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Abstract

KV cache eviction has emerged as an effective solution to alleviate resource con-
straints faced by LLMs in long-context scenarios. However, existing token-level
eviction methods often overlook two critical aspects: (1) their irreversible evic-
tion strategy fails to adapt to dynamic attention patterns during decoding (the
saliency shift problem), and (2) they treat both marginally important tokens and
truly unimportant tokens equally, despite the collective significance of marginal
tokens to model performance (the marginal information over-compression prob-
lem). To address these issues, we design two compensation mechanisms based on
the high similarity of attention matrices between LLMs of different scales. We
propose SmallKV, a small model assisted compensation method for KV cache
compression. SmallKV can maintain attention matching between different-scale
LLMs to: 1) assist the larger model in perceiving globally important information
of attention; and 2) use the smaller model’s attention scores to approximate those
of marginal tokens in the larger model. Extensive experiments on benchmarks in-
cluding GSM8K, BBH, MT-Bench, and LongBench demonstrate the effectiveness
of SmallKV. Moreover, efficiency evaluations show that SmallKV achieves 1.75 -
2.56 times higher throughput than baseline methods, highlighting its potential for
efficient and performant LLM inference in resource constrained environments.

1 Introduction

Large language models (LLMs) [29] have emerged with remarkable natural language understanding
capabilities and broad application prospects. Despite the advancements, the deployment of LLMs is
hindered with significant computational challenges and high GPU memory consumption, particularly
when processing long contexts. This issue arises from the intrinsic complexity of their self-attention
mechanism, which scales quadratically with the length of the input sequence. Recent developments
in reasoning models, exemplified by ChatGPT-o1 [28]] and DeepSeek-R1 [[7] have exacerbated this
issue due to their lengthy reasoning process.
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Numerous studies have demonstrated the high degree of sparsity within attention mechanism, leading
to the development of various Key-Value cache (KV cache) compression methods such as quantization
[L15L 9], eviction [51} 33| 43]], and merging [17, 38} 27]. These methods significantly reduce GPU
memory usage and enhance the throughput of inference systems. Our work focuses on eviction-based
methods, which identify and retain only the critical tokens to reduce KV cache consumption while
minimizing performance degradation in a training-free manner.

Current KV cache eviction methods, however, face two key challenges: (1) the saliency shift issue
caused by dynamic changes in token importance during decoding, where permanent token removal
strategies become suboptimal when the decoding process evolves, and (2) the classification of tokens
into critical/unimportant categories fails to account for marginal tokens that collectively contribute
significantly to model performance despite their individually modest attention scores. Existing
approaches lack mechanisms to adapt to shifting saliency patterns or to apply differentiated treatment
to these three distinct token categories (critical, marginal, and unimportant), leading to either excessive
memory consumption or unnecessary quality degradation.

A previous study [4] has revealed a notable similarity in attention patterns between small and large
models within the BERT architecture. We further discover the similar observation in the decoder-only
architecture models, leading to a novel perspective for addressing the aforementioned limitations.
We then propose Small Model Assisted Compensation of KV Cache Compression for Efficient
LLM Inference (SmallKV), which introduces a small language model (SLM) to perform saliency
shift compensation and marginal information compensation for KV Cache Compression (of LLM).
Specifically, the saliency shift compensation mechanism leverages the SLM to maintain global critical
information and help identify evicted tokens that may regain significance. Meanwhile, the marginal
information compensation identifies tokens with relatively lower attention scores, yet still contribute
to model performance. These tokens are less sensitive to the approximation of attention, allowing us
to leverage attention scores of SLM for compensation. This results in a hierarchical compression
strategy that differentiates and compresses tokens based on their varying levels of importance. It
should be noted that SmallKV is compatible with efficient attention implementation such as Flash
Attention, which significantly enhances the efficiency of inference. In practical deployment, SmallKV
can be used with speculative decoding [18] to speed up LLM inference further.

We conduct a comprehensive evaluation of SmallKV across several benchmarks, including
GSMSK [6l], BBH [34], MT-bench [54], and Longbench [1]]. The experimental results indicate
that SmallKV consistently delivers superior performance, especially under low KV cache budgets.
Experiments on different model series (e.g., the Qwen series and LLaMA series) and model sizes
(ranging from 7B to 72B) highlight the robustness and generalizability of our approach. Efficiency
evaluations show that SmallKV achieves 1.75 - 2.56 times higher throughput compared to previous
KV cache compression methods. These experimental results collectively offer compelling evidence
of SmallKV’s accuracy and efficiency as a compensation plugin for KV cache compression.

2 Related Work

The approaches to KV cache compression can be broadly categorized into three classes: eviction,
merging, and quantization. Eviction [30} 31} [19} 25| 55| |49]] aims to retain only a small set of critical
tokens’ KV caches to achieve nearly lossless inference performance. Merging leverages the high
angular similarity observed among deep KV caches to reduce both intra-layer [[17} 38} 27,150,137, [39]
and cross-layer [45} [23] redundancies. Quantization compresses the data by mapping the original
full-precision tensor values to discrete levels and storing them at lower precision, including model
weight quantization [33} 146, |32]] and K'V-cache-only quantization [15, 9, 44} 8} 16].

Numerous eviction methods have been proposed, which can be categorized into static and dynamic
strategies. Static strategies [10, 21, 47] perform token filtering during prefilling and maintain KV
cache of fixed size throughout the subsequent decoding steps (e.g., sliding window attention [2]). A
further approach is to maintain both the initial and the recent tokens [41,/12]. Dynamic strategies [51}
43| 152 15] continuously update the critical KV cache during decoding, while the KV cache of
unimportant tokens will be permanently removed or offloaded from the GPU. The core of permanent
eviction lies in selecting critical tokens to minimize the damage to model accuracy. H,O [51]
observed that almost all layers exhibit a sparsity exceeding 95%, indicating that maintaining just 5%
of the KV cache based on the accumulative attention scores of each token is sufficient for decoding the



same output token at each generation step. PyramidInfer [43] employs a pyramid-shaped hierarchical
processing approach, where recent tokens are assigned greater weight and the length of KV caches
in deeper layers is reduced. Permanent token removal has two main limitations. Irreversible token
eviction can degrade model performance in multi-turn dialogue scenarios and long-sequence tasks.
Additionally, relying on attention scores prevents the model from adapting to some acceleration
techniques (e.g., Flash Attention). Consequently, non-permanent eviction [40, [35| 48| 14} [24]
has been proposed by dynamic cache offloading based on indexing. These methods manage and
access the KV cache offloaded to multi-tier cache systems at the granularity of chunks or clusters.
However, achieving fast and accurate retrieval with high precision remains challenging, while the
index construction for retrieval introduces significant decoding latency.

Speculative decoding [20} 118} 13} 153] is a widespread technology to accelerate inference. It employs
a pair of models, where the smaller one generates candidate tokens in advanced and the larger one
verifies them in parallel. By enabling parallel token generation, speculative decoding addresses the
inefficiencies inherent in traditional autoregressive approaches, achieving speedups of over three
times without compromising the quality of the generated output. This technique has been widely
adopted in commercial LLMs [3} [22]].

3 Pilot Observation

3.1 Saliency Shift Issue

The dynamic nature of LLM decoding leads to the shift in token saliency, which is the change of the
token set with high attention over time. Most existing KV cache eviction strategies, which rely on
permanent token removal [51}143]], are highly susceptible to this issue. To address this, we leverage
a small language model (SLM) from the same model series to approximate the LLM’s attention
scores. This approach aligns well with speculative decoding [20, 18} |3 153 [22]], where the SLM
generates candidate tokens in advance and the LLM verifies them in parallel, thereby allowing the
combination of these two appealing approaches for further optimization of inference speed.

Observation 1. The saliency shift leads to the discrepancy of the important tokens between the
compressed KV cache view and the uncompressed global view, and this gap causes the model to lose
critical information during inference. We mimic the continual process of KV cache compression
in Figure [T] (a). Here, in “real-drop” procedure, we perform two times compression, mimicking
the continual compression in real decoding scenario. In the first compression, the important token
(yellow) information in the first half of the dashed line is retained, while the remaining unimportant
tokens (blue) are evicted and their KV cache are permanently removed. The important tokens, along
with the new ones in the second half of the dotted line, continue to participate in subsequent decoding
and the second-time compression. However, at the second time compression, the global view of an
uncompressed cache shows differences in the selection of important tokens (red), i.e., the shift in
token saliency between the second compression step and the global view-based compression.

Specifically, we quantified the gap caused by saliency shift on the Wikitext-v2 [26] dataset using
Qwen2-7B in Figure[I] (b). The importance of tokens is measured by accumulative attention scores,
following H,O[51]]. We measure the discrepancy between sets of important tokens derived from the
real drop view and the global view using Jaccard similarity. The relatively low Jaccard similarity
values, ranging from 0.55 to 0.77, indicate a significant difference between realistic KV cache eviction
methods and the global ground truth, which means a considerable number of globally important
tokens are erroneously evicted under the real drop method. In addition, the similarity maintains a clear
declining trend as the KV cache budget decreases, indicating that the influence brought by saliency
shift is more serious. This is particularly concerning since most current KV cache compression
methods claim to operate with a low KV cache budget (e.g., 10%—-30%). Therefore, an effective
approach to compensate for saliency shift issue is critical and necessary.

Insights 1.  The core issue with the saliency shift lies in the inability of existing KV cache
compression methods to effectively maintain past information after compression. These methods
predominantly focus on LLM itself without considering external information. We, however, observe
that LLMs of different sizes within the same series tend to exhibit highly consistent attention patterns.
Therefore, we propose a collaborative approach during inference, where an assisted SLM works with
the LLM in parallel, using the attention matrices of the SLM for saliency shift compensation.



1

—— Qwen2-78B Attention
—— Qwen2-0.5B Attention

© Important @ Dropped @ Different

S

0.8

rity

1 o
Real Drop 000000000000 EO°
&

°

Global View|o0o®@ 000 @@@@ @0 5%

Jaccard
o

Saliency Shift| OO @ O@® 000000

Accumulated Attention Score

o N & o

0

10 20 30 40 50 60 0 10 20 30 40 50 60 70 80
Token Index KV Cache Budget Token Index

(a) (b) (© (d)

Figure 1: (a) The illustration of saliency shift. (b) The quantification of saliency shift issue by
measuring Jaccard similarity of important tokens between real drop and global view of critical tokens.
Lower Jaccard similarity indicates that more important tokens have been wrongly evicted. (c) The
visualization of highly consistent attention patterns between LLMs with different scaling, indicating
that SLM can assist in capturing and preserving global attention information. (d) Comparison of 10%
KV cache budget for saliency shift compensation using Qwen2-0.5B to assist Qwen2-7B.
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Figure 2: Top: The distribution of attention sparsity (blue bar) along with the drop of model accuracy
(red line), indicating the necessity of maintaining marginal tokens. Horizontal line (Full) represents
the baseline of full KV cache. Bottom: Marginal information compensation by the hierarchical
compression that differentiates tokens based on their varying levels of importance.

We measure the similarity of the attention patterns between Qwen2-0.5B and Qwen2-7B on Wikitext-
v2 [26] dataset. Figure[I](c) illustrates one example of the trends of accumulative attention scores
between SLM and LLM, as more samples and detailed discussion in Appendix B} For each attention
head in LLM, we search the most similar one in the SLM for matching. The quantitative analysis
shows that average cosine similarity between Qwen2-0.5B and Qwen2-7B after similarity matching
reaches 0.947. The result also visualizes a high degree of consistency, particularly among tokens
with high attention scores. This finding indicates a promising way to effectively address the saliency
shift issue without introducing significant overhead. We evaluate the effectiveness of saliency shift
compensation with 10% KV cache budget across six downstream tasks, as shown in Figure[T] (d).
The results demonstrate that using Qwen2-0.5B as the assisted SLM for saliency shift compensation
significantly outperforms using only Qwen2-7B without any compensation.

3.2 Marginal Information Overcompression

Current KV cache eviction methods divide tokens into two categories—critical and unimpor-
tant—overlooking the presence of marginal tokens. These tokens, while less impactful than critical
ones, still hold significant relevance and collectively contribute far more to model performance
than their attention score suggests. Unlike unimportant tokens, marginal tokens are essential for
preserving output quality, yet they are currently subjected to the same aggressive compression or
eviction strategies as truly negligible tokens. To address this, a dedicated approach is needed to: (1)
distinguish marginal tokens from unimportant ones, and (2) apply tailored compression strategies
(rather than outright removal) to retain their contribution.

Observation 2. We measure the accumulative attention scores of each token across all heads of
Qwen2.5-14B on the BBH dataset [34], and statistically rank these scores in Figure |Z| to reveal
the necessity of maintaining marginal tokens. Consistent with previous research findings, we also
observe that only a small fraction of tokens account for the majority of attention scores. The sum



of the accumulative attention score for the top 5% of tokens is approximately 7 times greater than
that of the 5%-10% range, while the 5%-10% range is only 1.34 times higher than the 10%-15%
range, highlighting the dominant position of the top 5% of tokens in attention scores. However, the
compression of tokens in range of 5%-15% has caused the accuracy to drop from 0.482 to 0.148
under H,O method.

Insights 2. Previous methods, however, fail to recognize the necessity of maintaining marginal
tokens, and conflate them with critical tokens or unimportant tokens. This leads to an underutilization
of attention sparsity, inducing a mandatory trade-off between KV cache consumption and model
performance degradation. Our observations suggest that maintaining marginal tokens is necessary and
that they can tolerate approximation compared to critical tokens (extended analysis can be referred
to Appendix [C)). Therefore, a reasonable approach is to apply different compression strategies for
tokens of varying importance levels, as shown in Figure[2] Critical tokens retain the full KV cache
to avoid precision loss, marginal tokens retain only the V cache and use SLM to approximate the
attention mechanism, and unimportant tokens are evicted completely.

As insight 1 indicates that LLMs of different sizes within the same series exhibit highly consistent
attention patterns, we propose compensating for marginal tokens based on the attention scores from
the SLM. Specifically, we approximate the attention mechanism of marginal tokens by multiplying
their V cache with the corresponding attention scores derived from the SLM. This method reduces
the K cache consumption for these tokens while maintaining their contribution to overall model
performance. By doing so, we effectively bridge the gap between theoretical attention sparsity and
practical performance, thereby enhancing the efficiency and efficacy of KV cache compression.

4 SmallKV Method

We introduce the insight of SmallKV in Section 3] involving saliency shift compensation and marginal
tokens compensation assisted by the SLM. In this section, we provide a detailed description.

Similarity Matching. In prefill stage, SmallKV establishes the similarity matching between SLM
and LLM. Given an LLM M and the corresponding SLM Mj, the prompt is first forward in both
models to obtain all attention matrices respectively. The attention matrices of M are denoted as

A; = Softmax (Q\/T ) € R"*" (0 <4 < L-D, and those in M, are denoted as A; ,0< 5 <1-d.

Q € R"¥9 and K € R™*? denote query matrix and key matrix in attention mechanism. L and I
represent the number of layers in the M and M,. D and d denote the number of attention heads per
layer in each model. n represents the number of tokens in the prompt. Due to differences in model
scaling, we have [ - d << L - D. Let C be the KV cache of the context, the accumulative attention
score vector in a specific context can be expressed as:

F(A;,C) = (s},s2,...,s"), where s ZAuv (D

27 7

We then can calculate pairwise similarity between A; and A;- according to Jaccard simularity of their
TopK indices as:

|TopK (F(A;,C)) NTopK (F(A},0))|
|TopK (F(A;,C)) UTopK (F(A},C))|
The mapping function that maps i-th attention matrix of LLM to the j-th one in SLM is obtained by:

(A, A)) = ¥

f(i) = argmaz;S(A;, A}) 3)
Saliency Shift Compensation. Previous eviction strategies remove tokens based on the policy:
E(A;, C) = C\ {v}, where {v} < argmaz{,yecF(As, O) (€))
The saliency shift problem in the previous methods can be formally defined as:
E(Ai, Can U{t}) # E(A;, Cr U{t}) 5)

where C,;; denotes the full KV cache, C'. represents the compressed cache obtained after prefilling,
and ¢ indicates the recently added token. The equation suggests that the selection of critical tokens
from a compressed cache (e.g., after prefilling) is different from that if we have the full cache.
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Figure 3: The attention illustration of the detail of SmallK'V attention compensation is in FigureE[)

SmallKV method in decoding.

Unlike previous methods, SmallKV maintains the full cache of SLM C?,,, and performs eviction for
the 7 cache of LLM based on he f(i)-th (full) cache of SLM and the eviction policy £ (A'f( 0> Can)-

Marginal Information Compensation. In decoding stage, let the attention be A; € R1X™, the
vanilla attention can be expressed as O; = A; - V; € R'*%, where V; € R"*? denotes the value
matrix. The attention mechanism for Marginal Information Compensation can be expressed as
O; = A? - V;, where A7 is calculated as follows:

A k], if k € TopK (F(A/f(i)a C;ll)) J
AR = A4 K], ik € Top(P - K) (P(4%,,Ca)) ©

0, otherwise.

where K and P — K denote the numbers of critical tokens and marginal tokens, which are determined
by KV cache budget.

The formula shows that for marginal tokens that appear in the T'op(P — K') importance, we approxi-
mate their attention scores using the corresponding elements from SLM M, to avoid using K cache.
This approach allows for retaining important information while evicting the K cache of these tokens,
effectively implementing a hierarchical compression policy that differentiates between various levels
of token importance. The illustration of attention mechanism in SmallKV is shown in Figure 3]

Method Details. In practice, to ensure the stability of matching correspondence between SLM
and LLM, we dynamically determine the timing of similarity matching based on context length.
Specifically, we control the token length for similarity matching within the range of 100 to 200. This
is to avoid the matching inaccuracy caused by excessively short token sequences and the distortion of
similarity in high-dimensional space caused by overly long token sequences. If the current context
length does not meet the minimum threshold, SmallKV delays the timing of similarity matching and
KV cache eviction until the requirements are satisfied. Similarly, for context lengths exceeding the
threshold, we truncate the prefill token length for similarity calculation.

The detailed procedure of SmallKV can be referred to Algorithm [T} It is important to note that
SmallKV does not delete the KV cache but migrates it between GPU HBM and CPU memory, as
the process of updating KV cache of critical tokens and V cache of marginal tokens in line 9 of
the Algorithm. This migration process executes in parallel with the forward of LLM to prefetch
KV cache for latency reduction. Within the attention of LLM, the computation of critical tokens
and marginal tokens is also performed in parallel. The computation for critical tokens benefits from
acceleration via Flash Attention, whereas the computation for marginal tokens involves only a matrix
multiplication. The system architecture of SmallKV is shown in Figure 4]



Algorithm 1 SmallKV Algorithm
Input: Large language model M ; Assisted small language model Mj; Input ; KV cache budget 7;

1: if Prefill then
2: Allocate KV cache budget 7 to critical budget 7., marginal budget 7

3: Parallel forward process of M (x) and M (x) to get attention matrices A; and A’,
4: Establish correspondence of A; and A’; by similarity matching (Eq. (2) and Eq. H
5: Output new token ¢; by M (x) and append it to ¢
6: else
7: Forward process of M (x + t) to update A’
8: In parallel:
9: - Update KV cache of critical tokens and Update V cache of marginal tokens by £ (A’f(i), C:)
10: for Attention layer [ € layers of LLM do
11: In parallel:
12: - Calculate attention output O, of critical tokens using Flash Attention
13: - Calculate attention output O,,, of marginal tokens using Eq. (6)
14: Attention Output by O, + O,

15: end for
16: Output new token ¢; by M (x + t) and append it to ¢
17: end if

Output: Output token sequences t = {t;} 2 ;

5 Experiments

5.1 Experiments Setup

Datasets. We comprehensively evaluate the effectiveness of SmallKV in four kinds of scenarios: 1)
GSMBEK [6] for mathematical reasoning, 2) BBH [34]] for language understanding, 3) MT-Bench [54]]
for multi-turn conversation, and 4) Longbench [[1]] for long-context scenario.

Baselines. We take two effective KV cache eviction methods as baselines. These methods select
critical tokens according to their attention scores, which is the same as SmallKV.

H,0 [51]]: employs the accumulative attention score as the metric to evict unimportant KV cache.

PyramidInfer [43]]: identifies that deeper layers exhibit greater redundancy and applies differentiated
KV cache budgets between layers.

Models. Our experiments are conducted on the Qwen and LLaMA series of LLMs with different
scales. Specifically, in the benchmark results (Section[5.2), we consider four pairwise combinations
between the SLM and the LLM. These combinations include: Qwen2-0.5B with Qwen2-7B, Qwen2.5-
0.5B with Qwen2.5-14B, Qwen2-7B with Qwen2-72B, LLaMA 3.2-1B with LLaMA 3.1-8B. The
Qwen2-72B model is quantized to INT4 data type for efficient computing. The other experiments are
primarily performed on the combination of Qwen2-0.5B with Qwen2-7B.

Implementation Details. All experiments are conducted on 8 NVIDIA A100 (80GB) GPUs.
The configurations of environment include: CUDA (12.0), PyTorch (2.4.0), and huggingFace’s
Transformerﬂ (4.45.1). We use greedy decoding to ensure the stability of the experimental results.

Consistent with previous study, we also allocate a proportion of the KV cache budget to recent tokens.
We adopt a fixed ratio of 2:1:2 for allocating resources among critical tokens, recent tokens, and
marginal tokens, respectively. For instance, with 20% KV cache budget, we allocate 10%, 5% and
10% budget to critical tokens, recent tokens, and marginal tokens (as marginal tokens only use V
cache of LLM, it actually consumes half of budget). When the available KV cache budget becomes
limited so that it cannot fully accommodate all critical tokens (e.g. 5%), we proportionally reduce the
allocations for recent and marginal tokens to maintain model performance.

3https://github.com/huggingface/transformers
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Figure 5: Benchmark results of SmallKV with KV cache budget varying from 100% to 5%. Full
represents using the full KV cache without compression.

LongBench

Methods Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Code Completion
Nar.QA Qasper Mul.QA AVG |Hot.QA 2Wi.QA Musique AVG |QMSum M.News GovRe. AVG |Tri.QA TREC SAMSum AVG | LCC Repo. AVG
KV cache budget T = 0.3
SmallKV | 20.81 4253 4882 37.39| 46.71 51.51 2376 40.66| 23.15 2355 19.55 22.08| 86.42 71 4831  68.58|57.79 55.87 56.83
H,O0 22.14 3311 45.17 3347| 44.14 4844 2085 37.81| 2191 2351 1998 2135|8522 73 45.27 67.83|58.62 55.04 56.83
Pyramid. | 22.36 32.19 45.14 33.23| 44.14  46.01 20.77 36.97| 2133 2297 20.08 2146|8542 72 46.03  67.82|58.58 55.67 57.13
KV cache budget T = 0.1
SmallKV | 19.85 42,12 49.63 37.20| 47.74 51.51 2326 40.84| 22.84 2292 1890 21.55| 86.49 71l 47.68  68.39|58.77 55.14 56.96
H,O 1413 2350 4022 2595| 4125 37.89 1838 32.51| 20.50 2322 2034 21.35| 8444 51 43.69  59.71|41.33 44.90 43.12
Pyramid. | 14.12 2578 39.50 2647 41.52  39.63 16.14 3243| 20.03 23.15 2038 21.19| 85.04 50 42,66 59.23|41.28 46.40 43.84
KV cache budget T = 0.05
SmallKV | 18.48 40.78 40.16 33.14| 4539 4731 1992 37.54| 2235 19.47 1870 20.17| 86.99 71 47.04  68.34|53.67 53.40 53.54
H,0 1285 1436 31.00 19.40| 3323 2798 1122 24.14| 19.18  20.04 19.58 19.60| 59.54 30 3494  41.49|31.44 3552 3348
Pyramid. | 13.79 11.43 30.06 18.43| 3642  26.67 9.60 2423| 19.14 2036 19.76 19.75| 61.86 33 3543 43.43|28.24 29.02 28.63

Full 2426 4348 4939 39.04| 4457 5276  25.02 40.78| 2388 2298 20.08 2231|87.19 78 45.03  70.07|58.26 55.64 56.95

Table 1: Performance of three methods on the LongBench with different KV cache budget (using
Qwen2-0.5B with Qwen2-7B). The results of full KV cache are shown at the bottom for comparision.

5.2 Benchmark Results

Figure [5|shows the performance of four models across a range of KV cache budgets from 100% to
5% on GSMS8K, BBH, and MT-Bench. The results indicate that the SmallKV method consistently
outperforms baseline approaches across nearly all models and various KV cache budgets, particularly
at very low KV cache budgets. The marginal information compensation mechanism enables SmallKV
to maintain attention information for a significant proportion of marginal tokens while using few
KV cache, thereby sustaining high performance even at low cache budgets. For instance, in the
experiment of Qwen2-0.5B paired with Qwen2-7B, with 5% KV cache budget, the scores for H20 and
PyramidInfer decline from 79.4 (at full cache) to 36.7 and 47.0, respectively, whereas the SmallKV
method maintains the performance score of 73.0.

Table [T] provides a comparative analysis of SmallKV method against baselines on LongBench at
three distinct KV cache budgets (7 = 0.3, 7 = 0.1, and 7 = 0.05). Our method demonstrates superior
performance across all five subtasks, underscoring the efficacy of SmallKV in long-context scenarios.



Method | Bsz Lenth | TPOT (ms) TTFT (s) Thr.(tokens/)

Accelerate (Eager) 594 22.15 62.27 (1.00x)

S | oy s | M 10 RO
SmallKV (20%) 36.3 2.71 195.50 (3.14x)
Accelerate (Eager) 42.7 14.28 474.21 (1.00x)
Boon | b SIS 5 G (e
SmallKV (20%) 242 1.94 1203.42 (2.54x)

Table 2: Evaluation on efficiency of SmallKV. Bsz: batch size. Lenth: prefill length + decode lenth. TPOT:
average time per output token in decode stage. TTFT: time to first token. Thr.: End-to-end throughput.

Similar to previous observations, SmallKV performs well with low KV cache budgets. For example,
in subtasks such as Multi-Doc QA, Few-shot Learning, and Code Completion, baseline methods
exhibit performance degradation with 5% KV cache budget, while the SmallKV method maintains
performance comparable to that achieved with full KV cache. This highlights SmallK'V’s ability to
effectively manage cache resources and deliver robust performance even under constrained conditions.

5.3 Efficiency Results

Setup. We conduct an efficiency analysis on one NVIDIA A100 GPU. The evaluated model is
Qwen2-7B and the SLM used in SmallKV method is Qwen2-0.5B. We use synthetic datasets for
testing where all prompts are padded to the same length in the batch and the outputs are also restricted
to a fixed length. We consider two common scenarios: 1) Multi-user concurrency: In this scenario,
the context is set to a prefill length of 2048 tokens and a decode length of 256 tokens, with a batch size
of 64. 2) Extremely long context: the context is set to a prefill length of 16384 tokens and a decode
length of 512 tokens, with a batch size of 4. The evaluation metric consists of average time (ms)
per output token in decode stage (TPOT), time (s) to first token (TTFT), and end-to-end throughput
(token/s). We use Hugging Face Accelerate and H,O as baselines. Hugging Face Accelerate employs
two attention implementation methods: eager attention and PyTorch SDPA with Flash Attention
kernel [11]. H,O and SmallKV both employ a KV cache budget of 20%. The times reported in
SmallKV include the overhead of the assisted SLM.

Results. The efficiency results are shown in Table[2] It can be observed that compared to Accelerate,
KV cache compression techniques (H,O and SmallKV) significantly reduce the TPOT during the
decoding. This is attributed to their reduction in loading KV cache, thereby alleviating pressure on
GPU memory bandwidth and decreasing the computation of attention. Specifically, introducing an
additional assisted SLM in SmallK'V results in increased latency during the decoding when compared
to H,O. However, due to its compatibility with memory-efficient attention methods, SmallKV’s
TTFT is notably lower than that of H,O, despite the overhead incurred by similarity matching during
the prefill stage. In summary, although the SmallKV method incorporates overhead such as assisted
SLM and similarity matching, it benefits both from the advantages of KV cache compression and
compatibility with efficient attention methods. These features collectively contribute to its superior
efficiency, demonstrating significantly higher throughput than baseline methods across both scenarios.

5.4 Ablation Study

We conduct ablation studies on the BBH benchmark to evaluate the contributions of the saliency
shift compensation and marginal information compensation components proposed in the SmallKV.
The experimental results are shown in Figure [6] Firstly, it is evident that the SmallKV method
exhibits a notable performance drop in the 10% to 40% KV cache budget range when the marginal
information compensation component is absent. This observation aligns with the design purpose
of marginal information compensation, which aims to compensate for marginal tokens beyond the
small set of critical ones. Additionally, when the KV cache budget is under capacity to cover the
critical tokens, the hierarchical compression for marginal tokens fails due to insufficient KV cache
budget allocation for those tokens. This is reflected in the performance convergence between the w/o
marginal information compensation and the full SmallKV with KV cache budgets below 10%.

If we further remove the saliency shift compensation component from the w/o marginal information
compensation setup, as depicted by the w/o both compensation in the figure, there is an additional
decline in performance. This highlights the effectiveness of saliency shift compensation, which
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Figure 6: Ablation Study of SmallKV method. Figure 7: The impact of SLM scaling on SmallKV.

mitigates saliency shift issue by utilizing global information from the assisted SLM. This compensa-
tion mechanism dynamically depends on context information during generation, thereby enhancing
overall performance.

5.5 Impact of SLM Scaling

We also investigate the impact of scaling SLM on the performance of the SmallKV method. Theoreti-
cally, as the size of the SLM increases, it can provide more attention matrices, allowing the LLM
to match more similar attention matrices for compensation, thereby enhancing the performance of
the SmallKV method. Using Qwen2.5-14B as the LLM, we experiment with four differently scaled
SLMs: Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B, and Qwen2.5-7B on the BBH benchmark. The
results are presented in Figure[/| Consistent with theoretical expectations, the performance improved
gradually as the size of the SLM increased. On average, using Qwen2.5-1.5B, Qwen2.5-3B, and
Qwen2.5-7B as SLMs leads to performance improvements of 4.9%, 6.8%, and 8.5% compared to
using Qwen2.5-0.5B as SLM.

While the performance improvements are relatively small compared to the increase in parameters
of the SLM, we also note that the influence of SLM scaling becomes more pronounced with low
KV cache budgets. For instance, with 5% KV cache budget, using Qwen2.5-1.5B, Qwen2.5-3B, and
Qwen2.5-7B as SLMs resulted in performance improvements of 30.2%, 63.8%, and 84.4%, respec-
tively, compared to using Qwen2.5-0.5B. This finding indicates that under extremely constrained KV
cache budgets, it is crucial to appropriately scale up the SLM to maintain performance levels. In
summary, the SmallKV method necessitates a careful trade-off between the overhead introduced by
scaling the SLM and the overall performance enhancement in practice.

6 Conclusion

We present SmallKV, a novel small-model-assisted compensation framework that addresses two
critical limitations in current KV cache eviction methods: the saliency shift problem and the marginal
information over-compression issue. By leveraging the high similarity of attention matrices across
different model scales, SmallKV introduces two key innovations: (1) preserving globally important
attention patterns through SLM assistance, and (2) accurately approximating marginal tokens using
the smaller model’s attention scores. Our comprehensive evaluation across multiple benchmarks
(GSMSK, BBH, MT-Bench, and LongBench) demonstrates that SmallKV consistently maintains
model performance even under aggressive KV cache budgets. Notably, SmallKV achieves 1.75x-
2.56x throughput improvement over existing methods while remaining compatible with memory-
efficient attention implementations like Flash Attention.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have attached the data and code used in this paper in the supplementary
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the details of the experimental settings in Section [5.1}
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the main experiments, the results are stable because we use greedy
decoding of LLM. For the observation experiments, we report error bars suitably in Figure/I]

(b).
Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section[5.1] we report the details of compute resources. In Section[5.3] we
evaluate the efficiency of the proposed method including average time per output token in
decode stage, time to first token and end-to-end throughput.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential positive impacts of proposed method in Section
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk of misuse of the proposed method because its purpose is to
accelerate the large language model.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper or attached the link to the existing assets used
in Section[5.11

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have attached the introduction for running code in the code repository.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We describe the usage of LLMs in Section[5.1]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Overhead Analysis

In this section, we analyze the additional overhead introduced by the SmallK'V method, which mainly
includes the cost of the SLM and the overhead associated with the SmallK'V-specific processes. It is
important to note that although we provide a comprehensive analysis of these overheads, the cost
related to the SLM can be shared with the SLM used for speculative decoding in practice, which
will significantly reduce the actual additional overhead.

A.1 Memory Overhead

The overhead of GPU memory in SmallKV comes mainly from the assisted SLM and the KV cache
it stores. The storage requirement for SLM parameters is fixed and depends on the size of SLM. For
KV cache consumption, it can be formulated as:

My ~2-L-Nyy-Dio-S-B-Cp (7

Where My, is the total GPU memory usage (in bytes) for storing KV caches. L represents the number
of layers in the model. Ny, denotes the number of key-value heads used in the attention mechanism.
Dy, refers to the dimension size of each KV entry. S is the sequence length, indicating the number
of tokens in the sequence. B stands for the batch size, which is the number of sequences processed
simultaneously. C}, is the number of bytes per cached value, depending on the data type used.

Here, we use Qwen2-7B as the SLM and Qwen2-72B as the LLM for illustrative analysis. The
parameters for both models are outlined in the Table[3] Specifically, N, denotes the number of
attention heads, and Dy, represents the hidden state dimension. Given these parameters and applying
the Equation[7] we can calculate that under the same batch size and sequence length, the KV cache
size of Qwen2-72B is approximately 5.71 times that of Qwen2-7B. Therefore, if the KV cache budget
for the LLM (Qwen2-72B) is set to 20%, the additional overhead introduced by the SLM (Qwen2-7B)
would consume about 21.9% of the KV cache saved by reducing the LLM’s KV cache consumption.

It is also important to note that, in the analysis presented here, no optimizations have been applied
to the SLM’s KV cache. In practice, the SLM’s KV cache can also be optimized through various
methods, such as quantization and eviction. Implementing these optimizations can further reduce the
KV cache overhead associated with the SLM.

Table 3: The config parameters of Qwen2-7B and Qwen2-72B.
Qwen2-7B  Qwen2-72B

L 28 80
Niw 4 8
Nt 28 64
Dy, 3584 8192
Dy 128 128

A.2 Computational overhead

The additional computational overhead in SmallKV can be divided into two main parts: forward
process of the SLM and similarity matching computation between SLM and LLM.

For forward process of the SLM, it affects both prefill and decode stage. For an LLM with L decoder
layers, the total computational cost for one batch during a forward pass is:

Cmodel = L(24BSD? + 4BS?Dy,) + 2BLD,,|V| ~ 24BSLD} @®)

Where |V| denotes vocabulary size. It also can be calculated that under the same batch size and
sequence length, the computational cost of LLM (Qwen2-72B) is approximately 14.9 times that of
SLM (Qwen2-7B) referring to Table[3]

For the similarity matching computation between SLM and LLM, it only affects prefill stage. Assume
that S;,,, denotes the sequence length for calculate similarity (typically 100-200 in SmallKV), we
have the computational cost of the similarity matching for model a and model b as:
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Cyim = (L*NY, + L°N?,,)BS?, + L°N%,L°N?,,B%*S% ~ L°N%,L°N®, B?S? )

stm sim stm

Where L® and L® denote the number of layers in the model @ and model b. N&,, and N?,, denote the
number of attention heads respectively.

A.3 Quantitative Analysis and Optimization of SLM

We quantify the theoretical maximum latency and memory overhead of the model combinations used
in main experiments, as shown in the Table f] The values ’Ratio’ represent the additional overhead
introduced by SLM relative to LLM (e.g., for combination Qwen2-0.5B & 7B, the KV cache of SLM
is 1/4.67 that of the LLM).

Table 4: Quantitative analysis of SLM relative to LLM in latency and KV cache usage
Ratio between SLM  Qwen2-0.5B Qwen2.5-0.5B Qwen2-7B LLAMA 3.2-1B

and LLM & Qwen2-7B & Qwen2.5-14B & Qwen2-72B & LLAMA 3.1-8B
Latency 1/3.57 1/6.52 1/4.47 1/3.19
KV cache 1/4.67 1/16.0 1/5.71 1/4.0

We propose three deployment-level optimizations to effectively reduce the computational and memory
overhead of the SLM, enhancing the practicality of SmallKV: (1) integration with speculative
decoding, (2) compression of the KV cache for the SLM, and (3) layer skipping (i.e., early stopping)
during the attention mapping process.

(1) The integration of speculative decoding can eliminate the forward pass of the SLM, significantly
reduce latency introduced by the SLM. Current speculative decoding algorithms yield 3-5x speedups,
which would further enhance performance.

(2) The high attention sparsity inherent in SLM enables near-lossless reduction in memory usage
through SLM KV cache compression. As shown in the Table [5] we fix the KV cache budget of the
LLM (Qwen2-7B) at 20% and increase the compression ratio of the SLM (Qwen2-0.5B) to evaluate
the LLM’s accuracy on BBH (SmallKV ACC = 0.436 at 20% KV cache budget). Under the same
memory constraint (for SmallK'V we count both SLM and LLM cache), the performance of SmallKV
(ACC = 0.462 at 40% KV cache budget for SLM and 20% for LLM) outperforms H20 (ACC = 0.38
at 30% KV cache budget). Note that while SLM compression may slightly impair saliency shift
compensation, the trade-off remains favorable in terms of overall efficiency.

(3) In an independently deployed scenario, the SLM is not required to generate draft tokens, enabling
the adoption of an early layer stopping strategy. This approach significantly reduces both latency
and memory overhead. We fix the LLM’s KV cache budget at 20% and progressively reduce the
number of layers utilized in the SLM for attention mapping. The results shown in Table [6]indicate
that stopping at layer 20 (83% of total layers) incurs no loss in accuracy (0.436). Furthermore, even
when halting at layer 16 (67%), the accuracy of SmallKV remains superior to that of H20.

Table 5: Accuracy of LLM under different KV cache budgets of SLM
KV Cache Budget of SLM  20% 40% 60% 80% Full

Accuracy (BBH) 0.2873 0.4416 0.4624 0.4642 0.4359

Table 6: Accuracy of LLM under different stop layers of SLM attention mapping
Stop Layer of SLM 24 (Full) 20 18 16 12 H30

Accuracy (BBH) 0.436 0436 0390 0.359 0335 0.318

Based on the implementation optimization of (2) and (3), the SLM’s actual KV cache usage is
calculated as: (1/4.67) x 40% (SLM compression) x (20 / 24) (early stopping) ~ 7.14% of the full
LLM KV cache.
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B Extended Discussion of Attention Similarity between Different-scale LL.Ms

The attention similarities between different-scale LLMs within same series are from our empirical
observations. We first present further quantified results regarding attention similarity. Specifically,
on the first 200 contexts from the Wikitext-v2 dataset, we record the cosine similarity between each
attention head of the LLM (Qwen2-7B) and its corresponding attention matrices in SLM (Qwen2-
0.5B), which is then illustrated as a heatmap in Figure[8] As can be seen from the figure, the majority
of the attention heads of LLM find very similar counterparts in the SLM across different contexts.
Statistical analysis of the heatmap shows that 78.22% of the elements have values exceeding 0.9,
96.21% of the elements exceed 0.8, and only 0.02% have similarities lower than 0.5.

We speculate that there are many factors that cause this similarity between different-scale LLMs within
same series: 1) Although they differences in configuration parameters such as the number of layers
and hidden dimensions, they share the same model architecture. 2) They are pre-trained on the similar
corpus [42]]. 3) Some smaller models are distilled from larger models [36]. The aforementioned
factors contribute to different-scale LLMs learning similar semantic space representations at different
level in the shallow decode layers. For deeper layers, previous researches [43,[13] have indicated
that LLMs exhibit more attention redundancy, meaning these layers tend to have simpler attention
patterns that are easy to match for the SLM, which can be evidenced by the lighter color in latter part
of Figure[8]

~ Similarity Heatmap
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Figure 8: Similarity heatmap between Qwen2-0.5B and Qwen2-7B on 200 Contexts from Wikitext-v2.
The x-axis represents different contexts, and the y-axis represents the attention heads of the LLM
(Qwen2-7B). Each cell’s color intensity indicates the cosine similarity of accumulated attention
scores between the corresponding attention matrices of the SLM (Qwen2-0.5B) and the LLM.

To analyze the attention similarity between different SLMs and LLMs, we first visualize the attention
similarity among Qwen2-7B, Qwen2-0.5B, and Llama3-1B on the Wikitext-2 dataset (as shown in
Figure[9), where the y-axis represents the cumulative attention score per token across all attention
heads. Results show that, due to similar training corpora and linguistic priors, models exhibit certain
commonalities in their attention patterns. However, the cosine similarity between Qwen2-7B and
Qwen2-0.5B reaches 0.9622, while that between Qwen2-7B and Llama3-1B is only 0.6917. This
indicates that attention similarity is significantly higher within the same series models.

We further conduct a comprehensive analysis of attention pattern similarity between SLMs and LLMs
across diverse models, scales, benchmarks, and multi-turn dialogue scenarios. Due to attention sinks,
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Figure 9: Accumulated attention scores of Qwen2-7B, Qwen2-0.5B, and Llama3-1B (Selecting a
random segment from the middle of the tokens to avoid attention sink).

we removed the first few tokens when computing similarities to avoid too high similarity (e.g., 0.99),
ensuring meaningful and comparable results. The results are represented in Table [7)and Table [§]

Table 7: Similarity between SLM and LLM across different settings (Part 1)

SLM Qwen2-0.5B  Qwen2-0.5B  Qwen2-0.5B  Qwen3-0.6B  Qwen2.5-0.5B  Qwen2.5-1.5B
LLM Qwen2-7B Qwen2-7B Qwen2-7B Qwen3-8B Qwen2.5-14B Qwen2.5-14B
Benchmark BBH GSM8K  MMLU BBH BBH BBH
Similarity 0.85 0.85 0.98 0.83 0.83 0.83

Table 8: Similarity between SLM and LLM across different settings (Continued)

SLM Qwen2.5-3B Qwen2-7B Qwen2.5-7B  LlaMA3-2.1B  LLaMA3.2-1B
LLM Qwen2.5-14B  Qwen2-72B  Qwen2.5-14B Qwen2-7B LLaMA3.1-8B
Benchmark BBH BBH BBH BBH BBH
Similarity 0.85 0.81 0.86 0.56 0.98

We evaluate the changes in similarity during multi-turn dialogue scenarios, and the results are shown
in Table [9] These findings demonstrate the scalability of attention similarities to a considerable
extent.

C Extended Analysis of Marginal Information Compensation

The effectiveness of the marginal information compensation mechanism primarily originates from
two aspects: high cosine similarity constraint and low attention scores constraint. The high cosine
similarity constraint derived from our observations on attention similarity detailed in Appendix [B]
ensuring that attention patterns between the LLM and SLM are closely aligned. Meanwhile, the
low attention scores constraint focuses on replacing only those tokens with relatively lower attention
scores compared to critical tokens, based on the rationale that these lower-scoring tokens contribute
less significantly to representation. Here we give a derivation of the low errors of attention outputs
under these two constraints:

Given an original attention vector a € R", representing a row from the attention matrix, we replace it
with a € R™. The high cosine similarity constraint is defined by ensuring that the cosine similarity
between a and a is very close:

a'a

cos(f) = ———— >1—¢, wheree < 1.
lallllall

25



Table 9: Attention similarity on multi-turn dialogues.

global turnl turn2 turn3 turnd turn5
SmallKV  0.822 0.812 0.799 0.796 0.782

Additionally, low attention scores constraint modify elements of a that are small, denoted as subset
S c{1,2,...,n}. The perturbation can be modeled as:

a=a-+e,

where e is the perturbation vector. Given the high cosine similarity constraint, e mainly aligns along
or close to a’s direction:

o — aa; +90;, 1€S8
‘0, 1¢ 5

Here, a € R represents the scaling factor along a, and §; is a small perturbation orthogonal to a; for
1 € S. The change in output due to the perturbation is:

o—o=(a—a)V =€V
Therefore,
16— of|* = [leV?
Substituting e; = aa; + 9; for ¢ € S yields:

2

< (aa;i + 6 villP+2 ) (aa; + 6;)(aa; + 5;)v] v
i€S i<jES

16— of* =

Z(aai + 6i)Ui

i€S

If we assume ||v; || is bounded, then:
16— ol* £ (ea; + ;)
€S

Since we only modify elements a; where ¢ € S, if assume that the perturbation is proportional to a;.
we have:

E[e?] = 0%a} foric S

K3 (2

Thus, the total expected squared error is:
E[lleV]*] $)_o%a;
i€S

Notice that:

n

zn:ai =1, but Zaf < Zaf
i=1

ies i=1
Because a; is small when i € S, a% is even smaller, so:
Za? <1=E[|eV|*] <« o?
i€S
The impact on the final output is limited by:
E[||6 — o||?] < Zaza? < o?
€S

Therefore, under the high cosine similarity constraint, replacing low attention scores has a minimal
impact on the model’s output.
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D More Implementation Details

We show a simplified pseudocode below to demonstrate the implementation of SmallKV. The function
SmallKV_forward() consists of both SLM forward process and LLM forward process. In prefill
stage, they can be parallelized to achieve speedup because there is no coupling. After prefilling
and obtaining attention matrices in each model, the function establish_sim_match() is used to
calculate similarity and record matching relations for subsequent steps. During the decoding, the
SLM first performs its forward and updates its attention matrices. Subsequently, the LLM executes
forward pass. In parallel with this process, the KV cache of the LLM is updated based on the updated
attention matrices from the SLM, which is handled by the function update_kv (). In the forward of
LLM, the standard attention forward is replaced by the function SmallKV_attention_forward().
Within this function, two key operations are performed: saliency shift compensation and marginal
information compensation.

Listing 1: SmallKV implementation pseudocode

def SmallKV_forward(...):
if prefill:

# check the token lenth for similarity matching

if token_lenth_meet_requirement ():
# parallel prefill for slm and 1llm
slm_logits, slm_attn, slm_kv, ... =
threading(target=forward, args=(slm, return_attn=True))
1lm_logits, llm_attn, 1llm_kv, ... =
threading(target=forward, args=(llm, return_attn=True))
# establish similarity matching

sim_match = establish_sim_match(slm_attn, 1llm_attn)
# replace attention of the llm to SmallKV attention
llm.attention_forward = SmallKV_attention_forward
return llm_logits
else:
., slm_attn, ... = forward(slm, return_attn = True)
# Parallelly update KV cache
threading (target=update_kv, args=(1llm_kv, slm_attn, ...))
1lm_logits, 1llm_kv ...forward(llm, return_attn = False)

return llm_logits

def establish_sim_match(slm_attn, llm_attn, ...):
sim = calculate_pairwise_similarity(slm_attn, llm_attn)
return sim.max(return_index)

def update_kv(llm_kv, sim_match, slm_attn, kv_cache_budget, R I
com_attn_slm = select(slm_attn, sim_match, layer_idx)
selected_KV_cache = select(llm_kv, index=com_attn_slm.sum.topk)
marg_V_cache = select(llm_kv, index=com_attn_slm.sum.top(n-k)

offload_CPU(llm_kv,selected_K_cache,selected_V_cache,sub_V_cache)
load_GPU(llm_kv,selected_K_cache,selected_V_cache,sub_V_cache)

def SmallKV_attention_forward(layer_idx, ...):
saliency_compensation_attn =
flash_attention(query, selected_K_cache, selected_V_cache, ...)
com_attn_slm = select(slm_attn, sim_match, layer_idx)
marginal_compensation_attn = matmul (com_attn_slm, sub_V_cache)

return saliency_compensation_attn + marginal_compensation_attn

E Limitation

There are also some limitations in our approach. First, the similarity of attention patterns between the
LLM and SLM cannot be guaranteed with absolute precision, which means that our method is not
lossless on LLM performance. Besides, although we have analyzed potential reasons of attention
similarity, we are currently unable to provide a formal theoretical proof to rigorously support these
observations. Lastly, while the assisted SLM introduced by SmallKV can share overhead with
speculative decoding, this additional cost still cannot be ignored when SmallKV works alone.
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F Case Study

Given the same prompt text in a BBT Test, we visualize the output generated by Qwen2-7B under
different KV cache compression methods, including the baseline of full cache, H,O [51]], Pyramid-
Infer [43]], and our SmallKV. The results are shown in Figure [I0] With only 10% of the KV cache
retained, SmallKV produces outputs that are highly similar to those generated with the full cache,
both follow the "Let’s think step by step." instruction and calculates according to the steps provided
in the prompt examples. In contrast, H,O and PyramidInfer lose their ability to follow instructions
and learn from the given reasoning patterns due to compression. Even worse, they invente new
words not present in the original task description during the alphabetical ordering task (e.g., "aspect").
Moreover, H,O produces meaningless repeated content at the end of its answer.

28



Model Input M\

Please reference the following examples to answer the question.

Q: Sort the following words alphabetically: List: oven costume counterpart

A: Let's think step by step.

The first letter: "oven": "o" (15) "costume": "c" (3). "counterpart": "c" (3). We now have: (3) ["costume" ?
"counterpart"] < (15) "oven". Now let's sort this subpart ["costume" ? "counterpart"] by looking at their

second letters.

The second letter: "costume": "o" (15). "counterpart": "o" (15). We now have: (15) ["costume" ?
"counterpart"]. Now let's sort this subpart ["costume" ? "counterpart"] by looking at their third letters.

The third letter: "costume": "s" (19). "counterpart": "u" (21). We now have: (19) "costume" < (21)
"counterpart". Hence, we have ["costume" < "counterpart"] < "oven". So the answer is costume counterpart

oven.

Question: Sort the following words alphabetically: List: thrill splutter panicking scorch same dot prod

obstetric malton onus drumhead delmarva barn embezzle it&t damp guru subsist entirety greene

J
N
| Qwen2-7B Full Cache Oupur | ~
Let's think step by step.
The first letter: "thrill": "t" (20). "splutter": "s" (19). "panicking": "p" (16). "scorch": "s" (19). "same": "s"
(19). "dot": "d" (4). "prod": "p" (16). "obstetric": "o" (15). "malton": "m" (13). "onus": "o" (15).
Hdmmheadﬂ HdH (4) Hdelmarvaﬂ HdH (4) "bamﬂ HbH (2) "embezzleﬂ He" (5) Hlt&tﬂ "1" (9) Hdamp" "d"
(4). "guru": "g" (7). "subsist": "s" (19). "entirety": "e" (5). "greene": "g" (7). We now have: (2) ["barn"?
"dot"] < (4) [”delmarva"" "drumhead"] < (5) ["embezzle"? "it&t"] < (7) ["guru"? "greene"] < (9) "it&t" <
(11) ["obstetric"? "onus
— J
[ Owen2-7B H,0 10% Cache Output ] ~

1. "aspect": "a" (1). "barn": "b" (2). "census": "c" (3). "costume": "c" (3). "credulity": "c" (3). "drumhead":
Vld" (4) "embezzleﬂ H " (5) ”elltlrety” H " (5) ngeene" n l| (7) thpochlorlteﬂ Hh" (11) "mugho" Vlm"
(13). "newt": "n" (14). "obstetric": "0" (15). "parthia": " "(16) "prod": "p" (16). "scorch": "s" (19). "same":
"s" (19). "seismography": "s" (19). "splutter": "s" (19). "subsist": "s" (19). "thrum": "t" (20). "tremble": "t"
|(20). "tremble": "t" (20). "tremble": "t" (20). "tremble": "t" (20). "tremble": "t" (20). "tremble": "t" ( J

Owen2-7B PyramidlInfer 10% Cache Output ] —~

M

1. "aspect" 2. "arson" 3. "census" 4. "drumhead" 5. "embezzle" 6. "entirety" 7. "guru" 8. "it&t" 10. "malton"
11. "mugho” 12. "panicking" 13. "prod" 14. "scorch" 15. "same" 16. "seismography" 17. "splutter" 18.
"subsist" 19. "thril" 20. "tarnish" 21. "universe" 22. "verity" 23. "vulgar" 24. "wagtail" 25. "wagtail"

So the answer is arson aspect census drumhead embezzle entirety guru it&t malton mugho panicking prod

scorch same thril tarnish universe verity vulgar wagtail wagtail.
y vulg 2| g

—

Owen2-7B SmallKV 10% Cache Output ] R

Let's think step by step.

The first letter: "thrill": "t" (20). "splutter": "s" (19). "panicking": "p" (16). "scorch": "s" (19). "same": "s"
(19). "dot": "d" (4). "prod": "p" (16). "obstetric": "0" (15). "malton": "m" (13). "onus": "o" (15). "drumhead":
"d" (4). "delmarva; "d" (4). "embezzle": "e" (55). "it&t": "i" (9). "damp": "d" (4). "guru": "g" (7). "subsist":
"s" (19). "entirety": "e" (55). "greene": "g" (7). We now have: (4,4, 7,7,9, 13, 13, 19, 19, 20 The words
sorted alphabetically are: "damp", "dot", "entlrety" "embezzle", "guru", "it&t", "obstetric", "panicking",
prod" "scorch )

Figure 10: Visualized outputs of one generation example with Qwen2-7B. Results are compared
between the baseline model with full cache, H,O [31], PyramidInfer [43]], and our SmallKV.
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