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Abstract

Large language models (LM) based on Trans-001
formers allow to generate plausible long texts.002
In this paper, we explore how this generation003
can be further controlled at decoding time to004
satisfy certain constraints (eg. being non-toxic,005
conveying certain emotions, using a specific006
writing style, etc.) without fine-tuning the LM.007
Precisely, we formalize constrained generation008
as a tree exploration process guided by a dis-009
criminator that indicates how well the associ-010
ated sequence respects the constraint. This ap-011
proach, in addition to being easier and cheaper012
to train than fine-tuning the LM, allows to ap-013
ply the constraint more finely and dynamically.014
We propose several original methods to search015
this generation tree, notably the Monte Carlo016
Tree Search (MCTS) which provides theoret-017
ical guarantees on the search efficiency, but018
also simpler methods based on re-ranking a019
pool of diverse sequences using the discrim-020
inator scores. These methods are evaluated,021
with automatic and human-based metrics, on022
two types of constraints and languages: re-023
view polarity and emotion control in French024
and English. We show that discriminator-025
guided MCTS decoding achieves state-of-the-026
art results without having to tune the lan-027
guage model, in both tasks and languages. We028
also demonstrate that other proposed decod-029
ing methods based on re-ranking can be really030
effective when diversity among the generated031
propositions is encouraged.032

1 Introduction033

Generative language models exist for a long034

time, but with advent of the transformer architec-035

ture (Vaswani et al., 2017) and increasing comput-036

ing capabilities, they are now able to generate well037

written and long texts. In particular, large mod-038

els, such as the well known GPT-2 (Radford et al.,039

2019) and GPT-3 (Brown et al., 2020), have been040

used successfully for various applications: assist-041

ing writers, summarizing, augmentating data for042

subsequent NLP tasks, generating fake news (Ku- 043

mar et al., 2020; Papanikolaou and Pierleoni, 2020; 044

Zellers et al., 2019). Yet, beside the prompt used 045

to initiate the generation process, there are few op- 046

tions to have control on the generation process. Be- 047

ing able to add some constraints on the generated 048

texts is useful for various situations. For example, 049

it allows to create texts that follow a certain writ- 050

ing style, convey a certain emotion or polarity or 051

to ensure that a generated summary contains cor- 052

rect information. More critically, it can be used to 053

prevent the inherent toxicity of language models 054

trained on the internet, or to not reproduce gender 055

or race stereotypes. So far, most methods neces- 056

sitate to fine-tune the LM, so that it specifically 057

learns to model this constraint, i.e. the constraint 058

is –hopefully– incorporated in the LM. This fine- 059

tuning approach has several drawbacks. It implies 060

to train multiple specific LMs (one per constraint), 061

which is costly, when even possible given the size 062

of current state-of-the-art LM, and results in several 063

models. 064

In this paper, we propose new approaches to add 065

such additional constraints on the texts but at de- 066

coding time. We exploit a discriminator that is 067

trained to determine if a text follows a given con- 068

straint or not; its output provides information to 069

guide the generation toward texts that satisfy this 070

expected constraint. In order to make the most 071

of the discriminator information, we propose an 072

original method based on the Monte Carlo Tree 073

Search (MCTS) algorithm (Coulom, 2006), namely 074

Plug and Play Language - Monte Carlo Tree Search 075

(PPL-MCTS). We also propose simpler methods 076

based on re-ranking to fulfil this goal. Both ap- 077

proaches do not require to fine-tune the LM; adding 078

a new constraint can thus simply be done by pro- 079

viding a discriminator verifying if a text complies 080

with what is expected. More precisely, our main 081

contributions are the following ones: 082

1. we propose to use MCTS as a decoding strat- 083
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egy to implement constrained generation and084

we show, on 3 datasets and 2 languages, that085

it yields state-of-the-art results while offering086

more flexibility;087

2. we also explore simpler generation methods088

based on re-ranking and show that this kind089

of approach, with low computational costs,090

can also be competitive if the diversity within091

propositions to re-rank is encouraged;092

3. we provide a fully functional code implement-093

ing a batched textual MCTS working with094

the popular HuggingFace’s Transformers li-095

brary (Wolf et al., 2020)096

2 Related work097

The goal of constrained textual generation is to098

find the sequence of tokens x1:T which maximises099

p(x1:T | c), given a constraint c. Few methods100

address the constrained textual generation.101

Class-conditional language models. Class-102

conditional language models (CC-LMs), as the103

Conditional Transformer Language (CTRL) model104

(Keskar et al., 2019), train or fine-tune the weights105

θ of a single neural model directly for controllable106

generation, by appending a control code in the107

beginning of a training sequence. The control code108

indicates the constraint to verify and is related to109

a class containing texts that satisfy the constraint.110

For the sake of simplicity, we will denote without111

distinction the class, the constraint verified by112

its texts and the associated control code by c.113

Trained with different control codes, the model114

learns pθ(x1:T | c) =
∏T
t=1 pθ(xt | x1:t−1, c). The115

constraint can then be applied during generation116

by appending the corresponding control code to117

the prompt. While this method gives some kind118

of control over the generation, the control codes119

need to be defined upfront and the LM still needs120

to be trained specifically for each set of control121

codes. This is an important limitation since the122

current trend in text generation is the use of large123

pre-trained model which can hardly be fine-tuned124

(for instance, the last version of GPT, GPT-3,125

cannot be fine-tuned without access to very large126

hardware resources).127

Discriminator-based methods The general idea128

of discriminator-guided generation is to combine129

a disciminator D with a generative LM. The dis-130

criminator explicitly models the constraint by cal-131

culating the probability pD(c | x1:T ) of the se- 132

quence x1:T to satisfy the constraint c. This prob- 133

ability is directly related to p(x1:T | c) through 134

Bayes’ rule : p(x1:T | c) ∝ pD(c | x1:T )pθ(x1:T ). 135

Discriminator-based methods alleviate the training 136

cost problem, as discriminators are easier to train 137

than a LM. Moreover, any additional constraint can 138

be defined a posteriori without tuning the LM, only 139

by training another discriminator. The discrimina- 140

tors have been used in different ways to explore the 141

search space. In the work of (Holtzman et al., 2018; 142

Scialom et al., 2020), the space is first searched us- 143

ing beam search to generate a pool of proposals 144

with a high likelihood pθ(x1:T ), and then the dis- 145

criminator is used to re-rank them. However, in 146

addition that beam search can miss sequences with 147

high likelihood, it is biased towards the likelihood, 148

while the best sequence might only have an average 149

likelihood, but satisfies the constraint perfectly. 150

Hence, it might be more suitable to take the dis- 151

criminator probability into account during decod- 152

ing rather than after generating a whole sequence. 153

In this case, the discriminator is used at each gen- 154

eration step to get the probability pD(c | x1:t) for 155

each token of the vocabulary V , and merge it to the 156

likelihood pθ(x1:t) to choose which token to emit. 157

In order to reduce the cost of using a discrimina- 158

tor on every possible continuation, GeDi (Krause 159

et al., 2020) proposes to use CC-LMs as generative 160

discriminators. The method relies on the fact that 161

the CC-LM computes pθ (xt | x1:t−1, c) for all to- 162

kens of the vocabulary which can be used to get 163

pθ(c | x1:t) for all tokens using Bayes’ equation. 164

This approach is thus at the intersection of tuning 165

the LM and using a discriminator: it tunes a small 166

LM (the CC-LM) to guide a bigger one. 167

In Plug And Play Language Model 168

(PPLM) (Dathathri et al., 2020), the discriminator 169

is used to shift the hidden states of the pre-trained 170

transformer-based LM towards the desired class at 171

every generation step. PPLM can be used on any 172

LM and with any discriminator. However, PPLM 173

needs to access the LM to modify its hidden states, 174

while our approach only requires the output logits. 175

As some LM can only be used through access to 176

logits (e.g. GPT-3 API), this makes our approach 177

more plug and play than PPLM. 178

A common drawback of all these approaches is 179

their lack of a long-term vision of the generation. 180

Indeed, the discriminator probabilities become nec- 181

essarily more meaningful as the sequence grows 182
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and might only be trustable to guide the search183

when the sequence is (nearly) finished. When used184

in a myopic decoding strategy, classification errors185

will cause the generation process to deviate further186

and further. Trying to optimize a score defined in187

the long horizon by making short term decisions is188

very similar to common game setups such as chess,189

where the Monte Carlo Tree Search (MCTS) has190

proven to be really effective (Silver et al., 2018),191

which motivated our approach.192

3 PPL-MCTS method193

The approach that we propose is in line with meth-194

ods using a discriminator to guide a large LM de-195

coding, without the need to re-train it. Also, it196

can be applied to any LM with any discriminator,197

following the plug and play paradigm. Unlike pre-198

vious approaches, it is able to have a long term199

vision on what is generated. Being able to make200

a short-term decision (choice of the next token xt201

at time step t) that is promising in the long run is202

based on the exploration of the search space. We203

propose here to use the Monte Carlo Tree Search204

(MCTS) for an efficient exploration of this space.205

MCTS is very well suited for this problem for206

three reasons. First, it allows to get a local score207

(i.e, a score for the next token to emit) using fin-208

ished sequences. Hence, this score is more mean-209

ingful than scores based only on the next step. Sec-210

ond, it allows to explicitly define the compromise211

between exploitation of promising sequences (with212

a high likelihood), and exploration of other po-213

tentially promising sequences (to not miss better214

sequences with a lower likelihood). The fact that215

regret, i.e the number of simulations done on a sub-216

optimal sequence, has a theoretical upper bound217

in MCTS (Rosin, 2011) is a nice guarantee that218

the computation time is not wasted and the search219

is efficient. Finally, it outputs a solution at each220

iteration and so can fit our computational budget221

by allowing to adjust the quality of the solution to222

calculation spent.223

Text generation as tree exploration process.224

The search space of the text generation corresponds225

to a tree: its root is the prompt and the child of a226

node is its father’s sequence with one of the |V| pos-227

sible token appended. In the case of constrained228

generation, the goal is thus to find the path, and229

therefore the sequence x, with the highest p(x | c)230

possible without exploring the whole tree in width231

and depth. As mentioned previously, this probabil-232

Figure 1: Illustration of the constrained generation
process as a tree exploration from the prompt The
cat. Classification probabilities are only represented
on completed sequences.

ity can be computed as the product of the likelihood 233

pθ(x) and the probability given by a discrimina- 234

tor pD(c | x). An illustration of such a tree can 235

be found in Fig. 1, where the likelihood of x is 236

forged by multiplying corresponding conditional 237

probabilities along the path, and the classification 238

probability is calculated at the terminal node. 239

Applying MCTS to text generation. MCTS is 240

a heuristic based iterative algorithm that uses ran- 241

domness to solve deterministic problems that can- 242

not be solved using traditional approaches, often 243

because the search space is too large to be entirely 244

explored. Each iteration consists in four consec- 245

utive steps. In the particular context of applying 246

MCTS to text generation, we made some adapta- 247

tions: 248

1. Selection Recursively choose children from 249

the root to a node that has not been expanded 250

yet. To only explore viable sequences, the 251

probability pθ(xi | x1:t−1) of a given token 252

xi given by the LM is used during the selec- 253

tion phase. To this end, the children chosen 254

are those maximizing the Polynomial Upper 255

Confidence Trees (PUCT) (Rosin, 2011) as 256

defined in (Silver et al., 2017): 257

PUCT (i) =
si
ni

+cpuct pθ(xi | x1:t−1)
√
Ni

1 + ni
(1) 258

with si is the aggregated score of the node i, 259

ni the number of simulations played after this 260

node, Ni the number of simulations played 261

after its parent, and cpuct a constant defining 262

the compromise between exploration and ex- 263
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ploitation. In the task of constrained genera-264

tion, we define the score of a sequence as its265

probability knowing the class p(x | c).266

2. Expansion If the selected node is not termi-267

nal, use the LM to expand it by creating its268

children.269

3. Simulation (roll-out) Sample one of these270

children according to pθ(xi | x1:t−1), and go271

to a terminal node through a random walk or272

another pattern.273

4. Backpropagation Aggregate the final score274

obtained at the terminal node to each parent275

until root. There are different strategies to276

aggregate scores, as computing the average277

between the actual score and the one being278

backpropagated, or taking the maximum of279

the two. We take the aggregated score si asso-280

ciated to the node i as the averaged probability281

over all simulations played after this node.282

When the number of iterations has reached the283

allocated budget, the building of the tree stops. The284

token xi selected for the current decoding step can285

be selected as the most played node amongst the286

root’s children nodes, or the one with the highest287

aggregated score. We chose the most played one.288

These adaptations of MCTS to constrained gen-289

eration are summarized in Fig. 2. Note that any290

language model can be used for defining the prob-291

ability pθ(xi | x1:t−1) and any discriminator for292

scoring sequences, hence the name of our approach:293

Plug and Play Language - Monte Carlo Tree Search294

(PPL-MCTS). MCTS has been very recently used295

for machine translation (Leblond et al., 2021), ques-296

tion generation and summarization (Scialom et al.,297

2021). The differences with these concurrent stud-298

ies are discussed in Appendix A.5299

Model improvements. In order to allow a finer300

control on how the constraint is applied, we intro-301

duce a parameter α ∈ [0, 1] to control the compro-302

mise between likelihood and constraint strength,303

modifying Bayes’ equation: p(x | c) ∝ pD(c |304

x)αpθ(x)
1−α. Note that PUCT (1) already con-305

siders the likelihood of the sequence, favoring the306

selection of nodes with high likelihoods. Hence,307

even sequences generated with α = 1 are correctly308

written. Setting α < 1 forces the algorithm to ex-309

plore solutions even closer to the language model.310

In our experiments, we set α = 1 to strengthen the311

constraint.312

Figure 2: MCTS application to text generation.

To avoid expensive roll-outs, one may also as- 313

sign a value to unfinished sequences at the cost of 314

a less precise evaluation that may be not as mean- 315

ingful as when doing roll-outs. Indeed, the discrim- 316

inator can be trained on sequences with variable 317

numbers of tokens, allowing it to be used at each 318

node without the need of simulations. In this setup, 319

the MCTS is used as an efficient compromise be- 320

tween exploration and exploitation, losing part of 321

its long view property but allowing to skew the 322

exploration toward promising solutions. 323

Finally, during our first experiments, we ob- 324

served that PPL-MCTS leads to repetitive patterns. 325

This is very similar of what happens with greedy 326

search, where a single sequence with a high likeli- 327

hood is dominating the search. If such sequences 328

also have a pretty high discriminator scores, they 329

will be repeated often. CTRL (Keskar et al., 2019) 330

offers a simple yet very powerful method to avoid 331

noisy repetitions. It applies a scalar factor I(i) to 332

the temperature parameter τ of a given token xi 333

that penalizes this token if it is already in the in- 334

put sequence. The probability of a given token 335

becomes: 336

p
′
θ(xi | x1:t−1) =

exp (zi/(τ · I(i)))∑
v exp (zv/(τ · I(v)))

(2) 337

with the repetition penalty I(i) > 1 if xi is already 338

in the prompt and 1 otherwise, and z the neural LM 339

predicted logits over the vocabulary V . Thus, prob- 340

abilities of already emitted tokens are penalized, 341

but if the language model gives a really high score 342

to one token (hence, it is very confident that this 343

should be the token to emit), it may still be selected 344

as the output token. 345

4 Experiments 346

4.1 Performance assessment 347

The goal of constrained generation is to generate 348

samples that 1) belong to a specific class while 2) 349
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keeping the language quality of the original LM,350

and 3) with enough diversity across samples. We351

chose three different metrics to evaluate each of352

these aspects: 1) accuracy, which is verified by an353

external "oracle" discriminator trained on a dataset354

disjoint from the one used to guide the generation;355

2) perplexity, which is computed using an "oracle"356

LM, i.e an unconstrained LM trained on differ-357

ent data than the one used to train the constrained358

generator; 3) Self-BLEU score (Zhu et al., 2018),359

which is the BLEU score (Papineni et al., 2002) of360

a sample using the other samples as references: a361

high Self-BLEU score means that there is a lot of362

overlap between generated samples, and thus that363

the diversity is low. Such automatic metrics have364

known limitations (Caccia et al., 2020) but results365

of human evaluation on the CLS dataset, detailed366

in Section 4.6, confirm that they provide a good367

overview of the performance.368

In practice, the studied dataset (see below) is369

split into two parts, each part being sub-divided370

in train/val/test sets. The first part serves to train371

models used for the generation (LM and discrimina-372

tor), while the second is used to train oracles which373

serve to compute the automatic evaluation metrics.374

The test set of this second part will also be used to375

forge prompts for the generation. Further details on376

data splits are given in Appendix A.1. Each metric377

is evaluated on a pool of 900 generated samples.378

4.2 Datasets379

Three different datasets are used in the experiments380

presented hereafter: amazon_polarity (Zhang et al.,381

2015), CLS (from the FLUE (Le et al., 2020)382

dataset) and emotion (Saravia et al., 2018). The383

first two are Amazon reviews which have been384

labeled as positive or negative, so the intended385

task is to study the possibility of applying po-386

larity to the generation. As CLS is in French,387

these two datasets will serve to ensure that the388

methods have the same behaviour for different lan-389

guages. Emotion is a collection of tweets clas-390

sified under eight basic emotions: anger, antic-391

ipation, disgust, fear, joy, sadness, surprise and392

trust. This dataset is supposed to be more chal-393

lenging since there are more classes and texts are394

smaller (only composed of one sentence), hence395

the model needs to precisely generate the target396

emotion with few tokens. It is worth noting that397

the 3 datasets have different sizes: 4,000,000 in-398

stances in total for amazon_polarity, 20,000 for399

emotion and 6,000 for CLS. They are available at 400

https://huggingface.co/datasets/. 401

We adapted prompts used to start the genera- 402

tion for each datasets depending on the data for- 403

mat. Amazon_polarity comes with a "title" column 404

which corresponds to the title the user gave to the 405

review. This field is directly used as prompt. For 406

the two other datasets, the prompts are the very 407

first tokens of the text field. Because texts from 408

emotion and CLS have different lengths, the size 409

of prompts are also different: it is arbitrarily set to 410

6 tokens for CLS and 4 for emotion. 411

4.3 Methods and baselines 412

Baselines. Beside PPL-MCTS, we propose sev- 413

eral baselines and simple techniques. Most studies 414

on re-ranking create proposals using beam search 415

and then re-rank them using the product of like- 416

lihood and discriminator probability, limiting the 417

diversity in the proposals pool. We propose re- 418

ranking with different variations, in the way se- 419

quences to re-rank are produced, and in the way the 420

final sequence is chosen in an attempt to improve 421

such approaches. Three methods are tested to gen- 422

erate propositions: beam search (Dept., 2018) (with 423

a beam size of 3), nucleus (top-p) sampling (Holtz- 424

man et al., 2020) (with p=0.9), as well as beam 425

sampling (as described in (Caccia et al., 2020)). 426

For the final choice, we also propose three different 427

methods: argmax, where the sequence that has the 428

highest p(x|c) is chosen; first true, where proposi- 429

tions are sorted by descending likelihood and the 430

first sequence that belongs to the correct class ac- 431

cording to the guiding discriminator is chosen; and 432

sampling, where the distribution of p(x|c) for the 433

propositions is normalized and the chosen sequence 434

is sampled following this distribution. Similarly to 435

PPL-MCTS, the likelihood part of p(x|c) is omit- 436

ted (i.e, α = 1) since sequences in the pool of 437

propositions already have an high likelihood. 438

It should be noted that in our setting, a generated 439

sequence corresponds to a document (e.g. a whole 440

review). This choice makes sense for our datasets, 441

but re-ranking at a smaller level (after each sen- 442

tence, after x tokens...) would also be possible and 443

might produce different results. 444

Methods from the literature We compare our 445

results with methods from the literature. In par- 446

ticular, we test CC-LMs trained on the target task, 447

similarly as CTRL. We tested this method using 448

greedy search as well as sampling for decoding. We 449
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<|startoftext|> The Revenge of making a good Halloween film.
[SEP]?????? I think this movie is a waste of time. It’s not scary, it’s just plain
stupid. The only good thing about this film is the soundtrack.<|endoftext|>
<|startoftext|> The Revenge of making a good Halloween film. [SEP] ive
seen this movie a few times and i love it. the acting is great, the story line is
good, and the special effects are awesome. if you like horror movies then go
see this one.<|endoftext|>

Figure 3: Example of two constrained generations us-
ing PPL-MCTS, one on the negative class, one on the
positive class, using the same prompt (in bold) from
amazon_polarity.

Figure 4: Accuracy according to the roll-out size; CLS
dataset

also propose an implementation of CC-LM trained450

with the classification loss initially proposed for the451

GeDi method (Krause et al., 2020). These CC-LMs452

are further used to implement the state-of-the-art453

GeDi model. In the experiments reported below,454

we report results for GeDi models trained with and455

without the classification loss. Finally, we report456

results of PPLM. For a fair comparison, the same457

discriminator and LM are used for our PPL-MCTS458

approach, the re-ranking approaches (baselines),459

and PPLM.460

4.4 Experimental setting461

For each method, a number of tokens equals to the462

average length of sequences of the dataset are gen-463

erated: 98 tokens for amazon_polarity, 23 for emo-464

tion and 137 for CLS. Fixing the number of gen-465

erated tokens allows fair comparisons between the466

tested methods since the perplexity of a sequence467

is directly linked to its length, and its number of468

n-gram impacts the Self-BLEU metric. An exam-469

ple of generation from amazon_polarity is given in470

Fig. 3.471

To run all of these methods, three different mod-472

els are needed: one discriminator, a "vanilla" LM473

used as generator, and the CC-LM used in the474

CTRL and GeDi approaches. For the discrim-475

inator used to guide the generation, we rely on476

BERT-base-cased (Devlin et al., 2019) for the En-477

glish datasets and FlauBERT-large-cased (Le et al., 478

2020) for CLS. As vanilla LM, we use GPT-2 479

small models, relying on OpenAI’s pre-trained 480

model for the English datasets and on belgpt2 for 481

the French one. The implementation and mod- 482

els used for BERT, FlauBERT, GPT-2 and belgpt2 483

are all found on https://huggingface.co/ 484

models. Given the particular format of data on 485

our experimental datasets, the vanilla LM is trained 486

on raw training sequences in order to produce texts 487

corresponding to the task (for instance, reviews). 488

The CC-LM is simply a fine-tuned version of the 489

vanilla LM with the control code appended. 490

We tested three values for the temperature param- 491

eter for each proposed method (1.0, 1.1 and 1.2). 492

For PPL-MCTS, we also studied the impact of cpuct 493

by testing values 1.0, 3.0, 5.0 and 8.0 along with 494

the different temperature values mentioned. We 495

only report the results for parameters yielding the 496

best accuracy score in the main paper but every re- 497

sults can be found in Appendix A.2. The repetition 498

penalty has been set to 1.2 as defined in CTRL. The 499

number of MCTS iteration per token is set to 50, as 500

well as the number of propositions for re-ranking, 501

except for beam sampling where it is set to 10 be- 502

cause of memory limitations. Given the cost of 503

roll-out for long sequences, we apply roll-out only 504

on the emotion dataset to be able to run extensive 505

experiments. Without roll-out, MCTS loses a part 506

of its long view property but still allows to skew the 507

exploration toward promising solutions. A study 508

of the impact of the roll-out is detailed in a next 509

sub-section. Parameters used for literature models 510

are those provided by the authors. Experiments 511

were conducted on a Quadro RTX 6000 with 80 512

Go of RAM. 513

4.5 Results 514

Results on the emotion, CLS and amazon_polarity 515

datasets are reported in Table 1.The statistical sig- 516

nificance against GeDi and PPLM is measured with 517

a t-test with significance level (p-value) of 1%. Re- 518

sults show that PPL-MCTS is competitive against 519

task-specifically trained LMs on the constraint ap- 520

plication aspect (high accuracy), while keeping a 521

fair amount of diversity (low Self-BLEU) and stay- 522

ing close to the original distribution (low oracle 523

perplexity). On all three datasets and metrics, it 524

constantly yields top results; the only other method 525

which is high-performing for all metrics and con- 526

stant across the datasets is GeDi trained with the 527
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classification loss.528

Another remarkable result is for the Sampling -529

Argmax method that selects among a pool of propo-530

sitions generated using sampling, the one with the531

highest probability to be from the correct class.532

Thanks to the sampling used for generating propo-533

sitions, its Self-BLEU is among the lowest of all534

reported values. Despite the simplicity and low535

computational cost of this approach, its accuracy is536

among the best on every dataset. These very good537

results should however be put into perspective of538

the very high perplexity of its generated texts. This539

indicates that the generated samples may be very540

different than those generated by a standard LM on541

this dataset. Hence, exploring accuracy/perplexity542

trade-offs achievable with different values of α is543

interesting, which is proposed in Appendix A.4.544

4.6 Human evaluation545

Since automatic metrics can be biased and may not546

faithfully represent the human judgement, we con-547

duct a human evaluation to compare with the results548

obtained through oracles and confirm the results549

and the relevance of automatic metrics. Because of550

the annotation cost, we limit the tested methods to551

the two state-of-the-art methods (PPLM and GeDi),552

PPL-MCTS and the promising Sampling - Argmax.553

This allows to test if PPL-MCTS is indeed as effi-554

cient as GeDi and if both are better than original555

PPLM. Also, this should confirm that the high per-556

plexity of the Sampling - Argmax method is due557

to generated texts being very different from the558

ones generated by other methods. The evaluation559

has been performed on the CLS dataset by three560

volunteering colleagues, French native speakers.561

They labeled the same pool of reviews in order to562

measure the inter-annotator agreement.563

The pool consists of 50 reviews (25 positive564

and 25 negative ones) randomly sampled for each565

method, which results in 200 reviews in total. An-566

notators were asked to go through this (randomly567

shuffled) pool and to give two scores for each re-568

view:569

1. Polarity. Rate from 1 to 5 how well the text570

corresponds to the desired label (positive or571

negative). The text is rated 5 if it corresponds572

entirely to the expected label, down to 1 if573

it corresponds entirely to the opposite label.574

This score corresponds to the accuracy from575

the automatic metrics.576

2. Readability. Rate from 1 to 5 how well the577

text is written. 5 corresponds to a text without 578

any mistake and which is perfectly understand- 579

able. The more mistakes or incoherence, the 580

lower the score. This score corresponds to the 581

perplexity from the automatic metrics. 582

The diversity within the pool of generated texts is 583

complicated to evaluate and the Self-BLEU is fairly 584

accurate as a diversity metric, so this property is 585

not studied in the human evaluation. 586

We report scores averaged over the 3 annota- 587

tors as well as the standard deviation in Table 2. 588

A t-test against PPLM (GeDi being best on both 589

scores) is applied to test statistical significance 590

(with p-value=0.01). One can notice that the agree- 591

ment between annotators is high and that the results 592

are in line with conclusions from automatic met- 593

rics. GeDi, when trained with the classification 594

loss, yields similar results as PPL-MCTS, in terms 595

of constraint satisfaction and quality of writing. 596

PPLM, on the other hand, generates samples of 597

lower quality and has more difficulty for applying 598

the constraint. Finally, given its readability score, 599

Sampling - Argmax seems to generate samples with 600

a low quality. Its polarity score, while being higher 601

than PPLM, is lower than expected: given the ac- 602

curacy reported by the oracle, it should be close to 603

GeDi and PPL-MCTS. It is most likely due to the 604

fact that evaluating the polarity of a badly written 605

text is hard for an human, often resulting in review 606

being scored as neutral. 607

4.7 Effect of the roll-out 608

Rolling out is costly for very long sequences, and 609

the question of its usefulness necessarily arises. We 610

study how rolling out for only a fixed number of 611

tokens (instead of until the end of the sequence) 612

influences the performance of PPL-MCTS. For this 613

experiment, we use the CLS dataset and set the 614

roll-out to 0 (original result), 3, 5, 10 and 20 tokens. 615

As one can note in Fig. 4, only 5 tokens allows 616

PPL-MCTS to be on par with GeDi on this dataset. 617

The roll-out size quickly improves accuracy, which 618

then reaches a plateau. It suggests that having an 619

horizon is really helpful but only up to a certain 620

point. Beside, Self-BLEU and oracle perplexity 621

values stay stable, varying respectively from 0.54 622

to 0.57, and from 4.98 to 5.18 as the roll-out size 623

increases from 0 to 20.The roll-out size can thus 624

be set accordingly to the compute budget, further 625

defining the trade-off between cost and quality. 626
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amazon_polarity emotion CLS
Generation Accuracy ↑ 5 - Self-BLEU ↓ Oracle Accuracy ↑ 5 - Self-BLEU ↓ Oracle Accuracy ↑ 5 - Self-BLEU ↓ Oracle
method perplexity ↓ perplexity ↓ perplexity ↓
Tuned LM
CC-LM - Classloss 0.82 0.79 2.56∗,† 0.89∗ 0.65† 3.72∗,† 0.89∗ 0.04∗,† 50.6
CC-LM 0.91 0.71 3.21† 0.52 0.13∗,† 11.1 0.66 0.06∗,† 31.5
GeDi - Classloss 0.96∗ 0.6∗ 5.16 0.88∗ 0.68 5.57∗ 0.94∗ 0.4 7.99∗

GeDi 0.96∗ 0.6∗ 5.16 0.54 0.52† 4.09∗,† 0.83∗ 0.31† 11.9
Untuned LM
PPLM 0.89 0.66 2.84† 0.67 0.19† 7.31 0.79 0.23† 8.3
Beam - Argmax 0.88 0.85 3.14† 0.72∗ 0.49† 3.7∗,† 0.64 0.82 3.31∗,†

Beam - Sampling 0.86 0.84 3.27† 0.7 0.46† 3.69∗,† 0.6 0.82 3.37∗,†

Beam - First true 0.85 0.83 3.27† 0.65 0.38† 3.68∗,† 0.62 0.82 3.26∗,†

Beam sampling - Argmax 0.97∗ 0.73 3.82† 0.67 0.48† 3.88∗,† 0.88∗ 0.67 3.91∗,†

Beam sampling - Sampling 0.92 0.76 3.68† 0.66 0.48† 3.88∗,† 0.76 0.63 4.07∗,†

Beam sampling - First true 0.9 0.73 3.84† 0.66 0.49† 3.85∗,† 0.85∗ 0.71 3.8∗,†

Sampling - Argmax 0.99∗,† 0.17∗,† 16.5 0.87∗ 0.13∗,† 11.7 0.92∗ 0.12∗,† 14.3
Sampling - First true 0.89 0.07∗,† 85.9 0.82∗ 0.13∗,† 10.4 0.87∗ 0.14∗,† 13
Sampling - Sampling 0.88 0.17∗,† 16.3 0.81∗ 0.13∗,† 10.4 0.81 0.06∗,† 31.8
PPL-MCTS 0.97∗ 0.63∗ 5.69 0.84∗ 0.37† 4.82∗,† 0.89∗ 0.54 4.98∗,†

PPL-MCTS - 10 tokens roll-out 0.95∗ 0.57 5.07∗,†

Table 1: Performance of constrained generation methods; from left to right: amazon_polarity, emotion, CLS
datasets. † (resp. ∗) indicates statistically significant improvement against GeDi-classloss (resp. PPLM).

Generation method Polarity Readability

GeDi - Classloss 4, 46± 0, 08∗ 4, 19± 0, 28∗

PPL-MCTS 4, 43± 0, 12∗ 4, 05± 0, 23∗

PPLM 3, 74± 0, 08 3, 12± 0, 19
Sampling - Argmax 4, 00± 0, 11 2, 83± 0, 33

Table 2: Results of the human evaluation on the CLS
dataset (averaged over 3 annotators). ∗ indicates sta-
tistically significant (p ≤ 1%) improvement against
PPLM.

5 Conclusion627

In this paper, we show that it is possible to con-628

trol generation with the help of a discriminator629

that implements some expected constraints on the630

text during decoding. This flexible approach is631

very useful when using very large language mod-632

els, such as GPT-3, whose fine-tuning computa-633

tional costs are prohibitive. In contrast, training a634

discriminator is easier and cheaper. Our proposed635

methods, that mix the discriminator constraint and636

the generation, yield performance that is equiva-637

lent to the best approaches based on LM tuning at638

lower training cost. On the other hand, such ap-639

proaches have an additional cost during inference640

because of the cost of the discriminator being ap-641

plied to candidate generations. PPL-MCTS offers642

a solution for cases where training is too costly643

for the downstream application or the language644

model is not directly accessible. Seeing text gen-645

eration as a tree exploration process, an existing646

approach such as GeDi indeed lowers the cost of647

width exploration but the depth exploration is still648

an issue. Using GeDi for constrained generation649

is thus very similar to a standard maximum likeli- 650

hood search which still lacks of an optimal search 651

method. On the other hand, Monte Carlo Tree 652

Search provides an efficient way to explore the tree 653

by determining the best local choice in the long run, 654

lowering the cost of depth exploration. Thus, these 655

two methods solve different facets of constrained 656

generation, and the combination of the two is a 657

promising perspective. Moreover, MCTS allows to 658

precisely define the best compromise between cost 659

and quality through the number of iterations and 660

the roll-out size, while ensuring the efficiency of 661

the search theoretically. For reproducibility pur- 662

poses, our implementation is made available at 663

https://github.com/ANONYMOUS. 664

Several research avenues are opened by this 665

work. For methods yielding high perplexity, it 666

would be interesting to explore how to set the α 667

parameter in order to reach the best compromise 668

between accuracy and perplexity. Similarly, the 669

size (number of tokens considered) of the roll- 670

out in MCTS offers some ways to control the 671

cost/performance compromise. An adaptive roll- 672

out size, for example rolling-out until the score of 673

the discriminator is above or below a threshold as 674

in (Cotarelo et al., 2021), would seem particularly 675

suited for texts. Last, it should be noted that fine- 676

tuning a model and controlling the generation with 677

a discriminator can be used jointly. For instance, 678

one can use PPL-MCTS on a tuned LM, which will 679

most likely result in even better performances be- 680

cause sequences considered during the search will 681

have an overall higher quality for the considered 682

task. 683
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6 Ethics/Broader impact684

The ethical risks of large LMs are well known685

(Bender et al., 2021). Especially when they are686

trained on large quantities of non curated data, it687

has be shown that they tend to reproduce or ampli-688

fies biases on gender, race, etc. and more generally689

may produce inappropriate content (Gehman et al.,690

2020). As for every automatic generation method,691

using our approaches may result in the production692

of unwanted, misleading or inappropriate content.693

Yet, it is noteworthy that the constrained genera-694

tion as we propose is one way to control, a poste-695

riori of the LM training, that the generated texts696

respect some criteria. It can be used for any appli-697

cation given that a discriminator is able to check698

the constraint accurately. The ethical interests are699

thus important, such as adding constraint about700

race diversity, gender equality, non toxicity, factual701

faithfulness, etc. as far as these properties can be702

detected by a (trained or hand-crafted) discrimina-703

tor. But of course, the same technique could be704

used for malicious purposes, such as constraining705

generation so it produces offensive texts, targeted706

fake news, etc. In such cases of misuse, discrim-707

inators similar to those used for constraining the708

generation could easily spot such texts since the709

constraint will, by design, be noticeable and easily710

grasped by a discriminator.711

Even though training language models on cu-712

rated data in the first place is possible, totally cu-713

rated dataset is hard to obtain, and new biases may714

be highlighted. Indeed, defining a priori what is ev-715

ery possible bias in every cultural context for every716

possible application, and curating the training data717

accordingly is hardly feasible. Hence, constant up-718

dates of language models will be necessary to make719

them as fair as possible. Given the cost of large720

language models training, updating them often is721

really harmful for the environment. Discrimina-722

tor guided constrained generation offers a way to723

filter text generation using up-to-date standards in724

terms of fairness by only updating the discrimina-725

tor, which is faster and require way less resources.726
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A Appendix938

In this technical appendix, we provide additional939

information about our methods, some settings and940

the experiments. Further experimental results, as941

well as examples, are given and discussed. Finally,942

a discussion on concurrent studies is provided.943

A.1 Data splits944

We adapted the way we split the dataset into two945

parts and train/test/validation sets depending on the946

original dataset splits. Amazon_polarity is com-947

posed of a training set of 3 600 000 examples and a948

test set of 400 000. We split both into two parts and949

kept 20% of each training set for validation. Emo-950

tion already comes with train, test and validation951

set, hence we just split each into two parts. Finally,952

CLS is composed of a train set and a test set of953

6000 examples. We split the training set in two and954

split the test set twice so we got two validation and955

test sets. Thus, for each dataset, we end up with956

two training sets, two validation sets and two test957

sets.958

The first train and validation sets are used to959

train and control the training of models used for960

the generation: the guiding classifier, the "vanilla"961

LM and the CC-LM. The test set serves to control962

their performance.963

The second ones are used to train the LM oracle964

and the classifier used to measure the accuracy.965

The test set allows to verify that these models are966

trustworthy for accurate evaluation. Once all the967

models are trained, the constrained generation is968

evaluated on 900 samples generated from prompts969

never seen by models during training.970

A.2 Complementary results971

We tested three temperature values for each pro-972

posed method: 1.0, 1.1 and 1.2. As the temperature973

increases, the output distribution of the language974

model becomes more and more uniform. This975

means that high temperatures should result in high976

perplexities because the sampling deviates further977

from the original distribution.978

For PPL-MCTS, we also studied the impact of979

cpuct by testing values 1.0, 3.0, 5.0 and 8.0 along980

with the different temperature values mentioned.981

cpuct defines the compromise between exploiting982

nodes that already have great scores and exploring983

less played but promising ones. A high cpuct en-984

courages exploration. We remind that the repetition985

penalty I in Eqn. 2 has been set to 1.2 as defined986

in CTRL. 987

In Section ’Results’, for each method and 988

dataset, we reported only the results obtained with 989

the set of parameter values yielding the best ac- 990

curracy. Hereafter, we report results with every 991

tested set of parameters in Tables 3, 4 and 5 for re- 992

spectively the emotion, CLS and amazon_polarity 993

datasets. 994

Unsurprisingly, the perplexity of methods which 995

sample on the LM logits explodes when τ increases, 996

without a noticeable gain in accuracy. Since the di- 997

versity is already high for low τ values, it seems to 998

be better to keep the temperature low with these ap- 999

proaches. Note that the couple cpuct = 3, τ = 1.0 1000

for PPL-MCTS always leads to the best result. Us- 1001

ing cpuct = 8 seems to yield slightly worse results, 1002

especially with a low temperature. However, the 1003

different parameters do not greatly affect the results 1004

of PPL-MCTS. 1005

A.3 Examples of generation 1006

We provide an example of generation for ama- 1007

zon_polarity and emotion datasets using PPL- 1008

MCTS, PPLM, GeDi and Sampling - Argmax meth- 1009

ods, respectively in Figures 5 and 6. Texts gener- 1010

ated using Sampling - Argmax are rather differ- 1011

ent as suggested by the reported high perplexity 1012

results. Note that emotion texts are only one sen- 1013

tence while those of amazon_polarity are complete 1014

reviews. This difference motivated the choice of 1015

these datasets. Also, we preferred amazon_polarity 1016

over IMDb used in the GeDi and PPLM papers 1017

because of its bigger size, suitable format and be- 1018

cause a French equivalent is available (CLS), which 1019

allows us to test another language with a similar 1020

dataset. 1021

A.4 Constraint strength through α 1022

As described in the model improvements section, 1023

a parameter α can be defined to control the rela- 1024

tive importance of the discriminator score and the 1025

language model likelihood. Thus, this parameter 1026

allows to control the constraint application strength 1027

as it helps to define a trade-off between staying 1028

close the original LM and satisfying the constraint. 1029

Note that in all of our experiments reported earlier, 1030

this parameter has been set to 1, focusing on the 1031

constraint application since the proposed methods 1032

already inherently provide legible texts. 1033

Here, as a proof of concept, we test a range of 1034

values for α, using the Sampling - Argmax method 1035

on the amazon_polarity dataset with the automatic 1036
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PPL-MCTS
<|startoftext|> realistic account [SEP] ive read this book and i think it is a
very good account of the life of a young man. i would recommend to anyone
who likes to know about the lives of people in america, or any other country
that has been around for centuries.<|endoftext|>

PPLM
<|startoftext|> realistic account [SEP] I enjoyed this book. It was realistic
and I enjoyed the way the author described the people and places. I would
recommend this book to anyone who is interested in the history of the United
States.<|endoftext|>

GeDi
<|startoftext|> realistic account [SEP] This is a real book. It’s not just about
the war, but also about the people who fought it. The author has a very realistic
view of what happened in Vietnam and how it affected our country. I would
recommend this book to anyone interested in learning more about Vietnam or
any other war that took place during that time period<|endoftext|>

Sampling - Argmax
<|startoftext|> realistic account [SEP] ive seen many of these. they mostly
in the 20’s, 30’s and 40’s and the luscious ones i know - men like this - there’s
an old saying that farts, u makin’ u sell it..this movie has a lot of realism to it
too! and i was totally impressed on how good the kids and the predator was!
will it be hard for them to make more like this? i think it will! i read that war
is going to be much<|endoftext|>

Figure 5: Examples of constrained generation using
PPL-MCTS, PPLM, GeDi and Sampling - Argmax
methods (from top to bottom) on the positive class of
amazon_polarity, using the same prompt (in bold).

PPL-MCTS
<|startoftext|> i feel that working with a group of people who are so
passionate about the same thing is really important<|endoftext|>

PPLM
<|startoftext|> i feel that working hard and caring for someone i don t care
for is a lot less selfish than i would be feeling for someone i<|endoftext|>

GeDi
<|startoftext|> i feel that working with the ladies of the family is a wonderful
thing and i am very fond of the way they look and feel<|endoftext|>

Sampling - Argmax
<|startoftext|> i feel that working at imgur for so many years is ill be devoted
to it<|endoftext|>

Figure 6: Examples of constrained generation using
PPL-MCTS, PPLM, GeDi and Sampling - Argmax
methods (from top to bottom) on the ’love’ class form
’emotion’, using the same prompt (in bold).

metrics. We chose this method and dataset since 1037

it yields the best accuracy, but also exhibits a very 1038

high perplexity. In this case, it seems interesting to 1039

trade a bit of accuracy for better written texts. 1040

Results are roughly constant when α is lower 1041

than 0.98, so it has an impact only for values be- 1042

tween 0.98 and 1. This is due to the fact that, for 1043

a long enough sequence, pθ(x) is often relatively 1044

small compared to pD(c | x). This difference of 1045

scale annihilates the influence of α. This [0.98-1] 1046

interval thus corresponds to values of α that rescale 1047

pD(c | x)α and pθ(x)1−α on a same order of mag- 1048

nitude. As shown in Figure 7, within this regime, 1049

we can observe a linear dependency between α 1050

and the accuracy as well as the perplexity. This 1051

illustrate that a trade-off can be obtained by tuning 1052

this parameter, allowing to define the strength of 1053

the constraint application which also defines how 1054

far the generation can be from the original LM 1055

distribution. 1056

Generation method Accuracy ↑ 5 - Self-Bleu ↓ Oracle perplexity ↓

Beam sampling - Argmax τ = 1.0 0,61 0,41 3,7
Beam sampling - Argmax τ = 1.1 0,65 0,48 3,72
Beam sampling - Argmax τ = 1.2 0,67 0,48 3,88

Beam sampling - First true τ = 1.0 0,58 0,4 3,68
Beam sampling - First true τ = 1.1 0,64 0,48 3,69
Beam sampling - First true τ = 1.2 0,66 0,49 3,85

Beam sampling - Sampling τ = 1.0 0,59 0,41 3,69
Beam sampling - Sampling τ = 1.1 0,64 0,49 3,69
Beam sampling - Sampling τ = 1.2 0,66 0,48 3,88

CC-LM - Greedy Search 0,51 0,1 17
CC-LM - Sampling τ = 1.0 0,52 0,13 11,1
CC-LM - Sampling τ = 1.1 0,51 0,1 15,8
CC-LM - Sampling τ = 1.2 0,47 0,08 31,4

CC-LM - Classloss - Greedy Search 0,89 0,65 3,72
CC-LM - Classloss - Sampling τ = 1.0 0,83 0,11 19,6
CC-LM - Classloss - Sampling τ = 1.1 0,79 0,07 33,2
CC-LM - Classloss - Sampling τ = 1.2 0,79 0,05 64,8

Sampling - Argmax τ = 1.0 0,87 0,13 11,7
Sampling - Argmax τ = 1.1 0,86 0,1 19,6
Sampling - Argmax τ = 1.2 0,86 0,07 47,5

Sampling - First true τ = 1.0 0,82 0,13 10,4
Sampling - First true τ = 1.1 0,81 0,11 16,2
Sampling - First true τ = 1.2 0,77 0,09 33,2

Sampling - Sampling τ = 1.0 0,81 0,13 10,4
Sampling - Sampling τ = 1.1 0,8 0,11 15
Sampling - Sampling τ = 1.2 0,79 0,08 25,7

PPL-MCTS - cpuct = 1.0, τ = 1.0 0,83 0,37 4,81
PPL-MCTS - cpuct = 1.0, τ = 1.1 0,8 0,36 4,9
PPL-MCTS - cpuct = 1.0, τ = 1.2 0,82 0,33 4,97
PPL-MCTS - cpuct = 3.0, τ = 1.0 0,84 0,37 4,82
PPL-MCTS - cpuct = 3.0, τ = 1.1 0,82 0,35 4,85
PPL-MCTS - cpuct = 3.0, τ = 1.2 0,84 0,35 4,9
PPL-MCTS - cpuct = 5.0, τ = 1.0 0,84 0,38 4,74
PPL-MCTS - cpuct = 5.0, τ = 1.1 0,84 0,34 4,79
PPL-MCTS - cpuct = 5.0, τ = 1.2 0,84 0,33 4,88
PPL-MCTS - cpuct = 8.0, τ = 1.0 0,81 0,38 4,71
PPL-MCTS - cpuct = 8.0, τ = 1.1 0,81 0,37 4,72
PPL-MCTS - cpuct = 8.0, τ = 1.2 0,82 0,35 4,79

Table 3: Results for every tested set of parameters on
the proposed methods; emotion dataset. Results re-
ported in the body of the paper are in italic.

A.5 Concurrent work 1057

During the time of writing, two preprints using 1058

MCTS for NLP tasks have been released (Leblond 1059
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Figure 7: Accuracy (left) and perplexity (right) of the Sampling - Argmax method according to the α parameter;
amazon_polarity dataset

Generation method Accuracy ↑ 5 - Self-Bleu ↓ Oracle perplexity ↓

Beam sampling - Argmax τ = 1.0 0,87 0,71 3,85
Beam sampling - Argmax τ = 1.1 0,88 0,67 3,91
Beam sampling - Argmax τ = 1.2 0,88 0,63 4,12

Beam sampling - First true τ = 1.0 0,85 0,71 3,8
Beam sampling - First true τ = 1.1 0,84 0,68 3,87
Beam sampling - First true τ = 1.2 0,85 0,63 4,07

Beam sampling - Sampling τ = 1.0 0,74 0,71 3,82
Beam sampling - Sampling τ = 1.1 0,72 0,68 3,89
Beam sampling - Sampling τ = 1.2 0,76 0,63 4,07

CC-LM - Greedy Search 0,59 0,57 2,51
CC-LM - Sampling τ = 1.0 0,62 0,15 12,3
CC-LM - Sampling τ = 1.1 0,63 0,09 18,7
CC-LM - Sampling τ = 1.2 0,66 0,06 31,5

CC-LM - Classloss - Greedy Search 0,8 0,59 2,77
CC-LM - Classloss - Sampling τ = 1.0 0,85 0,13 17
CC-LM - Classloss - Sampling τ = 1.1 0,87 0,07 28
CC-LM - Classloss - Sampling τ = 1.2 0,89 0,04 50,6

Sampling - Argmax τ = 1.0 0,92 0,12 14,3
Sampling - Argmax τ = 1.1 0,92 0,08 20,7
Sampling - Argmax τ = 1.2 0,92 0,05 33,6

Sampling - First true τ = 1.0 0,87 0,14 13
Sampling - First true τ = 1.1 0,86 0,1 19,1
Sampling - First true τ = 1.2 0,86 0,06 33,1

Sampling - Sampling τ = 1.0 0,77 0,14 12,9
Sampling - Sampling τ = 1.1 0,78 0,09 18,8
Sampling - Sampling τ = 1.2 0,81 0,06 31,8

PPL-MCTS - cpuct = 1.0, τ = 1.0 0,88 0,54 4,98
PPL-MCTS - cpuct = 1.0, τ = 1.1 0,87 0,53 5
PPL-MCTS - cpuct = 1.0, τ = 1.2 0,87 0,53 5,02
PPL-MCTS - cpuct = 3.0, τ = 1.0 0,89 0,54 4,98
PPL-MCTS - cpuct = 3.0, τ = 1.1 0,89 0,54 4,81
PPL-MCTS - cpuct = 3.0, τ = 1.2 0,89 0,54 4,86
PPL-MCTS - cpuct = 5.0, τ = 1.0 0,88 0,55 4,9
PPL-MCTS - cpuct = 5.0, τ = 1.1 0,89 0,54 4,97
PPL-MCTS - cpuct = 5.0, τ = 1.2 0,89 0,54 4,91
PPL-MCTS - cpuct = 8.0, τ = 1.0 0,83 0,54 4,98
PPL-MCTS - cpuct = 8.0, τ = 1.1 0,86 0,54 4,95
PPL-MCTS - cpuct = 8.0, τ = 1.2 0,88 0,55 4,94

Table 4: Results for every tested set of parameters on
the proposed methods; CLS dataset. Results reported
in the body of the paper are in italic.

et al., 2021; Scialom et al., 2021). While we1060

emphasize that these are concurrent studies, PPL-1061

MCTS has some major differences. Indeed, these1062

studies focus on improving the overall quality of1063

generated texts rather than following a given con-1064

straint. While "being well written" can be seen as a1065

constraint, PPL-MCTS rather explores how a con-1066

straint that is not present in the original language1067

model (i.e. not a goal in the original training of1068

the LM) can be added at generation time. Scialom1069

Generation method Accuracy ↑ 5 - Self-Bleu ↓ Oracle perplexity ↓

Beam sampling - Argmax τ = 1.0 0,94 0,79 3,55
Beam sampling - Argmax τ = 1.1 0,96 0,77 3,65
Beam sampling - Argmax τ = 1.2 0,97 0,73 3,82

Beam sampling - First true τ = 1.0 0,86 0,77 3,73
Beam sampling - First true τ = 1.1 0,89 0,77 3,68
Beam sampling - First true τ = 1.2 0,9 0,73 3,84

Beam sampling - Sampling τ = 1.0 0,87 0,77 3,7
Beam sampling - Sampling τ = 1.1 0,92 0,76 3,68
Beam sampling - Sampling τ = 1.2 0,89 0,73 3,83

CC-LM - Greedy Search 0,91 0,71 3,21
CC-LM - Sampling τ = 1.0 0,87 0,17 15,7
CC-LM - Sampling τ = 1.1 0,86 0,1 32,2
CC-LM - Sampling τ = 1.2 0,8 0,08 80,2

CC-LM - Classloss - Greedy Search 0,82 0,79 2,56
CC-LM - Classloss - Sampling τ = 1.0 0,81 0,16 18,4
CC-LM - Classloss - Sampling τ = 1.1 0,79 0,1 37,1
CC-LM - Classloss - Sampling τ = 1.2 0,74 0,07 95,4

Sampling - Argmax τ = 1.0 0,99 0,17 16,5
Sampling - Argmax τ = 1.1 0,99 0,11 31,8
Sampling - Argmax τ = 1.2 0,99 0,07 84,50

Sampling - First true τ = 1.0 0,88 0,16 16,4
Sampling - First true τ = 1.1 0,87 0,1 31,5
Sampling - First true τ = 1.2 0,89 0,07 85,9

Sampling - Sampling τ = 1.0 0,88 0,17 16,3
Sampling - Sampling τ = 1.1 0,87 0,1 30,8
Sampling - Sampling τ = 1.2 0,88 0,07 81

PPL-MCTS - cpuct = 1.0, τ = 1.0 0,96 0,62 5,61
PPL-MCTS - cpuct = 1.0, τ = 1.1 0,96 0,63 5,65
PPL-MCTS - cpuct = 1.0, τ = 1.2 0,96 0,62 5,66
PPL-MCTS - cpuct = 3.0, τ = 1.0 0,97 0,63 5,69
PPL-MCTS - cpuct = 3.0, τ = 1.1 0,97 0,62 5,77
PPL-MCTS - cpuct = 3.0, τ = 1.2 0,96 0,62 5,72
PPL-MCTS - cpuct = 5.0, τ = 1.0 0,95 0,63 5,6
PPL-MCTS - cpuct = 5.0, τ = 1.1 0,96 0,63 5,66
PPL-MCTS - cpuct = 5.0, τ = 1.2 0,96 0,63 5,63
PPL-MCTS - cpuct = 8.0, τ = 1.0 0,93 0,64 5,57
PPL-MCTS - cpuct = 8.0, τ = 1.1 0,93 0,64 5,57
PPL-MCTS - cpuct = 8.0, τ = 1.2 0,95 0,63 5,57

Table 5: Results for every tested set of parameters on
the proposed methods; amazon_polarity dataset. Re-
sults reported in the body of the paper are in italic.

et al. (2021) train a discriminator to distinguish 1070

generated and real samples because their goal is 1071

ultimately to train the language model in a Genera- 1072

tive Adversarial setup to create a better LM. This 1073

iterative training, in addition to not being possible 1074

in our task, is not wanted since we aim to be plug 1075

and play. Our goal is indeed to apply an additional 1076

constraint to an untouched original language model. 1077

Yet, even if goals are different and applying MCTS 1078

for constrained generation is not trivial, the "MLE 1079
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Coop-MCTS" is close to PPL-MCTS. However,1080

focusing on MCTS as a decoding only strategy al-1081

lowed an in-depth study that provided interesting1082

results, in particular the effect of the roll-out size1083

(the roll-out is totally omitted in their paper) and1084

the α parameter.1085

On the other hand, Leblond et al. (2021) also1086

focus on MCTS as a decoding strategy but for the1087

very specific case of machine translation. MCTS1088

is used to optimize metrics for machine translation,1089

which are known to not necessarily correlate with1090

human judgement (Novikova et al., 2017). Again,1091

the goal is different since these metrics are used as1092

a proxy of the sample quality. In contrast, our work1093

shows that MCTS can be used to optimize a given1094

property, but instead of optimizing the quality of1095

samples, we optimize for a given constraint while1096

retaining the original quality of writing. The fact1097

that MCTS also works in such cases was non triv-1098

ial since adding such constraints to the generation1099

could lead to deteriorate texts.1100

Beside MCTS, we also proposed and explored1101

simpler methods based on re-ranking for our task1102

and showed that diversity allows to satisfy the con-1103

straint, often at the price of a lower quality, empha-1104

sizing the compromise between exploration and1105

exploitation made by the MCTS.1106

Finally, these concurrent studies provide evi-1107

dences that MCTS is promising for many different1108

usage in NLP. We hope that the large amount of ex-1109

periments, parameter analysis and the availability1110

of our open-sourced code working out-of-the-box1111

will help foster future research in this direction.1112
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