
COKE: Core Kernel for More Efficient Approximation of Kernel Weights in
Multiple Kernel Clustering

Weixuan Liang 1 Xinwang Liu 1 Ke Liang 1 Jiyuan Liu 2 En Zhu 1

Abstract

Inspired by the well-known coreset in cluster-
ing algorithms, we introduce the definition of the
core kernel for multiple kernel clustering (MKC)
algorithms. The core kernel refers to running
MKC algorithms on smaller-scale base kernel ma-
trices to obtain kernel weights similar to those
obtained from the original full-scale kernel ma-
trices. Specifically, the core kernel refers to a
set of kernel matrices of size Õ(1/ε2) that per-
form MKC algorithms on them can achieve a
(1+ε)-approximation for the kernel weights. Sub-
sequently, we can leverage approximated kernel
weights to obtain a theoretically guaranteed large-
scale extension of MKC algorithms. In this paper,
we propose a core kernel construction method
based on singular value decomposition and prove
that it satisfies the definition of the core kernel
for three mainstream MKC algorithms. Finally,
we conduct experiments on several benchmark
datasets to verify the correctness of theoretical
results and the efficiency of the proposed method.

1. Introduction
Multiple kernel clustering (MKC) algorithms (Zhao et al.,
2009; Liu, 2023; 2022; Ren & Sun, 2020; Liu et al., 2017;
2016; Li et al., 2016; Feng et al., 2025), which have a strong
capability to handle multi-source data, have been widely
applied in various fields. MKC can be applied in various
areas, including cancer biology (Gönen & Margolin, 2014),
urban VANETs (Sellami & Alaya, 2021), healthcare (Che &
Yang, 2024), network security (Hu et al., 2021), and others.
However, due to the high computational complexity, MKC
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struggles to handle large-scale datasets, making it difficult
to meet the demands of the big data era.

To address the high complexity of MKC, this paper intro-
duces the concept of core kernel, inspired by the idea of
coreset (Har-Peled & Mazumdar, 2004; Chen, 2009). In
the field of clustering, the coreset technique is an essential
method for reducing the complexity of algorithms on large-
scale datasets. A coreset is a weighted subset of the training
set, such that the algorithm obtains a solution similar to the
one derived from the entire training set. The coreset method
has been proven to be effectively applicable to k-median
(Sohler & Woodruff, 2018), k-means(Cohen-Addad et al.,
2022), and kernel k-means clustering (Jiang et al., 2024).

In MKC, a fundamental assumption is that the optimal ker-
nel matrix is a weighted combination of the base kernel
matrices (Huang et al., 2012; Liu et al., 2016; Liu, 2022).
Thus, kernel weights are a crucial parameter that can sig-
nificantly impact the final clustering performance. Multiple
kernel k-means (MKKM) (Huang et al., 2012) minimizes
the objective with regard to the kernel weights and clus-
tering partition. After the optimization of kernel weights,
MKKM can obtain better clustering performance compared
to using fixed weights. Subsequently, (Liu et al., 2016) in-
troduces a matrix-induced regularization term for the kernel
weights to increase the diversity of the consensus kernel ma-
trix. To avoid kernel weights falling into poor local optima,
(Liu, 2022) proposes a min-max optimization-based objec-
tive function, which enables learning better kernel weights.
Therefore, for a good approximation method, it is neces-
sary to better approximate the kernel weights of the original
algorithm.

To quantitatively analyze the approximation degree of the
kernel weights, we attempt to adapt the concept of “coreset”
to MKC algorithms. We define smaller-scale base kernel
matrices that can well approximate the kernel weights of
the original base kernel matrices as the core kernel. The
formal definition of the core kernel can be found in Defi-
nition 3.1. By using a core kernel of size Õ(1/ε2)1 as the
input to MKC, we can obtain the (1 + ε)-approximation
kernel weights. With the approximated kernel weights, we

1Õ(·) hides logarithmic terms.
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design a large-scale extension method for MKC algorithms
with a theoretical guarantee. Then, we propose an effective
method for constructing the core kernel. Our method is
inspired by the observation that the singular values of the
column sampling matrix can effectively approximate the
full kernel matrix. Specifically, we first select s anchors,
where s is much less than the sample number n. For each
base kernel, we construct a kernel similarity matrix whose
elements are computed based on the full training set and
the anchor set through the kernel function. We then use the
right singular vectors and the singular values to construct an
s× s core kernel, and this method is termed singular value
decomposition-based core kernel (SVD-CK). The detailed
process of the SVD-CK method is placed in Section 4.

In the existing literature on the large-scale extension of
MKC, (Liang et al., 2023) achieves a good approximation
of kernel weights by using random sampling. However, the
method in (Liang et al., 2023) requires sampling many data
points to achieve a sufficiently ideal approximation, which
increases the computational cost during the algorithm’s it-
erative process. As an improvement to the above method,
(Liang et al., 2024) achieves better approximation results
based on SVD, but its computational complexity is rela-
tively high and related to n. The method proposed in this
paper, SVD-CK, achieves an approximation performance
comparable to that of (Liang et al., 2024). Moreover, during
the algorithm’s iterative process, it reduces the computa-
tional complexity to be independent of n. Additionally, the
methods of (Liang et al., 2023; 2024) are solely designed to
accelerate the SMKKM (Liu, 2022). In contrast, the method
proposed in this paper can accelerate more MKC algorithms
based on kernel weight learning, offering a broader range of
applications.

Finally, experiments are conducted on several benchmark
datasets to evaluate the approximation performance of SVD-
CK on three mainstream MKC algorithms. The experi-
mental results demonstrate that the proposed method can
effectively approximate the kernel weights learned from the
whole kernel matrix. Furthermore, the experiments also
verify that the scalable extension method can be effectively
applied to multiple large-scale datasets, proving the effi-
ciency of the proposed approach.

2. Related Work
Before we introduce the related work, we briefly introduce
basic assumptions and mathematical notations.

Basic mathematical notations and assumptions. We use
∥ · ∥ to present the spectral norm of a matrix or the 2-norm
of a vector. For some vector x, ∥x∥∞ = maxi |xi|. f(·) ≾
g(·) means f(·) ≤ cg(·) with some positive constant c. We
provide definitions for all other symbols in their respective

contexts of use. For any kernel function used in this paper,
we assume that l ≤ K(x, y) ≤ b with positive constants
l, b. The number of base kernels m and clusters k are both
assumed to be constants.

2.1. Multiple Kernel Clustering

Multiple kernel clustering (MKC) (Huang et al., 2012) is an
extension of kernel k-means (KKM) (Dhillon et al., 2004).
Assume that the sample space is X , the training set is S =
{xi}ni=1 ⊆ X , and the kernel function is K : X × X → R.
The objective function of KKM is

min
H

tr

(
1

n
K(In −HH⊤)

)
, s.t. H⊤H = Ik

where H ∈ Rn×k is termed clustering indicator matrix,
and K ∈ Rn×n is the kernel matrix whose elements can
be represented by Kij = K(xi, xj). One can perform
eigen-decomposition on K and let H be the first k largest
eigenvectors. Then, the clustering results can be obtained
by performing standard k-means on H.

In the actual execution of KKM, we do not know which
kernel function performs better. Therefore, we can select
m multiple kernel functions and compute base kernel ma-
trices {Kp}mp=1 accordingly. A fundamental assumption
of the MKC algorithm is that the optimal kernel matrix is
a weighted linear combination of the base kernel matrices.
During the optimization process, the clustering indicator ma-
trix and kernel weights are jointly optimized. In this section,
we introduce two MKC algorithms. The first one is multiple
kernel k-means (MKKM) (Huang et al., 2012). Denoting
that ∆ is the simplex constraint, the objective function of
MKKM is

min
γ,H

tr

(
1

n
Kγ(In −HH⊤)

)
,

s.t. H⊤H = Ik,γ ∈ ∆,

(1)

where Kγ =
∑m

p=1 γ
2
pKp, and γ = [γ1, · · · , γm]⊤ are the

kernel weights. Another highly influential MKC algorithm
is SMKKM (Liu, 2022), and its objective function is

min
γ
f(γ), s.t. γ ∈ ∆, (2)

where f(γ) = maxH⊤H=Ik tr
(
1
nKγHH⊤). Whether

MKKM or SMKKM, the computational complexity of ob-
taining the optimized kernel weights reaches O(n3), which
limits its application to large-scale datasets. It is noticed
that MKC algorithms can also handle multi-view datasets,
if we construct a kernel matrix for each view.

2.2. Coresets of Approximation Clustering

(Har-Peled & Mazumdar, 2004) introduces the concept of
coreset for approximation clustering. A general definition
of clustering is as follows.
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Definition 2.1 (Clustering Loss, (Har-Peled & Mazumdar,
2004)). For a set of points S from sample space X , with
a weight function w : S → R+ and clustering centroids
C, let υC(S) =

∑
x∈S w(x)d(x,C) as the clustering loss

of the k-median clustering caused by C, where d(x,C) =
miny∈C d(x, y) is the distance between x and C. Similarly,
denote that µC(S) =

∑
x∈S w(x)d(x,C)

2 is the clustering
loss of k-means clustering of S caused by the clustering
centroids C. Moreover, the clustering loss of the optimal
k-median and k-means clustering for S are respectively
denoted by

υopt(S, k) = min
C⊆X ,|C|=k

υC(S) and

µopt(S, k) = min
C⊆X ,|C|=k

µC(S).
(3)

The main idea of the coreset is to identify a small, weighted
subset T of the large dataset S, ensuring that performing
a clustering task on this subset can yield an approximately
optimal solution for the original dataset. The specific defini-
tion of coreset is as follows.

Definition 2.2 (Coreset, (Har-Peled & Mazumdar, 2004)).
A weighted set T ⊆ X is a (k, ε)-coreset of S for the k-
median clustering, if ∀C ⊆ X of k points, the following
equality holds,

(1− ε)υC(S) ≤ υC(T ) ≤ (1 + ε)υC(S).

Similarly, T is a (k, ε)-coreset of S for the k-means cluster-
ing, if ∀C ⊆ X , we have

(1− ε)µC(S) ≤ µC(T ) ≤ (1 + ε)µC(S).

A coreset is a general data compression tool that allows clus-
tering algorithms to run on smaller-scale datasets, enabling
the attainment of a good approximate solution with reduced
computational cost. In the MKC algorithm, the objective
function typically lacks explicit clustering loss and cluster
centroids, while the kernel weights play a critical role in
determining the clustering performance. Therefore, this pa-
per proposes the concept of “core kernel,” inspired by the
idea of the coreset, to approximate the kernel weights in the
MKC algorithm.

3. Core Kernel and Its Application for
Large-scale Extension

In this section, we introduce the core kernel definition and its
application for the large-scale extension of MKC algorithms.

3.1. Definition of Core Kernel

Definition 3.1. Assume that Kn = { 1
nKp}mp=1 ⊆ Rn×n is

a set of base kernel matrices, and the kernel weights obtained

by performing some MKC algorithm on {Kp}mp=1 are α∗.
For some positive integer s, K̃s = {K̃p}mp=1 ⊆ Rs×s is
another set of kernel matrices, and the corresponding kernel
weights are α̃ obtained from the same MKC algorithm.
K̃s is a (1 + ε)-approximation core kernel set of Kn, if
∥α̃−α∥∞ ≾ ε.

Remark. As seen, the core kernel is a concept proposed
for the approximation of kernel weights. If the time com-
plexity of some MKC algorithm is O(n3), one can obtain
the approximated kernel weights from the core kernel with
time complexity O(s3). When s≪ n, the time cost of the
MKC algorithm can be dramatically reduced. Moreover, by
incorporating the Nyström method (Wang et al., 2019), the
construction of the core kernel enables the MKC algorithm
to handle large-scale datasets, which we will introduce in
the next subsection.

3.2. Large-scale Extension for MKC Algorithms

Now, we introduce how to use the core kernel set for the
large-scale extension of MKC algorithms with Nytröm
method (Wang et al., 2019). Suppose that there is an
anchor set (randomly sampled from the training set S)
{a1, · · · , as} and a core kernel set K̃s = {K̃p}mp=1. For
some MKC algorithms, we can use the core kernel set to
obtain a group of the approximated kernel weights α̃. The
complexity of MKC algorithms is usually O(s3). Then, we
construct m kernel similarity matrices {Pp}mp=1 ⊆ Rn×s,
where the element in the i-th row and j-th column of
Pp is Kp(xi, aj). Then, make a weighted combination
of {Pp}mp=1 by Pα̃ =

∑m
p=1 α̃

2
pPp. The summation of

{Pp}mp=1 costs O(nms) time. Then, we can perform SVD
on Pα̃, and obtain its first k left singular vectors H̃. This
step costs O(ns2) time. Finally, we can obtain the clus-
tering results by performing the standard k-means on H̃.
Above all, the time cost is basically linear with the sample
number n (if m, s ≪ n), and thus, it can be used to han-
dle large-scale datasets. The above large-scale extension
method is listed in Algorithm 1.

We will now conduct a theoretical analysis of the above
algorithm. Before that, we need to introduce a common
assumption.
Assumption 3.2. For any vector γ ∈ Rm, let the difference
between the j-th and (j + 1)-th eigenvalues of the kernel
matrix 1

nKγ be denoted as δj(γ). For any j ∈ [k] and any
γ ∈ ∆, there exists a constant c ≥ 0 such that δj(γ) ≥ 1/c.

Remark. The assumption regarding eigenvalue gaps is
quite common in matrix perturbation theory (Stewart, 1990).
Specifically, when studying the perturbation of eigenvectors
or orthogonal projections, researchers often assume that the
gaps between eigenvalues are greater than a certain constant.
(Von Luxburg et al., 2008) assumes that all eigenvalues of
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Algorithm 1 Large-Scale Extensions of MKC by Core Ker-
nel

1: Input: Training set m kernel functions {Kp(·, ·)}mp=1;
anchor setsA = {aj}sj=1 (sampling from S = {xi}ni=1

without replacement); core kernel set {K̃p}mp=1; num-
ber of clusters k.

2: Output: clustering indicator matrix H̃; the clustering
results.

3: Perform MKC algorithm on core kernel set to obtain
approximated kernel weights α̃.

4: Compute m base kernel similarity matrices {Pp}mp=1

by Pp(i, j) = Kp(xi, aj), for any i ∈ [n], j ∈ [s].
5: Make the weighted combination of {Pp}mp=1 by Pα̃ =∑m

p=1 α̃
2
pPp.

6: Perform SVD on Pα̃ to obtain its first k left singular
vectors H̃ ∈ Rn×k.

7: Perform k-means on H̃ for the final clustering results.

the Laplacian matrix are distinct, which is analogous to the
assumption of eigenvalue gaps. In other research of kernel
clustering (Liang et al., 2024; Mitz & Shkolnisky, 2022),
the authors also make this assumption.

Theorem 3.3. Under Assumption 3.2, denote that the ker-
nel weights output by performing some MKC algorithm on
the original base matrices {Kp}mp=1 is α, and the corre-
sponding clustering indicator matrix is H, i.e., the first k
eigenvectors of Kα. When the inputs of Algorithm 1 are a
(1+ε)-approximation core kernel set, denote that the output
kernel weights are α̃ which satisfies ∥α̃−α∥∞ ≾ ε, where
≾ denotes inequality up to a constant factor. If the anchor
number s ≥ c log(n/δ)/ε2, the clustering indicator matrix
H̃ output by Algorithm 1 can make∥∥∥H̃H̃⊤ −HH⊤

∥∥∥
F
≾ ε

holds with probability at least 1− δ.

Remark. Theorem 3.3 gives an upper bound of the differ-
ence between the subspace spanned by H̃ and H. When ε is
sufficiently small, the clustering performance by performing
k-means on H̃ and H will be similar. Theorem 3.3 gives a
theoretical guarantee that we can use the core kernel set and
Algorithm 1 to approximate the original MKC algorithms
effectively. The proof can be found in Section C.1 of the
appendix.

4. Construction Method and Theoretical
Analysis

In this section, we present a method for constructing the
core kernel. We then provide a theoretical analysis and
prove that our method can produce the core kernel set for
several MKC algorithms.

4.1. Construction Idea

Now, we present the construction idea of the core kernel.
Our main objective is to approximate the spectrum of a
n× n kernel matrix by a s× s one.

Spectral approximation (Weinberger, 1974; Swartworth &
Woodruff, 2023) of matrices is an essential field in linear
algebra. It aims to approximate the eigenvalues or eigenvec-
tors of large-scale matrices. Given a n × n kernel matrix
1
nK, computing the precise spectrum of 1

nK is a massive
problem when n is large. Alternatively, we can use random-
ized methods to approximate the spectrum of 1

nK. The most
straightforward and often effective method is uniform sam-
pling. Specifically, let T ∈ Rn×s be a random sampling ma-
trix, and every column of T has only one non-zero element.
Assume that we uniformly sample s indexes {i1, · · · , is}
from {1, · · · , n} without replacement. For the j-th column
of T, its elements can be represented as Tij = 1, if i = ij
and Tij = 0, otherwise. Assuming that W = T⊤KT, then
we can use the eigenvalues of 1

sW to approximate the eigen-
values of 1

nK. Denoting that P = T⊤K, another method
is using the singular values of 1√

ns
P for the approximation

of 1
nK’s eigenvalues.

Empirical observations. We conduct numerical experi-
ments on two kernel datasets to verify the approximation
effect of the above two methods. Flower17 and CCV are
two commonly used multiple kernel datasets, and we aim to
approximate the eigenvalues of their average kernel matri-
ces. We then compute 1

nK’s largest k eigenvalues {λj}kj=1

(in a descending order). For two approximation methods,
we construct T randomly, and compute 1

sW’s largest k
eigenvalues along with 1√

ns
P’s largest k singular values.

Fixed the anchor number s, we compute the difference be-
tween the precise eigenvalue and the approximated one for
every j ∈ [k]. We let the maximal difference be the ap-
proximation error. We let s vary in {50 : 50 : 1000} and
record the variations of the approximation errors. To reduce
the randomness, we repeat the above experiments 30 times
and plot the mean values in Figure 1. As seen from Figure
1, the approximation effect of 1√

ns
P is much better than

1
sW. However, the time consumed by SVD decomposition
of 1√

ns
P is relatively high. Therefore, when constructing

the core kernel, we aim to combine the strengths of two
approximation methods, i.e., achieving an approximation of
SVD decomposition using the matrix with size s× s.

Theoretical observations. Next, we conduct a theoretical
analysis of the approximation effect of 1√

ns
P’s singular

values on the eigenvalues of 1
nK. This is also crucial for

our subsequent analysis of the properties of the core kernel.
We have the following theorem.

Theorem 4.1. Let T ∈ Rn×s be a random sampling matrix
and for the j-th column (j ∈ [s]), Tij = 1 with probability
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Figure 1. The comparison on the eigenvalue approximation errors of two methods, i.e., the eigenvalues of 1
s
W (red curves) and the

singular values of 1√
ns

P (blue curves).

1/n and Tij = 0 otherwise. Assume that P = T⊤K.
Then, if s ≥ c log(n/δ)/ε2 for some positive constant, with
probability at least 1− δ, for all t ∈ [n],∣∣∣∣σt( 1√

ns
P

)
− λt

(
1

n
K

)∣∣∣∣ ≤ ε,

where σt(·) is the t-th singular value of some matrix, and
λt(·) is the t-th eigenvalue.

Remark. Theorem 4.1 proves that using SVD decompo-
sition can effectively approximate the eigenvalues of the
whole kernel matrix, providing a theoretical foundation for
constructing the core kernel. The proof of Theorem 4.1 can
be found in Section C.2 of the appendix.

4.2. SVD-based Core Kernel

Based on the previous subsection, we begin constructing
the core kernel and propose an algorithm based on SVD.
For a better approximation, we use the singular values of
1√
ns
P to approximate the eigenvalues of 1

nK. Meanwhile,
to reduce computational costs, we use the right singular
vectors of 1√

ns
P as the eigenvectors of the core kernel.

Specifically, we first randomly select s anchors A =
{ai}si=1 from S = {xi}ni=1. For the p-th base kernel, de-
noting that the corresponding kernel function is Kp(·, ·),
we can compute Pp whose element can be computed by
Pp(i, j) = Kp(xi, aj) (i ∈ [n], j ∈ [s]). Then, we per-
form eigen-decomposition on P⊤

p Pp and denote P⊤
p Pp =

VpDpV
⊤
p , where Vp ∈ Rs×s,Dp ∈ Rs×s. Notice that the

diagonal elements of D1/2
p is the first s singular values of

Pp and Vp is composed of the corresponding singular vec-
tors. Then, we can construct the core kernel matrix of the
p-th kernel by 1√

ns
K̃p = 1√

ns
VpD

1/2
p V⊤

p . The pseudo-
code is provided in Algorithm 2. It can be seen that the
algorithm we propose is very simple and easy to implement.

Algorithm 2 SVD-based Core Kernel Construction
1: Input: Training set S = {xi}ni=1, anchor set A =

{ai}si=1, base kernel functions {Kp(·, ·)}mp=1.
2: Output: Core kernel matrices {K̃p}mp=1.
3: for p = 1 : m do
4: Compute P by Pp(i, j) = Kp(xi, aj).
5: Perform eigen-decomposition on P⊤

p Pp such that
P⊤

p Pp = VpDpV
⊤
p .

6: Let the p-th core kernel matrix be K̃p =

VpD
1/2
p V⊤

p .
7: end for

In this section, we first analyze the proposed Algorithm 2
from a theoretical perspective. Then, we utilize the core
kernel for the large-scale extension of MKC algorithms and
give the corresponding theoretical analysis.

4.3. Theoretical Analysis of SVD-based Core Kernel

The most significant difficulty of the analysis is the different
sizes of the original kernel and the core kernel. To address
this issue, we need to introduce the following empirical
integral operator LK associated with 1

nK (Von Luxburg
et al., 2008).

LK : C(X ) → C(X ),

LKf(x) =
1

n

n∑
i=1

K(x, xi)f(xi),
(4)

where C(X ) is the space of continuous functions defined on
X . Then, LK and 1

nK has the same non-zero eigenvalues
and the eigenfunction of LK is

ht(x) =
1

nλt

n∑
i=1

K(x, xi)ht(xi),

5
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where ht(xi) =
√
nhit, hit is the i-th component of ht, and

(λt,ht) is the t-th eigen-pair of 1
nK. A detailed introduc-

tion of the empirical integral operator and its perturbation
property can be found in Section B.1 in the appendix.

We then rewrite the core kernel matrix into the form of a
function, i.e., the kernel function associated with the core
kernel 1√

ns
K̃. For some kernel functionK(·, ·), assume that

the corresponding feature map is ϕ(·), i.e., ϕ⊤(x)ϕ(y) =
K(x, y). Denote that Φn = [ϕ(x1), · · · , ϕ(xn)] and Φs =
[ϕ(a1), · · · , ϕ(as)]. It can be checked that

1√
ns

K̃ =
1

ns
Φ⊤

s Φn(
1

ns
Φ⊤

nΦsΦ
⊤
s Φn)

+1/2Φ⊤
nΦs.

Denote Π′ = 1
nΦn(

1
nsΦ

⊤
nΦsΦ

⊤
s Φn)

+1/2Φ⊤
n , then the

kernel function associated with K̃ can be represented by

K̃(x, y) = ϕ⊤(x)Π′ϕ(y).

Assume that (λ̃t, h̃t) is the t-th eigen-pair of 1√
ns
K̃. We let

the first k eigenfunctions of LK̃ be {h̃j(·)}kj=1, i.e.,

h̃j(x) =
1

sλ̃t

s∑
t=1

K̃(x, at)h̃j(at),

where h̃j(at) =
√
sh̃tj , and h̃tj is the t-th component of h̃t.

Based on the above definitions of empirical operators and
eigenfunctions, we can define the alignment level between
the p-th base kernel function Kp(·, ·) and eigenfunctions
{ĥj(·)}kj=1 by

Tn(Kp, {ĥj}kj=1) =
1

n2

k∑
j=1

n∑
i,t=1

Kp(xi, xt)ĥj(xi)ĥj(xt).

Similarly, the alignment level between the p-th core ker-
nel function K̃p(·, ·) and eigenfunctions {h̃j(·)}kj=1 can be
given by

Ts(K̃p, {h̃j}kj=1) =
1

s2

k∑
j=1

s∑
i,t=1

K̃p(ai, at)h̃j(ai)h̃j(at).

For any kernel weights γ = [γ1, · · · , γm]⊤, letting
Kγ(x, y) =

∑m
p=1 γ

2
pKp(x, y). Suppose that the corre-

sponding eigenfunctions of the empirical integral operator
LKγ are {ĥγj }kj=1. Similarly, for the same kernel weights,
suppose that the weighted combination of the core kernel
matrices is K̃γ(x, y) =

∑m
p=1 γ

2
pK̃p(x, y). We assume that

the eigenfunctions of LK̃γ
are {h̃γj }kj=1. The following two

lemmas give the upper bounds of the differences between
the alignment level of the p-th base kernel and core base
kernel with their corresponding eigenfunctions.

Lemma 4.2. For any kernel weights γ, when the number of
anchors s ≥ c log(n/δ)/ε2 with some constant c > 0,

|Tn(Kp, {ĥγj }
k
j=1)− Ts(K̃p, {h̃γj }

k
j=1)| ≤ kε,

holds with probability at least 1− δ.

By Lemma 4.2, we can derive the following Lemma 4.3
under Assumption 3.2.
Lemma 4.3. Under Assumption 3.2, for any kernel weights
α,β, when the number of anchors s ≥ c log(n/δ)/ε2 with
some constant c > 0,

|Tn(Kp, {ĥαj }kj=1)−Ts(K̃p, {h̃βj }
k
j=1)| ≤ ∥α−β∥∞+kε,

holds with probability at least 1− δ.

Remark. Lemma 4.2 gives the differences between the
alignment level of the base kernel and core kernel for the
same kernel weights. Furthermore, Lemma 4.3 gives the
alignment differences with different weights. The proofs of
the above lemmas are in C.3. By combining Lemma 4.3, we
can utilize the recurrence relation to analyze the gradient
differences of the base kernel and the core kernel during
each step of the optimization process in the gradient descent-
based MKC algorithms. Subsequently, we can prove that
the SVD-based CK constructed by Algorithm 2 satisfies the
definition of a core kernel as described in Definition 3.1 for
SMKKM (Liu, 2022) and SMKKM-KWR (Li et al., 2023)
(Theorem 4.4). Moreover, with some additional conditions,
SVD-based CK is also the core kernel of MKKM-MR (Liu
et al., 2016) (Theorem 4.5). The proofs of Theorem 4.4
and Theorem 4.5 are respectively placed in Section C.4 and
Section C.5 of the appendix.
Theorem 4.4. Under Assumption 3.2, if s ≥ c log(n/δ)/ε2,
with probability at least 1 − δ, Algorithm 2 produces a
(1 + ε)-approximation core kernel set for SMKKM and
SMKKM-KWR.
Theorem 4.5. Denote that the elements of M, M̃ ∈ Rm×m

are respectively the Frobenius inner products of original
and core base kernel matrices, i.e., Mpq = tr( 1

n2KpKq)

and Mpq = tr( 1
nsK̃pK̃q). Under Assumption 3.2, if s ≥

c log(n/δ)/ε2 and M, M̃ have full ranks, with probability
at least 1−δ, Algorithm 2 produces a (1+ε)-approximation
core kernel set for MKKM-MK.

5. Experiments
In this section, we conduct two kinds of experiments. The
first one is to verify that Algorithm 2 can produce the core
kernel set for SMKKM, SMKKM-KWR, and MKKM-MR.
In the second kind of experiment, we then demonstrate that
the core kernel set can also enable the above three MKC
algorithms to handle large-scale datasets efficiently. All
the above experiments are conducted on a computer with a
configuration of Intel(R) Core(TM)-i7-10870H CPU.
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5.1. Information of the Kernel Datasets

To verify the approximation effect of the core kernel on
the kernel weights, we selected six small-scale kernel
datasets for experimentation, including Flower17, Digit,
CCV, Flower102, 4Area, and Cal102. Their links and de-
tailed information are reported in Section D.2 of the ap-
pendix.

5.2. Approximation Effect of Core Kernel on Kernel
Weights

Experimental setting. We conduct experiments on three
MKC algorithms, i.e., SMKKM, SMKKM-KWR and
MKKM-MR. For the methods with hyper-parameters, we let
all of the hyper-parameters be equal to 1. We first perform
the MKC algorithms on the original kernel datasets to obtain
a set of kernel weights, denoted as α. Then, we randomly
selected s distinct numbers {i1, · · · , is} from {1, · · · , n},
where n is the number of samples in the training set. Then,
we use the indices {i1, · · · , is} to construct a core kernel
set by Algorithm 2. We perform the MKC algorithm on
the core kernel set and denote the corresponding kernel
weights by α̃. Let The value of s vary within the range
[50 : 50 : 1000], with the constraint that s is less than the
number of samples but greater than the number of clusters.
For each s, we record the value of ∥α̃ − α∥∞. To reduce
randomness, we repeated the experiment 30 times and com-
puted the average of ∥α̃−α∥∞. The experimental results
are shown as the blue curve in Figure 2. Additionally, for
comparison, we construct s × s base kernel matrices via
uniform sampling from the selected indices {i1, · · · , is},
selecting the corresponding rows and columns. We also
recorded the difference between the kernel weights obtained
from the original kernel matrices and the kernel matrices
based on uniform sampling. After repeating the experiment
30 times, the average value is shown as the red curve in
Figure 2.

Experimental results. Due to space limitations, only the ex-
perimental results on two datasets, i.e., Flower17 and DIGIT,
are presented in the main text, while the results on other
datasets can be found in Section D.1 of the appendix. From
the blue curve, it can be observed that as s increases, the
kernel weights obtained by the algorithm on the proposed
SVD-CK rapidly approach those obtained on the original
kernel matrices. This fully demonstrates the correctness of
Theorem 4.4 and Theorem 4.5. The red curve represents
the kernel weight error obtained by the algorithm on the
kernel matrices based on uniform sampling. It can be seen
that the proposed method significantly outperforms uniform
sampling. In addition, a relatively small s can achieve a low
approximation error on kernel weights, which highlights the
effectiveness of SVD-CK in enabling scalable extensions of
MKC algorithms.

5.3. Large-Scale Experiments

Table 1. Large-scale datasets

Dataset Number of
Samples Views Clusters Features

CIFAR10 50000 3 10 512,2048,1024
MNIST 60000 3 10 342, 1024, 64

Winnipeg 325834 2 7 49, 38

Experimental setting. To validate the effectiveness of
Algorithm 1, this section also conducts tests on several
commonly used large-scale datasets, including CIFAR102,
MNIST3, and Winnipeg4. Their detailed information is re-
ported in Table 1. The number of samples in the datasets
used in the experiments exceeds 50, 000, with the largest be-
ing 325, 834. For each view, a base kernel similarity matrix
is constructed using a Gaussian kernel function as follows:

K(xi, at) = exp

(
−∥xi − at∥2

2σ2

)
, (5)

where xi ∈ S(i ∈ [n]) and at ∈ A(t ∈ [s]). In the proposed
algorithm, s is set to s = 500. The parameter σ2 represents
the average squared distance between the sample points in
S and A, , and is computed as:

σ2 =
1

ns

∑
xi∈S

∑
at∈A

∥xi − at∥2. (6)

Table 2. Results of large-scale experiments
Datasets CIFAR10 MNIST Winnipeg

NMI (%)

RMKMC 82.07 81.05 49.43
LMVSC 45.04 84.75 51.94
OPMC 83.81 82.67 50.82

AWMVC 76.38 80.76 38.86
SMKKM (CK) 97.53 97.00 54.14

SMKKM-KWR (CK) 97.78 96.96 54.12
MKKM-MR (CK) 98.07 97.33 59.24

Time (s)

RMKMC 162.09 155.16 297.40
LMVSC 16.22 67.44 142.63
OPMC 27.56 49.94 20.29

AWMVC 203.01 64.78 59.77
SMKKM (CK) 47.84 65.18 288.06

SMKKM-KWR (CK) 43.61 65.77 248.51
MKKM-MR (CK) 38.99 62.26 259.24

For comparison, experiments are also conducted on several
state-of-the-art large-scale multi-view clustering algorithms,

2http://www.cs.toronto.edu/˜kriz/cifar.
html

3http://yann.lecun.com/exdb/mnist/
4https://archive.ics.uci.edu/dataset/

525/crop+mapping+using+fused+optical+radar+
data+set
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Figure 2. The proposed SVD-CK is illustrated through a diagram showing the kernel weight approximation performance. The blue curve
represents the kernel weight approximation error constructed using SVD-CK. It can be observed that as s increases, the approximation
error decreases rapidly, enabling the weights obtained by the three MKC methods on SVD-CK to closely approximate those on the
original kernel matrices. For comparison, the red curve represents the kernel weight approximation error based on random sampling of the
kernel matrix. SVD-CK demonstrates a clear advantage in kernel weight approximation.

including: RMKMC (Cai et al., 2013), LMVSC (Kang et al.,
2020), OPMC (Liu et al., 2021), and AWMVC (Wan et al.,
2024). Detailed information on these comparison methods
is reported in Section D.3 of the appendix. For the above
comparison algorithms with hyper-parameters, the optimal
hyper-parameters are selected via grid search as described
in the corresponding papers. Our experiments employ three
widely used clustering metrics: accuracy (ACC), normal-
ized mutual information (NMI), and purity. Additionally,
we record the execution time for all experiments. Due to
limited space, we only show NMI and execution time in the
main text. We use Algorithm 1 for the large-scale exten-
sions of SMKKM, SMKKM-KWR, and MKKM-MR, and
they are termed SMKKM (CK), SMKKM-KWR (CK), and
MKKM-MR (CK), respectively. The experimental results
are presented in Table 4, with the best outcomes highlighted
in bold. For the whole experimental results, please refer to
Section D.4 of the appendix.

As shown in Table 4, the proposed method enables the three
MKC algorithms to operate on large-scale datasets. From
the perspective of clustering performance, the three MKC
methods demonstrate better clustering results compared to
several large-scale multi-view clustering algorithms that
directly process the original features of the data. This is
because the kernel functions are effectively utilized, allow-
ing better handling of non-linearly separable datasets. From

the perspective of clustering efficiency, the proposed large-
scale extension of the MKC algorithms can obtain clustering
results quickly, indicating that the computational cost is rela-
tively low. The above experimental results fully demonstrate
the effectiveness and efficiency of Algorithm 1.

6. Conclusion
This paper introduces a new concept, the core kernel, to ad-
dress kernel weight approximation in multiple kernel cluster-
ing algorithms. We define the core kernel and, based on this
definition, propose a theoretically guaranteed large-scale ex-
tension method for MKC. Subsequently, we introduce SVD-
CK, a core kernel construction method based on singular
value decomposition. We prove that SVD-CK satisfies the
definition of the core kernel for the three MKC algorithms.
Finally, we validate the approximation performance of SVD-
CK for kernel weights on several commonly used kernel
datasets. Additionally, on large-scale datasets, we verify
the effectiveness and efficiency of the proposed large-scale
extension method. Although this paper only explores the
approximation of MKC, the proposed method demonstrates
strong potential for broader applications. In particular, it
could be extended to analyze the approximation algorithms
of multi-view clustering (Yu et al., 2024; 2023), which is a
direction we intend to explore in future work.
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A. Brief Introduction of SMKKM, SMKKM-KWR, and MKKM-MR
In this section, we introduce SMKKM (Liu, 2022), SMKKM-KWR (Li et al., 2023), and MKKM-MR (Liu et al., 2016) and
their optimization method.

1. SMKKM. (Liu, 2022) The objective function of SMKKM is

min
γ
f(γ), s.t. γ ∈ ∆, (7)

where f(γ) = maxH⊤H=Ik tr
(
1
nKγHH⊤) . The optimization of SMKKM is based on a reduced gradient descent method.

Specifically, fixed some index u ∈ [m], the reduced gradient of fγ is as follows,

[∇f ]p =
∂f(γ)

∂γp
− ∂f(γ)

∂γu
, ∀p ̸= u, [∇f ]u =

∑
p ̸=u

(
∂f(γ)

∂γu
− ∂f(γ)

∂γp

)
, (8)

where ∂f(γ)
∂γp

=
2γp

n tr(Kp(In − ĤĤ⊤)), and Ĥ = argminH⊤H=Ik
tr(Kγ(In −HH⊤)).

To keep the positivity constraint of γ, the descent direction d = [d1, · · · , dm]⊤ can be set as

dp =


0, if γp = 0 and ∂f(γ)

∂γp
− ∂f(γ)

∂γu
> 0,

− 1
m−1

(
∂f(γ)
∂γp

− ∂f(γ)
∂γu

)
, if γp > 0 and p ̸= u,

− 1
m−1

∑
p ̸=u,γp>0

(
∂f(γ)
∂γu

− ∂f(γ)
∂γp

)
, for p = u.

(9)

Compared with (Liu, 2022), in this paper, the reduced gradient is divided by m − 1 for the normalization of the u-th
component. Nevertheless, the reduced gradient of this paper still makes f(γ) converge within several iterations. The
updating scheme is γ = γ + ηd, where η is assumed to be less than some constant c > 0.

2. SMKKM-KWR. (Li et al., 2023) SMKKM-KWR is an improvement of SMKKM, and its objective function is

min
γ
f(γ), s.t. γ ∈ ∆, (10)

where f(γ) = maxH⊤H=Ik tr
(
1
nKγHH⊤) + λ∥γ − γ0∥2, where γ0 denotes the average kernel weights. The p-th

component of the gradient is ∂f(γ)
∂γp

=
2γp

n tr(Kp(In − ĤĤ⊤)) + 2λ(γp − γ0p), and Ĥ = argminH⊤H=Ik
tr(Kγ(In −

HH⊤)). Similar to SMKKM, SMKKM-KWR can be optimized using the reduced gradient descent algorithm.

3. MKKM-MR. (Liu et al., 2016) MKKM-MR is an enhanced version of MKKM, and the objective function is

min
γ,H

tr

(
1

n
Kγ(In −HH⊤)

)
+ λγ⊤Mγ, s.t. γ ∈ ∆, H⊤H = Ik,

where λ is a hyper-parameter, M ∈ Rm×m, and its element can be represented by Mpq = tr
(

1
n2KpKq

)
(for p, q ∈ [m]).

The optimization of MKKM-MR is based on a coordinate descent method as follows.

1) Optimize H with fixed γ. Perform the eigen decomposition on Kγ , and let H be its first k eigenvectors.

2) Optimize γ with fixed H. Let δp = tr
(
1
nKp(In −HH⊤)

)
and D ∈ Rm×m be a diagonal matrix with Dpp = δp (for

p ∈ [m]). Then, γ = (λM+D)−11m

1⊤
m(λM+D)−11m

is the optimal solution.
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B. Preliminaries of Proofs
B.1. Empirical Integral Operator and Perturbation Theory

We first introduce the empirical integral operator (Von Luxburg et al., 2008) associated with some kernel matrix 1
nK ∈ Rn×n.

1
nK ∈ Rn×n can be regarded as an operator from Rn to Rn, i.e.,

1

n
Kw =

[
1

n

n∑
i=1

K(x1, xi)wi, · · · ,
1

n

n∑
i=1

K(xn, xi)wi

]⊤
,

for any w = [w1, · · · , wn]
⊤ ∈ Rn. Then, the empirical integral operator LK associated with 1

nK is

LK : C(X ) → C(X ), LKf(x) =
1

n

n∑
i=1

K(x, xi)f(xi),

where C(X ) denotes the space of continuous functions defined on X . LK has the same non-zero eigenvalues with 1
nK.

Let {λ1, · · · , λl} (in a descending order) be the non-zero eigenvalues of LK and 1
nK. Assume that the corresponding

eigenvectors of 1
nK are {h1, · · · ,hl}. Then, the t-th (t ∈ [l]) eigenfunction ht of LK is

ht(x) =
1

nλt

n∑
i=1

K(x, xi)ht(xi),

where ht(xi) =
√
nhit, and hit is the i-th component of ht. The following theorem gives a perturbation bound of the

empirical integral operator.
Lemma B.1 (Theorem 7, (Von Luxburg et al., 2008)). Let (E, ∥ · ∥E) be a Banach space, and let B denote the unit ball
in this space. Let (Kn)n∈N+ and K be compact operators on E, with Kn converging to K. For a non-zero eigenvalue
λ ∈ σ(K), let Pr denote its corresponding spectral projection. Let M ⊂ C be an open neighborhood of λ such that
σ(K) ∩M = λ. There exists an integer N ∈ N such that for ∀n > N , σ(Kn) ∩M = λ is isolated in σ(Kn). Let Prn
denote the spectral projection corresponding to σ(Kn) ∩M for Kn. Then there exists a constant C > 0 such that for every
x ∈ PrE, the following holds:

∥x− Prnx∥E ⩽ C(∥(Kn −K)x∥E + ∥x∥E∥(K −Kn)Kn∥). (11)

B.2. Concentration Inequalities for Matrices and Vectors

In our proofs, we need the following three concentration inequalities: The first one gives a matrix Chernoff bound for the
eigenvalues of sums of finite random matrices. The second and third are two inequalities of subsampled covariance matrices
and vectors, respectively.
Theorem B.2 (Chernoff bound of eigenvalues (Bakshi et al., 2020)). Assume that {Aj}j≥1 is a finite sequence of
independent, random, positive-semidefinite matrices with size n× n. If ∥Aj∥ ≤ L (∀j) for some positive real number L
almost surely, then the following tail inequalities hold Pr

[
λk(
∑

j Aj) ≥ (1 + δ)µk

]
≤ (n− k + 1) ·

[
eδ

(1+δ)1+δ

]µk/L

, for δ > 0,

Pr
[
λk(
∑

j Aj) ≤ (1− δ)µk

]
≤ k ·

[
e−δ

(1−δ)1−δ

]µk/L

, for δ ∈ [0, 1),
(12)

where µk = λk(
∑

j E[Aj ]), and k(≤ n) is some integer.

Theorem B.3 (Lemma2, (Bach, 2013)). Let Ψn = [ψ1, · · · ,ψn] ∈ Rr×n, and ∥ψi∥ ≤ R, for each i ∈ [n]. Let I be an
index set that consists of s elements sampled from {1, · · · , n} without replacement. Then, for all ε > 0,

Pr

[∥∥∥∥ 1nΨnΨ
⊤
n − 1

s
ΨIΨ

⊤
I

∥∥∥∥ > ε

]
≤ r exp

 −sε2/2∥∥∥ 1
nΨnΨ

⊤
n

∥∥∥ · (R2 + t/3)

 .

Theorem B.4 (Lemma1, (Smale & Zhou, 2007)). Let H be a Hilbert space and {ψi}si=1 be s i.i.d. random variables
valued in H. Assume that ∥ψi∥ ≤ R with some constant R > 0. Denote that σ2 = E(∥ψi∥2). Then,

Pr

[∥∥∥∥∥1s
s∑

i=1

(ψi − E[ψi])

∥∥∥∥∥ ≥ ε

]
≤ 2 exp

(
− sε2

2Rε+ 2σ2

)
.

12
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C. Proofs of Theoretical Results
C.1. Proof of Theorem 3.3

To prove Theorem 3.3, we need the following lemma on the upper bound of matrix eigenvector perturbation.

Lemma C.1. (Yu et al., 2014) Let A,B ∈ Rn×n be Hermitian matrices with eigenvalues λ1 ≥ · · · ≥ λn and λ̂1 ≥ · · · ≥ λ̂n,
respectively. Fix 1 ≤ r ≤ s ≤ n, and assume min(λr−1 − λr, λs − λs+1) > 0, where λ0 := ∞ and λn+1 := −∞.
Let d := s − r + 1. Assume that H = [hr,hr+1, · · · ,hs] ∈ Rn×d and Ĥ = [ĥr, ĥr+1, · · · , ĥs] ∈ Rn×d are column-
orthogonal and satisfy, for any j ∈ {r, r + 1, · · · , s}, Ahj = λjhj and Bĥj = λ̂jĥj . Then, there exists an orthogonal
matrix Ô ∈ Rd×d such that ∥∥∥ĤÔ−H

∥∥∥
F
⩽

23/2 min(d1/2∥A−B∥, ∥A−B∥F)

min(λr−1 − λr, λs − λs+1)
. (13)

Proof. Let H be the first k eigenvectors of 1
nKα̃. For any orthogonal matrix Ô ∈ Rk×k, we have∥∥∥HH
⊤ −HH⊤

∥∥∥
F

≤
∥∥∥HÔÔ⊤H

⊤ −HÔH⊤
∥∥∥

F
+
∥∥∥HÔH−HH⊤

∥∥∥
F

≤∥HÔ∥ ·
∥∥∥HÔ−H

∥∥∥
F
+ ∥H∥ ·

∥∥∥HÔ−H
∥∥∥

F

≤2
∥∥∥HÔ−H

∥∥∥
F
.

(14)

By setting r = 1, s = k in Lemma C.1, according to Assumption 3.2,∥∥∥HH
⊤ −HH⊤

∥∥∥
F
≾
∥∥∥HÔ−H

∥∥∥
F

≤
∥∥ 1
nKα̃ − 1

nKα

∥∥
F

δ(α)

≾

√√√√ m∑
p=1

n∑
i=1

n∑
t=1

(α̃2
p − α2

p)
2
K2

p(xi, xt)

n2

≾

√√√√ m∑
p=1

(α̃2
p − α2

p)
2 ·
(

max
i∈[n],t∈[n]

K2(xi, xt)

)

≾ max
p∈[m]

|α̃p − αp|

√√√√ m∑
p=1

(α̃p + αp)2

≾ max
p∈[m]

|α̃p − αp| = ∥α̃−α∥∞ ≾ ε.

(15)

Notice that H̃ is the first k eigenvectors of 1
nsPα̃P

⊤
α̃ . Then, by Lemma C.1,∥∥∥H̃H̃⊤ −HH

⊤
∥∥∥

F
≾

√
k
∥∥ 1
nsPα̃P

⊤
α̃ − 1

n2K
2
α̃

∥∥
δ(α̃)

≾
√
k

∥∥∥∥ 1

ns
Pα̃P

⊤
α̃ − 1

n2
K2

α̃

∥∥∥∥ . (16)

For any kernel matrix K ∈ Rn×n, let P ∈ Rn×s be its s columns selected by uniform sampling. Let ψi =
1√
n
Φ⊤

n ϕ(xi) in

Theorem B.3. Then, in Theorem B.3, 1
nΨnΨ

⊤
n = 1

n2K
2 and 1

nsΨIΨ
⊤
I = 1

nsPP⊤. By Theorem B.3, with probability at
least 1− δ, ∥∥∥∥ 1

ns
PP⊤ − 1

n2
K2

∥∥∥∥ ≾ ε.

According to Eq.(16), we have
∥∥∥H̃H̃⊤ −HH

⊤
∥∥∥

F
≾

√
kε.

13
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Combining Eq.(15), with probability at least 1− δ,∥∥∥H̃H̃⊤ −HH⊤
∥∥∥
F
≤
∥∥∥H̃H̃⊤ −HH

⊤
∥∥∥
F
+
∥∥∥HH

⊤ −HH⊤
∥∥∥
F
≾ ε.

C.2. Proof of Theorem 4.1

Proof. Denote that T = [t1, · · · , ts]. Then, Aj = 1
nsKtjt

⊤
j K and

∑s
j=1 Aj = 1

nsKTT⊤K. It is can be checked that
E[Ktjt

⊤
j K] = 1

nK
2. Thus,

∑s
j=1 E[Aj ] =

1
n2K

2. Moreover, ∥Aj∥ = 1
ns∥Ktjt

⊤
j K∥ ≤ 1

s .

By Theorem B.2, for any δ > 0, we have

Pr

λt(∑
j

Aj) ≥ (1 + δ)µt

 ≤ (n− k + 1) ·
[
eδ−(1+δ) log(1+δ)

]sµt

≤ (n− t+ 1) · e−
sδ2µk

2

(Because δ − (1 + δ) log(1 + δ) ≤ −δ2/2.)

(17)

Let δ = ε√
µt

, we have

Pr

λt(∑
j

Aj) ≥ (1 + δ)µt

 ≤ (n− t+ 1) · e− sε2

2 .

Consequently, with probability at least 1− (n− t+ 1) · e− sε2

2 ,

λt(
∑
j

Aj) ≤ (1 +
ε

√
µt

)µt.

Thus, for any s ≥ 2 log(n/δ)
ε2 , √

λt(
∑
j

Aj) ≤
√

1 +
ε

√
µt

· √µt ≤ (1 +
ε

√
µt

)
√
µt.

By the definition of σt
(

1√
ns

)
and µt, we have

σt

(
1√
ns

P

)
≤ λt

(
1

n
K

)
+ ε. (18)

Now, we proceed to prove the other half of Theorem 4.1. According to Theorem B.2, for any δ ∈ [0, 1),

Pr

λt(∑
j

Aj) ≤ (1− δ)µt

 ≤ t ·
[
e−δ−(1−δ) log(1−δ)

]sµt

≤ t · e−
sδ2µk

2

(Because δ + (1− δ) log(1− δ) ≥ δ2/2.)

(19)

Let δ = ε√
µt

, we have

Pr

λt(∑
j

Aj) ≤ (1− δ)µt

 ≤ t · e− sε2

2 ,

which is equivalent to
(1− ε

√
µt

)µt ≤ λk(
∑
j

Aj)

14
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holds with probability at least 1− t · e− sε2

2 . For any s ≥ 2 log(n/δ)
ε2 , due to

√
1− ε√

µt
≥ 1− ε√

µt
, we have

(1− ε
√
µt

)
√
µt ≤

√
(1− ε

√
µt

)µt ≤
√
λt(
∑
j

Aj),

holds with probability at least 1− δ. By the definition of σt
(

1√
ns

)
and µt, we have

λt

(
1

n
K

)
− ε ≤ σt

(
1√
ns

P

)
. (20)

Combining Eq.(18) and Eq.(20), by union bound, when s ≥ 2 log(2n/δ)
ε2 , with probability at least 1− δ,∣∣∣∣σt( 1√

ns
P

)
− λt

(
1

n
K

)∣∣∣∣ ≤ ε.

C.3. Proof of Lemma 4.2 and Lemma 4.3

Lemma C.2 (Theorem 7.3.2, (Songgui et al., 2006)). Assume that A,B are two PSD matrices, and A2 ≼ B2. Then,
A ≼ B.

Lemma C.3. If s ≥ c log(n/δ)/ε2, with probability at least 1− δ,∥∥∥∥1sΦ⊤
s Φs −

1√
ns

(Φ⊤
s ΦnΦ

⊤
nΦs)

1/2

∥∥∥∥ ≤ ε.

Proof. Assume that ψi =
(

1
sΦ

⊤
s Φs

)+ (
1√
s
Φ⊤

s ϕ(xi)
)

. Then, it is easy to check that there exists a constant c > 0 such

that ∥ψi∥ ≤ c and
∥∥∥ 1
nΨnΨ

⊤
n

∥∥∥ ≤ c. By Theorem B.3, we have

Pr

[∥∥∥∥ 1nΨnΨ
⊤
n − 1

s
ΨIΨ

⊤
I

∥∥∥∥ > ε

]
≤ n exp

(
−sε2/2

c · (c+ t/3)

)
≤ n exp

(
−sε2

4c2

)
.

It is equivalent to, for all s ≥ c log(n/δ)/ε2, with probability at least 1− δ,∥∥∥∥∥
(
1

s
Φ⊤

s Φs

)+(
1

ns
Φ⊤

s ΦnΦ
⊤
nΦs −

1

s2
Φ⊤

s ΦsΦ
⊤
s Φs

)(
1

s
Φ⊤

s Φs

)+
∥∥∥∥∥ ≤ ε,

which implies

(1− ε) ·
(

1

s2
Φ⊤

s ΦsΦ
⊤
s Φs

)
≼

1

ns
Φ⊤

s ΦnΦ
⊤
nΦs ≼ (1 + ε) ·

(
1

s2
Φ⊤

s ΦsΦ
⊤
s Φs

)
.

By Lemma C.2, we have

√
1− ε ·

(
1

s
Φ⊤

s Φs

)
≼

(
1

ns
Φ⊤

s ΦnΦ
⊤
nΦs

)1/2

≼
√
1 + ε ·

(
1

n
Φ⊤

s Φs

)
.

For any ε ∈ (0, 1), due to 1− ε ≤
√
1− ε and

√
1 + ε ≤ 1 + ε, we have

(1− ε) ·
(
1

s
Φ⊤

s Φs

)
≼

(
1

ns
Φ⊤

s ΦnΦ
⊤
nΦs

)1/2

≼ (1 + ε) ·
(
1

s
Φ⊤

s Φs

)
15
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Then, we can obtain ∥∥∥∥∥
(

1

ns
Φ⊤

s ΦnΦ
⊤
nΦs

)1/2

− 1

s
Φ⊤

s Φs

∥∥∥∥∥ ≤ ε

∥∥∥∥1sΦ⊤
s Φs

∥∥∥∥ ≾ ε.

Proof of Lemma 4.2. For convenience of expression, we use {ĥj}kj=1 to present {ĥγj }kj=1 and {h̃j}kj=1 to to present
{h̃γj }kj=1. Then, by triangle inequality, we have

|Tn(Kp, {ĥj}kj=1)− T̃s(K̃p, {h̃j}kj=1)|

≤
k∑

j=1

∣∣∣∣∣ 1n2
n∑

i=1

n∑
t=1

Kp(xi, xt)ĥj(xi)ĥj(xt)−
1

s2

s∑
i=1

s∑
t=1

K̃p(ai, at)h̃j(ai)h̃j(at)

∣∣∣∣∣
≤

k∑
j=1

∣∣∣∣∣ 1n2
n∑

i=1

n∑
t=1

Kp(xi, xt)ĥj(xi)ĥj(xt)−
1

s2

s∑
i=1

s∑
t=1

Kp(ai, at)ĥj(ai)ĥj(at)

∣∣∣∣∣︸ ︷︷ ︸
A

+

k∑
j=1

∣∣∣∣∣ 1s2
s∑

i=1

s∑
t=1

Kp(ai, at)ĥj(ai)ĥj(at)−
1

s2

s∑
i=1

s∑
t=1

K̃p(ai, at)ĥj(ai)ĥj(at)

∣∣∣∣∣︸ ︷︷ ︸
B

+

k∑
j=1

∣∣∣∣∣ 1s2
s∑

i=1

s∑
t=1

K̃p(ai, at)ĥj(ai)ĥj(at)−
1

s2

s∑
i=1

s∑
t=1

K̃p(ai, at)h̃j(ai)h̃j(at)

∣∣∣∣∣︸ ︷︷ ︸
C

(21)

For any x ∈ X , assume thatψ(x) = ĥj(x)ϕp(x). For all i ∈ [n], it is easy to check that ∥ψ(xi)∥ ≤ c and E[∥ψ(xi)∥2] ≤ c
with some constant c > 0. By Theorem B.4, with probability at least 1− δ,∥∥∥∥∥1s

s∑
i=1

ψ(ai)−
1

n

n∑
i=1

ψ(xi)

∥∥∥∥∥ ≤ ε.

For Item A in Eq. (21), with probability at least 1− δ,

A =

∣∣∣∣∣∣
∥∥∥∥∥ 1n

n∑
i=1

ψ(xi)

∥∥∥∥∥
2

−

∥∥∥∥∥1s
s∑

i=1

ψ(ai)

∥∥∥∥∥
2
∣∣∣∣∣∣ ≤

∥∥∥∥∥ 1n
n∑

i=1

ψ(xi)−
1

s

s∑
i=1

ψ(ai)

∥∥∥∥∥ ·
∥∥∥∥∥ 1n

n∑
i=1

ψ(xi) +
1

s

s∑
i=1

ψ(ai)

∥∥∥∥∥ ≾ ε. (22)

For Item B in Eq. (21), according to Lemma C.3, with probability at least 1− δ,

B ≾

∥∥∥∥1sKp −
1

s
K̃p

∥∥∥∥ =

∥∥∥∥1sΦ⊤
s Φs −

1√
ns

(Φ⊤
s ΦnΦ

⊤
nΦs)

1/2

∥∥∥∥ ≤ ε. (23)

For Item C in Eq. (21), we have

C ≤ 1

s2

s∑
i=1

s∑
t=1

|K̃p(ai, at)| · |ĥj(ai)ĥj(at)− h̃j(ai)h̃j(at)|

≾ sup
x,y

|tj ĥj(x) · tj ĥj(y)− h̃j(x)h̃j(y)|

≤ sup
x,y

|tj ĥj(x) · aj ĥj(y)− tj ĥj(x)h̃j(y) + aj ĥj(x)h̃j(y)− h̃j(x)h̃j(y)|

≤ sup
x,y

|aj ĥj(x)| · |aj ĥj(y)− h̃j(y)|+ sup
x,y

|h̃j(y)| · |aj ĥj(x)− h̃j(x)|

≾ ∥aj ĥj − h̃j∥∞.

(24)
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For any x, y ∈ X , denote that

K̂(x, y) =
1

n

n∑
i=1

K(x, xi)K(xi, y), LK̂f(x) =
1

n2

n∑
i=1

n∑
t=1

K(x, xi)K(xi, xt)f(xt),

and

K(x, y) =
1

n

n∑
i=1

K(x, xi)K(xi, y), LKf(x) =
1

ns

n∑
i=1

s∑
t=1

K(x, xi)K(xi, at)f(at).

By the definitions of eigenfunctions, it can be checked that {ĥj}kj=1 and {h̃j}kj=1 are {h̃j}kj=1 the eigenfunctions of LK̂

and LK , respectively. According to Proposition 18 of (Von Luxburg et al., 2008) and Lemma B.1, we have

∥aj ĥj − h̃j∥∞ ≾ ∥(LK̂ − LK)hj∥∞ + ∥(LK̂ − LK)LK∥) ≾ ∥LK̂ − LK∥. (25)

Then, we process to magnify ∥LK̂ − LK∥.

∥LK̂ − LK∥ = sup
x∈X

∥f∥∞=1

∣∣∣∣∣ 1n2
n∑

i=1

n∑
t=1

K(x, xi)K(xi, xt)f(xt)−
1

ns

n∑
i=1

s∑
t=1

K(x, xi)K(xi, at)f(at)

∣∣∣∣∣
= sup

x∈X
∥f∥∞=1

∣∣∣∣∣ 1n2
n∑

i=1

n∑
t=1

K(x, xi)K(xi, xt)f(xt)−
1

ns

n∑
i=1

s∑
t=1

K(x, xi)K(xi, at)f(at)

∣∣∣∣∣
≤ sup

x∈X
∥f∥∞=1

1

n

n∑
i=1

(
|K(x, xi)| ·

∣∣∣∣∣ 1n
n∑

t=1

K(xi, xt)f(xt)−
1

s

s∑
t=1

K(xi, at)f(at)

∣∣∣∣∣
)

≾ sup
∥f∥∞=1

1

n

n∑
i=1

∣∣∣∣∣
〈
ϕ(xi),

1

n

n∑
t=1

f(xt)ϕ(xt)−
1

s

s∑
t=1

f(at)ϕ(at)

〉∣∣∣∣∣
≤ sup

∥f∥∞=1

1

n

n∑
i=1

∥ϕ(xi)∥ ·

∥∥∥∥∥ 1n
n∑

t=1

f(xt)ϕ(xt)−
1

s

s∑
t=1

f(at)ϕ(at)

∥∥∥∥∥
≤ 1

n

n∑
i=1

∥ϕ(xi)∥ · ε ≾ ε. (By Lemma B.4.)

(26)

Combining Eq.(24), Eq.(25) and Eq.(26), we know that C ≾ ε. According the derived bounds for A and B, if s ≥
c log(n/δ)/ε2, with probability at least 1− δ,

|Tn(Kp, {ĥj})− T̃s(K̃p, {h̃j})| ≤ kε.

Proof of Lemma 4.3. For any α,β ∈ ∆, denote that Hα,Hβ are composed of the first k eigenvectors of Kα and Kβ,
respectively. Then, for any orthogonal matrix Ô ∈ Rk×k, we have

|Tn(Kp, {ĥαj }kj=1)− Tn(Kp, {ĥβj }
k
j=1)|

=

∣∣∣∣ 1n tr(KpHαH
⊤
α)−

1

n
tr(KpHβH

⊤
β )

∣∣∣∣
≤
∥∥∥∥Kp

n

∥∥∥∥
F
·
∥∥HαH

⊤
α −HβH

⊤
β

∥∥
F

≤
∥∥∥HαÔÔ⊤H⊤

α −HαÔH⊤
β

∥∥∥
F
+
∥∥∥HαÔH⊤

β −HβH
⊤
β

∥∥∥
F

≤∥HαÔ∥ ·
∥∥∥HαÔ−Hβ

∥∥∥
F
+ ∥Hβ∥ ·

∥∥∥HαÔ−Hβ

∥∥∥
F

≤2
∥∥∥HαÔ−Hβ

∥∥∥
F
.

(27)
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For any vector α ∈ Rm, let δ(α) denote the gap between the k-th and (k + 1)-th eigenvalues of the matrix 1
nKα. By

Assumption 3.2, there exists a constant c ≥ 0 such that for any α ∈ △, δ(γ) ⩾ 1/c. Using Lemma C.1, let r = 1 and
s = k, then we have: ∥∥∥HαÔ−Hβ

∥∥∥
F
≾

∥∥ 1
nKα − 1

nKβ

∥∥
F

δ(α)
≾ ∥α− β∥∞. (28)

Combining Eq.(27) and Eq.(28),

|Tn(Kp, {ĥαj }kj=1)− Tn(Kp, {ĥβj }
k
j=1)| ≾ ∥α− β∥∞.

Thus, according to Lemma 4.2, with probability at least 1− δ,

|Tn(Kp, {ĥαj }kj=1)− Ts(K̃p, {h̃βj }
k
j=1)|

≤|Tn(Kp, {ĥαj }kj=1)− Tn(Kp, {ĥβj }
k
j=1)|+ |Tn(Kp, {ĥβj }

k
j=1)− Ts(K̃p, {h̃βj }

k
j=1)|

≤∥α− β∥∞ + kε.

(29)

C.4. Proof of Theorem 4.4

Proof. 1) Proof for SMKKM. When the input is original base kernel matrices, in the updating process, we assume
that the kernel weights are α(0), · · · ,α(t), · · · ,α(T ), in which α(t) denotes the kernel weights after the t-th updating.
Correspondingly, when the input is core kernel matrices, assume that the kernel weights are β(0), · · · ,β(t), · · · ,β(T ) in the
optimization process. By the assumption of the same initialization of kernel weights, we have α(0) = β(0).

With some fixed index u ∈ [m], for the t-th step, according to Lemma 4.3, we have

|α(t+1)
u − β(t+1)

u | − |α(t)
u − β(t)

u |
≤|α(t+1)

u − α(t)
u − (β(t+1)

u − β(t)
u )|

≤ 1

m− 1

∣∣∣∣∣∑
p ̸=u

(
α(t)
p Tn(Kp, {ĥα

(t)

j }kj=1)− α(t)
u Tn(Ku, {ĥα

(t)

j }kj=1)
)

−
∑
p ̸=u

(
β(t)
p Ts(K̃p, {h̃β

(t)

j }kj=1)− β(t)
u T (K̃u, {h̃β

(t)

j }kj=1)
) ∣∣∣∣∣

≾ max
q∈[m]

∣∣∣α(t)
q Tn(Kq, {ĥα

(t)

j }kj=1)− β(t)
q Ts(K̃q, {h̃β

(t)

j }kj=1)
∣∣∣

= max
q∈[m]

∣∣∣α(t)
q Tn(Kq, {ĥα

(t)

j }kj=1)− β(t)
q Tn(Kq, {ĥα

(t)

j }kj=1) + β(t)
q Tn(Kq, {ĥα

(t)

j }kj=1)− β(t)
q Ts(K̃q, {h̃β

(t)

j }kj=1)
∣∣∣

≤ max
q∈[m]

|α(t)
q − β(t)

q | · Tn(Kq, {ĥα
(t)

j }kj=1) + β(t)
q ·

∣∣∣Tn(Kq, {ĥα
(t)

j }kj=1)− Ts(K̃q, {h̃β
(t)

j }kj=1)
∣∣∣

≾ max
q∈[m]

|α(t)
q − β(t)

q |+ ∥α(t) − β(t)∥∞ + kε

≾∥α(t) − β(t)∥∞ + kε.
(30)

Similarly, for p ∈ [m], p ̸= u, we have

|α(t+1)
p − β(t+1)

p | − |α(t)
p − β(t)

p |

≤|α(t+1)
p − α(t)

p − (β(t+1)
p − β(t)

p )|

≤ 1

m− 1

∣∣∣α(t)
u Tn(Ku, {ĥα

(t)

j }kj=1)− α(t)
p Tn(Kp, {ĥα

(t)

j }kj=1)
∣∣∣

+
1

m− 1

∣∣∣β(t)
u Ts(K̃u, {h̃β

(t)

j }kj=1)− β(t)
p Ts(K̃p, {h̃β

(t)

j }kj=1)
∣∣∣

≾∥α(t) − β(t)∥∞ + kε.

(31)
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Combining Eq.(30) and Eq.(31), with probability at least 1− δ,

∥α(t+1) − β(t+1)∥∞ ≾ ∥α(t) − β(t)∥∞ + kε.

Based on the above recurrence relation, it can be concluded that if s ≥ c log(nT/δ)/ε2 = Õ(1/ε2), with probability at least
1− δ,

∥α(T ) − β(T )∥∞ ≾ ∥α(T−1) − β(T−1)∥∞ + kε ≾ · · · ≾ ∥α(0) − β(0)∥∞ + kε,

which satisfies the condition of Definition 3.1.

2) Proof for SMKKM-KWR. The proof for SMKKM-KWR is similar to SMKKM. We use the same notation to represent
the kernel weight changes at each iteration step.

With some fixed index u ∈ [m], for the t-th step, according to Lemma 4.3, we have

|α(t+1)
u − β(t+1)

u | − |α(t)
u − β(t)

u |
≤|α(t+1)

u − α(t)
u − (β(t+1)

u − β(t)
u )|

≤ 1

m− 1

∣∣∣∣∣∑
p ̸=u

(
α(t)
p (Tn(Kp, {ĥα

(t)

j }kj=1) + λ)− α(t)
u (Tn(Ku, {ĥα

(t)

j }kj=1) + λ)
)

−
∑
p ̸=u

(
β(t)
p (Ts(K̃p, {h̃β

(t)

j }kj=1) + λ)− β(t)
u (T (K̃u, {h̃β

(t)

j }kj=1) + λ)
) ∣∣∣∣∣

≾ max
q∈[m]

∣∣∣α(t)
q (Tn(Kq, {ĥα

(t)

j }kj=1) + λ)− β(t)
q (Ts(K̃q, {h̃β

(t)

j }kj=1) + λ)
∣∣∣

≤ max
q∈[m]

∣∣∣α(t)
q Tn(Kq, {ĥα

(t)

j }kj=1)− β(t)
q Ts(K̃q, {h̃β

(t)

j }kj=1)
∣∣∣+ λ|α(t)

q − β(t)
q |

≾λ∥α(t) − β(t)∥∞ + kε.

(32)

Similar, for p ̸= u, p ∈ [m],

|α(t+1)
p − β(t+1)

p | − |α(t)
p − β(t)

p | ≾ λ∥α(t) − β(t)∥∞ + kε.

Combining all, with probability at least 1− δ,

∥α(t+1) − β(t+1)∥∞ ≾ λ∥α(t) − β(t)∥∞ + kε.

Based on the above recurrence relation, with probability at least 1− δ,

∥α(T ) − β(T )∥∞ ≾ λ∥α(T−1) − β(T−1)∥∞ + kε ≾ · · · ≾ λT ∥α(0) − β(0)∥∞ + λT−1kε = λT−1kε,

which satisfies the condition of Definition 3.1.

C.5. Proof of Theorem 4.5

Lemma C.4. Assume that M̃ ∈ Rm×m is computed by core kernel, i.e., M̃pq = tr
(

1
nsK̃pK̃q

)
. If s ≥ c log(n/δ)/ε2, with

probability at least 1− δ,
−εmIm ≼ M̃−M ≼ εmIm.

Proof. For any two indexed p, q ∈ [m], let Kp = Φ⊤
nΦn and Kq = Ψ⊤

nΨn, where Φn = [ϕp(x1), · · · , ϕp(xn)]
and Ψn = [ϕq(x1), · · · , ϕq(xn)]. Let Φs = [ϕp(a1), · · · , ϕp(as)] and Ψs = [ϕq(a1), · · · , ϕq(as)]. Consequently,
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K̃p = (Φ⊤
s ΦnΦ

⊤
nΦs)

1/2 and K̃q = (Ψ⊤
s ΨnΨ

⊤
nΨs)

1/2. Then, we have

M̃pq = tr

(
1

ns
(Φ⊤

s ΦnΦ
⊤
nΦs)

1/2(Ψ⊤
s ΨnΨ

⊤
nΨs)

1/2

)
= tr

((
1√
ns

Φ⊤
s Φn

)1/2(
1√
ns

Φ⊤
nΦs

)1/2(
1√
ns

Ψ⊤
s Ψn

)1/2(
1√
ns

Ψ⊤
nΨs

)1/2
)
.

(33)

Thus, we can obtain

M̃pq =

∥∥∥∥∥
(

1√
ns

Φ⊤
nΦs

)1/2(
1√
ns

Ψ⊤
s Ψn

)1/2
∥∥∥∥∥
2

F

.

Let the SVD of 1√
ns
Φ⊤

nΦs be Ũ1Λ̃1Ṽ
⊤
1 , where Ũ1 ∈ Rn×n, Ṽ1 ∈ Rs×s, and Λ̃1 ∈ Rn×s in which the diagonal elements

in the first s× s block are µ̃1, · · · , µ̃s, i.e., the singular values of 1√
ns
Φ⊤

nΦs. Similarly, let the SVD of
(

1√
ns
Ψ⊤

s Ψn

)1/2
be Ũ2Λ̃2Ṽ

⊤
2 , and Λ̃2 contains the corresponding singular values λ̃1, · · · , λ̃s. Because the Frobenius norm is unitarily

invariant, we have

M̃pq =

∥∥∥∥Ũ1Λ̃
1/2

1 Ṽ⊤
1 Ũ2Λ̃

1/2

2 Ṽ⊤
2

∥∥∥∥2
F

=

∥∥∥∥Λ̃1/2

1 Ṽ⊤
1 Ũ2Λ̃

1/2

2

∥∥∥∥2
F

=

∥∥∥∥Ṽ⊤
1 Ũ2Λ̃

1/2

2 Λ̃
1/2

1

∥∥∥∥2
F

=

∥∥∥∥Λ̃1/2

2 Λ̃
1/2

1

∥∥∥∥2
F

=

s∑
i=1

µ̃iλ̃i.

Denote that the eigenvalues of 1
nΦ

⊤
nΦn and 1

nΨ
⊤
nΨn are µ1, · · · , µn and λ1, · · · , λn, respectively. With a similar

derivation, we have

Mpq =

n∑
i=1

µiλi.

Letting {µ̃i}i≥s+1 and {λ̃i}i≥s+1 be 0, by Theorem 4.1, we have

|M̃pq −Mpq| ≤

∣∣∣∣∣
n∑

i=1

(µ̃iλ̃i − µiλi)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

µ̃i(λ̃i − λi)

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

(µ̃i − µi)λi

∣∣∣∣∣ ≤ ε

(
n∑

i=1

µ̃i +

n∑
i=1

λi

)
≾ ε.

Thus, for unit vector u ∈ Rm,

∥M̃−M∥ = sup
u

|u⊤(M̃−M)u| ≤
m∑

p=1

m∑
q=1

|upuq(M̃pq −Mpq)| ≤ ε

(
m∑

p=1

|up|

)2

≤ εm.

The desirable result follows.

Lemma C.5 (Theorem 4.1, (Wedin, 1973)). For any two m×m real matrices A,B, if rank(A) = rank(B) = m, then

∥B+ −A+∥ ≤ ∥B+∥∥A+∥∥B−A∥.

Proof of Theorem 4.5. For any unit vector u ∈ Rm, we have

u⊤Mu =

m∑
p=1

m∑
q=1

upuqtr

(
1

n2
KpKq

)
= tr

(
1

n

m∑
p=1

upKp

)2

≤

(
tr

(
1

n

m∑
p=1

upKp

))2

≾ m. (34)

Similarly, we also have u⊤M̃u ≾ m.

We use the same notation to represent the kernel weight changes at each iteration step. Then, by the optimization of
MKKM-MR, we have
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∥α(t+1) − β(t+1)∥∞ =

∥∥∥∥∥ (λM+D(t))−11m

1⊤
m(λM+D(t))−11m

− (λM̃+ D̃(t))−11m

1⊤
m(λM̃+ D̃(t))−11m

∥∥∥∥∥
∞

≤ ∥(λM+D(t))−11m − (λM̃+ D̃(t))−11m∥∞
min{1⊤

m(λM+D(t))−11m,1⊤
m(λM̃+ D̃(t))−11m}

=
1

m
· ∥(λM+D(t))−11m − (λM̃+ D̃(t))−11m∥∞
min{ 1√

m
1⊤
m(λM+D(t))−1 1√

m
1m,

1√
m
1⊤
m(λM̃+ D̃(t))−1 1√

m
1m}

(35)

Because ∥D(t)∥ ≤ 1, we have 1√
m
1⊤
m(λM + D(t))−1 1√

m
1m ≿ (λm + 1)−1 ≿ (λm)−1. Moreover, 1√

m
1⊤
m(λM̃ +

D̃(t))−1 1√
m
1m ≿ (λm)−1. Combining Eq.(35), we have

∥α(t+1) − β(t+1)∥∞ ≾λ∥(λM+D(t))−11m − (λM̃+ D̃(t))−11m∥∞
≤λ∥(λM+D(t))−11m − (λM̃+ D̃(t))−11m∥

≤
√
mλ∥(λM+D(t))−1 − (λM̃+ D̃(t))−1∥

≤
√
mλ∥(λM+D(t))−1∥∥(λM̃+ D̃(t))−1∥∥λM+D(t) − (λM̃+ D̃(t))∥

(By Lemma C.5.)

≾

√
m

λ
(λ∥M− M̃∥+ ∥D(t) − D̃(t)∥)

(By the assumption that M, M̃ have full ranks.)

≾

√
m

λ

(
λεm+ max

q∈[m]

∣∣∣∣tr( 1nKq)− tr(
1√
ns

K̃q)

∣∣∣∣+ max
q∈[m]

∣∣∣Tn(Kq, {ĥα
(t)

j }kj=1)− Ts(K̃q, {h̃β
(t)

j }kj=1)
∣∣∣)

≾

√
m

λ
(λεm+ kε+ ∥α(t) − β(t)∥∞)

≾∥α(t) − β(t)∥∞ + ε.
(36)

We can obtain the desirable result based on the above recurrence relation. The proof is complete.
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D. More Experimental Results
D.1. Approximation Effect of Core Kernel on Kernel Weights

150 250 350 450 550 650 750 850 950

Anchor Number

0

0.002

0.004

0.006

0.008

0.01

0.012
Flower102 (SMKKM)

SVD-based Core Kernel

Randomly Sampling

150 250 350 450 550 650 750 850 950

Anchor Number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Flower102 (SMKKM-KWR)

SVD-based Core Kernel

Randomly Sampling

150 250 350 450 550 650 750 850 950

Anchor Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Flower102 (MKKM-MR)

SVD-based Core Kernel

Randomly Sampling

100 200 300 400 500 600 700 800 900 1000

Anchor Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
CCV (SMKKM)

SVD-based Core Kernel

Randomly Sampling

100 200 300 400 500 600 700 800 900 1000

Anchor Number

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
CCV (SMKKM-KWR)

SVD-based Core Kernel

Randomly Sampling

100 200 300 400 500 600 700 800 900 1000

Anchor Number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
CCV (MKKM-MR)

SVD-based Core Kernel

Randomly Sampling

50 150 250 350 450 550 650 750 850 950

Anchor Number

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
4Area (SMKKM)

SVD-based Core Kernel

Randomly Sampling

100 200 300 400 500 600 700 800 900 1000

Anchor Number

0

0.005

0.01

0.015
4Area (SMKKM-KWR)

SVD-based Core Kernel

Randomly Sampling

50 150 250 350 450 550 650 750 850 950

Anchor Number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
4Area (MKKM-MR)

SVD-based Core Kernel

Randomly Sampling

150 250 350 450 550 650 750 850 950

Anchor Number

0

0.01

0.02

0.03

0.04

0.05

0.06
Cal102 (MKKM-MR)

SVD-based Core Kernel

Randomly Sampling

150 250 350 450 550 650 750 850 950

Anchor Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Cal102 (SMKKM-KWR)

SVD-based Core Kernel

Randomly Sampling

150 250 350 450 550 650 750 850 950

Anchor Number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Cal102 (MKKM-MR)

SVD-based Core Kernel

Randomly Sampling

Figure 3. The proposed SVD-CK is illustrated through a diagram showing the kernel weight approximation performance. The blue curve
represents the kernel weight approximation error constructed using SVD-CK. It can be observed that as s increases, the approximation
error decreases rapidly, enabling the weights obtained by the three MKC methods on SVD-CK to closely approximate those on the
original kernel matrices. For comparison, the red curve represents the kernel weight approximation error based on random sampling of the
kernel matrix. SVD-CK demonstrates a clear advantage in kernel weight approximation.

22



COKE: Core Kernel for More Efficient Approximation of Kernel Weights in Multiple Kernel Clustering

D.2. Information of Kernel Datasets

The detailed information of six large-scale datasets is listed in Table 3, and their URL links are as

• Flower17: http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/

• Digit: http://ss.sysu.edu.cn/py/

• CCV: http://www.ee.columbia.edu/ln/dvmm/CCV/

• Flower102: http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/

• 4Area: (Perozzi et al., 2014)

• Cal102: http://www.vision.caltech.edu/ImageDatasets/Caltech101/

Table 3. Six small-scale kernel datasets.

Dataset Number of
Samples Kernels Clusters

Flower17 1360 7 17
DIGIT 2000 3 10
CCV 6773 3 20
Flower102 8189 4 102
4Area 4236 2 4
Cal102 1530 25 102

D.3. Information of Comparison Methods

Detailed information of comparison methods is as follows.

• 1) Robust Multi-View k-Means Clustering (RMKMC)(Cai et al., 2013): RMKMC is a robust large-scale multi-view
k-means clustering algorithm.

• 2) Large-Scale Multi-View Subspace Clustering (LMVSC)(Kang et al., 2020): LMVSC constructs a similarity
matrix using selected anchor points to reduce redundant computations in subspace clustering.

• 3) One-Pass Multi-View Clustering (OPMC)(Liu et al., 2021): OPMC eliminates the non-negative constraints in
non-negative matrix factorization and integrates all views to achieve a unified partition.

• 4) Auto-Weighted Multi-View Clustering (AWMVC)(Wan et al., 2024): AWMVC derives coefficient matrices from
the base matrices of different dimensions and fuses them to obtain the optimal consensus matrix.
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D.4. Whole Experimental Results on Large-Scale Datasets

Table 4. Results of large-scale experiments

Datasets CIFAR10 MNIST Winnipeg
ACC (%)

RMKMC 82.95 85.60 62.25
LMVSC 49.50 86.14 60.25
OPMC 69.59 84.92 53.53

AWMVC 80.90 83.23 53.66
SMKKM (CK) 97.46 99.02 62.09

SMKKM-KWR (CK) 98.15 99.01 62.10
MKKM-MR (CK) 99.28 99.15 59.24

NMI (%)

RMKMC 82.07 81.05 49.43
LMVSC 45.04 84.75 51.94
OPMC 83.81 82.67 50.82

AWMVC 76.38 80.76 38.86
SMKKM (CK) 97.53 97.00 54.14

SMKKM-KWR (CK) 97.78 96.96 54.12
MKKM-MR (CK) 98.07 97.33 59.24

Purity (%)

RMKMC 86.78 86.74 65.98
LMVSC 58.96 89.14 70.31
OPMC 87.82 85.45 64.72

AWMVC 84.00 87.41 67.74
SMKKM (CK) 97.96 99.02 79.24

SMKKM-KWR (CK) 98.43 99.01 79.71
MKKM-MR (CK) 99.28 99.15 69.25

Time (s)

RMKMC 162.09 155.16 297.40
LMVSC 16.22 67.44 142.63
OPMC 27.56 49.94 20.29

AWMVC 203.01 64.78 59.77
SMKKM (CK) 47.84 65.18 288.06

SMKKM-KWR (CK) 43.61 65.77 248.51
MKKM-MR (CK) 38.99 62.26 259.24

24


