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Abstract

Large language models (LLMs) have achieved remarkable progress in complex
reasoning tasks, yet they remain fundamentally limited by their reliance on static
internal knowledge and text-only reasoning. Real-world problem solving often
demands dynamic, multi-step reasoning, adaptive decision making, and the abil-
ity to interact with external tools and environments. In this work, we introduce
ARTIST (Agentic Reasoning and Tool Integration in Self-improving Transformers),
a unified framework that tightly couples agentic reasoning, reinforcement learning,
and tool integration for LLMs. ARTIST enables models to autonomously decide
when, how, and which tools to invoke within multi-turn reasoning chains, lever-
aging outcome-based RL to learn robust strategies for tool use and environment
interaction without requiring step-level supervision. Extensive experiments on
mathematical reasoning and multi-turn function calling benchmarks show that
ARTIST consistently outperforms state-of-the-art baselines, with up to 20% ab-
solute improvement over base models and strong gains on the most challenging
tasks. Detailed studies and metric analyses reveal that agentic RL training leads to
deeper reasoning, more effective tool use, and higher-quality solutions. Our results
establish agentic RL with tool integration as a powerful new frontier for robust,
interpretable, and generalizable problem-solving in LLMs.

1 Introduction

Large language models (LLMs) have achieved strong results in complex reasoning tasks [43} [17]
due to advances in architecture, scale, and training with reinforcement learning (RL) [36], further
improving reasoning by enabling models to refine strategies using outcome-based rewards [33}152].
However, RL-enhanced LLMs remain limited by their reliance on internal knowledge and language
modeling [41]], which is problematic for time-sensitive or knowledge-intensive tasks where static
knowledge may be outdated or incomplete [[14]. These models also struggle with tasks requiring
precise computation, structured manipulation, or specialized tool use, underscoring the need for
integrating external information sources.
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Figure 1: The ARTIST architecture. Agentic reasoning interleaves text-based thinking, tool queries,
and outputs to coordinate reasoning, tool use, and environment interaction within a unified framework.

Agentic reasoning enables LLMs to interact dynamically with external resources such as web
search, code execution, API calls, and structured memory and environments like web browsers
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or operating systems [45, 26| 150, 4]. This allows models to coordinate tool use and adaptively
manage research, computation, and logical deduction [44, 30]. Many real-world tasks, including
mathematical reasoning [22]], multi-step derivations, and programmatic data analysis [49]], require
capabilities beyond language modeling. Frameworks like BFCLv3 [47]] enable specialized function
calls, while agentic environments such as WebArena support autonomous web interactions. In math,
libraries like SymPy [21] provide greater accuracy and efficiency than text-based reasoning alone.

However, current tool-integration strategies face scalability and robustness challenges [33]], often
relying on hand-crafted prompts or heuristics that do not generalize to complex or unseen scenar-
ios [19]]. While prompting [[10]] and supervised fine-tuning [[L1, [25]] can teach tool use, these methods
are limited by curated data and often fail to adapt or recover from tool failures, highlighting the need
for scalable, data-efficient, and adaptive tool-use frameworks.

We introduce ARTIST (Agentic Reasoning and Tool Integration in Self-Improving Transformers),
a framework for agentic reasoning through tool integration. ARTIST enables LLMs to learn strate-
gies for leveraging external tools and interacting with complex environments via reinforcement
learning (see Figure[I). “Self-improving” refers to models that iteratively generate and learn from
their own solutions, progressively tackling harder problems while maintaining the transformer ar-
chitecture. Tool usage is interleaved within the reasoning chain, including active interaction with
environments such as web browsers or operating systems. The process alternates between text-based
thinking (<think>. . .</think>), tool queries (<tool_name>...</tool_name>), and tool outputs
(<output>. . .</output>), enabling coordinated reasoning, tool use, and environment interaction.

This agentic structure allows the model to autonomously determine not only which tools to use,
but also when and how to invoke them during multi-turn reasoning, adapting its strategy based
on context and feedback from the environment and tool outputs. Tool results inform subsequent
reasoning, forming a tightly coupled loop between inference and tool-augmented actions. ARTIST
does not require supervision for intermediate steps or tool calls; instead, it uses reinforcement learning
specifically, the GRPO [33] algorithm with only outcome-based rewards, enabling LLMs to develop
adaptive and generalizable tool-use behaviors.

We evaluate ARTIST on complex mathematical problem solving and multi-turn function calling using
benchmarks such as MATH-500 [[13], AIME [1], AMC [2]], Olympiad Bench [12]], 7-bench [48]],
and BFCL v3 [47]. We benchmark ARTIST on 7B and 14B Qwen2.5-Instruct models [28]] and
compare against four categories of baselines: base models, reasoning-optimized models, open-source
tool-augmented models, and prompt-based tool integration models, as well as frontier LLMs.

ARTIST achieves substantial performance gains with minimal training, requiring only about 500
steps and 5-10 hours of computation on 8xH100s, demonstrating efficient and scalable learning
of robust agentic behaviors. Across all benchmarks, ARTIST consistently outperforms baselines,
achieving up to 20% absolute improvement over base models in mathematical reasoning. Notably,
ARTIST with 7B models outperforms GPT-40, and when combined with reasoning-optimized
models such as DeepSeek-Distilled-7B, ARTIST surpasses even frontier reasoning models like
DeepSeek-R1 on challenging tasks such as MATH and Olympiad. For multi-turn function calling,
ARTIST improves accuracy by up to 8% on 7-bench and up to 16 % on the most challenging BFCL
v3 subsets compared to base and prompt-based models. Ablation and metric analyses confirm that
agentic RL training in ARTIST leads to deeper reasoning, more effective tool use, and higher-quality
solutions, with agentic reasoning behaviors such as adaptive tool selection, iterative self-correction,
and context-aware multi-step reasoning observed across both domains.

Our key contributions are:

* Unified agentic RL framework: We present ARTIST, a framework that tightly couples agentic
reasoning, reinforcement learning, and dynamic tool integration, enabling adaptive multi-turn
problem solving across different classes of tools, models, and tasks.

* Generalizable tool use and environment interaction: ARTIST supports seamless integration with
arbitrary external tools and environments, allowing LLMs to learn which tools to use, as well as
when and how to invoke them within complex reasoning chains.

» Extensive, rigorous evaluation: We conduct comprehensive evaluation across mathematical and
multi-turn function calling tasks, multiple benchmarks, model scales, and baseline categories,
including detailed ablation and metric analyses.
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Figure 2: Overview of the ARTIST methodology. Reasoning rollouts alternate between internal
thinking, tool use, and environment interaction.

2 ARTIST Overview

We present ARTIST, a general and extensible framework that enables LLMs to reason with and
act upon external tools and environments via RL. Unlike prior methods [31}|10] that are limited to
isolated tool use or narrow domains, ARTIST integrates diverse tools including code interpreters, web
search, and APIs and supports interaction with environments such as web browsers and operating
systems. This section describes the methodology, RL training, and reward modeling.

Methodology. ARTIST treats tool usage and environment interaction as core elements of the
reasoning process. The LLM dynamically selects which tools or environments to engage, when
to invoke them, and how to incorporate their outputs into multi-step solutions, supporting a wide
range of real-world tasks. For each input, the policy model generates rollouts that alternate between
text-based reasoning (<think>. . .</think>) and tool interactions. At each step, the model selects
and invokes the appropriate tool based on context, incorporates the tool output, and updates its
reasoning chain (see Figure 2)). This iterative process enables flexible, adaptive strategies for complex
tasks and supports self-correction and refinement through ongoing interaction with external resources.

2.1 Reinforcement Learning Algorithm

We train ARTIST with Group Relative Policy Optimization (GRPO), a sample-efficient RL algorithm
that optimizes policies through groupwise outcome comparisons, eliminating the need for value
function approximation and a separate critic network, thereby lowering training cost and simplifying
optimization [33| |8]. In ARTIST, rollouts alternate between reasoning steps and tool outputs to
capture interactions with external tools and environments. To ensure the model learns when and how
to invoke tools rather than reproducing their outputs, tool tokens are masked during loss computation
and only model-generated tokens are optimized. For instance, if Python code execution yields a
deterministic result, updates apply to the reasoning and code generation steps but not to the returned
output. This adaptation directs learning toward effective decision-making and tool selection. Full
training details and the optimization objective are in Appendix [A]l

2.2 Rollouts in ARTIST

In ARTIST, rollouts alternate between internal reasoning and interaction with external tools or
environments. ARTIST uses a structured prompt template with four segments: (1) internal reasoning
(<think>...</think>), (2) tool or environment queries (<tool_name>...</tool_name>), (3) tool
outputs (<output>...</output>), and (4) the final answer (<answer>...</answer>). After each
tool query, the model invokes the tool or environment, appends the output, and continues reasoning
until the answer is produced. The complete template is in Appendix [B] At each step, the policy model
decides whether to continue reasoning or interact with an external resource. Tool invocations may
include code execution, API calls, web search, file operations, or actions in interactive environments.
Tool outputs are incorporated into the reasoning chain, allowing for iterative refinement and adaptive
strategy adjustment. Illustrative rollout examples are in Appendix [C|

2.3 Applications

We illustrate the versatility of ARTIST on mathematical reasoning and multi-turn function calling,
both separately and jointly, to test domain-specific performance and cross-task generalization. In all



cases, ARTIST demonstrates adaptive tool use, robust error handling, and context-aware reasoning,
guided by a structured reward design.

2.3.1 Complex Mathematical Reasoning with Agentic Tool Use

LLMs often struggle with mathematical problems requiring precise, multi-step calculations such
as multiplying large numbers or evaluating definite integrals. ARTIST addresses this by integrating
an external Python interpreter, allowing the model to offload complex computations and verify
intermediate results programmatically.

Prompt Template. During rollouts, the model structures its output using tags: internal reason-
ing (<think>), code for execution (<python>), tool outputs (<output>), and the final answer
(<answer>). The full prompt template is in Appendix [B]

Reward Design. Three reward components guide RL training:

* Answer Reward: The model receives a reward of 2 if the final answer exactly matches the ground
truth, and 0 otherwise: Ranswer = 2 if Ypred = Yeround» 0 otherwise.

* Format Reward: To encourage structured outputs, we provide both relaxed and strict format
rewards:
— Relaxed: For each of the four required tag pairs (<think>, <python>, <output>, <answer>)
present in the rollout, a reward of 0.125 is given, up to a maximum of 0.5.

— Strict: An additional reward of 0.5 is awarded if (1) all tags are present, (2) the internal order of
opening/closing tags is correct, and (3) the overall structure follows the sequence: <think> —
<python> — <output> — <answer>.

* Tool Execution Reward: This reward is proportional to the fraction of successful Python code
executions: Ryol = T0o0lgccess / TOOLotal-

2.3.2 Multi-Turn Function Calling with Agentic Reasoning and Tool Use

Function calling is essential for agentic LLMs, allowing models to invoke external functions for
tasks such as information retrieval, deterministic operations, and workflow automation. This creates
an interactive environment where the agent must coordinate multiple function calls, manage state,
and engage with users over extended dialogues. For example, booking a flight involves sequential
tool calls for checking availability, reserving a seat, and processing payment, each requiring state
updates. Mastering when and how to issue these calls is critical for multi-turn reasoning. We evaluate
ARTIST on BFCL v3 [47] and 7 Bench [48]], which assess long-context reasoning, user interaction,
and cascaded function execution.

Prompt Template. The model is prompted to reason step by step using <think>...</think> tags,
followed by function calls within <tool_call>...</tool_call> tags. The full prompt template is

in Appendix
Reward Design. We use two reward components for function calling tasks:

» State Reward: Relaxed reward proportional to the fraction of correctly tracked state variables

(e.g., working directory, selected files) across multi-turn interactions: Rggp,e = 0.5 X %‘Zm;l“

* Function Reward: Strict reward for correctly matching all function calls (by name and arguments)
with the ground truth: Rgyneion = 0.5 if all functions matched, and 0 otherwise

2.4 Example Analysis and Agentic Reasoning Behaviors

We present numerous examples across both applications and diverse settings in Appendix [J| and
Appendix [K] These examples illustrate how ARTIST decomposes complex math problems, alternates
between reasoning and tool use, and adapts its strategy based on feedback. In multi-turn function
calling, ARTIST interprets user requests, manages state, and recovers from tool errors. Such examples
clarify the practical impact of agentic reasoning with tool use for real-world, multi-step tasks.

Across both domains, ARTIST consistently exhibits key agentic reasoning behaviors:

* Self-Refinement: The model incrementally revises its strategy, such as restructuring code in math
or reordering actions in workflows—in response to intermediate results or changing requirements.



* Self-Correction: When encountering errors (e.g., tool execution failures, unmet preconditions),
ARTIST diagnoses the issue and adapts its subsequent actions, often retrying with corrected input.

* Self-Reflection: At each step, the model explains its reasoning, summarizes the state, confirms
details with the user, and validates outcomes through repeated computation or cross-verification.

These behaviors contribute to ARTIST’s strong performance and reliability on complex, real-world
tasks, highlighting the value of unified agentic reasoning and tool integration.

3 Experimental Setup

Dataset and Evaluation Metrics. We evaluate ARTIST in two domains: complex mathematical
problem solving and multi-turn function calling. For math, we train on 20,000 grade-school problems
from NuminaMath [18] and evaluate on four challenging benchmarks (MATH-500 [13], AIME [1],
AMC [2], and Olympiad Bench [12]]) that require advanced multi-step reasoning. For function
calling, due to the lack of large real-world datasets, we use 100 realistic queries from BFCL v3 [47]
for training and 100 for validation, and evaluate on BFCL v3 subcategories (missing parameters,
missing function, long context) and generalization to the new domain on 7-bench [48]. All models
and baselines are evaluated with identical settings, and prompt templates are generic across datasets.
We report Pass@1 accuracy for both domains, defined as the percentage of tasks where the model’s
final answer or environment state matches the ground truth. Additionally, we also train a model to
learn tool calling for both domains together with a training dataset which combines both training
datasets. Full dataset, and implementation details are in Appendix @] and

Baselines. We benchmark ARTIST against a comprehensive set of baselines: frontier LLMs
(Frontier), open-source tool-augmented LLMs (Tool-0S), base LLMs (Base), base LLMs
with prompt-based tool integration (Base-Prompt+Tools), and reasoning-optimized LLMs
(Reasoning-Optimized). This evaluation spans both complex mathematical reasoning and multi-
turn function calling tasks. Additional details are provided in Appendix [F}

4 Results

4.1 Results: Complex Math Reasoning

ARTIST vs. Base Models and Tool-Augmented Models. ARTIST achieves substantial improve-
ments over both base and tool-augmented models (see Table[T). For Qwen2.5-7B, ARTIST improves
over the base model by 12.9% (MATH), 13.8% (AIME), 19.2% (AMC), and 23.3% (Olympiad),
with similar gains for Qwen2.5-14B and Phi 4. When compared to base models with Python tool
integration, ARTIST achieves average improvements of 11.2% (Qwen2.5-7B) and 11.8% (Qwen2.5-
14B). These gains are most pronounced on challenging datasets like AIME, AMC, and Olympiad,
where agentic tool calling enables more effective multi-step reasoning and computation. Timely
tool invocation and integration into the reasoning chain drive improvements of up to 20 percentage
points across benchmarks.

ARTIST vs. Reasoning Models and Tool-Augmented Reasoning Models. While reasoning-
optimized models (e.g., DeepSeek-R1-Distill-Qwen-7B) are trained for strong stepwise thinking,
ARTIST demonstrates that further gains are possible by learning optimal tool-calling policies within
the reasoning process. ARTIST achieves an average improvement of 8.0% points over DeepSeek-R1-
Distill-Qwen-7B, with the largest gains on Olympiad and AMC. Notably, when tools are externally
integrated with reasoning models (e.g., DeepSeek-R1-Distill-Qwen-7B + Python tool), performance
drops sharply. This is likely due to the model’s inability to reliably follow additional tool-use
instructions, highlighting the importance of joint training for tool use and reasoning.

ARTIST vs. Frontier LLMs. ARTIST (Qwen2.5-7B and 14B) outperforms GPT-40 by 11.9% and
15.6% on MATH, 9.8% and 5.3% on AIME, 11.2% and 22.1% on AMC, and 15.3% and 16.4% on
Olympiad, respectively. Against stronger reasoning models like DeepSeek-R1, ARTIST achieves
comparable or better results on MATH and Olympiad, and narrows the gap on AIME and AMC. This
demonstrates that agentic RL and tool integration can match or exceed the performance of much
larger proprietary models, especially on the most complex tasks.

! Anonymous Code Repository: https://anonymous .4open.science/r/AgenticReasoning/
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Method MATH AIME AMC Olymp.

Base Models Method MATH AIME AMC Olymp.
Qwen2.5-7B-Ins 0620 0.040 0350 0210 T
Qwen2.5-14B-Ins 0700 0.060 0330 0240  GpT4o A —
Phi 4 0760 0.090 0460 0290  peepSeek-R1 0.850 0300 0.810 0.460

Base Model + Tools Open Source Model + Tool Integrated
Qwen2.5-7B-Ins+Py 0629 0.122 0349 0366  NuminaMath-TIR-7B  0.530 0.060 0.240 0.190

Qwen2.5-14B-Ins+ Py~ 0.671  0.10 041  0.371  TyRA Code-7B 0.460  0.000 0.100 0.160
Phi 4+py 0752 0.156 0481 0451  Qwen 7B (PAL) 0.100 0.000 0.050 0.020
ARTIST (Base Model) Reasoning Model

Qwen2.5-7B+ ARTIST ~ 0.749  0.178 0.542 0443 peepSeek-R1-Distill- ~ 0.858 0211 0.675  0.395
Qwen2.5-14B+ ARTIST 0786 0133  0.651 0454  (yuen.7B
Phi 4+ ARTIST 0.786 0.111 0.578 0.455

- Reasoning Model + Tools
Ablations (Base Model) DeepSeek-R1-Distill-  0.230 0.044 0.108 0.138
83;1(1)2).5-73 (Plain 0756  0.089 0470 0406  Quwen-7B + python tool
Qwen2.5-7B  (Condi- 0.738 0.055 0.410 0.390 ARTIST (Reasoning Models)
tional Reward) DeepSeek Qwen 7B- 0.880 0.267 0.735 0.577
Qwen2.5-7B (No Tool 0.754 0.144 0446 0423  Instruct+ ARTIST
Reward)

Table 1: Pass@1 accuracy. Comparison of base models (left) and reasoning models (right) with
ARTIST. ARTIST consistently outperforms all baselines, especially on complex math tasks.
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Figure 3: Average reward score, Successful Tool call and the response length metric across all math
datasets for Qwen2.5-7B-Instruct model (ARTIST vs. Base-Prompt+Tools) .

Summary: ARTIST achieves the highest Pass@ I accuracy across all mathematical reasoning bench-
marks, with average absolute gains of 20% over base models, 12% over base+tools, 8% over
DeepSeek-R1-Distill, and up to 12% over DeepSeek-R1 on the most challenging tasks.

4.1.1 Ablations

We assess the contribution of each reward component in ARTIST by comparing the full model to three
ablations on Qwen2.5-7B: (1) plain GRPO (no tool use), (2) conditional reward (only correct final
answers are rewarded), and (3) no tool reward (tool rewards always zero). Across all benchmarks,
the full ARTIST model achieves the highest accuracy, with the largest gains on challenging datasets.
On AMC, ARTIST outperforms plain GRPO, conditional reward, and no tool reward ablations by
7.2%, 13.2%, and 9.6%, respectively; similar trends hold for AIME and Olympiad, while differences
on MATH-500 are less than 2%. These results show that tool integration, fine-grained intermediate
rewards, and explicit tool execution incentives are each critical for robust agentic reasoning and tool
use, especially for complex, multi-step tasks.

4.1.2 Effectiveness of ARTIST

We evaluate ARTIST on three metrics: (1) Reward Score for solution quality, (2) Successful Tool
Calls for tool utilization, and (3) Response Length for reasoning depth. Figure [3|compares ARTIST
and Base-Prompt+Tools on all math datasets for Qwen2.5-7B-instruct, with all metrics computed
under identical evaluation settings. Further analyses for other models and training dynamics are
available in Appendix [G]and

Reward Score (Solution Quality) ARTIST substantially improves solution quality, raising the reward
score from 0.8 to 3.0 on AMC and from 0.37 to 2.19 on AIME. Similar gains are seen on Olympiad



BFCL v3

Missing Function ~ Missing Parameters ~ Long Context ~ Avg.

Benchmark 7 bench
Method Airline  Retail  Avg.

Frontier LLMs
GPT-40 0.420 0.604 0.510 0.440 0.375 0.580 0.465
Llama-3-70B* 0.148 0.144 0.146 0.130 0.105 0.095 0.110
Deepseek-R1 - - 0.155 0.110 0.115 0.126
Base LLMs + Reasoning via Prompt
Qwen2.5-7B-Ins (Base) 0.120 0.180 0.15 0.085 0.060 0.040 0.061
Qwen2.5-7B-Ins (Prompt) 0.120  0.200 0.160 0.105 0.055 0.055 0.071
Reasoning-optimized Model
Qwen3-4B | 0260 0.300 0.280 | 0.240 0.210 0.175 0.208
ARTIST
Qwen2.5-7B-Ins + ARTIST | 0.180 0.210 0.195 0.205 0.235 0.230 0.223
Qwen3-4B + ARTIST 0.300 0.410 0.355 0.390 0.285 0.210 0.295

Table 2: Pass@]1 accuracy on five multi-turn multi-step function calling benchmarks. ARTIST
consistently outperforms baselines, especially on complex tasks.

(2.35 to 2.8) and MATH-500 (2.9 to 3.5), indicating more correct and complete solutions, especially
on complex problems.

Successful Tool Calls (Successful tool Utilization) ARTIST achieves a much higher rate of successful
tool calls, 95.5% on average versus 58.5% for Base-Prompt+Tools, a 37-point increase. This
consistent improvement shows that ARTIST reliably learns effective tool use, which is essential for
robust multi-step reasoning.

Response Length (Reasoning depth) While Base-Prompt+Tools produces slightly longer re-
sponses (2961 vs. 2740 tokens), ARTIST adapts response length to task complexity, generating longer
outputs for harder tasks (e.g., AIME) and shorter, focused responses for others. This efficiency comes
from delegating complex computation to Python code, reducing unnecessary language output and
improving clarity.

4.2 Results: Multi-Turn Function Calling

We evaluate ARTIST on five multi-turn, multi-step function calling benchmarks, comparing its
performance to a comprehensive set of baselines (see Table 2). All models are evaluated under
identical settings with generic prompt templates. Our evaluation emphasizes generalization: models
are trained on a subset of BFCL v3 and tested on the distinct 7-bench domain, which uses a different
tool call syntax. This demonstrates ARTIST’s ability to generalize across both domains and tool
formats.

ARTIST vs. Base and Reasoning via Prompt on Base Models. ARTIST achieves substantial
improvements over both base and prompt-based reasoning models. Qwen2.5-7B-Ins + ARTIST
improves average accuracy by 4.5% points on 7-bench (from 15.0% to 19.5%) and by 16.2% on
BFCL v3 (from 6.1% to 22.3%) compared to the base model. Similar gains are observed over the
variant with prompt nudging Base Model to use reasoning tokens, confirming that training agentic
tool integration and adaptive reasoning using RL is critical for multi-turn workflows.

ARTIST vs. Reasoning-Optimized and Open-Source LLMs. Compared to the reasoning-optimized
Qwen3-4B, ARTIST delivers gains of 7.5% on 7-bench (from 28.0% to 35.5%) and 8.7% on BFCL
v3 (from 20.8% to 29.5%). Qwen3-4B + ARTIST achieves the highest scores among all open-source
models, outperforming Llama-3-70B and Deepseek-R1 by wide margins.

ARTIST vs. Frontier LLMs. While GPT-40 remains the strongest overall on 7-bench (51.0%),
ARTIST with Qwen3-4B achieves competitive performance and narrows the gap on BFCL v3 (29.5%
vs. 46.5%), outperforming all other open-source baselines. Notably, ARTIST’s improvements are
most pronounced on the more complex BFCL v3 subcategories, where it outperforms all non-GPT-40
baselines by 8—18 percentage points.

Summary: With training on a small set of function calling traces, ARTIST generalizes effectively
to new domains and tasks. On both Qwen2.5-7B and Qwen3-4B models, ARTIST achieves average
gains of 4—8% on T-bench and 9-16% on BFCL v3 over their respective baselines, demonstrating
robust cross-domain generalization and substantial improvements in multi-turn function calling.

7
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Figure 4: Metrics Analysis for Multi-Turn Function Calling on 7-bench.

4.2.1 Effectiveness of ARTIST for Multi-Turn Function Calling

We assess effectiveness of ARTIST on 7-bench using three metrics: reasoning length per tool call,
total correct tool calls, and total steps to task completion. Figure 4| compares Qwen2.5-7B and
Qwen3-4B models, both with and without ARTIST.

* Reasoning Length per Tool Call: For Qwen2.5-7B, ARTIST increases reasoning length per tool
call from 190 to 271 tokens (43% gain), and for Qwen3-4B, from 1251 to 1472 tokens (18% gain).
This indicates that ARTIST enables the model to generate richer, more context-aware reasoning
before invoking tools, reflecting deeper understanding and more deliberate tool use.

¢ Total Correct Tool Calls: ARTIST increases the number of correct tool calls from 517 to 600 (16%
gain) for Qwen2.5-7B, and from 356 to 808 (127% gain) for Qwen3-4B. This demonstrates that
ARTIST not only encourages more frequent tool use, but also ensures that tool calls are accurate
and relevant, directly contributing to higher task completion rates.

* Total Steps to Completion: Despite making more tool calls, ARTIST reduces the average steps to
completion: from 1520 to 1270 (16% reduction) for Qwen2.5-7B, while mildly increasing it from
876 to 935 for Qwen3-4B. This efficiency arises because ARTIST learns to make the right tool calls
at the right time, minimizing unnecessary interactions and converging to solutions more quickly.

Our training runs remain stable over many epochs, with both training and validation scores improving
rapidly and saturating after 350 steps, despite using only 100 tasks. No overfitting is observed, even
after 90 epochs. This stability is attributed to the diversity of multi-step rollouts. Total response length
of an interaction/rollout is consistent throughout training, with only minor variations. Additional
details are provided in the Appendix|l]

4.3 Results: Unified Tool Calling
We also trained a single model on both mathematical problem solving (via a Python code execution

tool) and multi-turn function calling (via the BFCL toolset). The model was given access to both tool
types as needed, using a unified prompt template and a consistent reward structure across domains.

Table 3| reports results on Phi-4. Unified ARTIST delivers AMC AME — Olympiad

. . . Phi-4 + Python 0.578 0.111 0.455
performance that is consistently on par with or better than  phia + nifiea 0542 0278 0451
training models separately, highlighted by a substantial  ~ps Fcrren [ 050 050 040 040
150% improvement on AIME (0.1 1 1 N 0.278) Phi-4 + Unified 0.470 0.335 0.345 0.383

) ] Table 3: Comparison with separate and
Importantly, the unified model learns to invoke the cor-  ynified training across diverse tasks.

rect tool for the correct task based on context, achieving

performance close to (and sometimes exceeding) training with separate models. This validates the
effectiveness of our unified prompt and reward design, and highlights ARTIST’s advantage over
frameworks that rely on task- or tool-specific engineering.

5 Related Work

The reasoning space for LLMs broadly encompasses: (1) chain-of-thought (CoT) prompting, (2)
tool-based reasoning, and (3) RL for reasoning and alignment. While each area has driven progress,
their intersection, agentic reasoning with dynamic tool integration via RL remains underexplored.

Chain-of-Thought Reasoning and Prompting Approaches Chain-of-thought (CoT) Chain-of-
thought (CoT) prompting [43],40, |5] improves LLM accuracy and interpretability by encouraging



explicit intermediate steps. However, CoT approaches rely on the model’s internal knowledge and
language generation, which limits their effectiveness for tasks requiring external information, precise
computation, or real-world action [38]].

Tool-Based Reasoning Tool-based reasoning [[15, 51]] extends LLMs by enabling interaction with
external resources such as web search, code interpreters, and APIs. Methods like PAL [[10], ART [23]],
ToRA [11], and Toolformer [31] demonstrate the potential of tool integration. However, these
approaches often depend on high-quality labeled trajectories or handcrafted prompts, which limit
scalability and adaptability. Tool use is frequently decoupled from the reasoning process, especially
during training, reducing its effectiveness in dynamic or multi-turn scenarios.

RL-Based Reasoning Reinforcement learning (RL) [16] has become a key technique for aligning
LLMs with desired reasoning behaviors. RLHF [24], PPO [32], DPO [29], and SimPO [20] have
improved LLM alignment and stability. Group Relative Policy Optimization (GRPO) [33]] advances
RL-based reasoning by eliminating value functions and using groupwise outcome rewards, as shown
in DeepSeekMath and DeepSeek-R1 [8]. These methods foster robust, self-corrective chain-of-
thought behaviors [7].

Reasoning and Agentic Systems Recent work has begun to address agentic reasoning, where LLMs
autonomously plan, adapt, and interact with external environments [27}44]]. Concurrently with our
work, a few studies have explored tool integration within the reasoning process. R1-Searcher [34] and
ReSearch [[6] incorporate search tools during reasoning, mainly for retrieval-augmented generation
(RAG) tasks. Retool [9]] uses a code interpreter for math problems but depends on supervised
fine-tuning with annotated data. RAGEN [42] proposes StarPO (State-Thinking-Actions-Reward
Policy Optimization), a general framework for trajectory-level agent RL, and introduces RAGEN, a
modular system for training and evaluating LLM agents. They focus on methods to make multi-turn
RL training more robust.

Importance and Contribution In contrast, our approach applies outcome-based RL without step-
level supervision to more complex, real-world agentic scenarios that require dynamic tool use,
multi-turn reasoning, and adaptive environment interaction. Prior work typically isolates tool use
from reasoning or focuses RL on internal reasoning alone or do not test on complex real-world
scenarios. This leaves a gap in methods that jointly optimize agentic reasoning and tool integration
for dynamic, real-world tasks, an area directly addressed by our framework. Remarkably, ARTIST
achieves significant performance improvements with minimal training requiring only around 500 steps
and 5-10 hours of computation demonstrating efficient and scalable learning of robust, generalizable
agentic behaviors.

6 Conclusions

This paper introduces ARTIST, a unified framework that combines agentic reasoning, reinforcement
learning, and dynamic tool use to enhance the capabilities of LLMs. By treating tool use and
environment interaction as core parts of the reasoning process, ARTIST enables models to plan, adapt,
and solve complex, multi-step tasks with minimal supervision. Our experiments on mathematical
and multi-turn function-calling benchmarks show that ARTIST not only improves accuracy but also
leads to richer behaviors, such as adaptive tool choice, iterative self-correction, and deeper multi-step
reasoning. These abilities emerge without step-level guidance, highlighting the effectiveness of
reinforcement learning in training models to navigate complex environments. Beyond performance,
we find that models trained with ARTIST produce more interpretable and robust reasoning traces.
They use tools in a context-aware, purposeful way, shifting away from static prompting toward truly
autonomous interaction with their environment.

Limitations and Future Work. Scaling ARTIST to longer tasks is challenged by memory and
context length constraints. Adapting to new domains often requires custom environments, and the
lack of standardized, high-quality benchmarks limits training and evaluation. ARTIST also relies on
outcome-based rewards and ground-truth answers, restricting use in settings without such supervision.
Future work should enable training in unsupervised or preference-based scenarios, expand to more
domains, and incorporate richer feedback, including human preferences. Addressing safety and
reliability in open-ended environments is also crucial. Progress in these areas may advance agentic
reasoning, supporting more adaptive and trustworthy Al systems.
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A ARTIST Training Algorithm with GRPO

Effective training of agentic LLMs with tool and environment integration requires an RL algorithm
that is sample-efficient and stable with outcome-based rewards. Group Relative Policy Optimization
(GRPO) [33]], as used in DeepSeek-R1 [8], meets these requirements by leveraging groupwise
outcome rewards and eliminating the need for value function approximation, thus reducing training
cost and simplifying optimization.

Group Relative Policy Optimization. GRPO extends Proximal Policy Optimization (PPO) [32]
by removing the critic and estimating the baseline from a group of sampled responses. For each
question ¢, a group {y1, ..., yc } is sampled from the old policy 7,14, and the policy 7y is optimized
by maximizing the following objective:

G |y
1 1 . mo(Yie | T yi,<t;R)
T 0) =E B min | 270t 1 I <t 7 4.
GrPo (6) @D {y; Y ~mga(leiR) {G = Ly_%l‘ I(yie) =1 (‘"md(yi,t |, yi,<t; R) ne
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where € and (3 are hyperparameters, and /Lt represents the advantage, computed based on the relative
rewards of outputs within each group.

The complete training procedure for ARTIST with GRPO is summarized in Algorithm [T}

Algorithm 1 Training ARTIST with Group Relative Policy Optimization (GRPO)

Require: Policy model 7y, old policy moiq, task dataset D, group size GG, masking function M

1: for each training iteration do

2 for each task ¢ in batch do

3 Sample G rollouts {y1, ..., yc} from moq:

4 for each rollout y; do
S: Initialize reasoning chain
6.
7
8

while not end of episode do
Generate next segment: <think> or <tool_name>
if tool is invoked then

9 Interact with environment, obtain <output>

10 Append output to reasoning chain

11 end if

12 end while

13: Compute outcome reward R(y;)

14: end for .

15 Compute groupwise advantages A; ; for all y;

16 Compute importance weights r; ¢

17 Apply loss masking M to exclude tool output tokens

18: Compute GRPO loss Lgrpo and update my

19: end for

20: end for

B Prompt Templates in ARTIST

B.1 Prompt Template for Complex Math Reasoning

You are a helpful assistant that can solve complex math problems step
by step with the help of a python executor tool. Given a question,
you need to first think about the reasoning process in the mind
and then provide the answer. During thinking, you can write python
code, and invoke python tool to execute the code and get back the
output of the code. The reasoning process and answer are enclosed
within <think> </think> and <answer> </answer> tags respectively,
and the python code and the output are enclosed within <python>
</python> and <output> </output> tags respectively. You can
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utilize the Sympy library to write the python code and make sure
to print the result at the end of the python code. You can utilize
the python tool as many times as required, however each python
code will be executed separately. For example, <think> reasoning
process here </think> <python> python code here </python> <output>
output of python code here </output> <think> reasoning process
here </think> <answer> final answer here </answer>.

B.2 Prompt Template for Multi-turn Function Calling

You are an expert in composing functions. You are given a question
from a user and a set of possible functions. Based on the question
, you will need to make one or more function/tool calls to
complete the task.

You have access to the following tools to help solve the task:

{tools}

[Classes Involved: {classes_involved}]

For each step:

1. Start with a step-by-step reasoning process inside <think> </think>

tags to think through the problem.

2. If needed, use tools by writing one or more function call commands
as a list inside <tool_call> </tool_call> tags. Each item in the
list should follow the format shared in the example below.
example: <tool_call> [func_namel(params_name1=params_va1ue1,

params_name2=params_value2), func_name2(params)] </tool_call>
Tools expect specific input formats. Do not make up tools or
arguments that aren’t listed.

3. After you have used the tools, you will see the tool outputs inside

<tool_result> </tool_result> tags in the same order from the
system.

4. If you believe the current task is completed and no more tool,
summarize your progresses and output <TASK_FINISHED> in the end of

your response to terminate the conversation.

5. Otherwise if you believe the task is not able to be completed,
summarize what is problematic and output <TASK_ERROR> in the end
of your response to terminate the conversation.

At each turn, you should try your best to complete the tasks requested
by the user within the current turn. Continue to output functions
to call until you have fulfilled the user’s request to the best

of your ability. Once you have no more functions to call, the
system will consider the current turn complete and proceed to the
next turn or task.

B.3 Prompt Template for Unified Tool Calling

You are a reasoning language model that can reach precise answers
through careful reasoning and tool use when needed.

Structure Rules:

1. All reasoning goes between <think> and </think> (thinking block).

2. Within the thinking block, whenever a tool would improve your
answer , invoke it using <tool_call>...</tool_call> instead of
relying solely on memory.

3. Issue one valid <tool_call>...</tool_call> at a time; further tool
calls can be sequentially interleaved throughout the reasoning
process.

4. After each tool call, the result of the tool call will be provided
in the <tool_result>...</tool_result> tags.
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5. Provide the final answer for the user inside the <answer> </answer>
tags.
6. Stop the generation only after reaching the final answer.

You can utilize the tools as many times as required. For example, <
think> reasoning here </think> <tool_call> tool call here </
tool_call> <tool_result> output of tool call </tool_result> <think
> reasoning process here </think> <answer> final answer here </
answer >.

# RESPONSE FORMAT FOR TOOL CALLS

{response_format}

# AVAILABLE TOOLS

{tool_details}

Response Format for Complex Math Reasoning Tasks (Markdown)

Python code should be in markdown format. Format: <tool_call>
TTTpython
{code here}

</tool_call>

Response Format for Multi-turn Function Calling (JSON)

Response Format for tool call: <tool_call>{"name":"<tool-name>","
arguments":"<json-string-of -parameters>"}</tool_call>’

C Potential Examples of Rollouts with Agentic Reasoning

We provide three concrete potential examples to illustrate the diversity and flexibility of rollouts with
agentic reasoning:

1. Math Problem with Python and Web Search

Task: Evaluate the definite integral fol wdaa

How ARTIST solves it: The model first searches the web for known results, then verifies the answer by
invoking a Python code interpreter with SymPy for symbolic computation, integrating both external
sources into its reasoning before producing the final answer.

<think>To solve the integral \(\int_0~"1 \frac{\1ln(1+x)}{x} \, dx\), I
recall it may not have a simple closed form. Lets check online.</
think>

<search>integral of 1n(1l+x)/x from O to 1</search>

<output>The integral is \(\frac{\pi~2}{12}\).</output>

<think>Lets verify this using symbolic computation.</think>

<python>

from sympy import symbols, integrate, 1log

x = symbols( )

result = integrate(log(l+x)/x, (x, 0, 1))

print (result)

</python>

<output >\ (\frac{\pi~2}{12}\) </output>

<think>Both sources confirm the result: \(\frac{\pi~2}{12}\).</think>
<answer >The value of the integral is \(\frac{\pi~2}{12}\).</answer>

2. Web Navigation in WebArena
Task: Find the contact email for the support team on the company’s website.
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How ARTIST solves it: The model navigates the website by issuing browser actions, interprets the
environment’s feedback, and extracts the required information to answer the task.

<think> I need to find the support email on the company’s website. </
think>

<browser> open_url(’https://company.com’) </browser>

<output> Homepage loaded. Links: About, Products, Support, Contact. </
output >

<think> Click on the ’Support’ link. </think>

<browser> click_link(’Support’) </browser>

<output> Support page loaded. Email: support@company.com </output>

<think> Found the support email. </think>

<answer > support@company.com </answer>

These examples demonstrate how ARTIST enables LLMs to flexibly coordinate internal reasoning
with dynamic tool and environment interaction, supporting complex, multi-step problem solving
across diverse domains. By structuring rollouts in this way, the model can leverage external resources,
adapt its strategy based on feedback, and produce robust, verifiable solutions.

D Dataset and Evaluation Metrics

We evaluate ARTIST in two domains: complex mathematical problem solving and multi-turn function
calling. For each, we detail the training and evaluation datasets, metrics, and experimental protocol.
All evaluation tasks are strictly held out from training, and prompt templates are generic and consistent
across datasets to avoid overfitting.

D.1 Complex Mathematical Reasoning

Training Dataset We curate a training set of 20,000 math word problems, primarily sourced from
NuminaMath [18]. The NuminaMath dataset spans a wide range of complexity, from elementary
arithmetic and algebra to advanced competition-level problems, ensuring the model is exposed to
diverse question types and reasoning depths during training. Each problem is paired with a ground-
truth final answer, enabling outcome-based reinforcement learning without requiring intermediate step
supervision. The training data is intentionally simpler than the evaluation benchmarks to rigorously
test generalization.

Evaluation Dataset To assess generalization and robustness, we evaluate on four established math
benchmarks:

* MATH-500 [13]: A diverse set of 500 competition-style math problems.

* AIME [1]] and AMC [2]: Standardized high school mathematics competition datasets.

* Olympiad Bench [12]: A challenging set of olympiad-level problems requiring multi-step reason-
ing.

Evaluation metrics We report Pass@1 accuracy: the percentage of problems for which the
model’s final answer exactly matches the ground truth. This metric reflects the model’s ability to
arrive at a correct solution in a single attempt.

D.2 Multi-Turn Function Calling

Training Dataset For function calling, we use 100 annotated tasks from the base multi-turn category
of BFCL v3 [47] for training and 100 for validation. Each task requires the agent to coordinate
multiple function calls, manage state, and recover from errors. While the number of training examples
is limited, BFCL v3 provides realistic traces for agentic function calling, and the limited size allows us
to rigorously test generalization to new domains. Each task requires the agent to issue and coordinate
multiple function calls in response to user queries, often involving state tracking and error recovery.

Evaluation Datasets We evaluate on two major benchmarks:
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* BFCL v3 [47]: This benchmark covers a range of domains (vehicle control, trading bots, travel
booking, file systems, and cross-functional APIs) and includes several subcategories:
— Missing parameters: Tasks where the agent must identify and request missing information.

— Missing function: Scenarios where no available function can fulfill the user’s request.
— Long context: Tasks with extended, information-dense user interactions.

* 7-bench [48]: A conversational benchmark simulating realistic user-agent dialogues in airline (50
tasks) and retail (115 tasks) domains. The agent must use domain-specific APIs and follow policy
guidelines to achieve a predefined goal state in the system database.

Evaluation Metric We use Pass@1 accuracy, defined as the fraction of tasks for which the agent’s
final response is correct and the resulting environment state matches the benchmark’s ground truth.
We use GPT4o as the language model to simulate a human user interacting with the agent.

Experimental Protocol and Overfitting Prevention All models and baselines are evaluated under
identical settings, including context length, temperature, and rollout sampling. Prompt templates are
generic and not benchmark-specific, minimizing the risk of overfitting. The strong generalization
observed on 7-bench, a domain not seen during training, further supports the robustness of our
approach.

E Implementation Details

E.1 Complex Mathematical Reasoning

Model and Training. We train ARTIST using Qwen/Qwen2.5-7B-Instruct [28]] and Qwen/Qwen?2.5-
14B-Instruct [28]] as base models. Training is performed using Group Relative Policy Optimization
(GRPO) with a batch size of 8 and a learning rate of 1079, using the Adam optimizer (3; = 0.9,
B2 = 0.99, weight decay 0.01). For each training instance, we sample 6 reasoning rollouts per
question with a temperature of 1.0 to encourage exploration. Following prior work [46], we set a
high generation budget and maximum response length of 8,000 tokens to accommodate long-form,
multi-step reasoning.

During rollouts, the model alternates between text generation and tool invocation, using a Python
interpreter as the external tool. The interpreter executes code via Python’s exec () function and
returns structured feedback, including successful outputs, missing print statements, or detailed error
messages. For computational efficiency, both Qwen/Qwen2.5-7B-Instruct and Qwen/Qwen2.5-14B-
Instruct were trained for up to 100 steps.

Rollout and Tool Execution. During each rollout, the model alternates between text generation
and tool invocation. Python code is executed using the built-in exec () function. Tool feedback is
categorized as:

* Successful execution with output: Output is returned with a “Compiled Successfully” message.

* Successful execution without output: The tool returns “Compiled Successfully, however the print
statement is missing therefore output is empty.”

* Failed execution: Compilation errors are returned with the error message.

Hardware. All experiments are conducted on 8 xH100 80 GB GPUs, with a total training time of
5-10 hours.

Reproducibility. Our codebase is built on the Verl [39] library. All code, hyperparameters, and
configuration files will be released upon publication to ensure reproducibility.

E.2 Multi-Turn Function Calling

Model and Training. For multi-turn function calling, we use Qwen/Qwen2.5-7B-Instruct and
Qwen/Qwen3-4B as the base model, trained with Group Relative Policy Optimization (GRPO).
Training is performed using a batch size of 16 and a learning rate of 10~% and the Adam optimizer
(81 = 0.9, B2 = 0.99, weight decay 0.01). For each training instance, we sample 8 reasoning rollouts
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per question with a temperature of 1.0 to encourage exploration. Following prior work [46], we set
a high generation budget and maximum response length of 6,144 tokens for Qwen/Qwen2.5-7B-
Instruct and 12,288 tokens for the more verbose reasoning Qwen/Qwen3-4B model to accommodate
long-form, multi-step reasoning. We allow the model to make up to 15 steps/tool calls for each user

query.

Rollout and Tool Execution. Each rollout consists of multiple tool calls and their outputs, with the
number of user turns per task set to 1 to control rollout complexity. The system returns the output of
each function call in <tool_result> tags, including explicit failure messages when applicable, the
failure reason is explicitly returned to the model for self-correction.

Hardware. Training is performed on 8 xH100 80 GB GPUs, with a total training time of 4-8 hours.

Reproducibility. Our codebase is built on the Verl [39] library. All code, hyperparameters, and
configuration files will be released upon publication to ensure reproducibility.

E.3 Unified Tool Calling

Model and Training. For unified tool calling, we use microsoft/phi-4 as the base model, trained
with Group Relative Policy Optimization (GRPO). Training is performed using a batch size of 16 and
a learning rate of 10~¢ and the Adam optimizer (3; = 0.9, 3> = 0.99, weight decay 0.01). For each
training instance, we sample 8 reasoning rollouts per question with a temperature of 1.0 to encourage
exploration. Following prior work [46], we set a high generation budget and maximum response
length of 8384 tokens for microsoft/phi-4. We allow the model to make up to 20 steps/tool calls for
each user query.

Rollout and Tool Execution. Each rollout consists of a single tool calls and their outputs, with the
number of user turns per task set to 1 to control rollout complexity. The system returns the output of
each function call in <tool_result> tags, including explicit failure messages when applicable, the
failure reason is explicitly returned to the model for self-correction.

Hardware. Training is performed on 8 xH100 80 GB GPUs, with a total training time of 3 days.

Reproducibility. Our codebase is built on the Verl [39] library. All code, hyperparameters, and
configuration files will be released upon publication to ensure reproducibility.

F Baselines

To rigorously evaluate the effectiveness of ARTIST, we compare its performance against a compre-
hensive set of baselines spanning four distinct categories in both complex mathematical reasoning
and multi-turn function calling tasks. This diverse selection ensures a fair and thorough assessment
of ARTIST’s capabilities relative to both state-of-the-art and widely used approaches.

* Frontier LLMs (Frontier): Leading proprietary models such as GPT-4o [23] and DeepSeek
R1 [8], representing the current state-of-the-art in large-scale language modeling and serving as
strong upper bounds for text-based and reasoning performance.

* Open-Source Tool-Augmented LL.Ms (Tool-0S): Models such as Numina [3]], ToRA [11]], and
PAL [10], which are designed to leverage external tools or code execution. These models are
directly relevant for comparison with ARTIST’s tool-augmented approach.

* Base LLMs (Base): Standard open-source models such as Qwen 2.5-7B and Qwen 2.5-14B,
evaluated in their vanilla form without tool augmentation. These provide a transparent, reproducible,
and widely adopted baseline.

* Base LLMs + External Tools with Prompt Modifications (Base-Prompt+Tools): Base LLMs
equipped with access to external tools, but relying on prompt engineering or reasoning token
modifications (e.g., explicit tool-use instructions or reasoning tags). This tests the effectiveness of
prompt-based tool integration and reasoning.
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 Reasoning optimized Models (Reasoning-Optimized): These models (eg., DeepSeek R1 [8],
Qwen3 [37] excels at solving complex multi step problems by explicitly showing its thinking
process. Unlike base model’s, reasoning models chain of thought are much longer as they break
down problems into smaller steps, try different approaches, validate them, and ultimately select the

best solution.

G Metrics Analysis - Math

Figures 5] [7] [6] correspond to Qwen2.5 14B, Phi 4, and DeepSeek-Qwen-7B, respectively, and
compare ARTIST with Base-Prompt+Tools. It access on three metrics (1) Reward Score, (2)
Successful tool (3) Response length and shows a similar trend with Qwen 2.5-7B Instruct model
as discussed in section f.1.2] ARTIST is consistently able to increase the solution quality across
all the models and datasets. This shows that ARTIST is able to generate more correct, structured
and complex solution that the base model. ARTIST also shows a high rate of successful tool calls,
indicating that it has learned to invoke and use tools effectively. With an increase in effective tool
usage we also see a decrease in response length, as it is able to delegate complex computation python
codes, which are more compact as compared to verbose chain of thought reasoning.
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Figure 5: Average reward score, Successful Tool call and the response length metric across all math

datasets (ARTIST vs. Base-Prompt+Tools).
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H Math Training

Figures [8]and [9] shows how reward scores improves on both train and eval sets during training
for Qwen2.5-7B Instruct and Deepseek-R1-Distill-Qwen 7B respectively. During training on train
dataset (numina), ARTIST’s average reward score improves from 2.8 to 3.10 within 450 steps for
Qwen2.5-7B and 1.75 to 3.3 wihtin 500 steps for Deepseek-Qwen-7B. On evaluation, the accuracy
rises from 0.49 to 0.56 for Qwen2.5-7B and 0.44 to 0.62 for Deepseek-Qwen-7B, demonstrating
robust generalization and effective learning of tool-use strategies.
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Figure 8: Average reward score at different training steps for Qwen2.5 7B - ARTIST
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Figure 9: Average reward score at different training steps for Deepseek qwen 7B ARTIST

I Multi-turn Function calling Training details

Training Observations From our experiments, we note that the training is very stable for a large
number of epochs, even on a small training set of 100 tasks. Training and validation scores increase
dramatically for the first 200 steps (33 epochs) for both models as observed in Figure [I0} The reward
scores start to saturate beyond 350 steps but we do not see any signs of overfitting even at 90 epochs
with just 100 samples.

This can be attributed to the large variety of rollouts generated each with multiple steps and function
calls. We also observe that the total response length remains stable through the training process. The
average response length shows a small increase, while the maximum response length shows a minor
decrease.

J Case Study: Complex Math Reasoning Tasks

J.1 Example-1

In this example, ARTIST is tasked with determining the smallest n such that the probability of drawing
ared apple n times in a row from a box of 11 apples (10 red, 1 non-red) is less than 0.5. The model
must reason through a multi-step combinatorial probability problem that is challenging to solve
accurately with text-based reasoning alone.
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Figure 10: Step-wise rewards and response length displayed by models during training on BFCL
dataset

Key Steps and Reasoning Process:

- The model begins by breaking down the problem into a sequence of conditional probabilities,
expressing the overall probability as a product of fractions that decrease with each draw.

- It then translates this reasoning into a Python code snippet, leveraging the external interpreter to
compute the probability for a candidate value of n.

- Upon receiving the output, the model evaluates whether the condition is met. If not, it reflects on the
result, incrementally adjusts n, and repeats the computation.

- This iterative process continues until the model finds the smallest n such that the probability drops
below 0.5, at which point it outputs the answer.

Agentic Reasoning Capabilities:

- Self-Refinement: The model systematically increases n and refines its approach based on the results
of each computation, demonstrating a trial-and-error strategy that is typical of human problem-
solving.

- Self-Correction: After each computation, the model checks whether the probability satisfies the
required condition. If not, it recognizes the need to adjust its previous assumption and re-executes the
computation with an updated value.

- Self-Reflection: The model explicitly reasons about the intermediate results, articulating why a given
value of n does or does not satisfy the problem constraints, and uses this reflection to guide its next
action.

Take away: This example shows how ARTIST empowers LLMs to solve complex, multi-step math
problems by seamlessly combining reasoning with tool use. The model’s iterative tool invocation,
result interpretation, and adaptive strategy demonstrate robust agentic reasoning. Notably, self-
refinement, self-correction, and self-reflection emerge naturally from the agentic process and reward
design—without explicit supervision—highlighting the strength of RL-driven tool integration.

Question: A box contains 11 apples, 10 of which are red. An apple is drawn from the box
and its color is noted before it is eaten. This is done a total of n times, and the
probability that a red apple is drawn each time is less than 0.5. What is the
smallest possible value of n?

<think> The box contains 10 red apples and 1 apple that is not red. The probability of
drawing a red apple the first time is 10/11. After drawing a red apple, there are 9
red apples and 1 non-red apple left, making the probability of drawing a red apple
again (9/10). This process continues until the last apple is drawn. We are asked for

the smallest value of n such that the probability of drawing a red apple each time
is less than 0.5. The probability of drawing a red apple n times can be represented
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by the product: P(n) = (10/11) * (9/10) * (8/9) * ... * ((10-n+1)/(11-n+1)). We need
to find the smallest n such that P(n) < 0.5. </think>

<python>
import sympy
n = 2
p.n =1
for k in range(1l,n+1):
p_n *= (10-k+1)/(11-k+1)
print (p_n)
</python>

<output> Compiled successfully. Output: 0.8181818181818181 </output>

<think> The value obtained is 0.818 when n = 2. This value is greater than 0.5, so n=2
does not satisfy the condition. I need to increase the value and re-examine. </think
>
<python>
import sympy
n = 3
p.n =1

for k in range(1,n+1):
p_n *= (10-k+1)/(11-k+1)
print (p_n)
</python>
<output> Compiled successfully. Output: 0.7272727272727272 </output>

<think> With n=3, the value obtained is 0.727, which is still greater than 0.5. Let me
increase the value of n to 4. </think>

<python>
import sympy
n = 4
p.n = 1
for k in range(l,n+1):
p_n *= (10-k+1)/(11-k+1)
print (p_n)
</python>

<output> Compiled successfully. Output: 0.6363636363636362 </output>

<think> Even at n=4, the probability remains above 0.5. Let’s move to n=5 to check the
condition. </think>

<python>
import sympy
n =25
p.n =1
for k in range(1l,n+1):
p_n *= (10-k+1)/(11-k+1)
print (p_n)
</python>

<output> Compiled successfully. Output: 0.5454545454545453 </output>

<think> The final attempt is at n=5, where the probability is just above 0.5 at that
point. We should try n=6, to confirm its value and ensure the probability drops
below 0.5. </think>

<python>
import sympy
n =6
p.n =1
for k in range(1l,n+1):
p_n *= (10-k+1)/(11-k+1)
print (p_n)
</python>

<output> Compiled successfully. Output: 0.4545454545454544 </output>

<think> With n=6, the probability of drawing a red apple is now less than 0.5, so the
smallest possible value of n is 6. </think >
<answer> 6 </answer
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J.2 Example-2

In this example, ARTIST is tasked with computing the total number of students in a class, given
overlapping enrollments in chorus and band, and the number of students in neither. The model must
apply the principle of inclusion-exclusion, perform arithmetic, and handle intermediate errors.

Key Steps and Reasoning Process:

- The model first reasons through the inclusion-exclusion formula, clearly articulating each step and
variable.

- It generates Python code to compute the number of students in at least one course, then uses another
code block to add the students in neither course.

- When a variable scope error occurs (due to stateless tool execution), the model recognizes the issue,
reflects on the mistake, and rewrites the code to ensure all variables are defined in a single block.

- The model repeats the calculation to confirm the result, providing additional verification before
producing the final answer.

Agentic Reasoning Capabilities:

- Self-Refinement: The model iteratively improves its approach, re-running the computation after
encountering an error.

- Self-Correction: Upon detecting a compilation error, the model diagnoses the cause and corrects its
code, demonstrating robust error recovery.

- Self-Reflection: The model explicitly reflects on intermediate results and validates its solution by
confirming the calculation multiple times.

Question: In a class of some students, 18 take chorus, 26 take band, and 2 take both
chorus and band. There are 8 students in the class not enrolled in either chorus or
band. How many students are there in the class?

<think> To find the number of students in the class, we can use the principle of
inclusion-exclusion for counting the number of students taking at least one of the
two courses. The formula is:

\T 1A \\cup Bl = [Al + [Bl - |A \\cap B| \\]

where:

- $/Al$ is the number of students taking chorus (18),

- $IB|l$ is the number of students taking band (26),

- $1A \\cap B|$ is the number of students taking both chorus and band
(2),

- |A \\cup Bl is the number of students taking at least one of the two.

Then subtract this number from the total number of students to find out
how many are not enrolled in either course. Let’s say the total
number of students in the class is $X$. We know that:

\\[ X = |A \\cup Bl + \\text{students not enrolled in either} \\]

First we calculate the number of students taking at least one course
with the formula, and then we add the 8 students who are not in
either course to find the total number of students. Let’s calculate

$1A \\cup BIl$.
</think>

<python> import sympy
students_chorus = 18
students_band = 26
students_both = 2

students_at_least_one_course = students_chorus + students_band -
students_both
print (students_at_least_one_course)
</python>

<output> Compiled successfully. Output: 42 </output>

<think> We have calculated that 42 students take at least one of the two courses. Now we
add the 8 students who are not in either course to find the total number of students
in the class. </think>

<python>
total_students = students_at_least_one_course + 8
print (total_students)

</python >

<output> Compilation error: ERROR: name °’students_at_least_one_course’ is not defined </
output >
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<think> It seems like there was an error because the variable wasn’t correctly imported
for the scope of the second execution. Here’s me calculating again the total number
of students considering the steps again. </think>

<python>
import sympy
students_chorus = 18
students_band = 26
students_both = 2
students_neither = 8
students_at_least_one_course = students_chorus + students_band -
students_both
total_students = students_at_least_one_course + students_neither
print (total_students)
</python>

<output> Compiled successfully. Output: 50 </output>

<think> The output correctly calculates to 50, which is the total number of students in
the class. </think>

<python> import sympy
students_chorus =
students_band = 26
students_both = 2

18

students_neither = 8

students_at_least_one_course = students_chorus + students_band -
students_both

total_students = students_at_least_one_course + students_neither

print (total_students)
</python>
<output> Compiled successfully. Output: 50 </output>

<think> The total output confirms it again - the total number of students in the class is
50. After confirming the calculation twice, we can confidently say that the total
number of students is 50. </think>
<answer> There are 50 students in the class. </answer>

K Case Study: Multi-Turn Function Calling with Agentic Reasoning and
Tool Use

In this section we look at some multi-turn interactions from the BFCL v3 and 7-bench dataset with
Qwen2.5-7B-Instruct + ARTIST. The examples are reformatted to make them more readable and do
no include the tags and structure used by the model.

K.1 Example-1- BFCL v3 Base

In this example, ARTIST is first tasked to ensure all car doors are locked and to start the engine in
“START” mode for a user preparing to drive. The agent must coordinate several function calls using
the "VehicleControlAPI", handle dependencies (such as pressing the brake pedal before starting the
engine), and adapt its actions based on feedback from the environment.

Key Steps and Reasoning Process:

ARTIST receives a user request to secure the vehicle and prepare it for departure. It initiates by
issuing a command to lock all doors. Once confirmation is received that all doors are securely locked,
the agent proceeds to start the engine using ignitionMode=’>START’. However, the environment
responds with an error indicating that the brake pedal must be pressed prior to ignition.

Acknowledging this constraint, ARTIST refines its approach: it first attempts to lightly press the brake
pedal by setting pedalPosition=0.1, followed by another attempt to start the engine. This results
in a second error, this time specifying that the brake must be fully pressed. The agent responds with
a corrected command, pressing the brake pedal fully (pedalPosition=1.0) before reissuing the
engine start command. This time, the engine starts successfully, and ARTIST informs the user that
the vehicle is ready.

After the first task is completed, in the second turn, the user requests a social update. ARTIST checks
login status on Twitter, confirms the user is authenticated, and proceeds to compose a tweet: "Tire
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pressure is perfect!", including the hashtags #CarCare and #TireHealth, and mentioning
the user’s friend @mike53. The post is successfully published.

Agentic Reasoning Capabilities:

- Self-Refinement: The agent dynamically updates its plan based on environmental feedback, smoothly
progressing from door locking to conditional engine start.

- Self-Correction: Upon encountering constraints (e.g., insufficient brake force), the agent analyzes
the cause, adjusts its input, and successfully retries the original objective.

- Self-Reflection: ARTIST communicates intermediate states, adapts its actions based on real-time
conditions, and ensures all the tasks are completed.

This example illustrates how ARTIST enables LLMs to coordinate complex, multi-step tasks across
both physical and virtual domains. Its adaptive planning and fault-tolerant execution demonstrate
practical, robust agentic reasoning—Xkey to real-world automation scenarios.

First Turn:

ROLE: user
I’ve completed the maintenance on my car and ensured the doors are
unlocked. Everything, especially the tires, seems in good
condition. Would you kindly assist in securing the remaining doors
and initiate the engine in START mode? I want everything primed
before I set off.

ROLE: assistant

TOOL CALLS: [

lockDoors (unlock=False, door=[’driver’, ’passenger’, ’rear_left’, ’
rear_right’]), startEngine(ignitionMode=’START?’)

]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [

{"lockStatus": "locked", "remainingUnlockedDoors": 0},

{"error": "Brake pedal needs to be pressed when starting the engine."}
]

ROLE: assistant

TOOL_CALLS: [

pressBrakePedal (pedalPosition=0.1), startEngine(ignitionMode=’START’)
]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool
TOOL_RESULT: [
{"brakePedalStatus": "pressed", "brakePedalForce": 100.0}’},

"Must press the brake fully before starting the engine"
]

ROLE: assistant
TOOL_RESULT: [
pressBrakePedal (pedalPosition=1.0), startEngine(ignitionMode=’>START’)
]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool
TOOL_RESULT: [
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{"brakePedalStatus": "pressed", "brakePedalForce": 1000.0}°},
P
{"engineState": "running", "fuellevel": 15.5, "batteryVoltage": 12.8}
g g y g

]

ROLE: assistant
Engine has been started successfully.

Second Turn:

ROLE: user

Also, let’s not forget to boast a little online. Could you post an
update regarding my impeccable tire condition on Twitter 1like
Tire pressure is perfect!’? Don’t forget to use the hashtags #
CarCare and #TireHealth and be sure to give my friend Mike a
mention as well. I think his user handle is ’mike53’."

3

ROLE: assistant
TOOL_CALLS: [
posting_get_login_status ()
]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool
TOOL_RESULT: [
{"login_status": true}
]

ROLE: assistant

TOOL_CALL: [

post_tweet (content=’Tire pressure is perfect!’, tags=[’#CarCare’, ’#
TireHealth’], mentions=[’@mike53°])

]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [

{"id": 10, "username": "fitness_reader", "content": "Tire pressure is
perfect!", "tags": ["#CarCare", "#TireHealth"], "mentions": ["
@mike53"]}

]

ROLE: assistant
Tweet posted successfully.

K.2 Example-2- BFCL v3 Missing Parameters

In this example, ARTIST is tasked with assisting a user in booking a business class flight for two trav-
elers—departing from JFK to LAX on December 15, 2024—using a specified credit card (id_1234)
and access token (ABCD1234) but the user forgets to mention that he wants to travel to LAX. The
model assumes the user wants to travel to LHR but fails to make the booking. The user mentions that
he wanted to travel to LAX, and that the flight would need to be canceled after booking. The agent
fails in the first attempt to make the booking but recovers and manages to book it after trying again.
Later, the agent also successfully makes the cancellation and raises a support as instructed.

Key Steps and Reasoning Process ARTIST receives a user request to arrange a business class
flight for two travelers (including Alex Johnson) from JFK on December 15, 2024, using a specified
credit card and access token. The model first finds the nearest airport from New York using a tool
call and identifies it is JFK. In the next step, ARTIST attempts to fetch the flight cost, but mistakenly
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uses the same airport (JFK to JFK) as both origin and destination because the destination is not
provided, resulting in a tool error due to an invalid route. Demonstrating adaptive reasoning, the
agent tentatively defaults to London Heathrow (LHR) as a plausible business travel destination, but
this fallback results in a malformed function call.

Once the user clarifies the intended destination as LAX in Los Angeles, the agent resumes with
correct parameters. It queries and successfully retrieves the flight cost from JFK to LAX, although the
returned cost ($1140.00) differs from the user’s stated amount ($4500.00). Aware of this discrepancy
and respecting the user-provided cost, the agent opts to proceed directly to booking using the correct
destination, date, class, and declared price.

Following a successful booking, the user requests to cancel the flight and file a priority support ticket.
The agent handles this gracefully: first issuing a booking command that returns a valid booking ID,
then raising a support ticket labeled "Urgent Flight Cancellation" with a detailed justification, and
finally canceling the booking using the appropriate access token and booking ID.

Agentic Reasoning Capabilities

* Self-Refinement: The agent identifies and corrects faulty assumptions (e.g., same origin and
destination), and adjusts function parameters based on updated user intent (JFK to LAX).

¢ Self-Correction: Rather than halting upon syntax and tool errors, the agent reissues corrected
function calls and ignores non-blocking errors while keeping task progress intact.

* Self-Reflection: ARTIST keeps the user informed, acknowledges tool feedback, maintains task
continuity, and concludes by confirming both the booking cancellation and the support ticket
creation.

This example demonstrates ARTIST’s capacity to dynamically manage multi-step workflows, even
when user goals shift mid-process. It showcases robust agentic reasoning under imperfect tool
conditions, reinforcing the utility of RL-based tool coordination in real-world scenarios.

First Turn:

ROLE: user

I’m planning a business class trip from JFK in New York on December
15, 2024. Alex Johnson will be my traveling companion. I intend to
use my credit card with label ’id_1234’ to cover the $4500 trip
cost. I’ve got my access token here: ABCD1234.

ROLE: assistant
TOOL_CALL: [
get_nearest_airport_by_city(location=’New York?’)

]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [
{"nearest_airport": "JFK"}
]

ROLE: assistant

TOOL_CALL: [

get_flight_cost(travel_from=’JFK’, travel_to=’JFK’, travel_date
=22024-12-15°, travel_class=’business’)

]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [
{"error": "No available route for the given airports."}
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]

ROLE: assistant
It seems there was an error as the destination and origin are the same
Let’s assume you meant a common business destination. Trying °’
LHR’> (London Heathrow).

TOOL_CALL: [

get_flight_cost(travel_from=’JFK’, travel_to=’LHR’, travel_date
=22024-12-15°, travel_class=’business’)

]

ROLE: handler_log
Error decoding the model response. Proceed to next turn.

Second Turn:

ROLE: user

Oh, the flight was to LAX in Los Angeles. Once booked, I’1ll need to
cancel the trip immediately due to unexpected changes in my
schedule.

ROLE: assistant
TOOL_CALL: [
get_nearest_airport_by_city(location=’Los Angeles’)

]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [
{"nearest_airport": "LAX"}
]

ROLE: assistant

TOOL_CALL: [

get_flight_cost(travel_from=’JFK’, travel_to=’LAX’, travel_date
=72024-12-15’, travel_class=’business’)

]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [
{"travel_cost_list": [1140.0]1}
]

ROLE: assistant
The returned cost is not $4500, but let’s proceed with booking using
your provided amount.

TOOL_CALL: [

book_flight(access_token=’ABCD1234’, card_id=’id_1234"’, travel_date
=22024-12-157, travel_from=’JFK’, travel_to=’LAX’, travel_class=’
business’, travel_cost=4500.0)

]

ROLE: handler_log
Error decoding the model response. Proceed to next turn.

Third Turn:
ROLE: user
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Additionally, I must file a priority 5 support ticket concerning the
flight cancellation, labeled ’Urgent Flight Cancellation’. The
ticket should explain the abrupt changes leading to cancellation.

Description: Due to unexpected changes in schedule, the flight from
JFK to LAX on December 15, 2024, needs to be canceled immediately.

ROLE: assistant

TOOL_CALL: [

book_flight (access_token=’ABCD1234°’, card_id=’id_1234’, travel_date
=22024-12-15°, travel_from=’JFK’, travel_to=’LAX’, travel_class=’
business’, travel_cost=4500.0)

]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [

{"booking_id": "3426812", "transaction_id": "45451592", "
booking_status": true, "booking_history": {}}

]

ROLE: assistant
TOOL_CALL: [
create_ticket (
title=’Urgent Flight Cancellation?’,
description=’Due to unexpected changes in schedule, the flight from
JFK to LAX on December 15, 2024, needs to be canceled
immediately.’,
priority=5
)
]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [

{"id": 1, "title": "Urgent Flight Cancellation", "description": "..."
"status": "Open", "priority": 5, "created_by": "john"}

]

ROLE: assistant

TOOL_CALL: [

cancel_booking(access_token=’ABCD1234’, booking_id=’3426812’)
]

ROLE: handler_log
Successfully decoded model response.

ROLE: tool

TOOL_RESULT: [
{"cancel_status": true}
]

ROLE: assistant
The booking has been successfully canceled and the support ticket has
been created. The ticket ID is 1.
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K.3 Example-3- 7-bench-Retail

In this example, ARTIST is tasked to assist a user in exchanging two items—a water bottle and a desk
lamp—for preferred variants. The user does not have the order ID or item IDs at hand, and expresses
nuanced preferences for the replacements (a bigger water bottle and a less bright, battery-powered
desk lamp). The agent must identify the correct user and orders, retrieve item details, filter product
options, confirm payment, and execute the exchange, all while handling ambiguous information and
user clarifications through multi-turn dialogue.

Key Steps and Reasoning Process ARTIST begins by clarifying the user’s identity and order
context, requesting the user ID or email address. The user emulated using an LLM (GPT40) shares
an incorrect email id based on the user ID in the instructions. After the assistant cannot find the user
ID using tool calls with the email address, it tries to find the user with name and zip code. It still
cannot find the user ID, it then tries to get user details with the username of the email.

Upon retrieving the user details, the agent proceeds to obtain the user’s recent orders and infers which
orders likely contain the items to be exchanged. When the user cannot specify the order ID, ARTIST
queries the order details to identify which orders contain the desk lamp and water bottle, confirming
with the user as needed.

Once the correct order and item IDs are determined, the agent helps the user select a suitable replace-
ment for the desk lamp by filtering available product variants according to the user’s preferences
(lower brightness, battery-powered). ARTIST presents the filtered options, confirms the user’s choice,
and verifies the payment method on file. Before executing the exchange, the agent summarizes all
relevant details—order ID, items to be exchanged, new item IDs, and payment method—and seeks
explicit confirmation from the user. After receiving confirmation, ARTIST completes the exchange
via the appropriate tool call, then communicates the successful status update and next steps to the
user.

Agentic Reasoning Capabilities

* Self-Refinement: The agent incrementally narrows down the correct order and item IDs, adapts its
plan as new information emerges, and dynamically filters product options to match nuanced user
preferences (e.g., brightness, power source).

* Self-Correction: When the email id shared by the user is incorrect and cannot be used, the agent
queries additional details, and redirects its actions to accurately identify the user details.

 Self-Reflection: At each step, the agent summarizes its understanding, confirms details with the
user, and validates choices before proceeding, ensuring a transparent and user-aligned workflow.

INSTRUCTION FOR USER LLM:

You are mei_kovacs_8020 (zip code 28236) and you want to exchange the
water bottle and the desk lamp. You want to exchange the water
bottle to a bigger omne, and the desk lamp to a less bright one (
prefer battery > USB > AC). If the agent asks for confirmation,
only exchange the desk lamp.

Query:

Hi!' I’d like to exchange a couple of items I recently purchased, a
water bottle and a desk lamp."

ROLE: assistant

Could you please provide me with your user ID or the email address
associated with your account so I can assist you further?

ROLE: user
Sure, my email is mei_kovacs_8020@gmail.com.

ROLE: assistant

31




TOOL CALL: [{’type’: ’function’, ’function’: {’name’: ?
find_user_id_by_email’, ’arguments’: {’email’:
mei_kovacs_8020@gmail.com’}}}]

ROLE: tool
<tool_result>Error: user not found</tool_result>

ROLE: assistant
It seems like there was an issue finding your user ID. Let me try to
find your user ID by name and zip code.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’:
find_user_id_by_name_zip’, ’arguments’: {’first_name’: ’Mei’, ?
last_name’: ’Kovacs’, ’zip’: ’12345°3}}1}]

ROLE: tool
<tool_result>Error: user not found</tool_result>

ROLE: assistant
I’m still unable to find your user ID. Could you please provide me
with your user ID so I can assist you further?

ROLE: user
I’'m sorry, I don’t have my user ID handy at the moment.

ROLE: assistant

No problem, let’s proceed by finding your order details using your
email. I will try to locate your recent orders and then we can
proceed with the exchange.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’:
get_user_details’, ’arguments’: {’user_id’: ’mei_kovacs_8020’3}}}]

ROLE: tool

<tool_result>{"name": {"first_name": "Mei", "last_name": "Kovacs"}, "
address": {"addressl1": "317 Elm Street", "address2": "Suite 461",
"city": "Charlotte", "country": "USA", "state": "NC", "zip":
"28236"}, "email": "mei.kovacs8232Q@example.com", "payment_methods
": {"paypal_7644869": {"source": "paypal", "id": "paypal_7644869
"}}, "orders": ["#W6390527", "#W7800651", "#W8065207"]1}</

tool_result >

ROLE: assistant

I found your user details. It looks like you have a few orders. Could
you please provide me with the order ID of the one you want to
exchange the items from? The order IDs are ’#W6390527°, ’#W7800651
>, and ’#W8065207 .

ROLE: user
I’m not sure which order ID it is. I don’t have them with me right now

ROLE: assistant
No worries, let’s check the details of these orders to see which one
includes the items you want to exchange.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’:
get_order_details’, ’arguments’: {’order_id’: ’#W6390527 ’}}}]
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ROLE: tool

<tool_result>{"order_id": "#W6390527", "user_id": "mei_kovacs_8020", "
address": {"address1": "317 Elm Street", "address2": "Suite 461",
"city": "Charlotte", "country": "USA", "state": "NC", "zip":
"28236"}, "items": [{"name": "Desk Lamp", "product_id":
"6817146515", "item_id": "8384507844", "price": 137.94, "options":
{"color": "white", "brightness": "medium", "power source": "USB
"}}, {"name": "Hiking Boots", "product_id": "7363354090", "item_id
": "1615379700", "price": 253.89, "options": {"size": "10", "
material": "synthetic", "waterproof": "yes"}}, {"name": "Water
Bottle", "product_id": "8310926033", "item_id": "8538875209", "
price": 45.13, "options": {"capacity": "500ml", "material": "glass
", "color": "black"}}], "fulfillments": [{"tracking_id":
["745984883162"], "item_ids": ["8384507844", "1615379700",
"86538875209"]1}], "status": "delivered", "payment_history": [{"
transaction_type": "payment", "amount": 436.96, "payment_method_id

": "paypal_7644869"}]1}</tool_result>

ROLE: assistant
The order ’#W6390527° includes a Desk Lamp, Hiking Boots, and a Water
Bottle. Does this match the items you want to exchange?

If so, let’s proceed with the exchange. If not, please provide the
correct order ID.

ROLE: user
Yes, that sounds like the one. Can we exchange the desk lamp first?

ROLE: assistant
Great, let’s proceed with exchanging the Desk Lamp from order ’#
W6390527 7.

To exchange the Desk Lamp, we need to know the new item you would like
to exchange it for. Could you please provide the product ID and
the options for the new Desk Lamp you want to exchange it with?

If you’re not sure, let me list the available product types and their
IDs so you can choose the correct one.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’: ?
list_all_product_types’, ’arguments’: {}}}]

ROLE: tool

<tool_result>{"Action Camera": "3377618313", "Air Purifier":
"3821016478", "Backpack": "2524789262", "Bicycle": "9783735446", "
Bluetooth Speaker": "4768869376", "Bookshelf": "8600330539", "
Coffee Maker": "7996920482", "Cycling Helmet": "7765186836", "Desk
Lamp": "6817146515", "Digital Camera": "8940227892", "Dumbbell
Set": "7233192239", "E-Reader": "3801771308", "Electric Kettle":
"1075968781", "Electric Toothbrush": "7352963235", "Espresso
Machine": "4354588079", "Fleece Jacket": "8560156827", "Gaming
Mouse": "5713490933", "Garden Hose": "6679515468", "Grill":
"6819683148", "Headphones'": "6992792935", "Hiking Boots":
"7363354090", "Indoor Security Camera'": "2985987096", "Jigsaw
Puzzle": "1808611083", "LED Light Bulb": "2696197613", "Laptop":
"4760268021", "Luggage Set": "5426915165", "Makeup Kit":
"5149340237", "Mechanical Keyboard": "1656367028", "Notebook":
"2892623495", "Office Chair": "4794339885", "Patio Umbrella":
"9743693396", "Perfume": "6858788497", "Pet Bed": "2747247837", "
Portable Charger": "6942297802", "Running Shoes": "6938111410", "
Skateboard": "1968349452", "Smart Thermostat": "4896585277", "
Smart Watch": "6945232052", "Smartphone": "1801728040", "Sneakers
": "7471004230", "Sunglasses": "7314138884", "T-Shirt":
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"9523456873", "Tablet": "8024098596", "Tea Kettle": "9832717871",

"Vacuum Cleaner": "1762337868", "Wall Clock": "2344688344", "Water
Bottle": "8310926033", "Wireless Earbuds": "9924732112", "
Wristwatch": "6066914160", "Yoga Mat": "4635925001"}</tool_result>

ROLE: assistant
Here are the product types and their IDs:

- Action Camera: 3377618313

- Air Purifier: 3821016478

- Backpack: 2524789262

- Bicycle: 9783735446

- Bluetooth Speaker: 4768869376
- Bookshelf: 8600330539

- Coffee Maker: 7996920482

- Cycling Helmet: 7765186836

- Desk Lamp: 6817146515

- Digital Camera: 8940227892

- Dumbbell Set: 7233192239

- E-Reader: 3801771308

- Electric Kettle: 1075968781
- Electric Toothbrush: 7352963235
- Espresso Machine: 4354588079
- Fleece Jacket: 8560156827

- Gaming Mouse: 5713490933

- Garden Hose: 6679515468

- Grill: 6819683148

- Headphones: 6992792935

- Hiking Boots: 7363354090

- Indoor Security Camera: 2985987096
- Jigsaw Puzzle: 1808611083

- LED Light Bulb: 2696197613

- Laptop: 4760268021

- Luggage Set: 5426915165

- Makeup Kit: 5149340237

- Mechanical Keyboard: 1656367028
- Notebook: 2892623495

- Office Chair: 4794339885

- Patio Umbrella: 9743693396

- Perfume: 6858788497

- Pet Bed: 2747247837

- Portable Charger: 6942297802
- Running Shoes: 6938111410

- Skateboard: 1968349452

- Smart Thermostat: 4896585277
- Smart Watch: 6945232052

- Smartphone: 1801728040

- Sneakers: 7471004230

- Sunglasses: 7314138884

- T-Shirt: 9523456873

- Tablet: 8024098596

- Tea Kettle: 9832717871

- Vacuum Cleaner: 1762337868

- Wall Clock: 2344688344

- Water Bottle: 8310926033

- Wireless Earbuds: 9924732112
- Wristwatch: 6066914160

- Yoga Mat: 4635925001

The product ID for the Desk Lamp is 6817146515. Please provide the new
Desk Lamp product ID and its options.

ROLE: user
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I’m looking for a desk lamp that’s less bright and preferably runs on
batteries, or secondarily uses USB or AC power. Could you please
help me find a suitable option?

ROLE: assistant
Sure, let’s find a Desk Lamp that is less bright and can rumn on
batteries or USB power.

I will check the inventory for Desk Lamps that match your criteria.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’: ?
get_product_details’, ’arguments’: {’product_id’: ’6817146515°}}}]

ROLE: tool
<tool_result>{"name": "Desk Lamp", "product_id": "6817146515", "
variants": {"9083642334": {"item_id": "9083642334", "options": {"
color": "white", "brightness": "high", "power source": "USB"}, "
available": true, "price": 164.28}, "4385534692": {"item_id":
"4385534692", "options": {"color": "white", "brightness": "high",
"power source": "AC adapter"}, "available": false, "price":
138.07}, "7624783998": {"item_id": "7624783998", "options": {"
color": "black", "brightness": "high", "power source": "AC adapter
"}, "available": true, "price": 154.17}, "1270145486": {"item_id":
"1270145486", "options": {"color": "white", "brightness": "high",
"power source": "battery"}, "available": false, "price": 144.07},
"5320792178": {"item_id": "5320792178", "options": {"color": "
black", "brightness": "medium", "power source": "AC adapter"}, "
available": true, "price": 135.24}, "5370728469": {"item_id":
"5370728469", "options": {"color": "silver", "brightness": "medium
", "power source": "USB"}, "available": true, "price": 164.97},
"6805564527": {"item_id": "6805564527", "options": {"color": "
black", "brightness": "medium", "power source": "USB"}, "available
": true, "price": 158.41}, "1569765161": {"item_id": "1569765161",
"options": {"color": "silver", "brightness": "low", "power source
": "AC adapter"}, "available": true, "price": 143.02},
"7453605304": {"item_id": "7453605304", "options": {"color": "
silver", "brightness": "low", "power source": "battery"}, "
available": true, "price": 150.01}, "9190635437": {"item_id":
"9190635437", "options": {"color": "black", "brightness": "low", "
power source": "USB"}, "available": true, "price": 153.23},
"4447749792": {"item_id": "4447749792", "options": {"color": "
white", "brightness": "medium", "power source": "AC adapter"}, "
available": false, "price": 139.8}, "8384507844": {"item_id":
"8384507844", "options": {"color": "white", "brightness": "medium
", "power source": "USB"}, "available": false, "price": 137.94}}}
</tool_result>

ROLE: assistant
Here are the available Desk Lamp options:

- White, high brightness, USB power: Item ID 9083642334 (Not available
)

- White, high brightness, AC adapter: Item ID 4385534692 (Not
available)

- Black, high brightness, AC adapter: Item ID 7624783998 (Available)

- White, high brightness, battery: Item ID 1270145486 (Not available)

- Black, medium brightness, AC adapter: Item ID 5320792178 (Available)

- Silver, medium brightness, USB power: Item ID 5370728469 (Available)

- Black, medium brightness, USB power: Item ID 6805564527 (Available)

- Silver, low brightness, AC adapter: Item ID 1569765161 (Available)

- Silver, low brightness, battery: Item ID 7453605304 (Available)

- Black, low brightness, USB power: Item ID 9190635437 (Available)
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- White, medium brightness, AC adapter: Item ID 4447749792 (Not
available)

- White, medium brightness, USB power: Item ID 8384507844 (Not
available)

The options that match your criteria (less bright and can run on
batteries or USB power) are:

- Silver, low brightness, USB power: Item ID 7453605304
- Black, low brightness, USB power: Item ID 9190635437

Would you like to exchange for one of these options? If so, please
confirm the item ID.

ROLE: user
I’11 choose the silver, low brightness, battery-powered lamp with Item
ID 7453605304. Please proceed with this exchange.

ROLE: assistant

Great, we will exchange the Desk Lamp from your order ’#W6390527° to
the silver, low brightness, battery-powered lamp with Item ID
7453605304.

Before we proceed, let’s confirm the payment method you would like to
use for this exchange. You can choose between your PayPal account
or a gift card.

Could you please provide the payment method ID?

If you have a gift card, please ensure it has enough balance to cover
the price difference.

If you have a PayPal account, please provide the ID.

If you have a credit card, please provide the ID.

ROLE: user
I’11 use my PayPal account for the exchange. The email associated with
it is mei_kovacs_8020@gmail.com.

ROLE: assistant
Got it. We will use your PayPal account for the exchange.

Now, let’s proceed with the exchange request.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’:
exchange_delivered_order_items’, ’arguments’: {’order_id’: ’#
W6390527°, ’item_ids’: [’8384507844°], ’new_item_ids’:
[°7453605304°], ’payment_method_id’: ’paypal_7644869 }}}]

ROLE: tool

<tool_result>{"order_id": "#W6390527", "user_id": "mei_kovacs_8020", "
address": {"addressl1": "317 Elm Street", "address2": "Suite 461",
"city": "Charlotte", "country": "USA", "state": "NC", "zip":
"28236"}, "items": [{"name": "Desk Lamp", "product_id":
"6817146515", "item_id": "8384507844", "price": 137.94, "options":
{"color": "white", "brightness": "medium", "power source": "USB
"}}, {"name": "Hiking Boots", "product_id": "7363354090", "item_id
": "1615379700", "price": 253.89, "options": {"size": "10", "
material": "synthetic", "waterproof": "yes"}}, {"name": "Water
Bottle", "product_id": "8310926033", "item_id": "8538875209", "
price": 45.13, "options": {"capacity": "500ml", "material": "glass
", "color": "black"}}], "fulfillments": [{"tracking_id":
["745984883162"], "item_ids": ["8384507844", "1615379700",
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"8538875209"]1}], "status": "exchange requested", "payment_history
": [{"transaction_type": "payment", "amount": 436.96, "
payment_method_id": "paypal_7644869"}], "exchange_items":
["8384507844"], "exchange_new_items": ["7453605304"], "
exchange_payment_method_id": "paypal_7644869", "
exchange_price_difference": 12.07}</tool_result>

ROLE: assistant
The exchange request has been successfully processed. Your Desk Lamp
has been exchanged for the silver, low brightness, battery-powered
lamp with Item ID 7453605304.

Your order status is now ’exchange requested’. You will receive an
email with further instructions on how to return the old item.

Is there anything else you need assistance with?

ROLE: user
No, that’s it for now. Thank you for your help! ###STOP###

K.4 Example-4: 7-bench-Airline

In this example, ARTIST is engaged by user yara_garcia_1905, who wishes to modify her up-
coming round-trip flight reservation (ID: HXDUBJ). The user’s request includes changing both the
outbound and return flights by one day, upgrading to business class, adding two checked bags, and
ensuring flights depart between 8am—-9pm. The user believes travel insurance should waive any
additional fees and insists on not exceeding a $200 budget.

Key Steps and Reasoning Process ARTIST begins by verifying the reservation details using the
provided reservation ID. Upon confirming that travel insurance is included, the agent collects specifics
on the user’s preferred changes. The agent proceeds by searching for nonstop flight options that match
the new dates and time windows. After presenting the results, the user selects suitable outbound and
return flights.

The agent then attempts to apply all changes — new flights, cabin upgrade, and added baggage —
while preserving the existing payment method. However, the system returns a payment error due to
insufficient gift card balance. At this point, instead of directly offering an alternative solution in light
of the user’s insurance coverage or budget constraint, the agent suggests a credit card and initiates a
handoff to a human agent, violating the user’s explicit request to avoid transfers.

Agentic Reasoning Capabilities

* Self-Refinement: The agent breaks down the multi-part request, methodically identifies and filters
flights by time window and stops, and correctly adapts to user preferences for each leg of the
journey.

« Partial Self-Correction: Upon encountering a payment failure, the agent pivots to request an
alternative payment method. However, it does not fully explore policy-based waivers or insurance-
backed fee exemption as specified by the user.

» Lack of Self-Reflection: The agent misses a critical opportunity to advocate for the user by
applying insurance benefits or negotiating cost within budget. It also contradicts the instruction to
avoid agent transfer, reducing user satisfaction.

This example highlights ARTIST’s strength in decomposing and executing complex user modifications
within flight booking systems. However, it also illustrates the importance of deeper alignment with
user constraints and expectations — particularly regarding fee waivers, insurance validation, and
the no-transfer condition. Enhancing ARTIST with stronger policy reasoning and budget awareness
would improve its ability to fulfill high-fidelity customer service tasks autonomously.

INSTRUCTION FOR USER LLM:
Your user id is yara_garcia_1905 and you want to change your upcoming
outgoing flight in reservation HXDUBJ to a nonstop flight on the
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next day (i.e. delay by one day). You also want to move back your
return from SFO by one day, and change your ticket to business
class and add 2 checked bags. You prefer flights departing after 8
am and before 9pm. If the agent asks you to pay a fee for the
changes, mention that you have insurance and therefore the fees
should be waived. You have read that on the website and want the
agent to honor the policy. Be persistent. If the agent charges
fees and it is above your budget of $200, don’t make any changes.

Query:
Hi, I’d like to make some changes to an upcoming flight reservation.
Can you assist me with that?

ROLE: assistant
Could you please provide me with your user ID so I can find your
reservation details?

ROLE: user
Sure, my user ID is yara_garcia_1905.

ROLE: assistant
Great, let’s proceed. Could you also provide me with the reservation
ID so I can check the details of the flight you want to modify?

ROLE: user
Yes, the reservation ID is HXDUBJ.

ROLE: assistant
Got it. Now, let’s see the details of the reservation HXDUBJ.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’: ’
get_reservation_details’, ’arguments’: {’reservation_id ’: ’HXDUBJ

’}}}]

ROLE: tool

<tool_result>{"reservation_id": "HXDUBJ", "user_id": "yara_garcia_1905
", "origin": "IAH", "destination": "SFO", "flight_type": "
round_trip", "cabin": "economy", "flights": [{"origin": "IAH", "
destination": "JFK", "flight_number": "HATO085", "date":
"2024-05-18", "price": 177}, {"origin": "JFK", "destination": "SFO
", "flight_number": "HAT023", "date": "2024-05-18", "price": 146},
{"origin": "SFO", "destination": "IAH", "flight_number": "HAT278
", "date": "2024-05-22", "price": 180}], "passengers": [{"
first_name": "Yara", "last_name": "Garcia", "dob": "1974-08-15"}],
"payment_history": [{"payment_id": "gift_card_6941833", "amount":
533}], "created_at": "2024-05-04T06:04:48", "total_baggages": O,
"nonfree_baggages": 0, "insurance": "yes"}</tool_result>

ROLE: assistant

The reservation HXDUBJ is for a round trip from IAH to SFO on May 18th
, 2024, and back on May 22nd, 2024. The cabin class is economy.
There is one passenger named Yara Garcia, and the payment was made
using a gift card. Travel insurance is included.

What changes would you like to make to this reservation? For example,
do you want to change the flights, cabin class, add or remove
baggage, or cancel the reservation?

ROLE: user

I’d like to make a few adjustments: change the outgoing flight to a
nonstop option on May 19th (one day later), move the return flight
back by one day to May 23rd, upgrade the ticket to business class
, and add two checked bags. Could you also make sure the flights
depart between 8 am and 9 pm, please?
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ROLE: assistant
Got it. Let’s start by finding the nonstop flights for the new dates.

I will first search for nonstop flights from IAH to SFO on May 19th
and from SFO to IAH omn May 23rd.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’: ’
search_direct_flight’, ’arguments’: {’origin’: °>IAH’, ’destination
’>: ’SF0’, ’date’: ’2024-05-19°}}}]

ROLE: tool

<tool_result>[{"flight_number": "HATO72", "origin": "IAH", "
destination": "SF0", "scheduled_departure_time_est": "09:00:00", "
scheduled_arrival_time_est": "13:00:00", "status": "available", "
available_seats": {"basic_economy": 18, "economy": 9, "business":
9}, "prices": {"basic_economy": 68, "economy": 130, "business":
282}}, {"flight_number": "HAT180", "origin": "IAH", "destination":

"SFO", "scheduled_departure_time_est": "07:00:00", "

scheduled_arrival_time_est": "11:00:00", "status": "available", "
available_seats": {"basic_economy": 4, "economy": 17, "business":
15}, "prices": {"basic_economy": 65, "economy": 130, "business":

346}}] </tool_result>

ROLE: assistant
I found two nonstop options from IAH to SFO on May 19th:

1. Flight HATO72, departing at 09:00 and arriving at 13:00, priced at
$282 for business class.

2. Flight HAT180, departing at 07:00 and arriving at 11:00, priced at
$346 for business class.

Now, let’s find the nonstop flights for the return trip from SFO to
IAH on May 23rd.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’: ?
search_direct_flight’, ’arguments’: {’origin’: ’SF0’, ’destination
>: PIAH’, ’date’: ’2024-05-23°1}}}]

ROLE: tool
<tool_result>[{"flight_number": "HATO82", "origin": "SFO", "
destination": "IAH", "scheduled_departure_time_est": "23:00:00", "
scheduled_arrival_time_est": "03:00:00+1", "status": "available",
"available_seats": {"basic_economy": 19, "economy": 9, "business":
2}, "prices": {"basic_economy": 92, "economy": 164, "business":
323}}, {"flight_number": "HAT278", "origin": "SFO0", "destination":
"IAH", "scheduled_departure_time_est": "16:00:00", "
scheduled_arrival_time_est": "20:00:00", "status": "available", "
available_seats": {"basic_economy”: 13, "economy": 5, "business":
3}, "prices": {"basic_economy": 67, "economy": 187, "business":

443}}]1</tool_result>

ROLE: assistant
I found two nonstop options from SFO to IAH on May 23rd:

1. Flight HAT082, departing at 23:00 and arriving at 04:00 the next
day, priced at $323 for business class.

2. Flight HAT278, departing at 16:00 and arriving at 20:00, priced at
$443 for business class.
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Would you like to proceed with one of these options or do you have a
preference for the departure times?

ROLE: user
I’d prefer to go with the second option, Flight HAT278 on May 23rd, as
it fits within my preferred departure times. Thank you!

ROLE: assistant
Great, we will use Flight HAT278 for the return trip on May 23rd.

Now, let’s update the reservation with the new flights, upgrade to
business class, and add two checked bags.

I will update the reservation with the new flights and upgrade the
cabin class to business.

Let’s proceed with the update.

TOOL CALL: [{’type’: ’function’, ’function’: {’name’: ’
update_reservation_flights’, ’arguments’: {’reservation_id’:
HXDUBJ’, ’cabin’: ’business’, ’flights’: [{’flight_number’: ?
HATO72°, ’>date’: ’2024-05-19°}, {’flight_number’: ’HAT278’, ’date
’: 72024-05-23’}], ’payment_id’: ’gift_card_6941833°}}}]

ROLE: tool
<tool_result>Error: gift card balance is not enough</tool_result>

ROLE: assistant
It seems there is an issue with the payment method. Let’s use a credit
card instead. Do you have a credit card available for this
transaction? If so, please provide the payment ID.

If not, we can transfer you to a human agent for further assistance.
TOOL CALL: [{’type’: ’function’, ’function’: {’name’:
transfer_to_human_agents’, ’arguments’: {’summary’: ’Need to use a

different payment method to upgrade and add bags.’}}}]

ROLE: tool
<tool_result>Transfer successful</tool_result>
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