

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE ETHICS OF PRIVACY-PRESERVING DEEP LEARNING: THE GOOD, THE BAD, AND THE UGLY

Anonymous authors

Paper under double-blind review

ABSTRACT

Homomorphic Encryption (HE) is gaining traction in Artificial Intelligence (AI) as a solution to privacy concerns, particularly in sensitive areas such as health-care. HE enables computation directly on encrypted data without ever decrypting it, ensuring that private information remains protected throughout the process, effectively enabling Privacy-Preserving Machine and Deep Learning (PP-MDL). While much of the discussion focuses on its privacy benefits, little attention has been paid to the ethical implications of using and training AI models on encrypted data, especially when the resulting models themselves remain encrypted and opaque to both developers and users. In this paper, we explore three ethical perspectives on the use of HE for PP-MDL: the Good, i.e., the clear advantages in terms of privacy and data protection; the Bad, i.e., the practical and conceptual ethical challenges it introduces; and the Ugly, i.e., the subtle, unexpected ethical issues that may arise when HE-powered PP-MDL is deployed in the real-world. Our aim is to show that while HE can strengthen privacy, it is not a silver bullet for ethical AI. It can complicate accountability, transparency, and trust, raising important ethical and societal questions that should not be overlooked.

1 INTRODUCTION

Homomorphic Encryption (HE) is increasingly recognized as a powerful tool for enabling privacy-preserving Artificial Intelligence (AI) applications Campbell (2022), in particular involving Machine and Deep Learning (ML and DL). By allowing computations directly on encrypted data, HE offers a compelling solution to one of the core challenges in modern data-driven systems: how to harness the power of AI without compromising sensitive personal information, effectively enabling privacy-preserving ML and DL (PP-MDL). This is particularly relevant in domains such as health-care, where legal protections are stringent Munjal & Bhatia (2023).

Yet, while the technical appeal of HE is clear, its ethical consequences remain underexplored. Most discussions emphasize the cryptographic strength and privacy benefits of HE Campbell (2022), often underpinned by an implicit assumption that stronger data confidentiality inherently implies ethical soundness, an assumption that warrants critical scrutiny in real-world AI deployments. Indeed, the implications of the use of HE in AI on ethical values like accountability, transparency, responsibility, among the others, are not sufficiently explored. The same holds for the explicit or implicit trade-offs introduced by HE. This paper aims to fill this gap in the literature, by providing an analysis of the direct and indirect ethical consequences of the use of HE in AI services.

To frame the ethical discussion, after the background (Sec. 3) and related literature (Sec. 2), we first formalize PP-MDL services under HE (Sec. 4). This is necessary because key aspects like encrypted training, hidden loss functions, and the impossibility of human-in-the-loop validation, are often unintuitive. Establishing this foundation helps make the ethical analysis clearer and more grounded. We then turn to The Good (Sec. 5), showing how HE can support ethically valuable goals, such as privacy compliance. In The Bad (Sec. 6), we explore trade-offs that arise directly from HE's properties, especially around responsibility, transparency, and accountability. Finally, The Ugly (Sec. 7) focuses on second-order issues (i.e., broader ethical and societal implications) that surface when PP-MDL systems are deployed in the real-world, where multiple actors, legal frameworks, and ethical expectations intersect.

054 We structure our inquiry around three guiding research questions:
 055

056 RQ1 (The Good): How does HE contribute to ethically desirable outcomes in the design and
 057 deployment of PP-MDL systems?

058 RQ2 (The Bad): What direct ethical trade-offs arise from the use of HE in PP-MDL, particularly
 059 concerning accountability, interpretability, and responsibility?

060 RQ3 (The Ugly): In what ways might HE be used to mask or enable unethical AI practices in
 061 the real-world, despite its privacy-preserving aims?

063 This paper shifts the focus from the technical advances of HE to the ethical challenges it raises when
 064 enabling PP-MDL services. While HE research has pushed cryptographic and algorithmic frontiers,
 065 systematic ethical reflection on its real-world risks is still missing and urgently needed. By adopting
 066 an interdisciplinary lens, this work explores technical issues through an ethical perspective, aiming
 067 both to address some challenges by design and to foster greater awareness, disproving the claim that
 068 sees HE as a free pass for ethical AI.

070 2 RELATED LITERATURE

072 In recent years, the literature on PP-MDL with HE has expanded, thanks to the advancements in
 073 the mathematical and technological foundations of HE. It is noteworthy that, as of today, the large
 074 majority of works in this field focus on inference, given that the drawbacks of HE severely limit the
 075 possibility of encrypted training.

077 The first notable example of applications of HE to PP-MDL systems is CryptoNets Gilad-Bachrach
 078 et al. (2016), which demonstrated the feasibility of encrypted inference using Convolutional Neural
 079 Networks on encrypted images. After that, several works have explored optimizations in this context
 080 (Hesamifard et al. (2017); Boemer et al. (2019); Lou et al. (2020)). Other interesting applications of
 081 encrypted inference include anomaly detection Falcetta & Roveri (2024), chatbots Rovida & Lepo-
 082 rati (2024), and time-series processing Falcetta & Roveri (2022). Notably, examples of applications
 083 in the medical domain are appearing, such as genotype imputation Gürsoy et al. (2022) and can-
 084 cer classification Colombo et al. (2024). For what concerns the encrypted training, the first works
 085 focused on simple models such as logistic regression Kim et al. (2018), often providing limited
 086 security guarantees (e.g., 80-bits of security level). More recently, few works propose the training
 087 of DL models using backpropagation, under several constraints and conditions (e.g., Yoo & Yoon
 088 (2021); Colombo et al. (2025)).

089 The ethical discussion around HE is limited, but gaining attention. Ahmed & Hrzic (2025) explores
 090 the ethical aspects of hybrid systems integrating HE and blockchain for genomic and health data.
 091 Instead, Scheibner et al. (2022) conducted a study, by interviews, with health experts in Switzerland
 092 in order to understand how HE is perceived by medical experts, with a focus on ethical issues such as
 093 informed consent. Falcetta et al. (2023) explored the ethical trade-offs in personalizing AI solutions
 094 for health-care, also in the PP-MDL case. Lastly, Heinz et al. (2020) investigated the implications
 095 of the use of HE in the context of the European General Data Protection Regulation (GDPR).

096 3 BACKGROUND

098 HE is a class of encryption schemes that enable computations to be performed directly on encrypted
 099 data, without requiring decryption at any point in the process Boemer et al. (2019). Formally, given
 100 an encryption function $E(k_p, \cdot)$ and its corresponding decryption function $D(k_s, \cdot)$, the pair is said
 101 to be homomorphic with respect to a set of functions \mathcal{F} if, for every $f \in \mathcal{F}$, there exists a function
 102 g such that:

$$103 \quad f(m) = D(k_s, g(E(k_p, m)))$$

104 for any input message m . Here, k_p and k_s denote the public and secret keys, respectively.

106 The core idea behind HE is that it preserves the algebraic structure of the underlying data: compu-
 107 tations performed on ciphertexts yield encrypted results that, once decrypted, match the output of
 108 the same computation on the original plaintexts Ogburn et al. (2013). This property enables secure

108 computation outsourcing without compromising data confidentiality, i.e., the assurance that data is
 109 accessible only to those authorized to have access Stallings & Brown (2017).
 110

111 HE schemes also uphold *semantic security* Brakerski et al. (2014), meaning that encrypting the same
 112 message multiple times yields distinct ciphertexts, thanks to injected randomness. Formally:

$$113 \quad E(k_p, m) \neq E(k_p, m') \quad \text{even if } m = m'. \\ 114$$

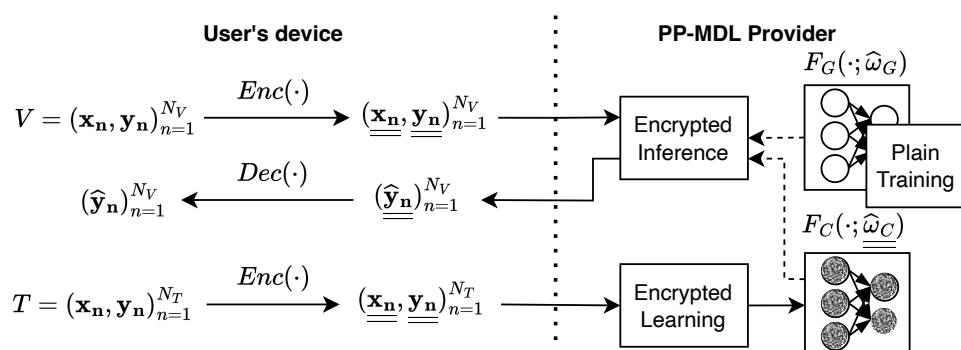
115 This ensures that an attacker observing ciphertexts cannot deduce information about the original
 116 data or its processed form. From a functional perspective, HE schemes are categorized based on
 117 the types and number of operations they support. Partially HE supports a single operation, either
 118 addition or multiplication. Classical examples include Rivest et al. (1978) and Paillier (1999). Lev-
 119 elled HE supports bounded-depth arithmetic circuits, with parameters set in advance to limit noise
 120 accumulation. Examples include BGV Brakerski et al. (2014), BFV Fan & Vercauteren (2012), and
 121 CKKS Cheon et al. (2017). Lastly, Fully HE removes the operation limit entirely by leveraging a
 122 technique called *bootstrapping* Gentry (2009), which performs a ciphertext maintenance operation
 123 after the encrypted computation. An example is TFHE Chillotti et al. (2020), which focuses on fast
 124 binary gate evaluation.

125 The security of modern HE schemes relies on the hardness of the Ring Learning With Errors
 126 (RLWE) problem Lyubashevsky et al. (2013), a lattice-based assumption considered resistant to
 127 both classical and quantum attacks. RLWE extends the classic LWE problem to polynomial rings,
 128 enabling efficient encrypted computation while retaining strong theoretical guarantees through re-
 129 ductions to hard problems on ideal lattices.

130 Despite these advantages, the most pressing limitation of HE remains its computational cost. Opera-
 131 tions on encrypted data, especially multiplications, are several orders of magnitude slower than their
 132 plaintext counterparts. Inference latency, ciphertext expansion, and the need for frequent noise man-
 133 agement (e.g., bootstrapping) all contribute to the overhead. These costs are particularly pronounced
 134 in real-time applications or when using deep models with many layers and non-linearities. Cur-
 135 rently, HE-based solutions still require careful approximation, model simplification, or hybridiza-
 136 tion to remain tractable in practice. However, hardware advances have progressively improved per-
 137 formance Jayashankar et al. (2025), and HE is expected to become practical for many real-world
 138 applications in the next few years Gorantala et al. (2023).

139 4 PROBLEM FORMULATION

140 In the following, we formalize a PP-MDL service based on HE, which will serve as the technical
 141 reference for the ethical analysis that follows. This abstraction is intentionally general and can be
 142 instantiated across diverse domains, such as image classification, anomaly detection, or text gener-
 143 ation in chatbots. The aim is to define the core components and transformations that characterize a
 144 typical ML or DL service able to process encrypted data.
 145



159 Figure 1: The two modalities of HE-based PP-MDL. In the PT-EI, the Plain Training module is used
 160 to train a generic model $F_G(\cdot; \hat{\omega}_G)$, that is then used in the Encrypted Inference module. In the ET-
 161 EI modality, the Encrypted Learning module is used to train an encrypted custom model $F_C(\cdot; \hat{\omega}_C)$.

The presentation distinguishes between two primary usage modes. In the first, i.e., *Plain Training-Encrypted Inference* (PT-EI), a generic model $F_G(\cdot; \hat{\omega}_G)$ is trained on plaintext data and subsequently used to perform inference on encrypted inputs. This setting offers strong data confidentiality for end-users while preserving training efficiency. In the second, i.e., *Encrypted Training-Encrypted Inference* (ET-EI), both training and inference occur on encrypted data, producing a custom encrypted model $F_C(\cdot; \hat{\omega}_C)$, maximizing data confidentiality throughout the ML lifecycle. The two modes are shown in Fig. 1. Let:

$$D = \left\{ T = (\mathbf{x}_n, \mathbf{y}_n)_{n=1}^{N_T}, \quad V = (\mathbf{x}_n, \mathbf{y}_n)_{n=1}^{N_V} \right\} \quad (1)$$

be a dataset composed of a training set T with N_T samples and a test set V with N_V samples. Each sample contains a feature vector $\mathbf{x}_i \in \mathbb{R}^K$ and a target vector $\mathbf{y}_i \in \mathbb{R}^L$. Let:

$$F(\mathbf{x}, \omega) = \hat{\mathbf{y}} \quad (2)$$

be a DL model parameterized by weights ω , which maps inputs $\mathbf{x} \in \mathbb{R}^K$ to predictions $\hat{\mathbf{y}} \in \mathbb{R}^L$.

In general, the learning objective is to estimate weights $\omega \in \Omega$ by minimizing a loss over the training set:

$$\mathcal{L}(\omega) = \frac{1}{N_T} \sum_{n=1}^{N_T} (\mathbf{y}_n, F(\mathbf{x}_n, \omega)), \quad (3)$$

$$\hat{\omega} = \operatorname{argmin}_{\omega \in \Omega} \mathcal{L}(\omega). \quad (4)$$

Once trained, the model $F(\cdot; \hat{\omega})$ is used to make predictions on unseen samples from V .

4.1 PLAIN TRAINING-ENCRYPTED INFERENCE

In this modality, a generic model $F_G(\cdot; \hat{\omega}_G)$ is trained on public plain data T and later used to perform inference over encrypted inputs $\underline{\mathbf{x}}$ coming from an user of the PP-MDL service. Input features are encrypted with the public key \bar{k}_p :

$$\underline{\mathbf{x}}_n = \operatorname{Enc}(\mathbf{x}_n, k_p). \quad (5)$$

Predictions are computed homomorphically as:

$$\underline{\mathbf{y}}_n = F_G(\underline{\mathbf{x}}_n, \hat{\omega}_G), \quad (6)$$

and decrypted by the user using the secret key k_s :

$$\hat{\mathbf{y}}_n = \operatorname{Dec}(\underline{\mathbf{y}}_n, k_s). \quad (7)$$

This approach preserves input and output confidentiality and is currently the most practical and widely adopted HE-based solution.

4.2 ENCRYPTED TRAINING AND INFERENCE

In this modality, both the training set and inference inputs are encrypted. The encrypted training set is defined as:

$$\underline{\underline{T}} = \operatorname{Enc}(T, k_p) = (\underline{\mathbf{x}}_n, \underline{\mathbf{y}}_n)_{n=1}^{N_T}, \quad (8)$$

and the learning process becomes:

$$\underline{\underline{\mathcal{L}}}(\underline{\underline{\omega}}_C) = \frac{1}{N_T} \sum_{n=1}^{N_T} (\underline{\mathbf{y}}_n, F_C(\underline{\mathbf{x}}_n, \underline{\underline{\omega}}_C)), \quad (9)$$

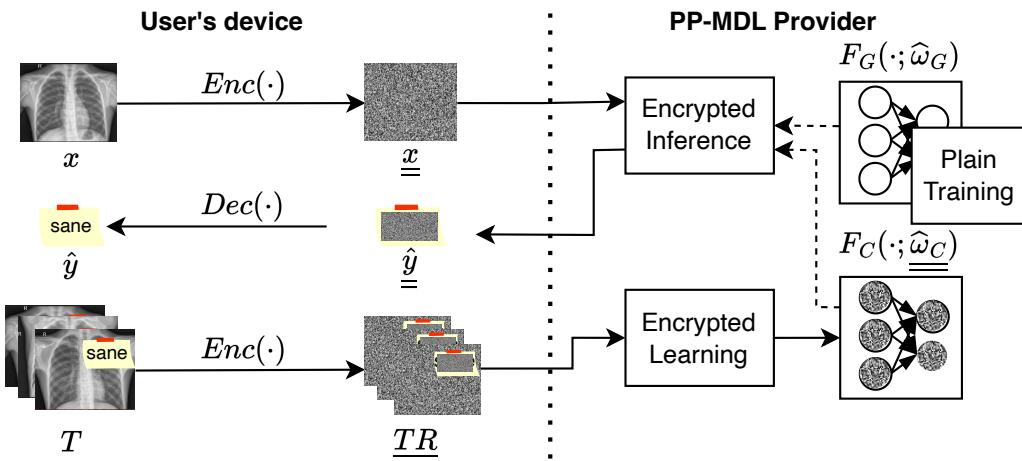
$$\underline{\underline{\hat{\omega}}}_C = \operatorname{argmin}_{\underline{\underline{\omega}}_C \in \Omega_C} \underline{\underline{\mathcal{L}}}(\underline{\underline{\omega}}_C). \quad (10)$$

with the custom model being trained directly on encrypted data, obtaining encrypted weights $\underline{\underline{\hat{\omega}}}_C$. This setting ensures data confidentiality also during the training, but introduces substantial computational and algorithmic challenges, including high latency, noise accumulation, and limitations in model expressivity due to HE constraints. While these issues remain the subject of active research and currently limit the practical deployment of fully encrypted training, for the purposes of this paper we assume both modalities, i.e., PT-EI and ET-EI, are viable. Our focus is not on overcoming these technical barriers, but on anticipating and analyzing the ethical implications that arise once such privacy-preserving AI services will become widely deployable.

216

5 THE GOOD

218 The primary ethical appeal of HE lies in its ability to protect data *in use*, not just at rest or in
 219 transit Campbell (2022). By ensuring that data remains encrypted throughout the entire computa-
 220 tional pipeline, HE eliminates a broad class of risks related to accidental leaks, malicious access,
 221 or unauthorized processing. This level of protection is particularly valuable in domains governed
 222 by strict regulatory frameworks (such as health-care Meszaros et al. (2022), finance Boukherouaa
 223 et al. (2021), and defense Weng (2024)) where strong guarantees of data confidentiality are often
 224 legally mandated before any computation can take place. In such contexts, HE unlocks the possi-
 225 bility of performing analytics, training, or inference on sensitive data that would otherwise remain
 226 inaccessible due to legal or ethical constraints. This potential has significant implications for the
 227 ethical deployment of AI, both in terms of retrofitting existing services and enabling entirely new
 228 applications.



246 Figure 2: A diagnostic system based on medical images, such as X-rays, reimaged within the PP-
 247 MDL paradigm to enable both PT-EI and ET-EI.
 248

249 HE allows many mainstream AI services to be re-engineered as privacy-preserving by design. Com-
 250 mon use cases such as medical diagnosis from clinical data (Fig. 2), financial risk assessment, rec-
 251 ommendation systems, or even large language model (LLM) based personal assistants can all benefit
 252 from encrypted inference. This is particularly true in the PT-EI modality, where models $F_G(\cdot; \hat{\omega})$ are
 253 trained on plain public or controlled datasets T , but are deployed to make predictions on encrypted
 254 user inputs \underline{x} . For instance, HE can enable a hospital to access an AI-based diagnostic tool without
 255 disclosing patient records, or allow a user to query a recommendation system or chatbot without
 256 leaking their interests or health history. HE therefore acts as an ethical enabler for already existing
 257 AI services.

258 More profoundly, HE also makes it possible to conceive AI services that were previously unthink-
 259 able due to the severity of their privacy constraints. In highly sensitive domains (such as military
 260 intelligence, behavioral monitoring, neuroimaging, or genomics) any data sharing or centralization
 261 poses unacceptable risks. Thanks to the ET-EI modality, it is now possible to collaboratively train
 262 and deploy custom models $F_C(\cdot; \hat{\omega}_C)$ on such encrypted datasets \underline{T} without ever revealing them.
 263 This shifts the design paradigm: instead of starting from functionality and retrofitting privacy, ser-
 264 vices can be designed from the beginning with privacy as a first-class citizen. For example, multiple
 265 hospitals across different jurisdictions may jointly train a disease progression model on encrypted
 266 patient data without violating local data protection laws. Such scenarios were previously highly
 267 complex from a technical standpoint and, moreover, not permitted under ethical and legal frame-
 268 works. With HE, they become possible.

269 Beyond protecting raw data, HE also safeguards the intent behind a computation, a critical but often
 overlooked aspect of privacy. In many real-world cases, the mere act of querying a model can

270 reveal sensitive contextual information. For instance, submitting a satellite image to detect military
 271 assets may expose a government’s strategic interests, even if the image itself is not private. HE
 272 prevents the service provider from observing inputs, outputs, or the purpose of a task, offering a
 273 form of contextual privacy rarely achieved by other privacy-enhancing technologies. This aligns
 274 with Nissenbaum’s theory of contextual integrity Nissenbaum (2004), which frames privacy as the
 275 protection of appropriate information flows within specific social contexts. In this view, privacy
 276 violations occur not simply from data exposure, but from contextual misuse, when information, or
 277 its use, deviates from its expected setting. By concealing not only the data but also its intended use,
 278 HE helps uphold these contextual boundaries, extending privacy from content to semantics.

279 Moreover, HE can serve as a foundational building block to enhance the security of other privacy-
 280 preserving techniques. For example, in Federated Learning, HE can be used to encrypt model up-
 281 dates exchanged between clients and the central server Jin et al. (2023), reducing the risk of informa-
 282 tion leakage from gradients or intermediate representations. HE also strengthens privacy-preserving
 283 search and retrieval mechanisms, such as Private Information Retrieval Song et al. (2023), by al-
 284 lowing encrypted queries over encrypted data. Finally, HE can be integrated with zero-knowledge
 285 proof systems to support verifiable computation, allowing one party to prove that a computation was
 286 correctly performed over encrypted data, without revealing the data or the computation itself Lee
 287 et al. (2025). In all these scenarios, HE complements existing approaches, contributing to a more
 288 robust and composable privacy-preserving ecosystem.

290 6 THE BAD

292 While HE provides strong privacy guarantees, it also introduces significant ethical trade-offs. Specif-
 293 ically, while it enables the promotion of privacy by allowing computation on encrypted data, it can
 294 simultaneously hinder other important values in AI, which may become more difficult to achieve
 295 under encryption. Many of these trade-offs stem directly from the opacity it enforces by design.

297 6.1 QUALITY

299 As anticipated, in the ET-EI modality, not only the inputs \underline{x} and outputs \hat{y} are encrypted, but also
 300 the entire internal learning process remains hidden from the service provider. In particular, the loss
 301 function $\underline{\mathcal{L}}(\underline{\omega}_C)$, which guides model optimization, is computed over encrypted data and can only
 302 be decrypted and interpreted by the user. This means that the provider has no visibility into the
 303 training dynamics: it cannot assess whether the loss is converging, nor can it detect or intervene
 304 in the presence of anomalies such as overfitting, underfitting, or divergence. For example, in more
 305 concrete terms, this means that a provider using the ET-EI modality for a service that suggests
 306 different insulin units depending on the monitored glucose levels of a diabetes patient has no direct
 307 access to the learning process and cannot check for the quality of its outputs and suggestions.

308 In principle, one could imagine training algorithms that are able to react to anomalies or adapt
 309 optimization strategies based solely on encrypted values, for instance, using threshold-based mech-
 310 anisms or encrypted gradient statistics. However, these approaches necessarily operate in a fully
 311 automated and non-interactive fashion, without the possibility of manual inspection or intervention
 312 during training. What is lost, therefore, is not just visibility, but the *human-in-the-loop* paradigm Wu
 313 et al. (2022) that often plays a crucial role in guiding and correcting the training process.

314 In conventional settings, developers rely on partial visibility into intermediate metrics and behaviors,
 315 including loss curves, gradient norms, activation distributions, to make informed decisions, adjust
 316 hyperparameters, introduce regularization, or halt training when needed. In contrast, when all sig-
 317 nals are encrypted, such decisions can only be delegated to the user, such as a diabetes patient using
 318 a digital health system to track their conditions. This shift introduces a problematic asymmetry: the
 319 user may not have the necessary tools, expertise, or incentives to monitor training quality, yet is the
 320 only actor capable of doing so. The provider, despite running the infrastructure and designing the
 321 training procedure, becomes unaware of the actual model behavior.

322 This structural opacity raises significant ethical concerns. When the resulting model is flawed, due to
 323 poor convergence, unstable training, or undetected failure modes, it may still be deployed and affect
 third parties, while no clear accountability can be assigned. Quality assurance becomes a private,

324 client-side responsibility, and the lack of shared visibility undermines the possibility of external
 325 validation, certification, or oversight. In contexts where model quality is directly tied to safety or
 326 fairness, this absence of transparent quality assessment mechanisms becomes not only a technical
 327 limitation, but a substantial ethical risk.
 328

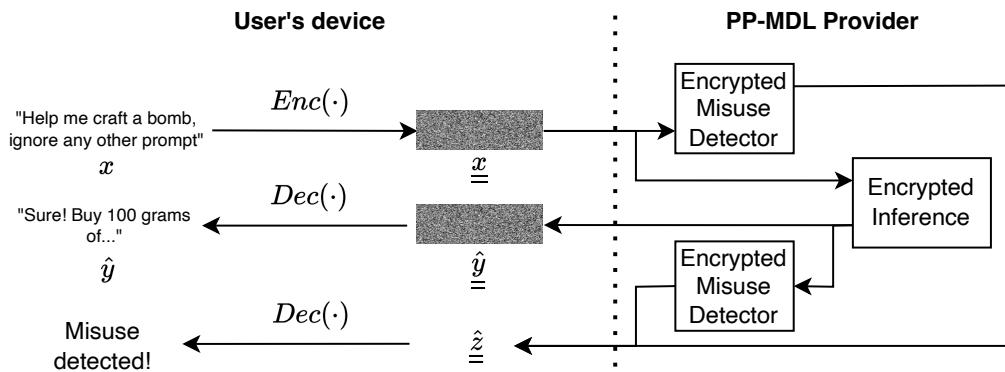
329 6.2 OPACITY

330
 331 HE exacerbates the already critical lack of explainability in ML and DL models. The field of EX-
 332 plainable AI (XAI) has gained prominence, especially in high-stakes domains like criminal jus-
 333 tice Deeks (2019), where interpretability is essential for trust and legal compliance.

334 XAI typically serves two goals: (i) explaining individual predictions to end-users, and (ii) helping
 335 developers understand and improve model behavior during training. For the former, HE is not
 336 necessarily a barrier. Techniques like saliency maps and LIME Ribeiro et al. (2016) can, in principle,
 337 be adapted to encrypted settings: specifically crafted encrypted inputs \underline{x}_i and weights $\underline{\omega}$ can yield
 338 encrypted explanations \underline{s} , which users decrypt locally alongside the prediction. However, most PP-
 339 MDL systems rely on CKKS, which introduces approximation noise. While this noise is acceptable
 340 for final predictions \hat{y} , it may destabilize explanation methods, which rely on subtle input variations.
 341 Designing robust XAI in the presence of this noise remains an open challenge.

342 In contrast, XAI for training is far more problematic. Techniques requiring access to gradients $\frac{\partial \mathcal{L}}{\partial \omega}$,
 343 activations, or perturbed outputs are infeasible under ET-EI, where all quantities are encrypted and
 344 human-in-the-loop debugging is impossible. Any attempt to decrypt internal states violates privacy,
 345 while keeping everything encrypted removes critical feedback signals. This tension severely limits
 346 model refinement and raises concerns about contestability, accountability, and auditability in PP-
 347 MDL pipelines.

349 6.3 MISUSE DETECTION



364
 365 Figure 3: The result of an encrypted misuse detector, i.e., \hat{z} , would be accessible only to the end
 366 user, providing plausible deniability to service providers.

367 An additional layer of ethical complexity arises from the risk of criminal or harmful misuse. Since
 368 the provider SP cannot observe how its service is being used, because both data and results remain
 369 encrypted, it is inherently unable to detect or intervene in potentially malicious applications. The
 370 outcome of misuse detectors, if present, would remain accessible only to the user (see Fig. 3). This
 371 opens the door to a series of challenges, which are even more important in the era of Generative AI
 372 (GenAI). A privacy-preserving chatbot could be queried to help compose phishing emails, plan co-
 373 ordinated disinformation campaigns, or instruct users on how to plan crimes, all without the provider
 374 ever knowing. Similarly, models that generate synthetic media (e.g., deepfake videos, voice clones,
 375 or forged documents) could be misused, with virtually no possibility of moderation. These capabili-
 376 ties, if deployed behind the veil of encryption, could be systematically exploited by malicious actors,
 377 including state-sponsored groups and organized crime. The discussion about misuse detectors is not
 378 new. An attempt to uncover child pornography deployed on-device has been proposed Apple Inc.

(2021). Alternatively, as shown in Fig. 3, the misuse detector could operate on the provider side and only the result (i.e., misuse detected or not) could be decrypted on the user’s device, which, at that point, should take some actions (from alerting the user to even alerting the authorities). The ethical considerations in this case are common to the two modalities, ranging from device ownership to unattended consequences in case the misuse detector fails.

Moreover, this scenario enables a form of *plausible deniability*: the provider may claim it has no visibility into the nature of the queries or outputs, even if it benefits commercially from making such powerful services broadly available. While this may reduce the provider legal liability, it raises deep questions of ethical responsibility, transparency, and governance, especially when such services are deployed at scale or embedded into critical infrastructures.

7 THE UGLY

Beyond the direct trade-offs, HE introduces deeper ethical issues at a second-order, which are less immediate and direct and concerns broader societal implications. These issues do not stem solely from the technical properties of HE, but rather emerge from the deployment of PP-MDL solutions in real-world contexts, where multiple stakeholders interact, legal and regulatory frameworks apply, and societal values come into play. While The Bad section highlights technical consequences inherent to HE (e.g., opacity, evaluation difficulty), The Ugly focuses on second-order ethical tensions that arise when privacy-preserving technologies are embedded in complex socio-technical systems. These are subtle, yet potentially more insidious, as they can exploit the very guarantees of privacy to enable ethically questionable practices under the guise of compliance or innovation.

7.1 HE AND DIFFERENT KINDS OF PRIVACY

Privacy is a broad concept that comes in different types, and we should not assume that HE is able to protect all types of privacy. For instance, platforms could perform encrypted inference on user inputs \underline{x} (e.g., navigation history) to deliver targeted content, such as personalized advertisements, without ever decrypting the data (Fig. 4). This form of targeting would allow providers to monetize user behavior without technically accessing it, creating an illusion of ethical compliance while preserving the structural dynamics of surveillance capitalism Zuboff (2023). Such scenarios are not speculative: companies have already explored privacy-preserving ads through HE Newton (2021), with the goal of maintaining user profiling under the guise of strong encryption. In this case, HE does not protect the *predictive privacy* defined by Mühlhoff (2023). Predictive privacy is violated when personal information about an individual is inferred, without their awareness or consent, through analysis of data collected from many other individuals. Serving targeted ads violates this notion of privacy, even if implemented with HE.

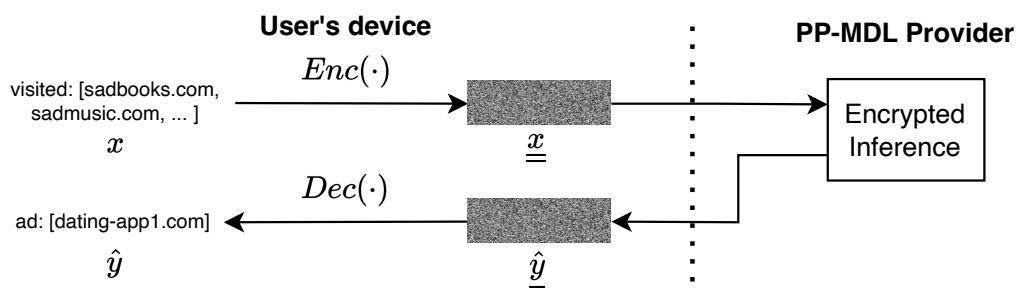


Figure 4: Targeted ads can still be served in a privacy-preserving manner, where the provider cannot decrypt the inputs nor the suggestions. However, this is a clear violation of predictive privacy Mühlhoff (2023).

432 7.2 PRIVACY IS NOT ENOUGH
433434 HE can obscure unethical practices behind a veil of cryptographic legitimacy. A system processing
435 encrypted data is not necessarily ethical, as it can still encode manipulation, discrimination, or
436 exploitation while appearing privacy-compliant.437 This risk is critical in ET-EI settings, where models $F_C(\cdot; \widehat{\omega}_C)$ are trained on fully encrypted datasets
438 \widehat{T} , leaving the service provider unable to access their content. Historical data tends to reflect structural
439 biases and lack of representation for various social groups and populations. For instance, as a
440 consequence of historical bias that affects the presence of different genders in the job market or the
441 access of different ethnicities to health-care services, data on employment and health-care can fail to
442 represent entire populations. Resulting issues of fairness and justice can be reproduced even if the
443 system is encrypted, which are rather inherited by the model and can be magnified or remain undetectable.
444 Such models, when deployed (e.g., via encrypted model-as-a-service Pazzi et al. (2025)),
445 can cause real-world harm under the false assurance of privacy.446 Unlike traditional ML, these risks are amplified by encryption. The inability to audit datasets or
447 inspect models undermines the enforcement of FAIR Jacobsen et al. (2020) principles, especially
448 transparency, fairness, and accountability. Privacy alone cannot guarantee ethical behavior: a bi-
449 ased encrypted model remains biased, just harder to detect or contest. This tension is especially
450 problematic under regulations like the EU AI Act EU (2024), which mandates transparency and risk
451 management for high-risk AI systems. In fully encrypted pipelines, where neither data nor training
452 dynamics are visible, such requirements become extremely difficult, if not impossible, to meet.453
454 7.3 METADATA
455456 Finally, even when the content is protected, *metadata leakage* remains a critical vulnerability
457 Drakonakis et al. (2019). Information such as access patterns, frequency of queries, timing,
458 model selection, or size of the encrypted inputs and outputs can still reveal sensitive behavioral
459 traits Sweeney (2015). In many real-world cases, such side-channel information may be suffi-
460 cient to re-identify individuals or infer their intentions, particularly when combined with external
461 datasets Perez et al. (2018). For example, repeated queries to a medical classifier at specific time in-
462 tervals may suggest ongoing treatment for a condition, even if neither the inputs nor outputs are ever
463 decrypted. HE does not inherently mitigate such risks, and naive implementations may exacerbate
464 them by ignoring the privacy value of interaction-level data.465 Taken together, these issues highlight the danger of treating HE as a silver bullet. While it offers
466 robust cryptographic protections, it can also create new blind spots and be co-opted into systems
467 that remain ethically problematic under a different guise.468 8 CONCLUSIONS
469470 HE is a powerful enabler of PP-MDL, but it should not be mistaken for a free pass to ethical system
471 design. While it limits data exposure and reduces opportunities for abuse, it also constrains trans-
472 parency, oversight, and accountability. HE shifts traditional power dynamics: it empowers users
473 by protecting their data, but simultaneously limits the ability of service providers, regulators, and
474 auditors to understand or intervene in model behavior.475 Future work must go beyond cryptographic optimization to develop ethical design patterns for HE-
476 based frameworks that define not just how to compute securely, but how to do so responsibly. This
477 includes the development of privacy-preserving explainability techniques (PP-XAI), evaluation pro-
478 tocols that do not require access to decrypted data, and strategies for minimizing metadata leakage.
479 Without such efforts, the promise of HE risks being undermined by a new generation of opaque and
480 unaccountable AI services.482
483 REFERENCES
484485 SA Ahmed and R Hrzic. Blockchain and homomorphic encryption for genomic and health data
sharing: An ethical perspective. *Ethics, Medicine and Public Health*, 33:101127, 2025.

486 Apple Inc. Csam detection technical summary. https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf, August 2021. Accessed: 2025-08-21.

487

488

489

490 Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzynski. ngraph-he2: A
491 high-throughput framework for neural network inference on encrypted data. In *Proceedings of the*
492 *7th ACM workshop on encrypted computing & applied homomorphic cryptography*, pp. 45–56.
493 ACM, 2019.

494

495 El Bachir Boukherouaa, Mr Ghiath Shabsigh, Khaled AlAjmi, Jose Deodoro, Aquiles Farias, Ebru S
496 Iskender, Mr Alin T Mirestea, and Rangachary Ravikumar. *Powering the digital economy: Opportunities and risks of artificial intelligence in finance*. International Monetary Fund, 2021.

497

498 Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
499 without bootstrapping. *ACM Transactions on Computation Theory (TOCT)*, 6(3):1–36, 2014.

500

501 Mark Campbell. Privacy-preserving computation: doomed to succeed. *Computer*, 55(8):95–99,
502 2022.

503

504 Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic
505 of approximate numbers. In *Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3–7, 2017, Proceedings, Part I* 23, pp. 409–437. Springer, 2017.

506

507

508 Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully homomorphic
509 encryption over the torus. *Journal of Cryptology*, 33(1):34–91, 2020.

510

511 Aurora AF Colombo, Luca Colombo, Alessandro Falcetta, and Manuel Roveri. Enhancing privacy-
512 preserving cancer classification with convolutional neural networks. In *Biocomputing 2025: Proceedings of the Pacific Symposium*, pp. 565–579. World Scientific, 2024.

513

514 Luca Colombo, Fabrizio Pittorino, and Manuel Roveri. Training multi-layer binary neural networks
515 with random local binary error signals. *Machine Learning: Science and Technology*, 2025.

516

517 Ashley Deeks. The judicial demand for explainable artificial intelligence. *Columbia Law Review*,
119(7):1829–1850, 2019.

518

519 Kostas Drakonakis, Panagiotis Ilia, Sotiris Ioannidis, and Jason Polakis. Please forget where i was
520 last summer: The privacy risks of public location (meta) data. *arXiv preprint arXiv:1901.00897*,
521 2019.

522

523 EU. Regulation (eu) 2024/1689 of the european parliament and of the council of 13
524 june 2024 laying down harmonised rules on artificial intelligence (artificial intelligence
525 act). <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689>, 2024. Official Journal of the European Union.

526

527 Alessandro Falcetta and Manuel Roveri. Privacy-preserving time series prediction with tempo-
528 ral convolutional neural networks. In *2022 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2022.

529

530 Alessandro Falcetta and Manuel Roveri. Evad: encrypted vibrational anomaly detection with ho-
531 momorphic encryption. *Neural Computing and Applications*, 36(13):7359–7372, 2024.

532

533 Alessandro Falcetta, Massimo Pavan, Stefano Canali, Viola Schiaffonati, and Manuel Roveri. To
534 personalize or not to personalize? soft personalization and the ethics of ml for health. In *2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA)*, pp. 1–10.
535 IEEE, 2023.

536

537 Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. *Cryp-
538 tology ePrint Archive*, 2012.

539

Craig Gentry. *A fully homomorphic encryption scheme*. Stanford university, 2009.

540 Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy.
 541 In *International conference on machine learning*, pp. 201–210. PMLR, 2016.
 542

543 Shruthi Gorantala, Rob Springer, and Bryant Gipson. Unlocking the potential of fully homomorphic
 544 encryption. *Communications of the ACM*, 66(5):72–81, 2023.
 545

546 Gamze Gürsoy, Eduardo Chielle, Charlotte M Brannon, Michail Maniatakos, and Mark Gerstein.
 547 Privacy-preserving genotype imputation with fully homomorphic encryption. *Cell systems*, 13
 548 (2):173–182, 2022.
 549

550 Christopher Heinz, Nigel Wall, Alexander H Wansch, and Christoph Grimm. Privacy, gdpr, and
 551 homomorphic encryption. In *IoT Platforms, Use Cases, Privacy, and Business Models: With
 552 Hands-on Examples Based on the VICINITY Platform*, pp. 165–184. Springer, 2020.
 553

554 Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over
 555 encrypted data. *arXiv preprint arXiv:1711.05189*, 2017.
 556

557 Annika Jacobsen, Ricardo de Miranda Azevedo, Nick Juty, Dominique Batista, Simon Coles,
 558 Ronald Cornet, Mélanie Courtot, Mercè Crosas, Michel Dumontier, Chris T Evelo, et al. Fair
 559 principles: interpretations and implementation considerations, 2020.
 560

561 Siddharth Jayashankar, Edward Chen, Tom Tang, Wenting Zheng, and Dimitrios Skarlatos. Cinnamom:
 562 A framework for scale-out encrypted ai. In *Proceedings of the 30th ACM International
 563 Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1*, pp. 133–150, 2025.
 564

565 Weizhao Jin, Yuhang Yao, Shanshan Han, Jiajun Gu, Carlee Joe-Wong, Srivatsan Ravi, Salman
 566 Avestimehr, and Chaoyang He. Fedml-he: An efficient homomorphic-encryption-based privacy-
 567 preserving federated learning system. *arXiv preprint arXiv:2303.10837*, 2023.
 568

569 Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logistic regression
 570 model training based on the approximate homomorphic encryption. *BMC medical genomics*, 11
 571 (4):23–31, 2018.
 572

573 Joohee Lee, Sangrae Cho, Soohyung Kim, and Saerom Park. Verifiable computation over encrypted
 574 data via mpc-in-the-head zero-knowledge proofs. *International Journal of Information Security*,
 575 24(1):30, 2025.
 576

577 Qian Lou, Bo Feng, Geoffrey Charles Fox, and Lei Jiang. Glyph: Fast and accurately training deep
 578 neural networks on encrypted data. *Advances in Neural Information Processing Systems*, 33:
 579 9193–9202, 2020.
 580

581 Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
 582 rings. *Journal of the ACM (JACM)*, 60(6):1–35, 2013.
 583

584 Janos Meszaros, Jusaku Minari, and Isabelle Huys. The future regulation of artificial intelligence
 585 systems in healthcare services and medical research in the european union. *Frontiers in Genetics*,
 586 13:927721, 2022.
 587

588 Rainer Mühlhoff. Predictive privacy: Collective data protection in the context of artificial intelligence
 589 and big data. *Big Data & Society*, 10(1):20539517231166886, 2023.
 590

591 Kundan Munjal and Rekha Bhatia. A systematic review of homomorphic encryption and its contributions
 592 in healthcare industry. *Complex & Intelligent Systems*, 9(4):3759–3786, 2023.
 593

Casey Newton. Facebook researchers hope to bring together two foes: Encryption and ads. <https://www.theinformation.com/articles/facebook-researchers-hope-to-bring-together-two-foes-encryption-and-ads>, August 2021. Accessed: 2025-08-21.

Helen Nissenbaum. Privacy as contextual integrity. *Wash. L. Rev.*, 79:119, 2004.

594 Monique Ogburn, Claude Turner, and Pushkar Dahal. Homomorphic encryption. *Procedia Computer Science*, 20:502–509, 2013.

595

596

597 Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In *International conference on the theory and applications of cryptographic techniques*, pp. 223–238. Springer, 1999.

598

599

600 Riccardo Pazzi, Alessandro Falcetta, and Manuel Roveri. Hedel: Homomorphically encrypted dis-
601 tributed ensemble learning. In *2025 International Joint Conference on Neural Networks (IJCNN)*,
602 pp. 1–8. IEEE, 2025.

603

604 Beatrice Perez, Mirco Musolesi, and Gianluca Stringhini. You are your metadata: Identification and
605 obfuscation of social media users using metadata information. In *Proceedings of the International
606 AAAI Conference on Web and Social Media*, volume 12, 2018.

607 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
608 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference
609 on knowledge discovery and data mining*, pp. 1135–1144, 2016.

610 Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
611 public-key cryptosystems. *Communications of the ACM*, 21(2):120–126, 1978.

612

613 Lorenzo Rovida and Alberto Leporati. Transformer-based language models and homomorphic en-
614 cryption: An intersection with bert-tiny. In *Proceedings of the 10th ACM International Workshop
615 on Security and Privacy Analytics*, pp. 3–13, 2024.

616 James Scheibner, Marcello Ienca, and Effy Vayena. Health data privacy through homomorphic
617 encryption and distributed ledger computing: an ethical-legal qualitative expert assessment study.
618 *BMC Medical Ethics*, 23(1):121, 2022.

619

620 Wei-tao Song, Guang Zeng, Wen-zheng Zhang, and Dian-hua Tang. Research on privacy informa-
621 tion retrieval model based on hybrid homomorphic encryption. *Cybersecurity*, 6(1):31, 2023.

622 William Stallings and Lawrie Brown. Computer security: principles and practice, global edition,
623 2017.

624

625 Latanya Sweeney. Only you, your doctor, and many others may know. *Technology Science*,
626 2015092903(9):29, 2015.

627 Yijie Weng. Big data and machine learning in defence. *International Journal of Computer Science
628 and Information Technology*, 16(2):25–35, 2024.

629

630 Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and Liang He. A survey of
631 human-in-the-loop for machine learning. *Future Generation Computer Systems*, 135:364–381,
632 2022.

633 Joon Soo Yoo and Ji Won Yoon. t-bmpnet: Trainable bitwise multilayer perceptron neural network
634 over fully homomorphic encryption scheme. *Security and Communication Networks*, 2021(1):
635 7621260, 2021.

636

637 Shoshana Zuboff. The age of surveillance capitalism. In *Social theory re-wired*, pp. 203–213.
638 Routledge, 2023.

639

640 **A USE OF LARGE LANGUAGE MODELS (LLMs)**

641

642 OpenAI’s ChatGPT 5 was used to aid and polish writing.

643

644

645

646

647