalizability to unseen conformations and conditions.36
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Figure 1: Schrödinger Bridge with Doob’s h-Transform (ScooBDoob). ScooBDoob models stochastic
transition paths between metastable states by learning Markov State Models (MSMs) of molecular dynamics
trajectories and conditioning on target end-states using Doob’s h-Transform.

Recent methods have leveraged generative models to sample transition paths between metastable37

states by framing trajectory generation as a stochastic control problem. These approaches include38

optimization of the Onsager-Machlup (OM) functional or a related control Lagrangian to produce39

high-likelihood paths under learned dynamics [Raja et al., 2025, Du et al., 2024], and diffusion-based40

samplers trained with off-policy learning to efficiently approximate the transition path distribution41

[Seong et al., 2025, Holdijk et al., 2023]. More broadly, Schrödinger bridge formulations [Liu42

et al., 2023] provide a principled framework for path sampling under endpoint constraints, and recent43

advances in stochastic optimal control further connect bridge problems to tractable learning objectives44

[Liu et al., 2025]. Collectively, these methods demonstrate the promise of conditioning generative45

dynamics on endpoint constraints to study rare events, bypassing the need for collective variables or46

retraining on system-specific data.47

In this work, we introduce Schrödinger Bridge with Doob’s h-Transform (ScooBDoob), a novel48

Schrödinger bridge formulation explicitly designed to enhance the robustness, stability, and general-49

ization capabilities of MSM-based methods. Our framework integrates three key advancements:50

1. Parameterization of the Doob-Tilted Transition Matrix. To condition the transition path51

on a target meta-stable state, we leverage Doob’s h-transform to tilt the unconditional MSM52

transition matrix and train our parameterized model to match the optimal Schrödinger bridge.53

This enables the efficient simulation of feasible transition paths despite energy barriers.54

2. Density-Aware Regularization. We introduce density-aware reweighting, which adjusts55

transition probabilities based on empirical MD sampling density, significantly enhancing56

robustness against data sparsity and sampling variability.57

3. Stiefel-Constrained Eigenvector Optimization. We explicitly constrain eigenvectors to the58

Stiefel manifold, ensuring numerical stability and physically meaningful directional transitions,59

thus addressing the instability associated with unconstrained eigendecompositions.60

We provide a detailed discussion on related works in Appendix A.61

2 ScooBDoob: Schrödinger Bridge with Doob’s h-Transform62

We introduce Schrödinger Bridge with Doob’s h-Transform (ScooBDoob), a discrete Schrödinger63

bridge framework that learns stochastic transitions between metastable states in molecular systems64

using a Doob-transformed Markov State Model (MSM). ScooBDoob is capable of modelling discrete65

transition probabilities between MD microstates without requiring knowledge of the underlying66

potential energy landscape, enabling flexible generalization to molecular systems without known67

energies and sparse MD data.68
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Algorithm 1 ScooBDoob: Schrödinger Bridge with Doob’s h-Transform

1: Input: Observed count of transitions i→ j at τ lag C(i, j; τ) for all i, j ∈ {1, . . . ,m}
2: while Training do
3: P ij(τ)← C(i,j;τ)∑

j′ C(i,j′;τ) , P (τ)← [P ij(τ)]

4: V (i)← α/(Ci + 1), w(i)← exp(−τV (i)) ▷ density-aware weights
5: hV

N ← ν ▷ initialize terminal condition
6: for n in N − 1, . . . , 0 do
7: hV

n ← P (τ)(diag(w)hV
n+1) ▷ compute tilted distributions

8: P V
n (i, j)←

P ij(τ)w(j)hV
n+1(j)

(P (τ)diag(w)hV
n+1)(i)

, P V
n ← [P V

n (i, j)]

9:
10: end for
11: for micro-state i in 1, . . . ,m do ▷ train generator for each state i
12: P h

n,θ(i, ·)← NN(θ)
13: Compute loss Ltotal(θ) = LMSM(θ) + γbridgeLbridge(θ) + γstiefLstief(θ)
14: Optimize θ with ∇θLtotal
15: end for
16: end while
17: return parameterized transition predictor P θ(τ) : [0, 1]→ Rm×m

2.1 Problem Setup69

While MD is critical for exploring conformational landscapes and reaction pathways of biomolecular70

systems, the performance is hindered by two prominent challenges. First, MD requires well-defined71

and transferable force fields that accurately capture intermolecular and intramolecular forces72

[Kaminski and Jorgensen, 1996, Zhu et al., 2012]. While classical force fields enable fast simulations,73

they rely on several assumptions that limit the expressivity of the simulation to model rare or74

heterogeneous phenomena. ML-based force fields increase expressivity [Arts et al., 2023, Charron75

et al., 2025, Lewis et al., 2025b]; however, they are biased towards the interactions seen in the training76

data and remain limited in their ability to generalize to unseen systems.77

Second, many crucial processes, such as protein folding and allosteric switches, occur between78

multiple low-energy, meta-stable states, where transitions away from the state are rare and occur79

over long time-scales [Noé and Clementi, 2017]. This makes these rare processes prohibitively80

expensive to simulate, especially for larger systems. Techniques that aim to coerce these transitions81

over smaller timescales [Ensing et al., 2006, Branduardi et al., 2012, Bussi and Branduardi, 2015,82

Ghosh and Ranjan, 2020] often undermine the probabilistic nature of these transitions and miss83

intermediate states.84

These challenges motivate the development of data-centric approaches for learning MD trajec-85

tories [Jing et al., 2024, Daigavane et al., Lu et al., 2025, Tan et al., 2025, Rehman et al., 2025,86

Wang et al., 2024] that bypass the need for defined energy landscapes and can generate feasible87

maps between meta-stable states that align with the data manifold, while accounting for the sparsity88

of MD data. Notably, ScooBDoob addresses all of these challenges by (1) learning probabilistic89

transition rates directly from MD trajectory data, bypassing the need for external force-fields, (2)90

conditioning discrete transitions on target states grounded in Doob’s h-Transform theory, and (3)91

amplifying regions of low data density with Feynman-Kac reweighting.92

2.2 Defining Endpoint-Conditioned Transitions Between Meta-Stable States93

Doob’s h-Transform for Target-Conditioned Transition Rates Given an unconditional transition94

matrix P (τ) ∈ Rm×m, we can steer trajectories toward a terminal distribution ν ∈ ∆m−1 over95

T = Nτ steps by recursively define the distribution at each step hn ∈ ∆m−1 backward in time.96

hN = ν, hn = P (τ)hn+1, n ∈ {N − 1, . . . , 0}. (1)
Then, we construct the time-dependent Doob-conditioned transition matrix as97

P h
n(i, j) = P ij(τ)

hn+1(j)

hn(i)
,

m∑
j=1

P h
n(i, j) = 1. (2)

3



Density-Aware Regularization via Feynman-Kac for Sparse MD Data To mitigate bias toward98

over-sampled basins and encourage coverage of sparsely visited regions, we introduce a density-aware99

non-negative potential for each micro-state V : {1, . . .m} → R≥0 proportional to the empirical100

outgoing transition density.101

Ci =
∑
j ̸=i

Cij(τ), ρ(i) =
max(Ci, 1)

C̄
, V (i) = αρ(i), (3)

where Cij(τ) is the number of observed MD transitions at lag τ from state i to state j and Ci denotes102

the total number of outgoing transitions from state i. C̄ is the mean of Ci. α ≥ 0 is a hyperparameter103

controlling the penalization of sparsely sampled transitions. With the potential, we define a weight104

vector w ∈ Rm containing the weights of each microstate wj = exp(−τV (j)).105

Given a time horizon of T = Nτ with target distribution ν ∈ ∆m−1, we define the target-conditioned106

density-aware probability distributions hV
n ∈ ∆m−1 at each time increment from n ∈ {N,N −107

1, . . . , 0} as108

hV
N = ν, hV

n = P (τ)
(
diag(w)hV

n+1

)
(4)

where diag(w)hV
n+1 reweights the probability of each state at time n+1 by its corresponding density109

weight wj , thereby encouraging the likelihood of transitioning into sparsely sampled intermediate110

states. The resulting density-aware Doob kernel at each time step n ∈ {1, . . . , N} is defined as111

P h
n(i, j) =

P ij(τ)wj h
V
n+1(j)(

P (τ) diag(w)hV
n+1

)
(i)
,

m∑
j=1

P h
n(i, j) = 1 (5)

Increasing the value of α used to compute V strengthens the regularization, further discouraging112

paths through low-density states. Setting α = 0 recovers the standard Doob kernel without density113

adjustment.114

Proposition 2.1 (ScooBDoob yields the target end state for one-hot ν). Assume the terminal
distribution is the one-hot vector ν = ez concentrating all mass on a fixed target microstate z.
Let hn (or hV

n ) be defined by the backward recursions above and let P h
n be the corresponding

Doob kernels. For any initial distribution µ0 supported on {i : h0(i) > 0}, the forward evolution

µn+1 = µn P
h
n, n = 0, 1, . . . , N − 1

at terminal time satisfies µN = ν.
115

Stiefel Manifold Constraint for Large Systems To enable stable eigendecomposition of the116

transition matrix and enforce orthonormality of the learned eigenvectors, we begin by constructing117

the symmetrized form of the Markov State Model. Let P (τ) ∈ Rm×m have stationary distribution π118

with D = diag(π), and define the reversible symmetrization119

M = D1/2P (τ)D−1/2 = QMSMΛMSMQ⊤
MSM, (6)

where QMSM ∈ Rm×r has orthonormal columns and ΛMSM = diag(λ1, . . . , λr) collects the top r120

modes (r = m gives the full basis). We maintain orthonormal columns by constraining QMSM to121

the Stiefel manifold Sm,r defined by122

QMSM ∈ Sm,r = {Q ∈ Rm×m | Q⊤Q = Ir}, (7)

After a Euclidean update on a chosen objective function L,123

Q(t+1) = QMSM
(t) − η∇QMSML(QMSM

(t)), (8)

with η being a step size. We retract back to Sm,r via a SVD:124

Q(t+1) = UΣV ⊤, U⊤U = V ⊤V = I (9)

where Σ = diag(σ1, . . . , σk). This ensures that the transition matrix QMSM remains orthonormal125

while steering the kinetics towards the target state.126
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2.3 Learning Transition Dynamics from Markov State Models127

To learn the optimal discrete bridges over microstates, we treat the empirical MSM transition matrix128

P ref(τ) ∈ Rm×m as the fixed reference dynamics. We match the reference dynamics with a one-step129

parameterized network P θ(τ) that is row-stochastic, and define a sequence of time-dependent tilted130

transition matrices with Doob’s h-transform. Finally, we learn a time-dependent network that predicts131

the tilted transition probabilities P h
θ,n which preserve the MSM structure via a Stiefel manifold132

constraint. The full training procedure is provided in Algorithm 2.133

Parameterization of the Discrete Transition Matrices Let P θ(τ) ∈ Rm×m be the learned134

one-step transition matrix. Let zθ be a neural network that produces a positive endpoint potential;135

define136

hθ,N = ν, hθ,n = P θ(τ)diag(w)hθ,n+1, n ∈ {N − 1, . . . , 0}. (10)

with density-aware regularization wj = exp(−τV (j)) introduced in Section 2.2. The student’s137

time-inhomogeneous kernels are the discrete Doob tilts:138

P h
θ,n(i, j) =

P θ(i, j)wjhθ,n+1(j)

(P θ(τ)diag(w)hθ,n+1)(i)
,

m∑
j=1

P h
θ,n(i, j) = 1. (11)

2.4 Defining the Training Objective139

Unconditional MSM Loss Let Cij(τ) denote the empirical transition counts at lag τ and P θ(τ) ∈140

Rm×m be a parameterized network. We train P θ with an unconditional MSM loss LMSM defined as141

LMSM = −
∑
i,j

Cij(τ) logP θ,ij(τ) + γCKLCK + γrevLrev (12)

LCK =

K∑
k=2

∥∥ P̂ (kτ)− P θ(τ)
k
∥∥2

F
, Lrev =

∥∥DθP θ(τ)− P θ(τ)
⊤Dθ

∥∥2

F
(13)

where π⊤
θ P θ(τ) = π⊤

θ and Dθ = diag(πθ), and K ∈ {2, 3} in practice. The first term represents142

the count likelihood, and the second and third terms are the Chapman-Kolmogorov (CK) consistency143

and reversibility, respectively.144

Schrödinger Bridge Loss To train P h
θ,n such that it predicts the optimal Schrödinger bridge defined145

by tilting the reference dynamics with Doob’s h-transform, we minimize a KL-divergence-based146

bridge loss Lbridge defined as147

Lbridge =
N−1∑
n=0

m∑
i=1

KL
(
P h

ref,n(i, ·)
∥∥P h

θ,n(i, ·)
)

(14)

where P h
ref,n(i, ·) is defined with (5) using the fixed reference dynamics P ref(τ)148

Stiefel Loss Given the parameterized transition matrix P θ(τ), we obtain the top-r eigenvector-149

eigenvalue pairs by symmeterizing and diagonalizing Mθ ≈ QθΛθQ
⊤
θ , Qθ ∈ Rm×r (See Appendix150

B.3 for full details). To ensure that the eigenvectors are orthonormal, we add a soft Stiefel loss Lstief151

defined as152

Lstief =
∥∥Q⊤

θ Qθ − Ir

∥∥2
F
+ η

r∑
i=1

max(0, |λθ,i| − 1)2 (15)

We show in Figure A1 that the orthonormal constraint is enforced throughout training, highlighting153

that our approach effectively preserves the validity of the learned transition matrix. Finally, we define154

the total training loss to be the weighted sum of the MSM loss, bridge loss, and Stiefel loss, given by155

Ltotal = LMSM + γbridgeLbridge + γstiefLstief (16)

which jointly optimizes the one-step transition matrix (teacher model) and the time-varying condi-156

tional transition dynamics.157
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Figure 2: Transition Paths Predicted by ScooBDoob on Müller-Brown Potential and Aib9 Peptide. We
show the teacher paths with and without density-aware FK reweighting. The inference paths are shown for the
MB potential with and without endpoint conditioning.

2.5 Simulating the Learned Transition Dynamics158

Simulating Unconditional Dynamics Given an initial distribution over microstates µ0 ∈ ∆m−1,159

we can simulate the unconditional trajectory over time T = Nτ with the learned reference transition160

matrix P θ(τ).161

µn = µ0P θ(τ)
n, xn+1 ∼ P θ(τ)(xn, ·) (17)

Target Conditioned Bridge Given a time horizon T = Nτ and a target distribution ν ∈ Rm, we162

can sample the intermediate trajectory from an initial distribution µ0 ∈ ∆m−1163

µn+1 = µnP
h
θ,n or xn+1 ∼ P

(h,V )
θ,n (xn, ·). (18)

over time steps n ∈ {1, . . . , N}. Unconditional and target-conditioned simulation proceeds via164

Algorithm 3.165

3 Experiments166

Here, we demonstrate the effectiveness of ScooBDoob on predicting discrete transitions between MD167

states conditioned on a target state. We start with a synthetic example on the Müller-Brown (MB)168

potential energy landscape, illustrating the model’s ability to capture intermediate states between169

conditioned endpoints. Then, we scale our evaluation to the 9-residue α-helical Aib9 peptide with170

two distinct intermediate paths [Karle and Balaram, 1990].171

3.1 Müller-Brown Potential172

Setup Following [Müller and Brown, 1979], we build up the testing system for a 2D Müller-Brown173

potential with a potential energy landscape U(x) with three local minima states. We generated 8174

unconditioned rollouts of length 8000 steps each, seeding half of the trajectories near the starting175

point at (−0.6, 1.5), and the other half near the end point at (0.6, 0.0). 64K frames are used for176

training in total. Experiment details are given in Appendix E.177

Table 1: Results for Müller
Brown potential with N = 60.

Metric MB potential

Row-KL (↓) 0.3204
CK (↓) 0.5401
Mean W2 (↓) 0.2038

Results Using TICA with lag τ = 120 steps, we discretize trajecto-178

ries intoK = 200 microstates. The reference MSM exhibits a spectral179

gap with λ2 = 0.986, indicating slow transitions. We first constructed180

our FK-Doob teacher with density-aware weights and committor-181

based biasing to enable transition paths to cross saddle points. After182

training a parameterized student kernel, we found that the uncondi-183

tional path explored essential states, while conditioning on the target184

end state significantly reduced the search space and produced more185
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Figure 3: Simulated transition paths for Aib9 Peptide. Simple time indicates a fixed lag time τ = 60, and
dynamic time indicates a non-fixed lag time, N indicates the number of jumps simulated at inference, and
K denotes the number of discrete microstates. Dark purple indicates high probability mass, and light purple
indicates low probability mass. The axes are the φ/ψ dihedral angles. (A) Unconditional paths simulated for 60
jumps. (B) Endpoint-conditioned paths with Doob’s h-transform simulated with τ = 60. (C) Unconditional
paths and (D) endpoint-conditioned paths simulated from dynamic τ .

concentrated endpoints (Figure 3, Table 1). To test generalization,186

we evaluated zero-shot performance across N ∈ {5, 55, 120}. The187

student kernel adapted well for N = 55 and N = 120, but for the extreme case of N = 5, it failed188

to consistently cross saddle points. This suggests that careful selection of N is critical to ensure189

sufficient exploration time (Figure A3).190

3.2 Aib9 Peptide191

Setup Aib9 peptide is a 9-residue peptide experimentally validated to have two known macro192

intermediate states. We retrieve the Aib9 peptide trajectory with 100 ns simulation length from [Wang193

and Tiwary, 2021]. We picked the replica at 400K for training and 412K for zero-shot prediction.194

There are a total of 50K frames, and 70% are used for training.195

Results We selected the 400K replica as our training trajectory and built ScooBDoob on the196

TICA-projected microstates of the Aib9 peptide using τ sweeping based on a balance selection197

from the spectral gap against CK error. The teacher kernel, trained with FK constraints, produced198

smoother and more connected transition paths (Figure 3). In addition to matching MSM metrics199

(Table 2), we mapped transitions back to the original ψ/ϕ angle distributions and verified that the200

correct intermediate states participated in the transitions with high probability.201

The lag time τ and the number of clusters K contribute most strongly to the quality of the sampled202

paths. With a larger K, the model has more possible microstate transitions, which increases its ability203

to reach rare states. Conversely, a smaller K makes the number of microstates closer to the number204

of macrostates, effectively coarsening the dynamics. With the additional of the desired end state205

signal during inference, the paths will guarantee to end at the endpoints, as demonstrated in the206

Figure 3. When comparing fixed and dynamic timesteps, the dynamic variant produces paths that207

visually follow the teacher more closely, often finding multiple reasonable routes to the endpoint. By208

contrast, the fixed variant sometimes finds the shortcut to the endpoints and involve some looping209

between nearby states, as shown by the higher density of the white paths chosen between some states.210

Although the fixed N yields lower row-KL and endpoint KL numerically, these scores often reflect211

confident transitions rather than a more faithful path exploration follows the teacher.212

In addition, we noticed that during inference, when N = K, the end point KL divergence spikes,213

even though other metrics remain comparable. We suspect that the model effectively compressed the214

dynamics so that the probability mass arrives at the endpoints either too quickly or along the wrong215

support. This creates an artificial divergence in the endpoint distribution, even though the rollout216

paths still appear reasonable.217
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Table 2: Ablation studies for Aib9 experiment hyperparameters. Metrics are computed for inference rollouts.
Total steps N determine the step choices for the models. The number of nearest neighbors K determines the
number of discrete microstates that can be transitioned into. Simple timestep defines a rigid number of steps,
and dynamic timesteps allow various timesteps.

Hyperparameter Row-KL (↓) CK (↓) Mean W2 (↓) KLendpoint (↓)

Total Steps N at fixed K = 40
N = 20 0.48 ± 0.08 0.67 0.032 1.09 ± 0.01
N = 40 0.40 ± 0.06 0.66 0.19 11.17 ± 0.04
N = 60 0.46 ± 0.08 0.67 0.053 0.88 ± 0.02

Nearest Neighbor K at fixed N = 60
K = 40 0.45 ± 0.08 0.64 0.05 0.82 ± 0.02
K = 60 0.42 ± 0.07 0.67 0.19 10.78 ± 0.04
K = 100 0.48 ± 0.08 0.63 0.040 0.86 ± 0.02

Timestep N = 40,K = 60
Simple 0.26 ± 0.07 0.49 0.0008 0.42 ± 0.01
Dynamic 0.46 ± 0.08 0.67 0.053 0.88 ± 0.02

To monitor spectral stability during training, we evaluated the leading eigenvalues and eigenvectors218

of the learned transition matrix Pθ at each epoch (Table A2, Figure A1). The dominant eigenvalue λ1219

remained near 1, as required for MSMs, and eigenvalue equation residuals were negligible, confirming220

numerical accuracy. Successive eigenvectors showed overlaps approaching 1 with small Frobenius221

distances, indicating smooth evolution and stable slow modes. These diagnostics confirm that Stiefel222

regularization stabilizes the eigendecomposition during training.223

We also tested zero-shot generalization on replicas at 412K and 503K (Table A1). The fixed-N224

kernel achieved lower row-KL under temperature shift by concentrating transitions into sharper steps,225

while the multi-N kernel spread probability more smoothly across paths. This smoothing raised226

row-KL slightly but kept CK error low, showing that multi-N training preserves overall kinetics and227

yields more robust rollouts at unseen temperatures despite less favorable local scores.228

4 Conclusion229

We have introduced Schrödinger Bridge with Doob’s h-Transform (ScooBDoob), a machine learning230

framework for modeling molecular dynamics trajectories by learning discrete transitions between231

metastable states. ScooBDoob constructs a principled Schrödinger bridge from empirical MSMs232

using Doob’s transform and density-aware regularization, enabling rare-event trajectory generation233

without a known energy landscape. This approach allows conditioning on endpoint structures, making234

it well-suited for applications like protein refolding, allosteric modulation, and conformational control.235

Our future extensions will incorporate experimental intermediates or kinetic priors as constraints,236

enabling multi-objective control over long-timescale dynamics in undersampled or sparse regimes.237
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Outline of Appendix415

In Appendix B, we discuss the construction of the Markov State Model and the Stiefel manifold416

constraint (B.3). Appendix E provides the setup for our experiments and the evaluation metrics.417

Finally, the pseudocode for training ScooBDoob is given in Appendix F.418

Notation In this work, we consider a molecular system with features x(t) ∈ Rd which can be419

reduced with TICA to a lower-dimensional feature vector y(t). We denote the number of microstates420

as m and the unconditional transition matrix with lag time τ as P (τ) ∈ Rm×m, where P ij(τ) ∈ R421

is the probability of transition from microstate i at time t to microstate j at time t+ τ . This matrix422

is constructed from the observed transition counts C(i, j; τ) ∈ R. The initial discrete distribution423

over the microstates is denoted µ0 ∈ ∆m−1 and the final distribution ν ∈ ∆m−1. Given the number424

of lag steps N with a total time horizon T = Nτ , we define the discrete distribution for step425

n ∈ {N − 1, . . . , 0} starting from hN = ν ∈ ∆m−1 as hn = P (τ)hn+1. The Doob-tilted transition426

matrices given the backward distributions hn at each time step n is denoted P h
n ∈ Rm×m where the427

transition probability from i to j is P h
n(i, j) ∈ R. V : {1, . . . ,m} → R≥0 denotes a density-aware428

potential for each micro-state which is used to compute a weight vector w ∈ Rm where each element429

is w(j) = exp(−τV (j)).430

The parameterized unconditional transition matrix with parameters θ is denoted P θ(τ) ∈ Rm×m431

and the corresponding tilted distribution at step n is denoted hθ,n ∈ Rm which constructs the tilted432

transition matrix P h
θ,n ∈ Rm×m. To define the Stiefel constraint, we symmetrize P θ(τ) with the433

diagonal matrix D = diag(π) where π ∈ ∆m−1 is the stationary distribution π⊤P θ(τ) = π to get434

the symmetrical matrix M ∈ Rm×m. Then, we perform a symmetric eigendecomposition to obtain435

the orthonormal matrix QMSM ∈ Rm×r and eigenvalues ΛMSM = diag(λ1, . . . , λr). At inference436

time, we generate intermediate distributions µn ∈ ∆m−1 by applying the learned transition to the437

initial distribution µ0 and sampling discrete states xn ∼ µn.438

A Related Works439

Transition Path Sampling (TPS) Computational approaches to transition path sampling over en-440

ergy landscapes have been widely explored [Bolhuis et al., 2002, Dellago et al., 1998, Vanden-Eijnden441

et al., 2010]. Traditionally, non-ML approaches have leveraged low-dimensional representations442

of molecules via collective variables (CVs) [Hooft et al., 2021], including steered MD [Schlitter443

et al., 1994, Izrailev et al., 1999], umbrella sampling [Torrie and Valleau, 1977, Kästner, 2011],444

meta-dynamics [Laio and Parrinello, 2002, Ensing et al., 2006, Branduardi et al., 2012, Bussi and445

Branduardi, 2015], adaptive biasing force Comer et al. [2015], and on-the-fly probability-enhanced446

sampling [Invernizzi and Parrinello, 2020]. Such methods are powerful when good CVs are known,447

but selecting CVs remains challenging [Hooft et al., 2021].448

State-based Kinetic Models An alternative line of work focuses on state-based models that extract449

slow kinetics directly from simulation data. A rigorous theory shows that optimal CVs correspond450

to the eigenfunctions of the transfer operator underlying MD [Noé and Clementi, 2017]. Practical451

approximations include Time-lagged Independent Component Analysis (TICA) [Pérez-Hernández452

et al., 2013], Diffusion Maps [Coifman et al., 2005], and Markov State Models (MSMs) [Prinz et al.,453

2011, Bowman et al., 2014, Mardt et al., 2018], which discretize conformational space into metastable454

states and estimate transition probabilities. These approaches unify dimensionality reduction and455

kinetics estimation under a variational principle.456

Modeling Molecular Dynamics More recently, coarse-grained and full-atom generative models457

have sought to reconstruct trajectories and sample new transitions [Arts et al., 2023, Charron et al.,458

2025, Kohler et al., 2023, Majewski et al., 2023, Lu et al., 2025, Raja et al., 2025]. Methods such as459

score-based modeling [Daigavane et al., Tan et al., 2025], energy-based modeling [Lu et al., 2025,460

Lewis et al., 2025b], and flow-based generative dynamics [Jing et al., 2024, Kohler et al., 2023,461

Rehman et al., 2025] attempt to bypass explicit force fields by directly learning mappings between462

metastable ensembles.463
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Schrödinger Bridge over MSM In discrete time, classical Schrödinger Bridges (SBs) on Markov464

chains [Beghi, 2002, Pavon et al., 2010, Pavon and Ticozzi, 2010] solve endpoint-constrained path-465

space maximum-entropy problems by a multiplicative Doob h-transform of a prior kernel, with466

potentials given by space-time harmonic functions and uniqueness via the Beurling-Jamison theorem.467

While this theory provides constructive formulas for tilting Markov kernels analytically, ScooBDoob468

learns these tiltings directly from molecular dynamics trajectories. The student kernel P θ acts as a469

parametric Doob h-transform, constrained by reversibility and conditioned on metastable endpoints.470

Whereas SBs enforce exact marginals and admit closed-form harmonic potentials, ScooBDoob471

enforces macrostate marginals and learns an approximate bridge distribution, extending the maximum472

entropy principle into a data-driven regime. Thus, given an MSM prior
∏

and endpoint marginals473

(µ0, µN ), with µN concentrated on a target macrostate, ScooBDoob seeks a Markov bridge kernel474

P θ that approximates the SB minimizer PSB = minP{KL(P∥Q) : P0 = µ0,PN = µN} by training475

P θ to match the Doob-tilted optimum through MSM consistent losses.476

Learning Schrödinger Bridges Schrödinger bridge methods have also been used outside molecular477

dynamics to construct samplers or generative models in continuous time. Bernton et al. [2019]478

approximates iterative proportional fitting in continuous state spaces to reduce variance in Annealed479

Importance Sampling and Sequential Monte Carlo. With others [De Bortoli et al., 2021, Liu et al.,480

2023] connect bridge dynamics with score-based generative modeling and Kim et al. [2024] extend481

the scope into graph transformation. While these methods focus on sampling from static or structured482

distributions via continuous or discrete diffusions, our approach differs in that we operate on finite-483

state MSMs and learn bridge kernels directly from MD trajectories to generate endpoint-conditioned484

paths between metastable states.485

B Extended Theoretical Background486

Here, we describe preliminaries and additional details on the theory of Schrödinger bridge matching487

with Doob’s h-Transform and optimization on the Stiefel manifold.488

B.1 Learning Discrete Schrödinger Bridges489

Schrödinger Bridge Problem The Schrödinger Bridge (SB) problem aims to find the optimal490

probability path measure P from samples of an initial distribution x0 ∼ µ0 to samples from a final491

distribution xN ∼ µN . The optimal solution is defined as the path measure PSB with marginals µ0492

and µn that minimizes the KL-divergence to a reference path measure Q493

PSB = min
P
{KL(P∥Q) : P0 = µ0,PN = µN} (19)

where Q can be defined as standard Brownian motion in continuous state spaces and a Dirichlet494

process in discrete state spaces. Note that PSB ̸= Q as P, since it must satisfy the boundary constraints495

P = µ0 and PT = µT .496

Continuous-Time Markov Chains In discrete state spaces X = {1, . . . ,m}, time-varying stochas-497

tic process (Xt)t∈[0,T ] over the time horizon [0, T ] is considered a continuous-time Markov chain498

(CTMC) if it can be characterized by a transition rate matrix or generator Qt ∈ RX×X defined as499

Qt(x, y) = lim
∆t→0

1

∆t

[
P(Xt+∆t = y|Xt = x)− 1x=y

]
(20)

where P(Xt+∆t = y|Xt = x) is the probability of making a discrete "jump" from state x at time t500

to state y at time t+∆t and 1x=y is an indicator function that equals 1 if x = y. By taking the limit501

as ∆t, the generator defines the instantaneous jump probability at time t. By definition, all entries of502

the generator are non-negative for x ̸= y (i.e., Qt(x, y) ≥ 0) and the diagonal entries are defined as503

Qt(x, x) = −
∑

y ̸=x Qt(x, y).504

Doob’s h-Transform The Doob’s h-transform is a theoretically-grounded method to condition a505

transition rate matrix (or generator) Qt(x, y) ∈ Rm×m of a CTMC (Xt)t∈[0,T ] to a target state z at506
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time T by tilting it via the conditional probability function ht(x).507

Qt(x, y; z) = Qt(x, y)
P(XT = z|Xt = y)

P(XT = z|Xt = x)
− δxy

∑
u

Qt(x, u)
P(XT = z|Xt = u)

P(XT = z|Xt = x)
(21)

where P(XT = z|Xt = y) is the conditional probability of transitioning to a state z at time t508

given the current state Xt = x and δxy is the Dirac delta function that returns 1 when x = y and509

0 otherwise. Intuitively, this transform decreases the transition rate x → y if the probability of510

transitioning to z from state x is higher than from state y and increases the transition rate if the511

probability of transitioning to z from state y is higher than from state x.512

B.2 Markov State Models513

Molecular Dynamics A molecular dynamics (MD) simulation produces a time-ordered trajectory514

of molecular conformations, represented as Cartesian positions at discrete timesteps [Scherer et al.,515

2015]. For larger biomolecules, the dimensionality of the MD features grows prohibitively large,516

resulting in computational bottlenecks when simulating their trajectories. Coarse-graining techniques517

have aimed to lower the dimensionality of MD features by finding collective variables (CVs) that518

largely capture the degrees of freedom of a molecule’s conformation over time [Ingólfsson et al.,519

2014, Joshi and Deshmukh, 2021].520

Time-lagged Independent Component Analysis (TICA) Time-lagged independent component521

analysis (TICA; Pérez-Hernández et al. [2013]) is a method for reducing the high-dimensional feature522

space of molecular systems to a set of Collective Variables (CVs) that determine the primary degrees523

of freedom responsible for the slow transitions in MD simulations. Consider an MD snapshot of a524

d-dimensional molecular system at time t as x(t) ∈ Rd. Then, the time-lagged covariance matrices525

are defined as526

Cov00 = E
[
x(t)x(t)⊤

]
, Cov0τ = E

[
x(t)x(t+ τ)⊤

]
(22)

where the expectation is over the trajectory frames and τ is the chosen lag time. To determine the527

CVs, TICA solves the generalized eigenproblem528

Cov0τ ui = λi Cov00ui, i ∈ {1, . . . , d} (23)

where ui ∈ Rd are the eigenvectors and λi are the corresponding eigenvalues, and t = −τ/ lnλi.529

With the top k eigenvalues sorted as 1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λd|, we construct a projection matrix530

U ∈ Rn×k with columns being the corresponding eigenvectors, which projects x(t) ∈ Rd to a531

k-dimensional feature vector y(t) as532

y(t) = U⊤x(t), U = [u1, . . . ,uk] (24)

Constructing the Markov State Model We can cluster the TICA-projected y(t) into m discrete533

microstates and represent state transitions over a lag time τ by a Markov State Model (MSM).534

Formally, an MSM at lag time τ is defined as a stochastic matrix P (τ) ∈ Rm×m matrix of transition535

probabilities:536

P (τ) ∈ Rm×m, P ij(τ) = P(Xt+τ = j |Xt = i) =
C(i, j; τ)∑
j′ C(i, j

′; τ)
, (25)

where C(i, j; τ) is the observed count of transitions from state i at time t to state j at time t+ τ . The537

construction of an MSM has a natural connection to CTMCs, where the transition probabilities define538

a stochastic trajectory between discrete micro-states, which motivates our work.539

B.3 Stiefel Manifold Constraint540

Stiefel Manifold The Stiefel manifold, denoted Sn,k is the set of n × k (n ≥ k) orthonormal541

rectangular matrices defined as542

Sn,k = {Q ∈ Rn×k|Q⊤Q = Ik} (26)

where Ik ∈ Rk×k is the k × k identity matrix.543
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Eigendecomposition of MSM Given the MSM transition matrix P (τ) at lag time τ , there exists a544

stationary distribution π ∈ Rm such that P (τ)π = π [Beauchamp et al., 2011]. Symmetrize via:545

M = D
1
2P (τ)D− 1

2 , D = diag(π) (27)

We then diagonalize546

M = QMSM ΛMSM Q⊤
MSM, QMSM ∈ Rm×r, ΛMSM = diag(λ1, . . . , λm), (28)

so that547

P (τ) = D− 1
2QMSM ΛMSM Q⊤

MSMD
1
2 =

m∑
i=1

λi ri ℓ
⊤
i , (29)

where λi are the eigenvalues of P (τ), and ri and ℓi are the corresponding right and left eigenvectors,548

respectively. ri = D− 1
2 qi, ℓi = D

1
2 qi, and bi-orthogonality ℓ⊤i Drj = δij maintains.549

B.4 Chapman-Kolmogorov Consistency550

For a Markov chain modeling of dynamics at lag time τ , one step of length kτ should look the same551

as k consecutive steps of length τ .552

P (kτ) = P (τ)k, k = 2, 3, . . . (30)

If such CK consistency fails, the assumption that the dynamics are approximately Markovian at lag τ553

does not hold.554

From the MD trajectory, count matrix Cij can be built to represent jump from state i to state j after555

lag τ . Assume that at lag kτ there exists Ckτ , counts can be turned into probability:556

P̂ ref(τ)[i, j] =
Cτ [i, j]∑
j′(Cτ [i, j′])

(31)

where j = k depend on the metrics asked. ScoobDoob parameterizes the one-step kernel Pθ, and the557

CK consistency is used to measure whether558

P k
θ ≈ P̂ ref(kτ). (32)

Low CK error indicates that the learned one-step dynamics compose correctly over longer lags, a559

prerequisite for stable implied timescales and reliable kinetic predictions [Prinz et al., 2011, Bowman560

et al., 2014, Noé and Clementi, 2017].561

C Theoretical Proofs562

Lemma 1 (Row-stochasticity and telescoping identity). Let P (τ) ∈ Rm×m be a row-stochastic563

MSM transition matrix and let (hn)
N
n=0 be the backward sequence defined by564

hN = ν, hn = P (τ)hn+1, n = N − 1, . . . , 0,

or, in the density-aware case, by565

hV
N = ν, hV

n = P (τ) diag(w)hV
n+1, n = N − 1, . . . , 0,

with wj = exp(−τV (j)) as in Section 2.2. Define the time-inhomogeneous Doob kernels566

P h
n(i, j) =

P ij(τ)hn+1(j)

hn(i)
, or P h

n(i, j) =
P ij(τ)wj h

V
n+1(j)(

P (τ) diag(w)hV
n+1

)
(i)
.

Then for every n and i,
∑

j P
h
n(i, j) = 1 (row-stochasticity). Moreover, for any path (i0, . . . , iN )567

the path probability under the Doob chain satisfies the telescoping identity568

µ0(i0)

N−1∏
n=0

P h
n(in, in+1) = µ0(i0)

(
N−1∏
n=0

P inin+1
(τ)

)
· hN (iN )

h0(i0)
,

with hn replaced by hV
n in the density-aware case. Row-stochasticity is immediate from the weighted569

space-time harmonic relation hn = P (τ)diag(w)hn+1 (cf. Pavon-Ticozzi, Eq 25) [Pavon and Ticozzi,570

2010], exactly as in their Eq. 27, where
∑

j p̂ij = 1 follows by dividing
∑

j πijφ(t+ 1, j) by φ(t, i).571
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Proof. Row-stochasticity follows from the backward recursion, where we sum over columns j:572

m∑
j

P h
n(i, j) =

1

hn(i)

m∑
j

P ij(τ)hn+1(j) =

(
P (τ)hn+1

)
(i)

hn(i)
=

hn(i)

hn(i)
= 1,

and similarly in the density-aware case with diag(w)hV
n+1. For the telescoping identity, expand the573

product of Doob factors and note that the ratios hn+1(in+1)/hn(in) cancel along the path, leaving574

only hN (iN )/h0(i0). The argument is identical with hV .575

Proposition 2.1 (ScooBDoob yields the target end state for one-hot ν). Assume the terminal
distribution is the one-hot vector ν = ez concentrating all mass on a fixed target microstate z.
Let hn (or hV

n ) be defined by the backward recursions above and let P h
n be the corresponding

Doob kernels. For any initial distribution µ0 supported on {i : h0(i) > 0}, the forward evolution

µn+1 = µn P
h
n, n = 0, 1, . . . , N − 1

at terminal time satisfies µN = ν.
576

Proof. We prove the density-aware case (the unweighted case is identical with wj ≡ 1). Since577

ν = ez , we have578

hV
N = ν = ez, hV

N−1 = P (τ) diag(w) ez = wz P (τ)ez,

so that hV
N−1(i) = wz P iz(τ) for every i. By Eq. (5), for the final step n = N − 1 and any i, j,579

P h
N−1(i, j) =

P ij(τ)wj ν(j)

wz P iz(τ)
= δjz =

{
1, j = z,

0, j ̸= z.

Thus the last-step kernel P h
N−1 deterministically sends all mass into z, so regardless of µN−1,580

µN (j) =

m∑
i

µN−1(i)P
h
N−1(i, j) =

m∑
i

µN−1(i)δjz = δjz = ez = ν(j).

where δ is the Kronecker delta. Because each P h
n is row-stochastic (Lemma 1), normalization and581

positivity are preserved throughout, and the recursion is well defined for all n. Hence µN = ν.582

Remark 1 (General terminal distributions). For a general terminal law ν ∈ ∆m−1 (not necessarily583

one-hot), the Doob kernels (Eqs. (2) or (5)) still define a valid inhomogeneous Markov chain. Writing584

αn(i) := µn(i)/hn(i) (or αn(i) := µn(i)/h
V
n (i) in the density-aware case). Then one verifies that585

α⊤
n+1 = α⊤

nP (τ) (unweighted), α⊤
n+1 = α⊤

nP (τ)diag(w) (density-aware). Hence586

µN (j) = ν(j) [α⊤
0 P (τ)N ]j or µN (j) = ν(j) [α⊤

0 (P (τ)diag(w))N ]j

To enforce µN = ν componentwise for arbitrary µ0, one requires the full Schrödinger system587

(maximum-entropy) compatibility between the boundary marginals, equivalently choosing the forward588

potential so that the terminal factor equals 1; see Appendix A.3 and Eq. (24). In our experiments we589

restrict to the one-hot terminal law (Appendix D.1), for which Proposition 2.1 applies directly.590

D Additional Results and Discussion591

D.1 Evaluating Spectral Stability During Training592

Spectral gap Denote the symmetrized operator by M ∈ Rm×m with eigenvalues 1 = λ1 ≥ λ2 ≥593

. . . λm. The spectral gap is the difference between λ1 − λ2, which quantifies separation between594

the stationary mode and the slowest dynamic process [Prinz et al., 2011]. A larger gap is a clearer595

metastable separation.596
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Table A1: Zero-shot evaluation across temperatures. Metrics computed at replicas 412 K and 503 K using
models trained at 400 K. Lower is better. Multi-N maintains CK consistency with only a modest increase in KL.

412 K 503 K

Model Row-KL CK W2 Row-KL CK W2

Fixed-N 1.462 0.925 0.016 1.047 0.869 0.041
Multi-N 1.520 0.927 0.020 1.124 0.877 0.023

Figure A1: Spectral stability metrics over training steps.

Table A2: Spectral stability diagnostics of the learned MSM during training. All metrics indicate stable
eigenvalues and eigenvectors across training, attributed to the Stiefel constraints.

Metric Value (mean ± std)

Spectral gap (gap1) 0.091±0.014

Perron eigenvalue (λ1) 1.000028±0.000001

Overlap diag. mean (↑) 0.951±0.084

Overlap diag. min (↑) 0.829±0.340

Residual (first eigenpair) (↓) (1.9±0.3)× 10−5

Residual (mean top-r) (↓) (2.3±0.1)× 10−5

Subspace distance (SubF) (↓) 0.341±0.494

Perron eigenvalue For any row-stochastic transition matrix, the Perron-Frobenius theorem guaran-597

tees a leading eigenvalue λ1 = 1. Deviations indicate difficulty in normalization and reversibility of598

P θ(τ) [Smyth, 2002].599

Overlap diag. Let Q(t)
MSM and Q

(t−1)
MSM denote the top r eigenvectors of M at successive training600

steps. The overlap matrix O = (Q
(t−1)
MSM )⊤Q

(t)
MSM measures alignment [Husic and Pande, 2018]. The601

mean and minimum of the diagonal entries of |O| indicates how stable each eigenvector is across602

epochs.603

Residual For each eigenpair (λi, qi) with qi a column of QMSM, the residual is defined follows604

Simoncini [2005] as605

∥Mqi − λiqi∥2 . (33)

Small numbers confirms that the computed eigenpairs solve the eigenvalue problem accurately.606

Subspace distance The subspace spanned between epochs by the top r eigenvectors is represented607

by the projection matrix QMSMQ
⊤
MSM. Subspace distance between two consecutive steps is measured608

as the Frobenius norm609 ∥∥∥Q(t)
MSM(Q

(t)
MSM)⊤ −Q

(t−1)
MSM (Q

(t−1)
MSM )⊤

∥∥∥
F
, (34)

which is invariant to rotations and sign flips. Smaller values indicate that the slow kinetic subspace is610

stable across training iterations.611
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N = 5
Success: 100%

N = 55
Success: 100%

N = 120
Success: 100%

Figure A2: Transition Paths Predicted by ScooBDoob on Müller-Brown Potential. Tested path generation on
unseen number of steps N . Green stars indicate starting states and red Xs indicate target end state. Intermediate
transition states are marked with the yellow square.

E Experimental Details612

E.1 Automatic τ Sweeping and Endpoint Determination613

For systems like AIB9 where inputs are torsion features without clear labels for start and end614

microstates, we avoid manual choices and infer 1) a suitable lag time τ and 2) representative start/end615

state sets directly from kinetics estimated on the data.616

Based on our previous discussion on MSMs, the pair (λ2, q2) encodes the slowest nontrivial relaxation.617

We use the sign of the second eigenvector q2 to produce a coarse two-well split [Röblitz and Weber,618

2013]:619

A = {i : (q2)i ≤ 0}, B = {i : (q2)i > 0}. (35)

To get confident endpoints for conditioning, we then pick the k most negative entries of q2 as the620

start set Sstart and the k most positive as the end set Send. In the current experiment, k is set to 6.621

For a chosen lag τ , the implied timescale of the slowest process is622

t2(τ) =
−τ

ln |λ2|
, spectral_gap = 1− |λ2|. (36)

A larger gap implied clearer separation between the stationary mode and the slowest transition, which623

tends to stabilize metastable assignments.624

A grid of lag steps τmultiple range from 40 to 200 was tested. The final τ will be picked by maximizing625

the score below that favors both kinetic separation and a split with balanced start and end states:626

score(τ) = spectral_gap(τ)(0.5 + 0.5 · min(|A|, |B|)
max(1,max(|A|, |B|))

) (37)

Then during training, at τ∗ we set Sstart/Send to the k most negative/positive entries of q2.627

E.2 Constructing the Teacher Transition Matrix628

The teacher transition matrix P ref(τ) is used to define the matching objective of the parameterized629

student model P θ(τ). We fix a time horizon T = Nτ and a terminal distribution ν ∈ ∆m−1, where630

N is the number of lag steps. For a target state z, we set the terminal distribution to the one-hot631

vector. We define the conditional distributions at each time step hV
n ∈ ∆m−1 as632

hN = ν, hn = P ref(τ) diag(w)hn+1, n ∈ {N − 1, . . . , 0}. (38)

The Doob h-transformed teacher transition matrices at each time step are then defined as633

P h
ref,n(i, j) =

P ref(i, j; τ)w(j)hθ,n+1(j)(
P ref(τ) diag(w)hθ,n+1

)
(i)

(39)
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Figure A3: Unconditional transition paths of Aib9 peptide at temperatures of 412K and 503K. Simulations
were performed with trained models under the identical conditions of K = 40 and N = 60. Above: Darker
color indicates lower-energy states, with white lines showing sampled transition paths. Start and End states
were determined following Appendix E. Below: Color highlights the states visited by the model. The grey
background indicates ground-truth coverage.

E.3 Data Curation634

Synthetic Müller-Brown Potential Following [Müller and Brown, 1979], we build up the testing635

system for a 2D and 3D Müller-Brown potential with a potential energy landscape U(x) with three636

local minima states.637

U(x) =

4∑
j=1

Aj · exp[aj(x1 −Xj)
2 + bj(x1 − Yj)(x2 −Xj) + cj(x2 − Yj)2] (40)

where a = (−1,−1,−6.5,−0.7), b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7), A =638

(−200,−100,−170, 15), X = (1, 0,−0.5,−1), Y = (0, 0.5, 1.5, 1), as formulated in [Müller639

and Brown, 1979, Hernández et al., 2018]. The dynamics are governed by640

ẋ(t) = −β∇U(x) +
√
2Dη(t) (41)

where β = 1, η(t) is Gussian noise with zero mean, time step ∆t = 10−3, and reflecting bounds641

(−1.5, 1.2)× (−0.2, 2.0).642

E.4 Loss Construction643

We used a complex loss system to maintain the Markov State Model properties. Additional constraints644

like the Chapman-Kolmogorov loss ensure the conservation of the stationary distribution at the second-645

highest eigenvalue. Reversibility loss ensures that the detailed balance is held in the MSM system,646

and the Stiefel constraint ensures that the eigenvectors remain orthogonal.647
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For protein systems, the K can be large with thousands of states, so we approximate the P θ by only648

predicting the transition probabilities for the k = 48 nearest neighbors:649

∀j ∈ N (i), P θ(i, j) = softmax(pθ(zi, zj ;n)) (42)

where N (i) are the k nearest neighbors of state i.650

E.5 Training Details651

For MB potential training, a two-layer MLP with a hidden dimension of 128 and a dropout rate of652

0.1 was used to map the features to a scalar score. We trained the model for 200 epochs with early653

stopping. The learning rate was set to 3e−3 using the Adam optimizer. All default hyperparameters654

are given in Table A3.655

For Aib9 peptide experiments, we concatenated all angle features into a 36D-shaped input for the656

model, and applied a 2-layer MLP encoder that takes paired interaction features as input. The learning657

rate was set to 1e−3 using the Adam optimizer. Training occurred for 200 epochs with early stopping.658

All default hyperparameters are given in Table A3.659

Table A3: Default hyperparameters for MB and Aib9 peptide experiments.

Experiment ∆t Temp (K) LR Epochs λCK λrev λstf λbr Paths (unc/cond)

MB Potential 1.0×10−3 – 1×10−3 200 1.0 1.0 1.0 1.0 200 / 200
Aib9 Peptide 2.0 ps 400 1×10−3 200 1.0 2.0 2.0 1.0 100 / 100

E.6 Evaluation Metrics660

Row-KL Divergence We evaluate the KL-divergence of the predicted transition probabilities from661

each micro-state i ∈ {1, . . . ,m} defined as a row of the parameterized transition matrix P θ(τ)662

compared to the teacher transition matrix P ref(τ).663

DKL(P θ(i, ·)||P ref(i, ·)) =
m∑
j=1

P θ(i, j) log
P θ(i, j)

P ref(i, j)
(43)

Wasserstein-2 Distance (W2) We compute theW2 distance of the predicted terminal state664

W2 =

(
min

π∈Π(p,q)

∫
∥x− y∥22dπ(x,y)

)1/2

(44)

Chapman-Kolmogorov Error We are comparing the student kernel P θ at lag τ against empirical665

2−lag kernel from counts to satisfy:666

P (2τ) = P (τ)2 (45)
The error is reported to be:667 ∥∥P 2

θ − P ref(2τ)
∥∥
F

max(10−16, ∥P ref(2τ)∥F )
(46)

If the error is small, the model composes correctly and respect Markovianity, otherwise the model is668

not consistent across time lags.669
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F Algorithms670

Here, we provide the pseudocode for the construction of the teacher transition matrices and training671

the parameterized time-dependent generators in Algorithm 2 and the procedure for simulating the672

unconditional and target-conditioned dynamics with ScooBDoob in Algorithm 3.

Algorithm 2 Training ScooBDoob
1: Input: Observed count of transitions between states i→ j at τ lag C(i, j; τ) for all i, j ∈
{1, . . . ,m}

2:
3: while Training do
4: P ij(τ)← C(i,j;τ)∑

j′ C(i,j′;τ) ▷ compute transition probabilities from each microstate

5: P (τ)← [P ij(τ)] ▷ construct unconditional transition matrix
6: V (i)← α/(Ci + 1), w(i)← exp(−τV (i)) ▷ density-aware weights
7: hV

N ← ν ▷ initialize terminal condition
8: for n in N − 1, . . . , 0 do
9: hV

n ← P (τ)(diag(w)hV
n+1) ▷ compute tilted distributions

10: P V
n (i, j)←

P ij(τ)w(j)hV
n+1(j)

(P (τ)diag(w)hV
n+1)(i)

▷ compute doob-tilted probabilities

11: P V
n ← [P V

n (i, j)] ▷ construct matrix
12:
13: end for
14: for micro-state i in 1, . . . ,m do ▷ train generator for each state i
15: P h

n,θ(i, ·)← NN(θ)
16: Compute loss Ltotal(θ) = LMSM(θ) + γbridgeLbridge(θ) + γstiefLstief(θ)
17: Optimize θ with ∇θLtotal
18: end for
19: end while
20: return parameterized transition predictor P θ(τ) : [0, 1]→ Rm×m

673

Algorithm 3 Inference with ScooBDoob

1: Input: parameterized model P θ(τ) : [0, 1]→ Rm×m, initial distribution µ0, number of steps N
2: P ← {} ▷ initialize path
3: for step n in 1, . . . , N − 1 do
4: µn ← µn−1P θ(τ) ▷ predict distribution over microstates
5: zn ∼ µn ▷ sample discrete state from distribution
6: P ← P ∪ {µn, zn} ▷ append to path
7: end for
8: return P , µN , zn
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