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Abstract

Recently, the concept of “compression as intel-001
ligence” has provided a novel informatics met-002
ric perspective for language models (LMs), em-003
phasizing that highly structured representations004
signify the intelligence level of LMs. However,005
from a geometric standpoint, the word represen-006
tation space of highly compressed LMs tends007
to degenerate into a highly anisotropic state,008
which hinders the LM’s ability to comprehend009
instructions and directly impacts its perfor-010
mance. We found this compression-anisotropy011
synchronicity is essentially the “Compression012
Hacking” in LM representations, where noise-013
dominated directions tend to create the illu-014
sion of high compression rates by sacrificing015
spatial uniformity. Based on this, we propose016
three refined compression metrics by incorpo-017
rating geometric distortion analysis and inte-018
grate them into a self-evaluation pipeline. The019
refined metrics exhibit strong alignment with020
the LM’s comprehensive capabilities, achieving021
Spearman correlation coefficients above 0.9,022
significantly outperforming both the original023
compression and other internal structure-based024
metrics. This confirms that compression hack-025
ing substantially enhances the informatics in-026
terpretation of LMs by incorporating geometric027
distortion of representations.028

1 Introduction029

Recently, significant efforts have been devoted to030

exploring the mechanisms by which language mod-031

els (LMs) process information internally, driving032

the development of LM self-evaluation (Wei et al.,033

2024; Wang et al., 2024a,b) independent of specific034

tasks and model outputs. The concept of “compres-035

sion as intelligence” (Sutskever, 2023; Deletang036

et al., 2023; Chen et al., 2025) has provided a novel037

Informatics interpretation for LMs, emphasizing038

that LMs eliminate redundant information through039

training while their representation spaces typically040

evolve from disordered to structured states. This041

property leads to a compression-based evaluation 042

metric for LMs that utilizes differential entropy of 043

representations, aiming to reflect model capabili- 044

ties with their internal structural organization (Pich- 045

ler et al., 2022; Zhouyin and Liu, 2023; Li et al., 046

2025). Existing studies have demonstrated strong 047

alignment between this metric and LM scale (Wei 048

et al., 2024; Li et al., 2025), which we have also 049

empirically validated. However, as evidenced by 050

the intuitive case where 175B GPT-3 (Brown et al., 051

2020) exhibits inferior overall capabilities com- 052

pared to 32B Qwen2.5-Instruct (Hui et al., 2024), 053

compression from a purely informatics standpoint, 054

cannot fully align with LM capabilities, especially 055

when comparing models from different families. 056

Therefore, our research motivation is: Beyond infor- 057

mation compression, what other properties should 058

a metric quantify to effectively interpret the LMs’ 059

intelligence level, and how should we model the 060

relationships between these properties? 061

Relevant studies have shown that differences 062

in model architecture and training paradigms in- 063

evitably lead to variations in the geometric struc- 064

ture of representations (Mimno and Thompson, 065

2017; Gao et al., 2019a; Skean et al., 2025). From 066

a geometric standpoint, we were surprised to ob- 067

serve that LMs with high information compression 068

tend to exhibit representation spaces that degener- 069

ate into highly anisotropic, distorted states. Highly 070

anisotropic representations indicate varying sensi- 071

tivity to semantic changes across different dimen- 072

sions, which can hinder language models’ ability to 073

comprehend instructions and consequently degrade 074

their performance (Demeter et al., 2020; Yu et al., 075

2022; Rudman and Eickhoff, 2024). 076

In this study, we quantitatively analyze this 077

compression-anisotropy synchronicity and validate 078

its statistical significance. Through mechanistic 079

analysis, we find that this phenomenon reflects the 080

“Compression Hacking” in LM representations, 081

where noise-dominated directions tend to create 082
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the illusion of high compression rates by sacrificing083

spatial uniformity. According to this characteristic,084

we propose the integration of geometric perspec-085

tive to refine the information compression metric.086

Specifically, we introduce the following strategies:087

(1) a spectral entropy quantification compression088

metric to model the properties of eigenvalue distri-089

butions; (2) a semantic coefficient of variation to090

measure anisotropy relative to compression; and (3)091

a manifold correction protocol that uses Principal092

Component Smoothing (PCS) as an “anisotropy093

razor” to decouple the influence of anisotropy on094

compression. These refined metrics are integrated095

into a self-evaluation pipeline that relies entirely096

on the LM’s internal structure.097

Using this framework, we evaluate 18 open-098

source LMs and conduct meta-evaluations on fac-099

tuality, reasoning, math, and knowledge tasks to100

obtain ground-truth capability scores. Extensive101

experiments demonstrate that the refined metrics102

exhibit strong alignment with the LM’s comprehen-103

sive capabilities, achieving Spearman correlation104

coefficients above 0.9, which significantly outper-105

forms both the original compression and other in-106

ternal structure-based metrics. This validating the107

compression hacking substantially enhances the108

informatics interpretation of LMs by incorporat-109

ing geometric distortion analysis of representations.110

The main contributions are summarized as follows:111

• We introduce a significant characteristic in LM112

representations termed “compression hacking”,113

which complements the concept of “compression114

as intelligence” from the perspective of geomet-115

ric distortion.116

• According to compression hacking, we propose117

three refinements of compression metrics in-118

corporating geometric insights: spectral entropy119

quantification, semantic coefficient of variation,120

and manifold correction protocol.121

• The refined metrics exhibit significantly stronger122

alignment with LM’s comprehensive capabil-123

ities compared to original compression met-124

ric, thereby establishing a task-agnostic self-125

evaluation perspective for LMs. Anonymous126

codes available here.127

2 Compression Hacking128

In this section, we analyze the compression-129

anisotropy synchronicity in LM representations,130

where highly compressed LMs tend to exhibit word131

representations with strong anisotropy. Our inves- 132

tigation proceeds in two stages: First, we quantify 133

both compression and anisotropy metrics by exam- 134

ining the internal structure of LM representations 135

(covariance matrices). We then fit regression curves 136

to model the relationship between anisotropy and 137

compression, verifying it’s statistical significance. 138

Second, through mechanistic analysis, we identify 139

the underlying cause of this phenomenon, what we 140

term “compression hacking”. 141

The covariance matrix of LM representations re- 142

flects their internal structure. For the hidden states 143

Z = {z(w)|w ∈ V}, where w represents a word 144

and V represents the sample vocabulary space, the 145

construction of the covariance matrix is as formu- 146

lated in Eq. 1. Here, z(w) ∈ RD represents the 147

token embeddings, which has been normalized. Z 148

is a zero-mean matrix. 149

ΣZ =
1

|V|
Z⊤Z+ αID (1) 150

Here, ΣZ ∈ RD×D denotes the covariance ma- 151

trix, and a regularization term αID is added to 152

ensure it is full rank. The matrix ΣZ is positive 153

definite and can be decomposed using eigenvalue 154

decomposition as ΣZ = QΛQ⊤. The eigenvalues 155

from Λ are {λd}Dd=1, arranged in descending or- 156

der by default, and {qd}Dd=1 are the corresponding 157

eigenvectors. 158

2.1 Preliminary: Differential Entropy based 159

Compression Metric 160

The compression perspective provides an 161

information-theoretic foundation for LM evalua- 162

tion, revealing the intrinsic connections between 163

model scale, generalization capability, and 164

data volume, thus offering theoretical guidance 165

for optimizing model design (Pichler et al., 166

2022; Sutskever, 2023; Deletang et al., 2023; 167

Wei et al., 2024; Chen et al., 2025). Related 168

studies have shown that the differential entropy 169

HDE(Z) = −Ew∼Vz(w) log z(w) of LM rep- 170

resentations z(w) can reflect their compression 171

capacity (Chen et al., 2023a; Zhouyin and Liu, 172

2023; Li et al., 2025). Lower differential entropy 173

suggests that the representations formed by 174

nonlinear transformation, which removes redun- 175

dant information, are closer to optimal coding. 176

These representations exhibit more concentrated 177

distributions and lower uncertainty, reflecting more 178

efficient information compression (Delétang et al., 179
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2023). Semantic Volume leverages this property to180

model representation uncertainty (Li et al., 2025).181

We thus define compression metric as the neg-182

ative differential entropy of representations (i.e.,183

CDE(Z)
def
= −HDE(Z)). Since the differential en-184

tropy is equivalent to the logdet estimator (Chen185

et al., 2023a) of their covariance matrix, the com-186

pression metric follows the definition in Eq. 2.187

CDE(Z)
def
= −1

2
logdet (ΣZ) = −1

2

D∑
d=1

log λd

(2)188
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Figure 1: Comparison of compression metrics across dif-
ferent models and their corresponding ground-truth com-
prehensive capabilities, categorized into intra-family
and cross-family comparsions.

We first conducted preliminary exploration to189

assess whether differential entropy-based compres-190

sion metrics effectively reflect LM capabilities. Our191

evaluation included both intra-family (OPT fam-192

ily) and cross-family tests (Qwen2.5-3b-Instruct,193

Qwen2.5-7b, LLaMA3.1-8b, and OPT-13b), with194

ground-truth settings following Section 4.1. As195

shown in Figure 1, we found that compression met-196

rics showed only positive correlations with model197

scale, consistent with related studies (Wei et al.,198

2024; Li et al., 2025). However, Figure 1(left) indi-199

cates that differential entropy-based compression is200

effective only for intra-family evaluation, while Fig-201

ure 1(right) reveals its limited applicability across202

diverse architectures and training paradigms. These203

findings prompted our integration of geometric204

properties into compression analysis.205

2.2 Anisotropy: The Geometric Property206

Correlated with Compression207

The anisotropy of language models is a geometric208

property of representations that reflects the non-209

uniform distribution of semantics across different210

directions in the representation space (Ethayarajh,211

2019; Cai et al., 2019; Demeter et al., 2020). Highly 212

anisotropic representations hinder LMs’ ability to 213

comprehend instructions (Yu et al., 2022; Rudman 214

and Eickhoff, 2024), directly impairing their over- 215

all capabilities. We performed principal component 216

analysis to visualize the word representation spaces 217

of the aforementioned four models. As shown in 218

Figure 2, we made the intriguing observation that 219

models with higher compression levels consistently 220

exhibited greater unevenness in their dimensional 221

distributions, namely, higher anisotropy. This sug- 222

gests a potential synergistic relationship between 223

compression and anisotropy. If we can quantify this 224

relationship and confirm its statistical significance, 225

it could provide valuable guidance for refining com- 226

pression metrics. 227

Current tools for qualitatively and quantita- 228

tively analyzing the anisotropy of language models 229

mainly rely on similarity computations of represen- 230

tations (Ethayarajh, 2019; Cai et al., 2019; Rud- 231

man et al., 2022). However, what we need is an 232

anisotropy metric that can establish a connection 233

with entropy-based information compression. Rele- 234

vant studies (Arora et al., 2016; Mu and Viswanath, 235

2018) have shown that the anisotropy measure A 236

is mathematically defined as formulated in Eq. 3. 237

We aim to extend this measure to relate to the inter- 238

nal structure of representations (eigenvalues of the 239

covariance matrix). 240

A =
max∥c∥=1Z(c)

min∥c∥=1Z(c)
(3) 241

where Z(c) =
∑

w∈V exp
(
c⊤z(w)

)
is the 242

original partition function should approximately 243

be a constant for any unit vector c. A is a num- 244

ber greater than 1, where larger values indicate 245

stronger anisotropy in the represrntation space. Ide- 246

ally, this value should be as close to 1 as pos- 247

sible. Considering that argmax∥c∥=1Z(c) and 248

argmin∥c∥=1Z(c) do not have closed-form solu- 249

tions, we attempt to approximate Z(c) via Taylor 250

expansion as formulated in Eq. 4. 251

Z(c) = |V|+ 1⊤|V|Zc+
1

2
c⊤Z⊤Zc

+
∞∑

m=3

1

m!

∑
w∈V

(
c⊤z(w)

)m (4) 252

Considering that Z is zero-mean data, the 253

mean of z(w) is 0. Therefore, the linear term 254

can also be simplified to 0, that is, 1⊤|V|Zc = 255
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Figure 2: Visualization of distribution of word representations and the eigenvalues across different models.

(∑
w∈V z(w)

)⊤
c = 0⊤c = 0 which will not256

affect the relative changes of Z(c) in different di-257

rections. The quadratic term involves the spectral258

properties of the matrix, whose eigenvalues de-259

scribe the directional variability of Z⊤Z, playing a260

dominant role in the changes of Z(c) in different261

directions. Expanding c in the eigenvector basis,262

we have c = Qu, where ∥u∥ = ∥c∥ = 1 and263

{ud}Dd=1 are the components of u. Based on the264

eigenvalue decomposition, the calculation of Eq. 5265

is made.266

c⊤Z⊤Zc = (Qu)⊤ Z⊤Z (Qu) = u⊤Λu (5)267

Accordingly, we can further obtain the second-268

order estimate of A as formulated in Eq. 6.269

A ≈
|V|+max∥c∥=1

1
2c

⊤Z⊤Zc

|V|+min∥c∥=1
1
2c

⊤Z⊤Zc

=
|V|+max∥u∥=1

1
2

∑
d λdu

2
d

|V|+min∥u∥=1
1
2

∑
d λdu

2
d

(6)270

When the components of the vector u are en-271

tirely concentrated in the direction correspond-272

ing to the maximum (minimum) eigenvalue,273

u⊤Λu = maxd λd(mind λd). We observed that274

the anisotropy of the representation can be mea-275

sured by the condition number of the matrix, as for-276

mulated in Eq. 7. The condition number reflects the277

sensitivity of the covariance matrix and reveals the278

characteristics of ill-conditioning from an intrinsic279

structural perspective, making it the first anisotropy280

metric entirely based on internal structure.281

A(Z)
def
= cond (ΣZ) =

maxDd=1 λd

minDd=1 λd

(7)282

2.3 Systematic Analysis 283

Mechanistic Analysis As shown in Figure 2, by 284

performing eigenvalue decomposition on the co- 285

variance matrix of the representations, we discov- 286

ered a distinctive partitioning phenomenon in the 287

eigenvalues of the LM covariance matrix. The lead- 288

ing principal components exhibit an exponential 289

decay in eigenvalues, effectively condensing the 290

model’s core semantic information, while the nu- 291

merous subsequent minor components demonstrate 292

clustered, nearly constant low eigenvalues, forming 293

spatially anisotropic perturbation sources. Interest- 294

ingly, when measuring information compression 295

using a negative logarithmic scale, the minor com- 296

ponents show dramatically inflated compression 297

metrics due to their infinitesimal original eigen- 298

values, creating an inverted relationship with the 299

principal component region. This seemingly para- 300

doxical phenomenon actually reveals the compres- 301

sion hacking in model representations, where noise- 302

dominated directions tend to create the illusion 303

of high compression rates by sacrificing spatial 304

uniformity, while in reality this “compression” rep- 305

resents either information loss or noise amplifica- 306

tion, with truly effective information compression 307

being exclusively accomplished by the principal 308

components. 309

Significance Analysis Next, we analyze the signif- 310

icance of compression hacking, which manifests 311

as compression-anisotropy synchronicity. Based 312

on the aforementioned metrics, we calculated the 313

estimates of both compression and anisotropy for 314

instruction representations across four LMs in our 315

preliminary experiments, both of which can be ex- 316

clusively represented by the eigenvalues of the rep- 317

resentation covariance matrix. Given their charac- 318
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Figure 3: Regression fitting curves of compression ver-
sus anisotropy for different models, along with Mann-
Whitney U tests between them. Here, **** denotes sta-
tistical significance at the 0.01% levels respectively.

teristic patterns, we modeled a linear regression319

of compression against the logarithmic values of320

anisotropy, as shown in Figure 3. The regression321

analysis reveals two key findings through R² and322

p-values: (1) compression as the dependent vari-323

able can be well and significantly explained by324

anisotropy, and (2) Mann-Whitney U tests (McK-325

night and Najab, 2010) confirm statistically signifi-326

cant differences in regression curves across differ-327

ent models.328

3 Methodology329

3.1 Refined Metrics330

We have demonstrated that the compression-331

anisotropy synchronicity caused by compression332

hacking in LMs is a statistically significant char-333

acteristic. This implies that we can develop more334

comprehensive metrics by jointly considering the335

compression and anisotropy of representations, as336

well as modeling their correlation. In this section,337

we formalize our approach through three strategies:338

Spectral Entropy Quantification Figure 2 illus-339

trates that, from the perspective of eigenvalue distri-340

bution, the mechanism of compression hacking is341

that the secondary components causing anisotropy342

(λd) are homologous to the principal components343

of the compression part (− log λd). Interesting,344

spectral entropy (Roy and Vetterli, 2007) precisely345

models this characteristic, and it is formally equiv-346

alent to a compression metric weighted by eigen-347

values (Compression (SE)), as formulated in Eq. 8.348

CSE(Z)
def
= − tr(ΣZ log ΣZ) = −

D∑
d=1

λd log λd

(8) 349

Semantic Coefficient of Variation Just as 350

compression-anisotropy synchronicity serves as 351

a distinct manifestation of compression hacking, 352

where compression is characterized by the mean 353

of eigenvalue logarithms (reflecting the overall vol- 354

ume of the embedding space (Li et al., 2025)), 355

while anisotropy corresponds to the ratio of ex- 356

treme eigenvalues (quantifying the variation of se- 357

mantic embeddings across different dimensions). 358

Thus, we formulate their ratio as the Semantic Co- 359

efficient of Variation (Semantic CV) in Eq. 9. This 360

metric accurately characterizes the magnitude of 361

anisotropy relative to information compression in 362

the representation space Z. 363

CVSem.(Z)
def
=

A(Z)

CDE(Z)
(9) 364

Manifold Correction Protocol Numerous studies 365

have proposed train-free “anisotropy razors” to re- 366

duce the anisotropy of representation space in a 367

train-free manner, thereby enhancing representa- 368

tional capacity (Mu and Viswanath, 2018; Su et al., 369

2021). This inspires us to decouple anisotropy from 370

compression by selecting an appropriate anisotropy 371

razor. Considering the exponential sharp decline 372

in the eigenvalues of principal components corre- 373

sponding to preceding dimensions due to compres- 374

sion hacking, we propose Principal Component 375

Smoothing (PCS) as an anisotropy razor, inspired 376

by the LW-shrinkage (Ledoit and Wolf, 2004). By 377

setting a smoothing coefficient β ∈ [0, 1] (default 378

value is set to 0.9), we shift the representation space 379

toward principal directions, resulting in a flatter 380

transformed feature spectrum. This transformation 381

is based on the covariance matrix of the represen- 382

tation and is achieved by defining the mapping 383

TPCS as formulated in Eq. 10, thereby refining the 384

compression metric Compression (PCS). In The- 385

orem B.2, we prove that under sparse spectrum 386

conditions, the PCS estimator exhibits higher sta- 387

tistical stability than the LW shrinkage. 388

TPCS(ΣZ)
def
= (1− β)ΣZ + β

D
max
d=1

λdID (10) 389

3.2 Evaluation Pipeline 390

In this section, we integrate the three refined met- 391

rics into a unified evaluation framework, which is a 392
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Figure 4: Scatter plots of ground truth values across different models for the four metrics, along with fitted regression
equations and Spearman correlation coefficients.

Metric
Global Qwen2.5-Instruct OPT LLaMA3

Size Ground truth Size Ground truth Size Ground truth Size Ground truth
Compression (DE) 0.935 0.445 1.000 0.829 1.000 1.000 0.956 0.886
Compression (SE) 0.430 0.917 0.486 0.714 0.829 0.829 0.598 0.657
Semantic CV 0.805 0.926 0.829 1.000 1.000 1.000 0.956 0.943
Compression (PCS) 0.708 0.965 0.829 1.000 1.000 1.000 0.956 0.943

Table 1: The Spearman correlation coefficients within model groups (Qwen2.5-Instruct, OPT, and LLaMA3 families)
and across all models (Global), including the correlations between the four metrics, and both model size (size) and
comprehensive capabilities (Ground truth). The gray-highlighted components represent our refined metrics.

task-agnostic pipeline operating purely from a rep-393

resentational perspective. Our evaluation paradigm394

associates the sampled data batch B with a deci-395

sion score s = F(B, fLM). The decision function396

F(·) operates through two sequential processes:397

(1) the projection step extracts hidden represen-398

tations Z(p) = FProjection(p, fLM) for each data399

sample p ∈ B; (2) the decision step computes the400

batch-level score s = Ep∼BMetric(Zp) based on401

the refined metrics. Notably, our dataset require-402

ment specifies that the sample’s word representa-403

tion space should effectively estimate the model’s404

complete word representation space given suffi-405

cient sampling, ensuring convergence of our pro-406

posed metrics. We discuss the impact of sampling407

size on metric convergence in Section D.408

4 Experiments409

In this section, we employ meta-evaluation to in-410

vestigate whether the refined metrics can achieve411

strong alignment with the comprehensive capabil-412

ities of LMs. This serves to validate whether in-413

corporating the geometric distortion perspective of414

representations through compression hacking can415

enhance the informatics interpretation of LMs.416

4.1 Setup417

Models Since our evaluation focuses on the418

internal structure of model representations, we419

evaluated 18 open-source language models from420

three different model families with varying sizes. 421

These families are the LLaMA3 family (Grattafiori 422

et al., 2024) (LLaMA3.2-1B, LLaMA3.2- 423

1B-Instruct, LLaMA3.2-3B, LLaMA3.2-3B- 424

Instruct, LLaMA3.1-8B, LLaMA3.1-8B-Instruct), 425

Qwen2.5-Instruct family (Hui et al., 2024) (0.5B, 426

1.5B, 3B, 7B, 14B, 32B), OPT family (Zhang et al., 427

2022a) (0.125B, 1.3B, 2.7B, 6.7B, 13B, 30B). 428

Meta Evaluation To evaluate the alignment 429

between our metrics and LM capabilities, we 430

employed meta-evaluation by calculating the 431

Spearman correlation coefficient between human- 432

annotated ground truth benchmarks and our pro- 433

posed refined informatics metrics. For the meta- 434

evaluation experiments, we selected six bench- 435

mark datasets spanning four major domains as 436

ground truth, corresponding to four key dimensions 437

of large language model capabilities: Factuality: 438

TruthfulQA (Lin et al., 2022), FACTOR (Muhl- 439

gay et al., 2024), Math: MATH (Hendrycks et al., 440

2021), Reasoning: CommonsenseQA (Talmor et al., 441

2019), TheoremQA (Chen et al., 2023b), Knowl- 442

edge: MMLU (Hendrycks et al., 2020). We use the 443

mean of all benchmark scores as the ground truth 444

for the model’s comprehensive evaluation (CE). 445

Baseline Metrics We selected purely 446

representation-based baseline metrics that 447

operate independently of ground-truth labels and 448

model sampling, encompassing both informatics 449

and geometric perspectives. The informatics 450
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Metric Property Factuality Reasoning Math Knowledge CE
Info. Geom. TruthfulQA FACTOR Common.QA Theo.QA MATH MMLU

Semantic Volume ✓ 0.429 0.414 0.441 0.483 0.420 0.409 0.442
Curvature ✓ 0.355 0.372 0.342 0.365 0.303 0.309 0.302
Diff-eRank ✓ ✓ 0.476 0.461 0.494 0.521 0.424 0.452 0.492
Compression(DE) ✓ 0.458 0.488 0.481 0.471 0.490 0.471 0.482
Anisotropy ✓ 0.715 0.702 0.702 0.792 0.673 0.709 0.701
Compression (SE) ✓ ✓ 0.895 0.861 0.892 0.921 0.824 0.852 0.912
Semantic CV ✓ ✓ 0.946 0.905 0.916 0.926 0.857 0.917 0.926
Compression (DE)
w/ Remove Directions ✓ ✓ 0.053 0.102 0.042 0.142 0.211 0.093 0.110
w/ Whitening ✓ ✓ 0.487 0.498 0.502 0.482 0.423 0.456 0.472
w/ LW Shrinkage ✓ ✓ 0.458 0.488 0.481 0.471 0.490 0.471 0.482
w/ PCS ✓ ✓ 0.962 0.955 0.923 0.967 0.846 0.923 0.965

Table 2: The Spearman correlation coefficient between the metrics based on the representation properties and the
ground truth benchmark, where gray-highlighted components represent refined metrics we proposed.

metrics include Compression (DE) and Semantic451

Volume (Li et al., 2025), while the geometric452

metrics consist of Curvature (Hosseini and453

Fedorenko, 2023) quantifying manifold curvature454

characteristics, and anisotropy. Diff-eRank (Wei455

et al., 2024) is the metric that simultaneously mod-456

els both information compression and geometric457

structure in language model representations, yet458

neglecting their direct synergistic relationship.459

Baseline Anisotropy Razors In addition to PCS460

as the anisotropy razor for decoupling anisotropy461

from compression, we selected three anisotropy462

razors as baselines. Remove Directions (Mu and463

Viswanath, 2018) is a post-processing method for464

eliminating noisy directions. Whitening (Su et al.,465

2021) eliminates correlations between features466

through global scaling, normalizing the eigenvalues467

to have the same mean and variance. LW Shrink-468

age (Ledoit and Wolf, 2004), on the other hand,469

adjusts extreme eigenvalues linearly towards the470

mean via Bayesian shrinkage.471

4.2 Main Results472

Figure 4 and Table 1 present the regression equa-473

tions and Spearman correlations among the orig-474

inal compression metric (compression (DE)), our475

three proposed refined metrics, and comprehen-476

sive capabilities as ground truth. The original com-477

pression (DE) exhibits strong correlations of 0.935478

with model size across all models, reaching 1.000,479

1.000, and 0.956 within model families, confirm-480

ing the high consistency between original compres-481

sion capability and model scale in language mod-482

els. However, this metric achieves only 0.445 cor-483

relation with comprehensive capabilities in cross-484

architecture global analysis, maintaining higher cor- 485

relations (0.829, 1.000, 0.886) only within model 486

families, suggesting model size’ applicability for 487

LM capability assessment is confined to homoge- 488

neous architectural systems. 489

Among our refined metrics, compression (SE) 490

shows reduced size correlation (0.430 globally) but 491

achieves 0.917 cross-architecture capability corre- 492

lation, demonstrating its effectiveness in capturing 493

capability differences across diverse architectures. 494

Both semantic CV and compression (PCS) main- 495

tain dual high correlations with size and capabil- 496

ities within model families while sustaining sta- 497

ble cross-architecture capability correlations (0.926 498

and 0.965, respectively), with size correlations 499

moderately decreasing to 0.805 and 0.708. This 500

demonstrates that our refined metrics achieve sig- 501

nificantly stronger alignment with LMs’ compre- 502

hensive capabilities compared to the original com- 503

pression metrics. Through compression hacking, 504

we substantially enhance the informatics interpre- 505

tation of LMs from the geometric distortion per- 506

spective of representations, thereby extending the 507

“compression as intelligence” concept. 508

4.3 Comparison with Baseline Metrics 509

Table 2 systematically presents the Spearman corre- 510

lation coefficients between the ground truth bench- 511

marks, and both the baseline metrics based on in- 512

ternal representations and our refined metrics. The 513

property column identifies whether the metric de- 514

scribes informatics (Info.) or geometric (Geom.) 515

property. Notably, metrics that model only a single 516

property (either informational or geometric prop- 517

erty), such as semantic volume, curvature, com- 518
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Figure 5: The qqplot of the eigenvalue distribution before and after using different anisotropy razors, and the
distribution of the partition function Z(c).

pression (DE), anisotropy, and their modified ver-519

sions (w/ remove directions), all exhibit correlation520

coefficients with the comprehensive score below521

0.5. Although Diff-eRank incorporates spectral en-522

tropy characteristics, its results still fail to reflect523

comprehensive capabilities, possibly because this524

metric focuses on the noise reduction process of525

knowledge acquisition while neglecting the syn-526

ergy between information and geometric properties.527

Experiments show that the compression methods528

modified by whitening and LW shrinkage, although529

aiming to decouple anisotropic features, still do530

not significantly improve capability alignment. It531

is noteworthy that our refined metrics in Figure 4532

demonstrate significant advantages over the base-533

line metrics.534

4.4 Effect of Anisotropy Razors535

Table 2 reveals that as “anisotropy razor” methods,536

remove directions, whitening, and LW shrinkage all537

fail to effectively improve the reflection of compre-538

hensive capabilities, whereas PCS exhibits a signif-539

icant improvement. In this section, we investigate540

the structural changes in representations before and541

after processing with these anisotropy razors, con-542

ducting an in-depth mechanistic analysis of PCS’s543

advantages over other methods.544

The qqplot in Figure 5 illustrates the eigenvalue545

distributions before and after applying these four546

razors. The first three methods decouple anisotropy547

while maintaining the linear geometric structure548

of the data, resulting in eigenvalues that still ex-549

hibit distinct partitioning. In contrast, PCS upscales550

the low-eigenvalue region, ensuring that the cor-551

rected compression relies entirely on the contri- 552

butions of the principal components. The formal 553

method for anisotropy detection involves examin- 554

ing the “self-normalization” property (i.e., Z(c) 555

tending toward a constant, independent of c) (Mu 556

and Viswanath, 2018). Figure 5 illustrates the distri- 557

bution of Z(c) before and after applying different 558

anisotropy razors. We observe that remove direc- 559

tions leads to a more dispersed Z(c) distribution, 560

increasing anisotropy. This occurs because truncat- 561

ing certain directions causes the remaining ones 562

to spread more extremely. In contrast, whitening, 563

LW shrinkage, and PCS concentrate the Z(c) dis- 564

tribution. Notably, PCS achieves more pronounced 565

anisotropy elimination than the other methods by 566

rigidly correcting the eigenvalue distribution. 567

5 Conclusion 568

We introduce a notable characteristic in language 569

models termed “compression hacking”, where the 570

noisy directions in LM representations feign high 571

compression rates by sacrificing spatial uniformity, 572

thereby distorting information compression metrics. 573

Through spectral entropy quantification, semantic 574

coefficient of variation, and a manifold correction 575

protocol based on principal component smooth- 576

ing, we refine the compression measurement frame- 577

work. Extensive experiments on 18 mainstream lan- 578

guage models demonstrate that the refined metrics 579

achieve strong alignment with models’ actual capa- 580

bilities. These results prove that incorporating the 581

geometric distortion perspective through compres- 582

sion hacking significantly enhances the informatics 583

interpretation of LMs. 584
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6 Limitations585

In fact, the metrics we propose still have broader586

application scenarios worth exploring. For instance,587

practical techniques such as pruning, quantization,588

and distillation could potentially benefit from these589

indicators that reveal internal redundancies. Our590

proposed metrics help better identify compressible591

components in models without causing significant592

information loss. We anticipate that these refined593

metrics may open new avenues for future research,594

exploring how such internal representation indica-595

tors can be applied to various potential scenarios.596
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A Related Work and Further Analysis833

A.1 Evaluation of Language Models834

The evaluation of language models is currently in a835

state of rapid iterative development, encompassing836

a variety of tasks, datasets, and benchmarks (Ce-837

likyilmaz et al., 2020; Zheng et al., 2023; Tan et al.,838

2024). Traditional evaluation metrics such as accu-839

racy, F1-score (Sasaki et al., 2007), BLEU (Sellam840

et al., 2020), and ROUGE (Lin, 2004) focus on841

comparing model predictions with annotated labels842

in downstream tasks. Other metrics like perplexity843

and cross-entropy loss do not rely on annotated844

labels and are computed solely based on input text.845

However, these methods primarily emphasize ex-846

ternal evaluation based on model predictions.847

Recently, significant efforts have been devoted848

to exploring the mechanisms by which language849

models (LMs) process information internally, driv-850

ing the development of LM self-evaluation (Wei851

et al., 2024; Wang et al., 2024a,b) independent852

of specific tasks and model outputs. The concept853

of “compression as intelligence” has provided an 854

information-theoretic internal evaluation perspec- 855

tive for language models, highlighting that the ac- 856

quisition of world knowledge by language mod- 857

els is a denoising process (Sutskever, 2023; Dele- 858

tang et al., 2023; Wei et al., 2024; Chen et al., 859

2025). Differential entropy of representations, as 860

a classical information-theoretic measure, effec- 861

tively quantifies the internal uncertainty of lan- 862

guage models (Chen et al., 2023a; Zhouyin and 863

Liu, 2023). Semantic volume (Li et al., 2025) 864

leverages representation-level differential entropy- 865

aware compression metrics to offer a novel per- 866

spective for language model evaluation. However, 867

related work has found that such compression can 868

only model the scale of language models and fails 869

to align with their capabilities (Wei et al., 2024; Li 870

et al., 2025). 871

We introduces the concept of compression hack- 872

ing in language model representations, where the 873

noisy directions of LM representations sacrifice 874

spatial uniformity to feign high compression rates. 875

This implies that we can refine the information com- 876

pression perspective by considering the geometric 877

distortions in the language model’s representation 878

space. 879

A.2 Anisotropy of Language Models 880

Anisotropy The anisotropy of language models re- 881

flects the geometric properties of the contextual em- 882

bedding space. Related studies have observed that 883

during sampling, the spatial embeddings of nega- 884

tive samples exhibit anisotropy, which describes 885

how vectors are distributed within the contextual 886

space (Mimno and Thompson, 2017; Ethayarajh, 887

2019). The researchers found that most vectors oc- 888

cupy a relatively narrow cone within the space, and 889

that vectors within this cone tend to have high co- 890

sine similarity (Gao et al., 2019b). Demeter pointed 891

out that using softmax introduces structural weak- 892

nesses in the representation space, leading to bias, a 893

common issue in language models (Demeter et al., 894

2020). To better quantify the anisotropy of LMs, 895

related work has identified isolated clusters and 896

low-dimensional manifolds in the contextual em- 897

bedding space, introducing tools for their qualita- 898

tive and quantitative analysis (Ethayarajh, 2019; 899

Cai et al., 2019; Rudman et al., 2022). However, 900

these tools are mainly based on similarity calcula- 901

tions of embedded representations. What is needed 902

instead is an anisotropy metric that can establish a 903

connection with entropy based compression metric. 904
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Figure 6: The eigenvalues and their negative logarithmic distributions of different models’ representations before
and after processing with different anisotropy razors.

Anisotropy Razors To mitigate anisotropy in lan-905

guage models, existing research has proposed var-906

ious solutions. Contrastive learning has emerged907

as a powerful tool for obtaining effective sentence908

representations, effectively reducing anisotropy by909

increasing the spatial distance between positive and910

negative samples (Gao et al., 2021; Zhang et al.,911

2022b; Jiang et al., 2022). In this work, we em-912

ploy post-processing methods applied directly to913

the representation space as baseline approaches for914

the anisotropy razor:915

• Remove Directions (Mu and Viswanath,916

2018): First, subtract the common mean vec-917

tor of all word vectors to eliminate global bias;918

then remove the top high-variance principal919

component directions via Principal Compo-920

nent Analysis (PCA). This process enhances921

semantic feature discriminability by eliminat-922

ing non-semantic common information from923

word vectors, making the word space distribu-924

tion more isotropic.925

• Whitening (Su et al., 2021): Zero-center the926

representations and transform the covariance927

matrix into an identity matrix, forcing the em- 928

bedding distribution toward isotropy. 929

• LW Shrinkage (Ledoit and Wolf, 2004): Lin- 930

early shrink the sample covariance matrix to- 931

ward the diagonal matrices to reduce noise 932

interference in high-dimensional data, yield- 933

ing more stable covariance matrix estimates. 934

This operation mitigates excessive sensitivity 935

in specific directions, promoting isotropic fea- 936

ture distributions. 937

These training-free paradigms provide refer- 938

ences for decoupling anisotropy from compres- 939

sion. However, these methods maintain the lin- 940

ear geometric structure of the data, with eigenval- 941

ues still exhibiting consistent partitioning behav- 942

ior. Figure 6 demonstrates the distribution changes 943

in eigenvalues and their negative logarithms af- 944

ter applying these baseline anisotropy razor post- 945

processing methods. The results show that the 946

distributions after Remove Directions, Whitening, 947

and LW-Shrinkage treatments retain their origi- 948

nal forms, leaving cross-model relationships of 949

the modified compression metrics relatively un- 950
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changed. Consequently, we propose principal com-951

ponent smoothing to force eigenvalues toward dom-952

inant features. As shown in Figure 6, this approach953

induces significant changes in eigenvalue distribu-954

tions.955

B Statistical Properties of Principal956

Component Smoothing957

Lemma B.1 (Asymptotic Optimality of Ledoit–958

Wolf Shrinkage (Ledoit and Wolf, 2004)). Let Σ ∈959

RD×D be the population covariance matrix and960

ΣZ = 1
|V|Z

⊤Z the sample covariance. The Ledoit-961

Wolf estimator962

Σ̂LW = (1− βLW)ΣZ + βLWµI, µ =
1

D
tr(ΣZ)

(11)963

attains minimal MSE when the shrinkage inten-964

sity satisfies βLW ≍ 1
|V| . Under general covariance965

structures (without spectral sparsity), this yields966

asymptotic MSE:967

MSE(Σ̂LW) ≍ O
(

D

|V|

)
(12)968

Theorem B.2 (Statistical Stability of the Princi-969

pal Component Smoothing Estimator). Assume the970

true covariance matrix Σ has a dominant eigen-971

value λ∗
1 = maxd λd ≫ λ∗

d (d ≥ 2), i.e., spec-972

tral sparsity holds. Define the improved shrinkage973

estimator as:974

Σ̂PCS

= (1− βPCS)ΣZ + βPCSλ1I, βPCS ≍ O

(
1√
|V|

)
(13)975

where λ1 is the largest eigenvalue of the sample976

covariance matrix ΣZ and satisfies λ1
|V|−−→ λ∗

1 in977

probability. When the sample size |V| is sufficiently978

large,979

MSE(Σ̂PCS) < MSE(Σ̂LW) (14)980

Proof. We commence by analyzing the mean981

squared error (MSE) structure of covariance ma-982

trix estimators. Let ∥ · ∥F denote the Frobenius983

norm, the MSE decomposes into bias and variance984

components:985

MSE(Σ̂) =
∥∥∥E[Σ̂]− Σ

∥∥∥2
F︸ ︷︷ ︸

Bias2

+E
[∥∥∥Σ̂− E[Σ̂]

∥∥∥2
F

]
︸ ︷︷ ︸

Variance

.

(15)986

For the Ledoit-Wolf estimator Σ̂LW = (1 −987

βLW)ΣZ + βLWµI, under spectral sparsity λ∗
1 ≫988

∑D
d=2 λ

∗
d/D, the shrinkage target µ ≈ λ∗

1/D cre- 989

ates dominant bias from the leading eigenvalue: 990

Bias2LW ≈ β2
LW ∥Σ− µI∥2F

= β2
LW

[
(λ∗

1 − µ)2 +
D∑

d=2

(λ∗
d − µ)2

]
≍ β2

LW(λ∗
1)

2
(
1− 1

D

)2
(16) 991

According to lemma B.1, the variance term inher- 992

its from sample covariance matrix with dimension 993

scaling: 994

VarianceLW ≈ (1− βLW)2 · O
(
D2

|V|

)
≍ O

(
D2

|V|

)
(17) 995

where the O(D2/|V|) scaling comes from concen- 996

tration of sample covariance in high dimensions. 997

For our eigenvalue-shrinkage estimator Σ̂PCS = 998

(1 − βPCS)ΣZ + βPCSλ1I, the preserved leading 999

eigenvalue estimation λ1
p−→ λ∗

1 fundamentally al- 1000

ters the bias-variance tradeoff. The bias now origi- 1001

nates from minor eigenvalues: 1002

Bias2PCS = β2
PCS

D∑
d=2

(λ∗
d−λ∗

1)
2 ≍ β2

PCS(D−1)(λ∗
1)

2

(18) 1003

where the last approximation uses λ∗
d ≪ λ∗

1 from 1004

spectral sparsity. The variance term splits into two 1005

parts: 1006

VariancePCS = (1− βPCS)
2 Var

(
D∑

d=2

λd

)
︸ ︷︷ ︸
≍O

(
(D−1)λ∗2

1
|V|

)
+ β2

PCS Var(λ1)︸ ︷︷ ︸
≍O

(
λ∗2
1
|V|

)
(19) 1007

With optimal shrinkage intensity βPCS = 1008

O(1/
√
|V|), the dominant variance term becomes: 1009

VariancePCS ≍ O
(
(D−1)λ∗2

1
|V|

)
. (20) 1010

The MSE comparison reveals fundamental dif- 1011

ferences in scaling laws. For Σ̂LW with βLW = 1012

O(1/|V|): 1013

MSE(Σ̂LW) ≍ O
(

λ∗2
1

|V|2

)
︸ ︷︷ ︸

Bias2

+O
(
D2

|V|

)
︸ ︷︷ ︸

Variance

. (21) 1014
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Model R² p-value
LLaMA3.1-8B 0.89 ****
LLaMA3.1-8B-Instruct 0.79 ***
LLaMA3.2-1B 0.80 ****
LLaMA3.2-1B-Instruct 0.78 ***
LLaMA3.2-3B 0.89 ****
LLaMA3.2-3B-Instruct 0.77 ****
OPT-0.125B 0.88 ****
OPT-1.3B 0.76 ****
OPT-2.7B 0.66 **
OPT-6.7B 0.91 ****
OPT-13B 0.80 ***
OPT-30B 0.83 ****
Qwen2.5-0.5B-Instruct 0.81 ****
Qwen2.5-1.5B-Instruct 0.86 ***
Qwen2.5-3B-Instruct 0.80 ****
Qwen2.5-7B-Instruct 0.79 ****
Qwen2.5-14B-Instruct 0.85 ****
Qwen2.5-32B-Instruct 0.83 ****

Table 3: The R² and p-values of the compression-
anisotropy regression fitting curves across different mod-
els, where, **, ***, and **** denote statistical signifi-
cance at the 1%, 0.1%, and 0.01% levels respectively.

For Σ̂PCS with dimension-adaptive shrinkage:1015

MSE(Σ̂PCS) ≍ O
(
(D−1)λ∗2

1
|V|

)
︸ ︷︷ ︸

Bias2

+O
(
(D−1)λ∗2

1
|V|

)
︸ ︷︷ ︸

Variance

.

(22)1016

When |V| → ∞, the O(1/|V|) terms dominate1017

O(1/|V|2). Under spectral sparsity λ∗
1 ≫ λ∗

d (d ≥1018

2), the improvement ratio becomes:1019

MSE(Σ̂PCS)

MSE(Σ̂LW)
≍ Dλ∗2

1 /|V|
D2/|V|

=
λ∗2
1

D
≪ 1, (23)1020

where the inequality follows from λ∗2
1 /D ≤1021

(
∑D

d=1 λ
∗
d)

2/D2 by Cauchy-Schwarz. ■1022

C Significance Analysis1023

Our evaluation results presented in Table 3 demon-1024

strate a strong and statistically significant relation-1025

ship between compression and anisotropy across1026

the 18 open-source language models examined.1027

The high R² values (ranging from 0.7 to 0.9 for1028

most models) indicate that linguistic anisotropy1029

accounts for a substantial proportion of the ob-1030

served compression phenomena. Furthermore, the1031

compression-anisotropy synchronization proves1032

statistically significant at stringent confidence lev-1033

els (p<0.001 or p<0.01) for the majority of mod- 1034

els. These robust and consistent findings across 1035

diverse architectures provide compelling empirical 1036

evidence that compression hacking is not merely 1037

an artifact but rather an intrinsic and fundamental 1038

characteristic of language model representations, 1039

revealing important insights about their underlying 1040

geometric properties. 1041
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Figure 7: The Mann-Whitney U tests of compression-
anisotropy regression fitting between different models,
where, ***, and **** denote statistical significance at
the 0.1%, and 0.01% levels respectively.

Figure 7 presents the Mann-Whitney U test re- 1042

sults for compression-anisotropy regression fitting 1043

across different models. Our analysis reveals that 1044

the differences between most model pairs achieve 1045

statistical significance at rigorous levels. These 1046

statistically significant variations in compression- 1047

anisotropy fitting curves demonstrate that the in- 1048

formation compression metric, when adjusted for 1049

compression hacking effects, can effectively cap- 1050

ture meaningful distinctions in model capabilities. 1051

This finding provides empirical validation that our 1052

refined compression-based evaluation framework 1053

offers discriminative power for comparing perfor- 1054

mance differences across language model architec- 1055

tures. 1056

D Implementation Details of the 1057

Evaluation Pipeline 1058

For the projection dataset, we primarily collected 1059

1,000 data samples from the pretraining corpus 1060

(Wiki (Foundation, 2025)) and the instruction- 1061

tuning dataset (Dolly-15k (Conover et al., 2023)) to 1062

derive projection data. By sampling the word repre- 1063
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Figure 8: The cumulative expected values of different metrics as the number of samples increases.
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Figure 9: The correlation coefficients between compres-
sion (PCS) and ground truth under different smoothing
coefficient.

sentations of these data points, we aim to estimate1064

the full model’s representation space, ensuring the1065

convergence of our metrics. Our pipeline defaults to1066

sampling 800 data samples. Figure 8 illustrates the1067

cumulative expected values of different metrics as1068

the number of samples increases. We observe that1069

all metrics converge relatively early to stable val-1070

ues, demonstrating that our refined metrics enable1071

robust evaluation based on the provided projection 1072

dataset. 1073

For the hyperparameter α that ensures full-rank 1074

covariance matrices, we selected 10−8. Regarding 1075

the smoothing coefficient (β) for principal compo- 1076

nent smoothing, we determined the interval [0.6, 1] 1077

to be appropriate. Figure 8 illustrates how different 1078

choices of principal component smoothing coef- 1079

ficients affect the compression (PCS). It can be 1080

observed that when β falls within [0.6, 1], the re- 1081

sults maintain strong correlation with the ground 1082

truth. This occurs because the principal directions 1083

already dominate the compression computation. As 1084

the smoothing coefficient decreases, noise direc- 1085

tions gradually regain prominence in the compres- 1086

sion calculation. 1087
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