
Intermediate Representations for Improved Code Translation with LLMs
Code translation is the task of converting code from one programming language (e.g., Java)

to another (e.g., Python) [1]. Early statistical efforts [2] have recently given way to methods
based on large language models (LLMs). However, studies show that LLMs still produce buggy
translations using a zero-shot prompt [1]. One promising avenue to improve translation accuracy is
through intermediate representations, which provide structured guidance for the translation process.
We investigate whether LLM-based code translation can benefit from intermediate representations
(IRs), specifically in the forms of natural language (NL) summaries and abstract syntax trees
(ASTs). We explore two main approaches to incorporate IRs in code translation: (1) a two-step
approach (2S), where the LLM first translates the original code to IR and then translates this IR
to the target language [3]; and (2) a chain-of-thought (CoT) prompting approach, where the LLM
is instructed to use IR to explain its reasoning during translation.

For our experiments, we use two code translation benchmarks: sampled CodeNet [4] (languages:
C, C++, Go, Java, Python) and AVATAR [5] (languages: Java, Python). In Phase 1, we experiment
with different permutations of IRs (NL, AST, or both), and compare with the simple zero-shot
(0SP) and one-shot prompt (1SP) baselines using the open-source GPT-4 LLM as the backbone
(Open GPT4 8X7B [6]) on the sampled CodeNet. Based on Phase 1 results, we evaluated the two
highest performing prompts with Open GPT4 8X7B, StarCoder [7] and CodeGen LLMs in Phase
2. Following [1], we use the percentage of successful translations (successful translated code would
compile, pass runtime checks, and pass existing tests) as the performance metric.

Table 1: Results of Open GPT4 8X7B (GPT), StarCoder (Star),
and CodeGen (Code); Success% = successful translation rate.

Prompt
Phase 1 Phase 2
CodeNet CodeNet AVATAR
GPT Star Code GPT Star Code

0SP 28.6% 36.3% 18.4% 17.6% 20.4% 6.8%
1SP 33.5%
2S-NL 10.7%
2S-AST 2.6%
CoT-NL 42.4% 38.0% 4.9% 24.3% 20.6% 1.3%
CoT-AST 32.2%
2S-NL-AST 9.0%
2S-AST-NL 11.2%
CoT-NL-AST 39.6% 31.2% 2.9% 22.2% 16.9% 0.2%
CoT-AST-NL 37.9%

From Table 1, CoT with
NL performed the best, with
a 13.8% and 6.7% improve-
ment on the CodeNet and
AVATAR dataset, respectively,
compared to the initial zero-
shot prompt with Open GPT4
8X7B. Our experiments high-
light the potential for general-
izing our findings and under-
score the benefits of using IRs
in code translation. Future
work includes exploring addi-
tional languages and datasets.

[1] Rangeet Pan et al. Lost in translation: A study of bugs introduced by large language models while translating
code. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, pages 1–13, New
York, NY, USA, 2024. Association for Computing Machinery.

[2] Yusuke Oda et al. Learning to generate pseudo-code from source code using statistical machine translation. In
2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 574–584, Los
Alamitos, CA, USA, 2015. IEEE, IEEE Computer Society.

[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Summarize and generate to
back-translate: Unsupervised translation of programming languages. In Andreas Vlachos and Isabelle Augen-
stein, editors, Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pages 1528–1542, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics.

[4] Ruchir Puri et al. Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), San Diego
CA, 2021. NeurIPS.

[5] Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. Avatar: A parallel
corpus for java-python program translation, 2023.

[6] TheBloke. Thebloke/open gpt4 8x7b-gguf, 2024.
[7] Raymond Li et al. Starcoder: may the source be with you!, 2023.


