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Abstract
This study focuses on the topic of offline
preference-based reinforcement learning (PbRL),
a variant of conventional reinforcement learning
that dispenses with the need for online interac-
tion or specification of reward functions. In-
stead, the agent is provided with fixed offline tra-
jectories and human preferences between pairs
of trajectories to extract the dynamics and task
information, respectively. Since the dynamics
and task information are orthogonal, a naive ap-
proach would involve using preference-based re-
ward learning followed by an off-the-shelf offline
RL algorithm. However, this requires the sepa-
rate learning of a scalar reward function, which
is assumed to be an information bottleneck of
the learning process. To address this issue, we
propose the offline preference-guided policy op-
timization (OPPO) paradigm, which models of-
fline trajectories and preferences in a one-step pro-
cess, eliminating the need for separately learning
a reward function. OPPO achieves this by intro-
ducing an offline hindsight information match-
ing objective for optimizing a contextual policy
and a preference modeling objective for finding
the optimal context. OPPO further integrates a
well-performing decision policy by optimizing
the two objectives iteratively. Our empirical re-
sults demonstrate that OPPO effectively models
offline preferences and outperforms prior com-
peting baselines, including offline RL algorithms
performed over either true or pseudo reward func-
tion specifications. Our code is available on the
project website: https://sites.google.
com/view/oppo-icml-2023.
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1. Introduction
Deep reinforcement learning (RL) offers a versatile frame-
work for acquiring task-oriented behaviors, as evidenced by
a growing body of literature (Kohl & Stone, 2004; Kober &
Peters, 2008; Kober et al., 2013; Silver et al., 2017; Kalash-
nikov et al., 2018; Vinyals et al., 2019). In this framework,
the ”task” is frequently expressed as maximizing the cu-
mulative reward of trajectories produced by deploying the
learning policy in the corresponding environment. How-
ever, the above RL formulation presupposes two critical
conditions for decision policy training: 1) an interactable
environment, and 2) a pre-specified reward function. Re-
grettably, online interactions with the environment can be
both expensive and hazardous (Mihatsch & Neuneier, 2002;
Hans et al., 2008; Garcıa & Fernández, 2015), while de-
veloping a suitable reward function typically necessitates
considerable human effort. Additionally, the heuristic re-
wards often employed may be insufficient to express the
true intent (Hadfield-Menell et al., 2017).

To address these challenges, prior research has explored two
approaches. First, some works have focused on the offline
RL formulation (Fujimoto et al., 2019), where the learner
has access to fixed offline trajectories along with a reward
signal for each transition (or limited expert demonstrations).
Second, others have considered the (online) preference-
based RL formulation, where the task objective is conveyed
to the learner through preferences of a human annotator
between two trajectories rather than rewards for each tran-
sition. In pursuit of further advancements in this setting,
we propose a novel approach that relaxes both of these re-
quirements and advocates for offline preference-based RL
(PbRL).

In the context of offline preference-based reinforcement
learning (PbRL), where access to an offline dataset and
labeled preferences between the offline trajectories is avail-
able, a common approach is to combine previous on-
line PbRL methods with off-the-shelf offline RL algo-
rithms (Shin & Brown, 2021). This two-step strategy, as
illustrated in Fig.1 (left), typically involves training a re-
ward function using the Bradley-Terry model (Bradley &
Terry, 1952) in a supervised manner, followed by training
the policy with any offline RL algorithm on the transitions
relabeled via the learned reward function. However, the
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Figure 1. A flow diagram of previous offline PbRL algorithms (left) and our OPPO algorithm (right). Previous works require learning a
separate reward function for modeling human preferences using the Bradley-Terry model. In contrast, our OPPO directly optimizes the
policy network.

practice of separately learning a reward function that ex-
plains expert preferences may not directly instruct the pol-
icy on how to act optimally. This is because preference
labels define the PbRL task, and the goal is to learn the
most preferred trajectory by the annotator rather than to
maximize the cumulative discounted proxy rewards of the
policy rollouts. In cases of complex tasks, such as non-
Markovian tasks, scalar rewards may create an information
bottleneck in policy improvement, resulting in suboptimal
behavior (Vamplew et al., 2022). Additionally, an isolated
policy optimization may exploit loopholes in miscalibrated
reward functions, leading to undesirable behaviors. Given
these limitations, it is reasonable to question the necessity
of learning a reward function, especially considering that it
may not directly yield the optimal policy.

To achieve this objective, we present the offline preference-
guided policy optimization (OPPO) approach, which is a
one-step paradigm that simultaneously models offline prefer-
ences and learns the optimal decision policy without requir-
ing the separate learning of a reward function (as illustrated
in Figure 1 right). This is achieved through the use of two
objectives: an offline hindsight information matching ob-
jective and a preference modeling objective. By iteratively
optimizing these objectives, we derive a contextual policy
π(a|s, z) to model the offline data and an optimal context
z∗ to model the preference. The main focus of OPPO is
on both learning a high-dimensional z-space and evaluating
policies within such space. This high-dimensional z-space
captures more task-related information compared to scalar
reward, making it ideal for policy optimization purposes.
Furthermore, the optimal policy is obtained by condition-
ing the contextual policy π(a|s, z) on the learned optimal
context z∗.

Our main contribution can be summarized as follows.
Firstly, we propose OPPO, a concise, stable, and one-step
offline PbRL paradigm that avoids the need for separate
reward function learning. Secondly, we present an instance
of a preference-based hindsight information matching ob-
jective and a novel preference modeling objective over the
context. Finally, extensive experiments are conducted to
demonstrate the superiority of OPPO over previous compet-
itive baselines and to analyze its performance.

2. Related Work
Since OPPO is at the intersection of Preference-Based Re-
inforcement Learning, Offline RL, and conditional RL we
review the most relevant algorithms from these fields (see
Table 1)

Online PbRL. Preference-based RL is also known as rein-
forcement learning from human feedback (RLHF). Several
works have successfully utilized feedback from real hu-
mans to train RL agents (Arumugam et al., 2019; Christiano
et al., 2017; Ibarz et al., 2018; Knox & Stone, 2009; Lee
et al., 2021; Warnell et al., 2017). Christiano et al. (2017)
scaled preference-based reinforcement learning to utilize
modern deep learning techniques, and Ibarz et al. (2018)
improved the efficiency of this method by introducing addi-
tional forms of feedback such as demonstrations. Recently,
PEBBLE (Lee et al., 2021) proposed a feedback-efficient RL
algorithm by utilizing off-policy learning and pre-training.
SURF (Park et al., 2022) used pseudo-labeling to utilize un-
labeled segments and proposed a novel data augmentation
method called temporal cropping. All of the above methods
require the agent to online interact with the environment,
and they are all two-step strategies that require learning a
scalar reward function separately.

Offline RL. To mitigate the impact of distribution shifts
in offline RL, prior algorithms (a) constrain the action
space (Fujimoto et al., 2019; Kumar et al., 2019a; Siegel
et al., 2020; Zhuang et al., 2023), (b) incorporate value pes-
simism (Fujimoto et al., 2019; Kumar et al., 2020; Liu et al.,
2022a), and (c) introduce pessimism into learned dynamics
models (Kidambi et al., 2020; Yu et al., 2020). Another line
of work explored learning a wide behavior distribution from
the offline dataset by learning a task-agnostic set of skills,
either with likelihood-based approaches (Ajay et al., 2020;
Campos et al., 2020; Pertsch et al., 2020; Singh et al., 2020)
or by maximizing mutual information (Eysenbach et al.,
2018; Lu et al., 2020; Sharma et al., 2019). Some prior
methods for RL is more similar to static supervised learning,
such as Q-learning (Watkins, 1989; Mnih et al., 2013) and
behavior cloning. In these mathods, the resulting agent’s per-
formance is positively correlated to the quality of data used
for training. In addition to aforementioned RL methods,
Srivastava et al. (2019) and Kumar et al. (2019b) studied
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Table 1. A concise tabular representation of the differences between our method and related works.

Method Supervised Signal Training Architectures Learning a Separate
Reward Function

Imitation Learning BC Expert demonstration Offline MLP ×
Online PbRL PEBBLE Preference Online MLP ✓

SURF Preference Online MLP ✓

Offline RL CQL Ground Truth Reward Offline MLP
DT Ground Truth Reward Offline Transformer

Offline PbRL OPAL Preference Offline MLP ✓
PT Preference Offline Transformer ✓
OPPO Preference Offline Transformer ×

”upside-down” reinforcement learning (UDRL), seeking to
model behaviors via a supervised loss conditioned on a tar-
get return. Ghosh et al. (2019); Liu et al. (2022b; 2021)
extended prior UDRL methods to perform goal reaching by
taking the goal state as the condition, and Paster et al. (2020)
further used an LSTM for goal-conditioned online RL set-
tings. DT (Chen et al., 2021) and TT (Janner et al., 2021)
solved the problem via sequence modeling, since they be-
lieve sequence modeling enables to model behaviors without
access to the reward, in a similar style to language (Radford
et al., 2018) and images (Chen et al., 2020). Although the
above methods can avoid online interaction between the
agent and the environment, they all require ground truth
reward or expert demonstrations to specify the task, which
often requires a lot of human labor.

Offline PbRL. OPAL (Shin & Brown, 2021) first tried
to solve offline PbRL by simply combining previous (on-
line) PbRL method and off-the-shelf offline RL algorithm.
PT (Kim et al., 2023) introduced a new preference model
based on the weighted sum of non-Markovian rewards and
utilized transformer-based architecture to design such model.
Both of these works adopt naive two-step strategy with
learning a reward function separately. To avoid information
bottleneck that scalar reward may create (Vamplew et al.,
2022), OPPO jointly models offline preferences and learns
the optimal decision policy in a one-step paradigm. And in
contrast to both supervised RL and UDRL, the purpose of
our method is to search for the optimal solution supervised
by a binary preference signal in the offline setting. Our
method is not only working with sub-optimal demonstra-
tions but also revealing optimal behaviors without injecting
human priors about the optimal demonstration.

3. Preliminaries
We consider reinforcement learning (RL) in a Markov deci-
sion process (MDP) described by a tuple (S,A, r, P, p0, γ),
where st ∈ S, at ∈ A, and rt = r(st,at) denote the state,
action, and reward at timestep t, P (st+1|st,at) denotes the
transition dynamics, p0(s0) denotes the initial state distri-

bution, and γ ∈ [0, 1) denotes the discount factor. At each
timestep t, the agent receives a state st from the environment
and chooses an action at based on the policy π(at|st). In the
standard RL framework, the environment returns a reward
rt, and the agent transits to the next state st+1. The expected
return Jr(π) = Eτ∼π(τ)

∑∞
k=0 γ

kr(st+k, at+k) is defined
as the expectation of discounted cumulative rewards, where
τ = (s0,a0, s1,a1, . . . ), s0 ∼ p0(s0), at ∼ π(at|st), and
st+1 ∼ P (st+1|st,at). The agent’s goal is to learn a policy
π that maximizes the expected return.

3.1. Offline Preference-based reinforcement learning

In this work, we assume a fully offline setting in which
the agent is not allowed to conduct online rollouts (over
the MDP) during training but is provided with a static
fixed dataset. The static dataset, D := {τ0, . . . , τN}, con-
sists of pre-collected trajectories, where each trajectory
τ i contains a contiguous sequence of states and actions:
τ i := {si0,ai0, si1, . . . }. Such an offline setting is more chal-
lenging than the standard (online) setting as it removes the
ability to explore the environment and collect additional
feedback. Unlike imitation learning, we do not assume that
the dataset comes from a single expert policy. Instead, the
dataset D may contain trajectories collected by sub-optimal
or even random behavior policies.

Generally, the standard offline RL assumes the existence of
reward information for each state-action pair in D. How-
ever, in the offline Preference-based RL (PbRL) framework,
we assume that such reward is not accessible, while the
agent can access offline preferences (between some pairs of
trajectories (τ i, τ j)) that are labeled by an expert (human)
annotator. Specifically, the annotator gives a feedback in-
dicating which trajectory is preferred, i.e., y ∈ {0, 1, 0.5},
where 0 indicates τ i ≻ τ j (the event that trajectory τ i is
preferable to trajectory τ j), 1 indicates τ j ≻ τ i (τ j is prefer-
able to τ i), and 0.5 implies an equally preferable case. Each
feedback is stored in a labeled offline dataset D≻ as a triple
(τ i, τ j , y). Given these preferences, the goal of PbRL is
to find a policy π(at|st) that maximizes the expected re-
turn Jrψ , under the hypothetical reward function rψ(st,at)
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consistent with human preferences. To enable this, previ-
ous works learn a reward function rψ(st,at) and use the
Bradley-Terry model (Bradley & Terry, 1952) to model the
human preference, expressed here as a logistic function:

P [τ i ≻ τ j ] = logistic(
∑
t

rψ(s
i
t,a

i
t)−

∑
t

rψ(s
j
t ,a

j
t )),

(1)
where (sit,a

i
t) ∼ τ i, (sjt ,a

j
t ) ∼ τ j . Intuitively, this can be

interpreted as the assumption that the probability of prefer-
ring a trajectory depends exponentially on the cumulative
reward over the trajectory labeled by an underlying reward
function. The reward function is then updated by minimiz-
ing the following cross-entropy loss:

− E
(τ i,τj ,y)∼D≻

[
(1−y) logP [τ i ≻ τ j ]+y logP [τ j ≻ τ i]

]
.

(2)
With the learned reward function rψ used to label each
transition in the dataset, we can adopt an off-the-shelf offline
RL algorithm to enable the policy learning.

3.2. Hindsight Information Matching

Beyond the typical iterative (offline) RL framework, infor-
mation matching (IM) (Furuta et al., 2021) has been recently
studied as an alternative problem specification in (offline)
RL. The objective of IM in RL is to learn a contextual policy
π(a|s, z) whose trajectory rollouts satisfy the pre-defined
desired information statistics value z:

min
π

E
z∼p(z)
τz∼π(z)

[ℓ (z, I(τz))] , (3)

where p(z) is a prior, and π(z) denotes the trajectory distri-
bution generated by rolling out π(a|s, z) in the environment.
I(τ) is a function capturing the statistical information of a
trajectory τ , such as the distribution statistics of state and
reward, like mean, variance (Wainwright et al., 2008), and ℓ
is a loss function.

On the one hand, if we set p(z) as a prior distribution, opti-
mizing Eq.3 corresponds to performing unsupervised (on-
line) RL to learn a set of skills (Eysenbach et al., 2018;
Sharma et al., 2019). On the other hand, if we set p(z)
as statistical information of a given off-policy trajectory
(or state-action) distribution D(τ) (or D(s,a)), Eq.3 corre-
sponds to an objective for hindsight information matching
in (offline) RL. For example, HER (Andrychowicz et al.,
2017) and return-conditioned RL (upside-down RL (Srivas-
tava et al., 2019; Kumar et al., 2019b; Chen et al., 2021;
Janner et al., 2021)) use the above concept of hindsight:
specifying any trajectory τ in the dataset as the hindsight
target and setting the information z in Eq.3 as I(τ). Then,
we provide the I(·)-driven hindsight information matching

(HIM) objective:

min
π

E
τ∼D(τ)
τz∼π(z)

[ℓ (I(τ), I(τz))] , (4)

where z := I(τ). In HER, we set I(τ) as the final
state in trajectory τ , and in reward-conditional RL, we
set I(τ) as the return of trajectory τ . Thus, we can use
the hindsight information z := I(τ) to provide supervi-
sion for training the contextual policy π(a|s, z). However,
in the offline setting, sampling τz from π(z) is not acces-
sible. Thus, we must model the environment transition
dynamics besides I(·)-driven hindsight information model-
ing. That is to say, we need to model the trajectory itself,
i.e., minπ Eτ∼D(τ),τz∼π(z) [ℓ (τ, τz)]. Then, we provide the
overall offline HIM objective:

min
π

E
τ∼D(τ)
τz∼π(z)

[ℓ (I(τ), I(τz)) + ℓ (τ, τz)] . (5)

To give an intuitive understanding of the above objective,
we provide a simple example: considering hindsight I(·)
being the return of a trajectory, optimizing ℓ (I(τ), I(τz))
ensures that the generated τz will reach the same return
as τ = I−1(z). However, in the offline setting, we must
ensure that the generated τz stays in support of the offline
data, eliminating the out-of-distribution (OOD) issue. Thus
we minimize ℓ (τ, τz) approximately. In implementation, di-
rectly optimizing ℓ (τ, τz) is enough to ensure the hindsight
information is matched, e.g., ℓ (I(τ), I(τz)) < ϵ. Here, we
explicitly formalize the ℓ (I(τ), I(τz)) term with particular
emphasis on the requisite of hindsight information matching
objective and meanwhile highlight the difference, see Sec-
tion 4, between the above HIM objective (taking I(·) as a
prior) and our OPPO formulation (requiring learning Iθ(·)).

By optimizing Eq.5, we can obtain a contextual policy
π(a|s, z). In the evaluation phase, the optimal policy
π(a|s, z∗) can be specified by conditioning the policy on
a selected target z∗. For example, Decision Transformer
(Chen et al., 2021) takes the desired performance as the
target z∗(e.g., specify maximum possible return to generate
expert behavior), and RvS-G (Emmons et al., 2021) takes
the goal state as the target z∗.

4. OPPO: Offline Preference-guided Policy
Optimization

In this section, we present our method, OPPO (offline
preference-guided policy optimization), which adopts the
hindsight information matching (HIM) objective in Sec-
tion 4.1 to model an offline contextual policy π(a|s, z), and
introduces a triplet loss in Section 4.2 to model the human
preference as well as the optimal context z∗. At testing,
we condition the policy on the optimal context z∗ and thus
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Figure 2. OPPO first maps offline trajectories (both positive τ+ and negative τ−) to a latent space via the hindsight information extractor
Iθ . It then optimizes the offline HIM objective LHIM. Finally, the belief of the optimal hindsight information z∗ is updated to model the
human preference with objective LPM. Meanwhile, the preference modeling loss also regularizes the learning of the hindsight information
extractor Iθ .

conduct rollout with π(a|s, z∗). In principle, OPPO is com-
patible with any PbRL setting, including both online and
offline. In the scope of our analysis and experiments, how-
ever, we focus on the offline setting to decouple exploration
difficulties in online RL.

4.1. HIM-driven Policy Optimization

As described in Section 3.1, to directly implement the off-
the-shelf offline RL algorithms, previous works in PbRL
explicitly learn a reward function with Eq.2 (as shown in
Fig.1 left). As an alternative to such a two-step approach, we
seek to learn the policy directly from the preference-labeled
offline dataset (as shown in Fig.1 right). Inspired by the
offline HIM objective in Section 3.2, we propose to learn
a contextual policy π(a|s, z) in the offline PbRL setting.
Assuming Iθ being a (learnable) network that encodes the
hindsight information in PbRL, we formulate the following
objective:

min
π,Iθ

LHIM := E
τ∼D(τ)
τz∼π(z)

[
ℓ (Iθ(τ), Iθ(τz)) + ℓ (τ, τz)

]
, (6)

where z := Iθ(τ). Note that Eq.6 is a different instantia-
tion of Eq.5 in which we learn the hindsight information
extractor Iθ(·) in the PRBL setting, while previous (offline)
RL algorithms normally set I(·) to be a prior (Chen et al.,
2021; Emmons et al., 2021). Such an encoder-decoder struc-
ture is now similar to Bi-directional Decision Transformer
(BDT) proposed by (Furuta et al., 2021) for offline imitation
learning. However, since expert demonstrations are missing
in the PbRL setting, in Section 4.2, we propose to use the
preference labels in D≻ to extract hindsight information.

4.2. Preference Modeling

To make the hindsight information Iθ(τ) in Eq.6 match the
preference information in the (labeled) dataset D≻, we con-

struct the following preference modeling objective inspired
by the contrastive loss in metric learning (Le-Khac et al.,
2020):

min
z∗,Iθ

E
(τ i,τj ,y)∼D≻

[
ℓ(z∗, z+)− ℓ(z∗, z−)

]
, (7)

where z+ and z− represent the embedding of the preferable
(positive) trajectory Iθ(yτ

j + (1 − y)τ i) and that of the
less preferable (negative) trajectory Iθ(yτ

i + (1 − y)τ j),
respectively. Closing to the idea of using regret for model-
ing preference (Knox et al., 2022; Chen et al., 2022), our
basic assumption of designing the objective in Eq.7 is that
humans normally conduct two-level comparisons before
giving preferences between two trajectories (τ i, τ j): 1) sep-
arately judging the similarity between trajectory τ i and the
hypothetical optimal trajectory τ∗, i.e. −ℓ(z∗, zi), and the
similarity between trajectory τ j and the hypothetical opti-
mal one τ∗, −ℓ(z∗, zj), and 2) judging the difference be-
tween the above two similarities (−ℓ(z∗, zi) vs. −ℓ(z∗, zj))
and setting the trajectory with the higher similarity as the
preferred one. Hence, optimizing Eq.7 guarantees finding
the optimal embedding that is more similar to z+ and less
similar to z−. To clarify, z∗ is the corresponding contextual
information for τ∗, whereas τ∗ will always be preferred
over any offline trajectories in the dataset.

In practice, to robustify the preference modeling, we opti-
mize the following objective using the triplet loss in place
of the objective in Eq.7:

min
z∗,Iθ

LPM := E
[
max(ℓ(z∗, z+)−ℓ(z∗, z−)+m, 0)

]
, (8)

where m is an arbitrarily set margin between positive and
negative pairs. It is worth mentioning that the posterior of
the optimal embedding z∗ and the hindsight information
extractor Iθ(·) are updated alternatively to ensure learning
stability. A better estimate of the optimal embedding helps
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Algorithm 1 OPPO: Offline Preference-guided Policy Opti-
mization
Require: Dataset D := {τ} and labeled dataset D≻ :=
{(τ i, τ j , y)}, where τ i ∈ D and τ j ∈ D. Return: π(a|s, z)
and z∗.

1: Initialize policy network π(a|s, z), hindsight informa-
tion extractor Iθ : τ → z, and the optimal context
embedding z∗.

2: while not converged do
3: Sample a batch of trajectories from D: {τ}B ∼ D.
4: Update π(a|s, z) and Iθ(·) with sampled {τ}B using

LHIM.
5: Sample a batch of preferences from D≻:

{(τ i, τ j , y)}B ∼ D≻.
6: Update Iθ(·) and the optimal z∗ with sampled

{(τ i, τ j , y)}B using LPM.
7: end while

the encoder to extract features to which the human labeler
pays more attention. In contrast, a better hindsight infor-
mation encoder, on the other hand, accelerates the search
process for the optimal trajectory in the high-level embed-
ding space. In this way, the loss function for the encoder
consists of two parts: 1) a hindsight information matching
loss in a supervised style as in Eq.6 and 2) a triplet loss as in
Eq.8 to better incorporate the binary supervision provided
by the preference-labeled dataset.

4.3. Training Objectives & Implementation Details

In our experiment, we consolidate ℓ in Eq.6 as MSE Loss
and in Eq.8 as Euclidean Distance. In this case, we model
z∗ as a point in the z−space, and the similarity measure ℓ is
L2 distance. An alternative option is to model z∗ as a point
sampled from a learned distribution in the z−space, where
ℓ is a measurement between two distributions, such as the
KL divergence. Also, we add a normalization loss Lnorm
to constrain the L2 norm of all embeddings generated by
hindsight information extractor Iθ.

Ltotal := LHIM + αLPM + βLnorm (9)

The architecture overview of OPPO is shown in Fig.2.
OPPO models the hindsight information extractor Iθ as
an encoder network Iθ : τ → z and we use the BERT archi-
tecture. Furthermore, similar to DT (Chen et al., 2021), we
use the GPT architecture to model π(a|s, z), which predicts
future actions via autoregressive modeling. For specific hy-
perparameter selection during the training process, please
refer to the detailed description in Appendix A.1.3. Algo-
rithm 1 details the training of OPPO, and the entire process
is summarized as follows: 1) We sample a batch of trajec-
tories from the dataset D; 2) In Line 4, we use Eq.6 (the
hindsight information matching loss) to update π(a|s, z)

and Iθ(·) based on sampled trajectories; consequently, given
the z extracted out of an offline trajectory by the extractor,
the policy is able to reconstruct it; 3) Then, we sample a
batch of preferences from the labeled dataset D≻; 4) Finally,
in Line 6, we update Iθ(·) and z∗ based on the sampled
{(τ i, τ j , y)}B using Eq.8, making the optimal embedding
z∗ near to the more preferred trajectory z+, and meanwhile
further away from the less preferred trajectory z−.

In summary, OPPO learns a contextual policy π(a|s, z),
a context (hindsight information) encoder Iθ(τ), and the
optimal context, z∗, for the optimal trajectory τ∗. Compared
with previous PbRL works (first learning a reward function
with Eq.2 and then learning offline policy with off-the-shelf
offline RL algorithms), OPPO learns the optimal (offline)
policy (π(a|s, z∗)) directly and thus avoids the potential
information bottleneck caused by the limited information
capacity of scalar reward assignment. Compared with the
HIM-based offline RL algorithms (e.g., DT (Chen et al.,
2021) and RvS-G (Emmons et al., 2021)), OPPO does not
need to manually specify the target context for the rollout
policy π(a|s, ·) at the testing phase.

5. Experiments
In this section, we evaluate and compare OPPO to other
baselines in the offline PbRL setting. A central premise
behind the design of OPPO is that the learned hindsight
information encoder Iθ(·) can capture preferences over dif-
ferent trajectories, as described by Eq.8. Our experiments
are therefore designed to answer the following questions:

1. Does OPPO truly capture the preference? In other
words, does the learned z-space (encoded by the
learned Iθ(·)) align with the given preference? Please
refer to Section 5.1.

2. Can the learned optimal contextual policy π(a|s, z∗)
outperform the policy π(a|s, z) that is conditioned on
any other context z ∈ {Iθ(τ)|τ ∈ D}? Please refer to
Section 5.2.

3. Can OPPO achieve the competitive performance com-
pared with other offline PbRL baselines? Please refer
to Section 5.3.

4. What benefits can we gain from designing the one-
step offline PbRL, i.e., iteratively conducting offline
data modeling (Eq.6) and preference modeling (Eq.8)?
Please refer to Section 5.4.

5. How does OPPO behave in terms of the amount of
preference feedback? Please refer to Section 5.5.

6. Can OPPO attain satisfactory results by incorporating
preference from real human instead of scripted teacher?
Please refer to Section 5.6.

6



Beyond Reward: Offline Preference-guided Policy Optimization

Figure 3. We utilize t-SNE to visualize the z-space learned in Hopper environment, encoded with a well-trained Iθ(·), including
the embedding of random trajectories in D, our learned z∗ (“orange dot”) and the actual optimal z∗∗ (“red dot”), embedding of the
best trajectory/policy learned with online reinforcement learning method. Color of the points represent the normalized return of the
corresponding trajectory τ .

To answer the above questions, we evaluate OPPO on the
continuous control tasks from the D4RL benchmark (Fu
et al., 2020). Specifically, we choose Hopper, Walker, and
Halfcheetah as three base tasks, with medium, medium-
replay, medium-expert as the datasets for each task.

Table 2. Comparison of (normalized) performance when rollout-
ing the contextual policy π(a|s, ·) conditioned on different context
(z∗, zhigh, and zlow).

Environment Dataset z∗ zhigh zlow

Hopper
Medium-Expert 108.0 ± 5.1 94.2 ± 24.3 79.1 ± 28.8
Medium 86.3 ± 3.2 55.8 ± 7.9 51.6 ± 13.8
Medium-Replay 88.9 ± 2.3 78.6 ± 26.3 26.6 ± 15.2

Walker
Medium-Expert 105.0 ± 2.4 106.5 ± 9.1 93.4 ± 7.4
Medium 85.0 ± 2.9 64.9 ± 24.9 72.6 ± 10.6
Medium-Replay 71.7 ± 4.4 55.7 ± 24.8 6.8 ± 1.7

Halfcheetah
Medium-Expert 89.6 ± 0.8 48.3 ± 14.4 42.6 ± 2.6
Medium 43.4 ± 0.2 42.5 ± 3.9 42.4 ± 3.2
Medium-Replay 39.8 ± 0.2 35.6 ± 8.5 33.9 ± 9.2

Sum 717.7 581.9 448.9

5.1. Can z-space align well with given preferences?

In this subsection, we probe that OPPO can enable well-
aligned preferences over the z-space encoded by the learned
Iθ. We first sample random trajectories from the offline
dataset D, and encode them with the learned Iθ, and utilize
t-SNE (van der Maaten & Hinton, 2008) as a tool to visu-
alize the encoded z, shown in Fig.3. The learned optimal
z∗ is marked with an orange dot. Besides, we also mark
the (embedding of) optimal trajectory in the D4RL expert
dataset, generated by the learned online optimal policy, with
a red dot (z∗∗).

According to Eq.8, embeddings near the actual optimal
z∗∗ in z-space means they are more preferable implied by
the preference label. Comparing the sampled trajectories
(embeddings), we find OPPO successfully captures the pref-
erence. As illustrated in Fig.3, the trajectories (embeddings)

that are near z∗∗ often have high returns (points with a
deeper color). Further, we observe that our learned optimal
z∗ constantly stays close to actual optimal z∗∗, which sug-
gests that our learned z∗ preserves near-optimal behaviors.
Thus, it gives justification that OPPO can make meaningful
preference modeling.

5.2. Can π(a|s, z∗) achieve better performance?

Fig.3 shows that our learned Iθ(·) can produce a well-
aligned context embedding z-space exhibiting effective
preference modeling across (embeddings of) trajectories.
More importantly, context embeddings’ preference property
should be preserved when we condition the context on the
learned contextual policy π(a|s, ·). In other words, Iθ(·)
should transfers the preference relationship from (τ i, τ j) to
(ℓ(zi, z∗), ℓ(zj , z∗)); further, rolling out the contextual pol-
icy π(a|s, ·), (τzi , τzj ) should similarly preserve the above
preference relationship.

To show that, we compare the performance of rollouts by
the contextual policy π(a|s, ·) conditioned on different con-
texts in Table 2. We choose three context embeddings: z∗,
zhigh (embedding of the trajectory with the highest return in
D), and zlow (embedding of the trajectory with the lowest
return in D) and provide respective rollout performances
(averaged over 3 seeds). We discover that the contextual
policy π(a|s, z) conditioned on z with a high (or low) return
(of corresponding trajectory τ = I−1

θ (z)) obtains an actual
high (or low) return when rollouting this policy in the envi-
ronment, e.g., π(a|s, zhigh) performs better than π(a|s, zlow)
(thus preserving the hindsight preference relationship). Fur-
ther, when conditioned on the learned optimal z∗, π(a|s, z∗)
produces the best performance over that conditioned on
all other offline embeddings. Notice that our learned opti-
mal π(a|s, z∗) performs better than the contextual policy
π(a|s, zhigh). This result implies that the trajectory of our
optimal policy is generally better than other trajectories in
the offline dataset.
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Table 3. Performance comparison between OPPO and 4 offline (PbRL) baselines (DT+r, DT+rψ , CQL+r, and IQL+r) in D4RL Gym-
Mujoco tasks, where results are reported over 3 seeds.

Environment Dataset Ours DT+r DT+rψ CQL+r IQL+r BC

Hopper
Medium-Expert 108.0 ± 5.1 111.0 ± 0.5 95.6 ± 27.3 111.0 91.5 79.6
Medium 86.3 ± 3.2 76.6 ± 3.9 73.3 ± 3.0 58.0 66.3 63.9
Medium-Replay 88.9 ± 2.3 87.8 ± 4.7 72.5 ± 22.2 48.6 94.7 27.6

Walker
Medium-Expert 105.0 ± 2.4 109.2 ± 0.3 109.7 ± 0.1 98.7 109.6 36.6
Medium 85.0 ± 2.9 80.9 ± 3.1 81.1 ± 2.1 79.2 78.3 77.3
Medium-Replay 71.7 ± 4.4 79.6 ± 3.1 80.4 ± 4.4 26.7 73.9 36.9

HalfCheetah
Medium-Expert 89.6 ± 0.8 86.8 ± 1.3 88.4 ± 0.7 62.4 86.7 59.9
Medium 43.4 ± 0.2 43.4 ± 0.1 43.2 ± 0.2 44.4 47.4 43.1
Medium-Replay 39.8 ± 0.2 39.2 ± 0.3 38.8 ± 0.3 46.2 44.2 4.3

Sum 717.7 714.5 683.0 575.2 692.4 429.2

5.3. Performance of OPPO on Benchmark Tasks with
Scripted Teacher

We have shown that OPPO produces a near-optimal con-
text z∗, and the learned contextual policy π(a|s, ·) can pre-
serve the hindsight preference. This subsection investigates
whether the optimal policy π(a|s, z∗) can achieve compet-
itive performance on the offline (PBRL) benchmark. For
comparison, we consider three offline PbRL methods and
BC as baselines: 1) DT+r: performing Decision Trans-
former (Chen et al., 2021) with ground-truth reward func-
tion, and the results are run by us; 2) DT+rψ: performing
Decision Transformer with a learned reward function (using
Eq.2); 3) CQL+r: performing CQL (Kumar et al., 2020)
with ground-truth reward function; 3) IQL+r: performing
IQL with ground-truth reward function, the results are re-
ported from IQL (Kostrikov et al., 2022); 4) BC: performing
bahavior cloning on the dataset, the results are reported from
DT (Chen et al., 2021).

In Table 3, we show the performance of OPPO and baselines.
We have the following observations. 1) OPPO has retained a
comparable performance against the Decision Transformer
trained using true rewards. OPPO is a PbRL approach
requiring only (human) preferences, which have a more
flexible and straightforward form of supervision in the real
world. 2) Although DT+rψ also shows competitive results
in these benchmarks, such a method needs a target of return-
to-go determined by the human prior 1. Our method, in
contrast, avoids the need for such a prior target by searching
across the z-space. We argue that our searching method
brings advantages because rewards are usually hard to obtain
in real-world RL applications, where the preference is the
only information accessible for training and deploying an
RL method.

1Preference-based relabelled rewards only participate in the
training phase. During the evaluation phase of DT+rψ , we pass in
the same target return-to-go value as in the original DT paper.

Table 4. Ablation study of one-step paradigm in Medium-Replay
Dataset

Task OPPO OPPO-a

Hopper 88.9 ± 2.3 78.3 ± 7.1
Walker 71.7 ± 4.4 66.3 ± 1.6
HalfCheetah 39.8 ± 0.2 39.6 ± 0.1

Sum 200.4 184.2

5.4. Benefits of One-step Offline PbRL

We conduct an ablation study to analyze the benefit of iterat-
ing LHIM and LPM (for updating Iθ) in an one-step paradigm.
Firstly, we remove Iθ from ∂LPM/∂θ and only keep the opti-
mal embedding z∗ to be updated in Eq.8. Then, we continue
to visualize the embedding z-space for this ablation set-
ting (OPPO-a), the t-SNE visualization shown in Fig.4. By
comparing Fig.4 to Fig.3, we can see that the preference
relationship in the embedding space (learned with OPPO-a)
is all shuffled. In a less expressive z-space, it is challenging
to model the preference and find the optimal z∗. Further,
as shown in Table 4, the comparison results of medium-
replay tasks demonstrate that such an ablation does cause
the performance degradation.

Table 5. Ablation study of feedback quantity

Dataset 50k 1k 500

Medium-Expert 108.0 ± 5.1 102.9 ± 3.2 104.9 ± 4.1
Medium 86.3 ± 3.2 90.8 ± 2.0 77.5 ± 12.8
Medium-Replay 88.9 ± 2.3 60.4 ± 3.0 68.5 ± 22.8

Sum 283.1 254.2 250.9

5.5. Performance with Different Amount of Preference
Feedback

For the Hopper task, we evaluate the impact of different
amounts of preference labels on the performance of OPPO
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Figure 4. t-SNE visualization of the embedding space learned with OPPO-a in Hopper environment.

and show the results in Table 5. Specifically, OPPO is
evaluated using the labels amount from 50k, 1k, 500, on
the dataset from Medium-Expert, Medium, Medium Replay.
As illustrated in the Table 5, OPPO performs the best when
given 50k preference labels and achieves a total normalized
score of 283.1 among the three datasets. However, the
performance decreases at around 250 for feedback amount
decreases to 1k and 500. Therefore, OPPO is robust to the
variation in terms of the amount of preference feedback used
for training.

Table 6. Performance OPPO with preference from real human,
where results are reported over 3 seeds.

Environment Dataset IQL+r IQL+PT OPPO

Hopper Medium-Expert 73.6 ± 41.5 69.0 ± 33.9 107.8 ± 1.6
Medium-Replay 83.1 ± 15.8 84.5 ± 4.1 93.1 ± 1.3

Walker Medium-Expert 107.8 ± 2.0 110.1 ± 0.2 106.4 ± 1.1
Medium-Replay 73.1 ± 8.1 71.3 ± 10.3 74.9 ± 0.7

Locomotion Sum 337.47 334.9 382.2

Lift Proficient-Human 96.8 ± 1.8 91.8 ± 5.9 94.7 ± 1.2
Multi-Human 86.8 ± 2.8 86.8 ± 6.0 98.7 ± 2.3

Can Proficient-Human 74.5 ± 6.8 69.7 ± 5.9 75.3 ± 10.1
Multi-Human 56.3 ± 8.8 50.5 ± 6.5 86.7 ± 12.7

Robosuite Sum 314.3 298.7 355.3

5.6. Performance of OPPO on Benchmark Tasks with
Real Human Teacher

We have conducted additional experiments using real
human-labeled data on the Hopper and Walker tasks. The hu-
man preferences we used are obtained from the open-source
dataset of PT (Kim et al., 2023), which is collected from
actual human familiar with robotic tasks. Also, we have
carried out experiments on the Robomimic dataset (Man-
dlekar et al., 2022), which offers a set of offline datasets
on 7-DoF robot manipulation domains. In our experiments,
we test our method on two tasks (Lift and Can), where the
offline data are collected by either one proficient human
teleoperators (Proficient-Human) or multiple human tele-
operators with varying proficiency (Multi-Human), and the
preference labels are also labeled by real human. In Table 6,
we compare OPPO to IQL+r (Kostrikov et al., 2022) and

IQL+PT (Kim et al., 2023). We find that our method outper-
forms IQL+PT in most tasks, and even achieves competitive
or better preformance than IQL+r.

To sum up, through six experiments and the visualization
of the results, we demonstrate that the z-space learned by
the encoder is informative and visually interpretable. Be-
sides, the ablation study proves that a preference-guided em-
bedding space of context could improve task performance
asymptotically by a non-neglectable margin. Moreover,
OPPO can find an embedding to represent the context of the
optimal trajectory, where the resulting trajectory is better
than any offline trajectory in the dataset. Last but not least,
in the offline setting with environment interaction disabled,
our paradigm can acquire the optimal behaviors using bi-
nary preference labels between sub-optimal trajectories. As
shown in the experiment results, OPPO achieves a competi-
tive performance over DT trained using either true rewards
or pseudo rewards.

6. Conclusion
This paper introduces offline preference-guided policy opti-
mization (OPPO), a one-step offline PbRL paradigm. Un-
like the previous PbRL approaches that learn policy from a
pseudo-reward function (learning a separate reward function
is a prerequisite), OPPO directly optimizes the policy in a
high-level embedding space. To enable that, we propose an
offline hindsight information matching (HIM) objective and
a preference modeling objective. Empirically, we show that
iterating the above two objectives can produce meaningful
and preference-aligned embeddings of context. Moreover,
conditioned on the learned optimal context, our HIM-based
contextual policy can achieve competitive performance on
standard offline (PbRL) tasks.
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R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O.,
Schaul, T., Lillicrap, T., Kavukcuoglu, K., Hassabis, D.,
Apps, C., and Silver, D. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nature, 575
(7782):350–354, October 2019. ISSN 0028-0836, 1476-
4687. doi: 10.1038/s41586-019-1724-z. URL https:
//doi.org/10.1038/s41586-019-1724-z.

Wainwright, M. J., Jordan, M. I., et al. Graphical models,
exponential families, and variational inference. Founda-
tions and Trends® in Machine Learning, 1(1–2):1–305,
2008.

Warnell, G., Waytowich, N. R., Lawhern, V. J., and Stone,
P. Deep TAMER: Interactive agent shaping in high-
dimensional state spaces. arXiv: Artificial Intelligence,
2017.

Watkins, C. J. C. H. Learning from delayed rewards. 1989.

Wattenberg, M., Viégas, F., and Johnson, I. How to
use t-sne effectively. Distill, 2016. doi: 10.23915/
distill.00002. URL http://distill.pub/2016/
misread-tsne.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

Zhuang, Z., LEI, K., Liu, J., Wang, D., and Guo, Y. Be-
havior proximal policy optimization. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=3c13LptpIph.

12

https://doi.org/10.1038/nature24270
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
http://distill.pub/2016/misread-tsne
http://distill.pub/2016/misread-tsne
https://openreview.net/forum?id=3c13LptpIph
https://openreview.net/forum?id=3c13LptpIph


Beyond Reward: Offline Preference-guided Policy Optimization

A. Appendix
A.1. Implementation details

A.1.1. CODEBASE.

Our code is based on Decision Transformer2, and our implementation of OPPO is available at:
https://github.com/bkkgbkjb/OPPO

A.1.2. OPENAI GYM.

We choose the OpenAI Gym continuous control tasks from the D4RL benchmark (Fu et al., 2020). The different dataset
settings are described below.

• Medium: 1 million timesteps generated by a ”medium” policy that achieves approximately one-third of the score of an
expert policy.

• Medium-Replay: the replay buffer of an agent trained to the performance of a medium policy (approximately 25k-400k
timesteps in our environments).

• Medium-Expert: 1 million timesteps generated by the medium policy concatenated with 1 million timesteps generated
by an expert policy.

For details of these environments and datasets, please refer to D4RL for more information.

A.1.3. HYPERPARAMETERS

During the offline HIM phase, we weighted sum all three losses as in Eq.9 (with ratios listed in Table 7) and perform
backpropagation, while in Preference Modeling phase, only LPM is computed and backpropagated.

Table 7. Hyperparameters of coefficients of combined losses during Offline HIM.

Hyperparameter Value

α 0.25 for halfcheetah-medium-expert
0.5 for others

β 0.05 for halfcheetah-medium-expert
0.1 for others

Our hyperparameters on all tasks are shown below in Table 8 and Table 9. Models were trained for 105 gradient steps using
the AdamW optimizer Loshchilov & Hutter (2017) following PyTorch defaults.

Table 8. Hyperparameters of z∗ searching for OpenAI Gym experiments.

Hyperparameter Value

Number of dimensions 8 for halfcheetah
16 for others

Amount of feedback 50k
Type of optimizer AdamW
Learning rate 10−2 for halfcheetah-medium-expert

10−3 for others
Weight decay 10−4

Margin 1

2https://github.com/kzl/decision-transformer
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Table 9. Hyperparameters of Transformer for OpenAI Gym experiments.

Hyperparameter Value

Number of layers 3
Number of attention heads 2 for encoder transformer

1 for decision transformer
Embedding dimension 128
Nonlinearity function ReLU
Batch size 64
context length K 20
Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 105 training steps

A.1.4. COMPUTATIONAL RESOURCES.

The experiments were run on a computational cluster with 20x GeForce RTX 2080 Ti, and 4x NVIDIA Tesla V100 32GB
for about 20 days.

A.2. Additional results

A.2.1. MORE VISUALIZATION RESULTS ON z-SPACE.

We further show the t-sne results of OPPO in 5 with the setting described in Section 5.1 in Walker and HalfCheetah
environments.

(a) walker

(b) halfcheetah

Figure 5. t-SNE of OPPO in Qalker and HalfCheetah including the embedding of random trajectories in D, the colors of the points
represent the normalized return of the corresponding trajectory τ .
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Our primary purpose of using t-SNE is for visualization, to illustrate the structure of the learned z-space in a more intuitive
rather than quantitative manner. While t-SNE results are known to be hyper-parameter dependent (Wattenberg et al., 2016),
we have included in Table 10 that listing the euclidean distances of z∗ from z∗∗ on different tasks.

Table 10. Euclidean distances of z∗ from z∗∗ on different tasks.

Environment Dataset ||z∗ − z∗∗||2
[Min, Lower quartile, Median,

Upper quartile, Max]
Percentile
Rank (PR)

Hopper Medium-Expert 12.68 [12.40, 13.29, 14.19, 15.01, 16.37] 97.9%
Medium 15.50 [13.20, 13.92, 14.81, 15.70, 17.23] 30.1%
Medium-Replay 13.33 [12.13, 13.24, 13.98, 14.83, 16.45] 72.0%

Walker Medium-Expert 13.16 [12.62, 13.02, 14.13, 15.02, 16.40] 71.2%
Medium 12.86 [12.01, 12.84, 13.21, 14.03, 15.79] 74.1%
Medium-Replay 14.26 [10.90, 12.39, 13.14, 13.58, 15.18] 6.7%

HalfCheetah Medium-Expert 10.42 [10.34, 10.82, 12.35, 12.71, 13.85] 99.7%
Medium 3.22 [3.19, 3.40, 4.15, 4.54, 5.80] 99.9%
Medium-Replay 1.89 [1.53, 1.98, 2.92, 3.69, 4.24] 79.9%

To provide some context, we also calculated the distances between the embeddings of trajectories in each dataset and z∗,
then gathered the minimum, lower quartile, median, upper quartile, and maximum values in Table 10. Additionally, we
included percentile rankings for the distances between z∗ and z∗∗ within each dataset.

The results confirm the intuitions from the t-SNE plots, and the percentile rank maybe more informative.

A.2.2. MORE RESULTS OF ABLATION STUDY OF ONE-STEP PARADIGM

We also show the t-sne results of the corresponding ablation study in 6 with the setting described in Section 5.4 in Walker
and HalfCheetah environments.

(a) walker

(b) halfcheetah

Figure 6. t-SNE visualization of the embedding space learned with OPPO-a in walker and halfcheetah environments.
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By comparing Fig.6 to Fig.5, we discover that the structure of z-space significantly collapses in eight out of nine environments
(except for halfcheetah medium-replay). More specifically, we can no longer recognize the distribution pattern and clusters
that emerged in Fig.5, while such an observation is in line with our conclusion in the main text.

Table 11. Ablation study of one-step paradigm

Environment Dataset OPPO OPPO-a

Hopper
Medium-Expert 108.0 ± 5.1 103.5 ± 4.4
Medium 86.3 ± 3.2 69.2 ± 7.4
Medium-Replay 88.9 ± 2.3 78.3 ± 7.1

Walker
Medium-Expert 105.0 ± 2.4 108.8 ± 1.0
Medium 85.0 ± 2.9 80.7 ± 1.5
Medium-Replay 71.7 ± 4.4 66.3 ± 1.6

HalfCheetah
Medium-Expert 89.6 ± 0.8 90.1 ± 1.4
Medium 43.4 ± 0.2 43.4 ± 0.2
Medium-Replay 39.8 ± 0.2 39.6 ± 0.1

Sum 717.7 679.8

However, it is also worth noting that the performance of OPPO-a in the D4RL benchmark is not hindered much by this
uninformative z-space, as shown in Table 11. We attribute this to the effectiveness of the preference modeling phase, where
our method is still able to find a meaningful z∗ in a less expressive z-space.

This is also justified from t-SNE(Fig.6) as there our learned z∗ (orange dot) locates just in the point of deep color.
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