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CONFRONTING REWARD MODEL OVEROPTIMIZATION
WITH CONSTRAINED RLHF

ABSTRACT

Large language models are typically aligned with human preferences by optimizing
reward models (RMs) fitted to human feedback. However, human preferences are
multi-faceted, and it is increasingly common to derive reward from a composition
of simpler reward models which each capture a different aspect of language quality.
This itself presents a challenge, as it is difficult to appropriately weight these com-
ponent RMs when combining them. Compounding this difficulty, because any RM
is only a proxy for human evaluation, this process is vulnerable to overoptimization,
wherein past a certain point, accumulating higher reward is associated with worse
human ratings. In this paper, we perform, to our knowledge, the first study on
overoptimization in composite RMs, showing that correlation between component
RMs has a significant effect on the locations of these points. We then introduce an
approach to solve this issue using constrained reinforcement learning as a means
of preventing the agent from exceeding each RM’s threshold of usefulness. Our
method addresses the problem of weighting component RMs by learning dynamic
weights, naturally given by the Lagrange multipliers. As a result, each RM stays
within the range at which it is an effective proxy, improving evaluation perfor-
mance. Finally, we introduce an adaptive method using gradient-free optimization
to identify and optimize towards these points during a single run.

1 INTRODUCTION

In the last several years, Large Language Models (LLMs) have made impressive advances in natural
language processing. These models, which are typically pretrained on massive amounts of text data
from the Internet to predict the next token given the current context, are often known as foundation
models (Bommasani et al., 2021) for their ability to be adapted to a variety of downstream applications,
such as chatbots (Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023) or code generation (Ahmad
et al., 2021; Wang et al., 2021; Rozière et al., 2023). This adaptation, or finetuning, is often performed
via reinforcement learning from human feedback (RLHF; Knox and Stone, 2008; Christiano et al.,
2017; Stiennon et al., 2020). RLHF treats the pretrained language model as a decision-making
agent whose “actions” are tokens and whose goal is to maximize a reward model (RM) trained to
emulate human preferences over output text. As these models become more prevalent in society,
there are many concerns regarding their safe deployment, ranging from existential risks (Hendrycks
et al., 2023) due to “artificial general intelligence” (AGI; Bubeck et al., 2023; Legg, 2008) to more
immediate harms, such as biases against marginalized or underrepresented groups (Bender et al.,
2021), proliferation of false information (Lin et al., 2021), and leakage of sensitive information
(Carlini et al., 2021). These concerns are collectively known as the alignment problem: how can we
ensure that the behavior of these models is aligned with human preferences?

Current approaches to alignment within RLHF center around the collection of vast amounts of human
rating data and the training of larger, more powerful RMs (Ouyang et al., 2022; Gao et al., 2022).
However, a fundamental issue with any RM is that ultimately, it is only an imperfect proxy for
human preferences. Gao et al. (2022) drew attention to this fact, showing that maximizing a reward
model beyond a certain point can actually begin to decrease ground truth performance (i.e., lead a
text-based agent to produce outputs which are judged as qualitatively worse). This phenomenon is
known as reward model overoptimization. Examples of overoptimization include producing overly
wordy responses or hallucinating information in an effort to give the impression of expertise. One
simple, yet expensive, approach to mitigating this issue is to periodically evaluate the model with
fresh human rating throughout finetuning and stop early when ratings decline.
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It is also increasingly common to derive reward from composite RMs: fixed combinations of several
RMs each designed to capture a different aspect of text quality (Ramamurthy et al., 2022; Glaese
et al., 2022; Yuan et al., 2023; Bakker et al., 2022; Wu et al., 2023). Such composite RMs are useful
because they allow for more fine-grained measurement of agent behavior and each component can
be retrained or swapped out without affecting the others. Despite these advantages, this approach
also presents its own challenges. Determining the weighting among RMs requires hyperparameter
optimization to find the combination that produces the best correlation with ground truth evaluation,
and the risk of overoptimization means that the best weighting is contingent on a set training duration.
Furthermore, when the reward is constructed from several RMs, information about each individual
RM is lost, and the agent cannot attribute changes in reward to any single model. In particular,
component rewards may even oppose one another, such as an RM which measures safety (and thus
may deny certain user requests) versus another rewarding helpfulness (Bai et al., 2022). Worse, early
stopping to avoid overoptimization in composite RMs is problematic, as different components will
have different values at which they stop being effective proxies for human evaluation.

In this paper, we propose a simple approach to address these challenges: identify the points of
overoptimization, which we term proxy points, and then use constrained optimization to ensure that
each component RM reaches, but does not exceed, its associated proxy point. Rather than use a fixed
weighting among components, our method dynamically adapts a weighting to modulate the influence
of each RM on the learning process. The core idea behind our approach is to use these constraints to
prevent the agent from overoptimizing its (composite) RM beyond the proxy points.

As in existing methods (Gao et al., 2022), we rely on some access to ground-truth queries. We
propose two ways of using these queries to identify proxy points. In the first approach, we train
multiple runs and track each reward model value, periodically querying the ground-truth reward
model. This approach then finds an optimal joint proxy point by fitting a surface to this data and
maximizing it. While effective, this approach requires multiple runs to fit the surface used to find
proxy points. In the second approach, we speed up this process by only using one reinforcement
learning run. As this run is training, we can periodically query the ground-truth reward model and
use this data to run a derivative-free optimization algorithm to find the next candidate proxy points.
To summarize, we make the following contributions:

• To our knowledge, we provide the first analysis of reward model overoptimization in the
context of composite reward functions, showing that the correlation between RMs has a
significant influence on proxy points.

• We propose several constrained RL approaches which incorporate these points into the
optimization objectives, preventing overoptimization and improving evaluation performance.

• We show that a derivative-free optimization method can be used to dynamically find these
proxy points during a single run, significantly saving computation.

2 PRELIMINARIES: REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

RL Problem Formulation In reinforcement learning (RL; Sutton and Barto, 2018), an agent
seeks to take actions in its environment in order to maximize reward. Mathematically, this problem
is typically formalized as a Markov decision process (MDP; Puterman, 2014), defined as a tuple
M ≜ (S,A, P, r, γ, ρ), where S is the state space, A is the action space, P : S ×A → P(S) is the
transition kernel (where P(X) denotes the set of distributions over X), r : S ×A× S → R is the
reward function, γ ∈ [0, 1) is the discount factor, and ρ ∈ P(S) is the initial state distribution. In
practice, the agent’s experience is typically broken into discrete segments, or “episodes” of maximum
length T . At the beginning of each episode, the environment resets and an initial state is sampled
s0 ∼ ρ(·). At each time step t = 0, 1, . . . , T − 1, the agent selects an action at conditioned on
its current state st using a stationary policy π(at|st), where π : S → P(A). Each episode can
be summarized as a trajectory τ = (s0, a0, s1, . . . , sT ). The agent’s goal is to find a policy with
maximum expected return R(τ), where R(τ) ≜

∑T−1
t=0 γtr(st, at, st+1). The expected return under

policy π is known as the value vπ(s) ≜ E[R(τ)|s0 = s] or the action-value if conditioned on both
states and actions qπ(s, a) ≜ E[R(τ)|s0 = s, a0 = a]. The optimization problem faced by the agent,
then, is maxπ vπ, where vπ ≜ Es0∼ρ(·)v

π(s0) is the average value over initial states.
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Integrating Human Feedback The origin and nature of the reward is a fundamental question when
formalizing a problem using RL. Using human evaluation to delineate good agent behaviors from
bad has a history that extends beyond language models. Knox and Stone (2008) used human ratings
of actions to construct a reward model for the game Tetris, while Christiano et al. (2017) proposed
a mechanism for using human feedback to express preferences over trajectories collected in Atari
and MuJoCo. In language modeling, each action is viewed as adding a new token to the current
context string (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022), which
can be viewed as the state. The LM is then the policy, with action space A being the vocabulary of
possible tokens, and state space S being the set of all sequences of tokens up to maximum length T .
Transitions are deterministic, with each action token simply appended to the current state. Given a
pretrained LM π0, RLHF often consists of three stages (Casper et al., 2023): 1) collecting human
feedback on model utterances (typically in the form of ranked preference data), 2) training a RM
to model score utterances in alignment with human feedback (typically initialized from a separate
pretrained LM) and 3) finetuning the LM with RL using the learned RM. While early work in RLHF
for LLMs (Stiennon et al., 2020) focused on a single reward model, more recent work has shown
performance benefits of using a weighted combination of simpler RMs (Wu et al., 2023).

Overoptimization Recently, Gao et al. (2022) performed an empirical study of a phenomenon with
deep ramifications for alignment: RM overoptimization. Their core finding is that after a certain
point, increasing an LLM agent’s value with respect to a given RM will actually begin to decrease its
quality on the actual preferences it is trying to learn. (Gao et al. (2022) use a “gold standard” RM to
stand in for human ratings for convenience.) The root of this issue is that any RM is only a proxy for
the agent’s true measuring stick—human evaluation—so as predicted by Goodhart’s Law (Goodhart
and Goodhart, 1984), an agent trained to maximize it will eventually learn behaviors which the true
objective would discourage. Our approach to addressing this issue is based on a simple two-stage
process: first, find the points where the available rewards stop being useful proxies, and second, train
an agent to only maximize reward up until that point.

3 FINDING PROXY POINTS

Setting In order to conduct an in-depth analysis given our available computational resources, we
focus on a single setting as a case study: dialogue generation with the DailyDialog (Li et al., 2017)
dataset, which consists of transcripts of conversations between humans. As input, the agent receives
a snippet of conversation, and from this context, it must predict the next utterance. We describe this
setting in detail in Appendix A. As a base LLM, we follow prior work (Wu et al., 2023) and use GPT-2
(Radford et al., 2019) here and throughout this paper. For the reward, we use a combination of two
component rewards, each meant to capture a different element of desired behavior, to demonstrate our
approach most directly. The first, rmet, is the METEOR score (Banerjee and Lavie, 2005) between
the generated utterance and reference output, which is computed based on a number of features,
including word-matching, synonym-matching, and phrasing. The second, rint, measures how well
the intent of the generated utterance matches that of the reference output. It is computed using a
fine-tuned RoBERTa model (Liu et al., 2019) which classifies text into different “intent categories”
such as ‘inform,’ ‘question,’ or ‘direct.’ The typical approach (Ramamurthy et al., 2022) is to linearly
combine these RMs to form a composite reward:

r̃t = αmetrmet
t + αintrintt , (3.1)

where the coefficients (αmet, αint) are fixed. As is standard in RLHF applied to language models, an
additional KL penalty was added to discourage deviation from the initial model π0:

rt = r̃t − αKL
t log

π(at|st)
π0(at|st)

. (3.2)

The coefficient αKL
t effectively acts as a Lagrange multiplier, increasing if the KL exceeds some

threshold and decreasing otherwise. We discuss this in more detail in Appendix B.

Evaluation and Proxy Points In an ideal world, evaluation performance for all agents across all
runs could be measured by collecting a large number of human ratings. However, this is expensive,
so we instead selected a number of metrics other than METEOR and intent score which measure
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Figure 3.1: Individual RMs are imperfect proxies for evaluation score. Evaluation score initially
increases as individual RMs and the KL divergence grow before falling at proxy points, denoted by
dashed lines. Results are averaged over 5 seeds, with shading showing standard error.

the lexical quality and diversity of text outputs and averaged them to serve as our evaluation metric
(details in Appendix A). Our choice is in line with prior work that uses held out metrics as the ground
truth for convenience of iteration (Gao et al., 2022). We call the value at which further increasing
the proxy reward results in decreased ground-truth performance the proxy point θ⋆. To identify
proxy points, we trained PPO agents (Schulman et al., 2017) to maximize only one reward or the
other (without KL regularization) and plotted the resulting evaluation scores against the METEOR
and intent scores in Fig. 3.1. In both cases, the evaluation score initially increases before falling.
Gao et al. (2022) also observed that, in general, maximization of reward causes the KL divergence
between the trained and pretrained policies to increase, and therefore we also expect evaluation score
to initially increase before decreasing as the KL grows as well, also shown in Fig. 3.1. One additional
phenomenon that makes optimization of composite RMs challenging is that the component RMs
may be correlated. We hypothesized that this interaction would influence the proxy points of the
component rewards. To test this, we plotted the evaluation scores as a function of the METEOR and
intent rewards for each run shown in Fig. 3.1 in Fig. 3.2 and fit a polynomial surface to the data, using
kernel density estimation to only fit the surface over regions with sufficient data (further details in
Appendix A). The maximizing point (θ⋆intent, θ

⋆
meteor) indeed differs from the proxy points found by

only considering one RM at a time. It is also important to note that the predicted maximizing point is
of the fitted surface, rather than any point attained by one of the individual runs.

4 CONSTRAINED RLHF
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Figure 3.2: Correlated rewards influence proxy
points.

Once one has identified proxy points for the
component reward models, the next question is
how to train agents to maximize these rewards
until they hit these critical values. We propose
that a useful approach to doing this is to reformu-
late the optimization objective using constraints.

Adding Constraints to RL In constrained re-
inforcement learning, an agent seeks to maxi-
mize its value while adhering to constraints on
its behavior. Mathematically, this problem is
formalized as a constrained MDP (CMDP; Alt-
man, 1999), which is defined as a tupleMC ≜(
S,A, P, r0, γ, ρ, {ri}Ni=1, {θi}Ni=1

)
. Here, S,

A, P , r0, γ, and ρ are all as defined for stan-
dard MDPs (with r0 the reward function), with
ri : S×A → R, i = 1, . . . , N being constraint
reward functions and θi ∈ R, i = 1, . . . , N as-
sociated constraint thresholds. Note that the
subscripts on r0:N are indices over reward func-
tions, not time steps. For clarity, we will here-
after refer to r0 as the “task reward” rather than just the reward. Rather than simply maximize value
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with respect to r0, the CMDP optimization problem is given by

max
π

vπ0 s.t. vπi ≥ θi, i = 1, . . . , N. (4.1)

That is, CMDPs represent behaviors which one would like to constrain in the form of value estimates
with respect to reward functions which measure these behaviors. The ≥ symbol in Eq. (4.1) can
easily be reversed if the constraint(s) encode behaviors which should be limited, and the inequality
constraint(s) can be replaced with equality constraint(s). While there are many possible formulations,
we default to the canonical form in Eq. (4.1) for the purposes of exposition.

Proposed Method Given our possible objectives, we can now consider how to optimize them. One
popular approach to solving constrained problems such as Eq. (4.1) is to use Lagrangian relaxation
(Everett, 1963; Altman, 1999):

max
π

min
µ≥0

vπ0 +

N∑
i=1

µi(v
π
i − θi) ≜ L(π,µ), (4.2)

where the weights on the value of each RM µ = [µ1, . . . , µN ]T ∈ RN
≥0 are the Lagrange multipliers

associated with each constraint. In the case that we use equality constraints rather than inequality
constraints, we use the variable ξ rather than µ. Optimization then proceeds by collecting experience
using the policy and updating the policy and Langrange multipliers using gradient descent-ascent.
We stress that the Lagrange multipliers are not fixed hyperparameters, but rather are learned as part of
the optimization process. The negative gradient with respect to µ is simply the constraint violation:
−∇µiL(π,µ) = θi − vπi . To see how policy optimization works, we can rewrite the Lagrangian as

L(π,µ) = vπ0 +

N∑
i=1

µiv
π
i −

N∑
i=1

µiθi

= E s0∼ρ(·)
a0∼π(·|s0)

[
qπ0 (s0, a0) +

N∑
i=1

µiq
π
i (s0, a0)

]
−

N∑
i=1

µiθi

= E s0∼ρ(·)
a0∼π(·|s0)

[
qπµ(s0, a0)

]
−

N∑
i=1

µiθi,

(4.3)

where we define qπµ(s, a) ≜ qπ0 (s, a) +
∑N

i=1 µiq
π
i (s, a) as the mixed q-values of policy π given

the current Lagrange multipliers µ. Note that this value is non-stationary, as the same policy will
have a different value as the weightings on each constraint value change. Policy optimization then
proceeds as normal with respect to the mixed q-values. As is frequently done in deep RL to reduce
variance, we can replace the mixed q-values with mixed advantages Aπ

µ ≜ qπµ(s, a)− vµ(s), with
vµ(s) = Ea∼πqµ(s, a). We can optimize this objective with any policy gradient approach, in our
case PPO. Detailed pseudocode is provided in Algorithm 1.

Formal Guarantees While our focus is primarily empirical, we briefly comment on the theoretical
properties of the above approach. Lagrangian relaxation converts the CMDP problem into a min-max
game. If the values are decomposed as vπi = ⟨ri, dπ⟩, where dπ(s, a) ≜ (1 − γ)

∑
t≥0 Pr(st =

s, at = a|π) is the policy’s cumulative, discounted state-action occupancy measure, and opti-
mization is performed over dπ, then the problem is convex-concave and gradient descent-ascent
(under basic assumptions) guarantees convergence of the average iterates to a saddle point, i.e.,(
K−1

∑K
k=1 d

(k)
π ,K−1

∑K
k=1 µ

(k)
)
→ (d⋆π, µ

⋆) as the number of iterations K →∞ (Freund and
Schapire, 1997). However, in large-scale problems it is difficult to optimize directly over dπ, and
we instead update the policy directly. In this case, the problem is convex in µ but non-concave in π.
Efroni et al. (2020) show sublinear regret bounds with respect to both policy optimality and constraint
satisfaction using an optimistic approach, and Ding et al. (2020) show a convergence rate for the
averaged iterates for general smooth policy classes of O(1/

√
K) for the policy and O(1/K1/4) for

the constraint violation using natural policy gradients. There is significant work on primal-dual policy
optimization for CMDPs, which we discuss further in Appendix C.
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Method Objective Intuition
PPO (no KL) maxπ

∑
i αiv

π
i Max. values

PPO maxπ
∑

i αiv
π
i s.t. vπKL ≥ θKL Max. values & stay close to pretrained π0

New Methods

PPO-SAT Find π ∈ {π|vπi = θi ∀i} Find ‘feasible’ policy whose values hit targets
µ-PPO maxπ v

π
KL s.t. vj ≥ θj ∀j ̸= i Stay close to π0 & ensure RMs high enough

All-PPO maxπ
∑

i αiv
π
i s.t. vi ≤ θi ∀i Max. RMs but not too much

ξ-PPO maxπ v
π
KL s.t. vj = θj ∀j ̸= i Stay close to π0 & ensure RMs hit targets

Table 1: A summary of the approaches we consider.

Choosing a Constrained Objective Given this approach, we can now consider possible con-
straint formulations, all of which should embody the intuition that the agent should maximize each
component reward only until its corresponding proxy point. This naturally suggests that the proxy
points should be used as thresholds in the constrained objective. However, there are a number of
possible formulations to consider when casting RLHF as a CMDP with this goal in mind. Once the
proxy point for a given RM is reached, the agent has two options: continue to update the Lagrange
multiplier on that RM to ensure that values remain at that point (via equality constraints), or simply
stop optimizing/un-weight that RM entirely, i.e., set the multiplier to zero, only re-weighting it if the
constraint is violated (via inequality constraints). This latter approach carries that risk that the value
with respect to that RM will continue to increase (past the proxy point) as other RMs continue to
be optimized, but may be empirically effective if this is not the case and optimization is simplified
by having a source of non-stationarity eliminated. In both of these cases, each component RM is
assigned a constraint threshold, but the question of how to set the task reward remains. We propose
the KL reward rKL = − log π(at|st)

π0(at|st) as the main task reward. Gao et al. (2022) liken the KL to a
resource which the agent spends, such that it should try to maximize its reward while limiting its
divergence from the original policy as much as possible. Using the negative KL as the task reward
carries the intuition of keeping the policy as similar as possible to the pretrained policy, subject to
the constraint that each RM hits the point beyond which it stops aligning with the true objective.
Note that the requirement that the agent hits these thresholds is crucial, as it prevents the agent
from fully maximizing the negative KL reward (i.e., remaining at the pretrained policy). In addition
to these, there is another possible constrained approach wherein the agent simply maximizes the
combined reward as in standard PPO, but constrained so that each individual RM does not violate
its respective threshold. Finally, one could try to formulate the problem as one purely of constraint
satisfaction: find any feasible policy whose values with respect to each of the RMs hit the appropriate
proxy points. This could be implemented via a reward function that penalizes deviations from these
point, e.g., rSAT = −

∑
i αi(ri − θi)2. However, this approach faces the same problem as standard

PPO—namely, how to best set the weights αi. These proposed approaches are summarized in Table 1.

Practical Improvements Here, we describe several practical modifications to the “ideal” algorithm
which we found to improve empirical performance. In practice, the noise and non-stationarity that
primal-dual optimization in RL must contend with can lead to instability in the updates for the
Lagrange multipliers. To handle this in practice, we follow prior work (Stooke et al., 2020; Zahavy
et al., 2022; Moskovitz et al., 2023a) and use a sigmoid function to bound the Lagrange multipliers
between 0 and 1. This results in mixed advantages which are a convex combination of the task and
constraint advantages:

Aπ
µ(s, a) =

(
N −

N∑
i=1

σ(µi)

)
Aπ

0 (s, a) +

N∑
i=1

σ(µi)A
π
i (s, a). (4.4)

This equation has the intuitive interpretation of placing more weight on optimizing constraint reward
ri>0 when µi>0 is high (indicating a constraint violation), and more weight on task reward r0 when
µ1:N are low (indicating that constraints are satisfied). When we use equality constraints rather
than inequality constraints, we replace the sigmoid with a tanh function (bounding the Lagrange
multipliers between −1 and 1). When updating the Lagrange multipliers, we found that using low or
no momentum in the optimizer (we use SGD with a momentum parameter of 0.1) was helpful for
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Figure 5.1: Constrained RLHF improves evaluation performance. (Left) Two constrained
methods, µ-PPO and ξ-PPO produce the best performance over the course of training. (Right)
Balancing RMs using constraints makes performance more robust to longer training time.

performance, as otherwise σ(µi) or tanh(ξi) could be overly “sticky,” remaining high for too long
when constraints became satisfied and vice versa. Another hack which we found to be useful was
to replace the value estimates in the constraint violation calculations with the sum of rewards to-go
(for the appropriate reward function) for the remainder of a given episode. This is because we found
that early in training, value estimates are inaccurate, which can cause the agent to incorrectly believe
it is either adhering to or violating the constraint, leading to incorrect weighting of rewards via the
Lagrange multiplier and slower overall learning.

5 EXPERIMENTAL EVALUATION

We now evaluate these possible approaches in the same setting as described in Section 3. The
primary questions we would like to answer are as follows. (1) Do constrained methods result in better
evaluation performance compared to PPO (and PPO-SAT)? (2) Do these approaches successfully
enforce the desired constraints? (3) Do the thresholds determined by the proxy points lead to the best
performance? Unless otherwise noted, all experiments are run for 5 random seeds, and any shading
in plots denotes standard error.

Does constrained RLHF improve performance? In Fig. 5.1, we indeed find that two constrained
approaches, µ-PPO and ξ-PPO achieve better evaluation performance than other methods, with
ξ-PPO performing slightly better at the end of training. To ensure fairness across methods, to set the
fixed RM weightings used to train PPO and PPO-SAT, we selected the best settings found after 10
initial runs of each approach, the same as the total number of runs used to find proxy points used
for the constrained methods. We conjecture that the strong performance of µ- and ξ-PPO is due to
the beneficial effects of jointly optimizing the policy and Lagrange multipliers (RM weightings).
For example, even setting the weightings to be the optimal Lagrange multipliers and fixing them
throughout training is not guaranteed to converge to a saddle point (Szepesvári, 2020), a phenomenon
observed empirically by Moskovitz et al. (2023a). Notably, All-PPO did not perform as well as the
other constrained methods, which we believe was due to increased instability in the optimization
process (Appendix Fig. D.2). This is common in constrained problems with “paradoxical” objectives
(Moskovitz et al., 2023a). Another benefit of continually modulating the weightings among RMs is
that the weightings themselves are not hyper-optimized to a particular training duration. We trained
both PPO and ξ-PPO using their hyperparameter settings optimized over runs with 128,000 steps for
3 times as long over 3 seeds and confirmed that the constrained approach was more stable (Fig. 5.1).

Are constraints successfully enforced? To verify that the constrained algorithms are working
as expected, we plotted the intent and METEOR rewards across training for µ-PPO, All-PPO, and
ξ-PPO in Fig. 5.2. We can see that, as required by the constraints, µ-PPO (approximately) reaches at
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Figure 5.2: Constraints are satisfied. µ-PPO reaches or exceeds the required intent (left) and
METEOR (right) thresholds (dashed lines), All-PPO remains below them, and ξ-PPO hits them.
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Figure 5.3: Using proxy points as thresholds leads to the best performance. (Left) Using
thresholds that are 10% lower or higher reduces performance compared to proxy point thresholds.
(Right) The proxy points that account for the correlation between RMs are more effective than those
estimated independently.

least as high as the proxy point thresholds, All-PPO remains below them, and ξ-PPO approximately
hits them. µ-PPO continues to increase above the intent proxy point, which may contribute to its
slightly worse final performance compared to ξ-PPO in Fig. 5.1.

Are proxy points the best thresholds? We compared the performance of ξ-PPO using the proxy
points identified in Section 3 against the same method using thresholds that were 10% lower and
10% higher. The left panel of Fig. 5.3 shows that making thresholds lower causes initial performance
to increase more quickly, as once the easier-to-reach thresholds are met, the agent is able to begin
tightening the KL with respect to the pretrained policy earlier. However, performance plateaus at
a lower level. When thresholds are set too high, the KL reward is ignored and the proxy rewards
are optimized beyond the point at which they are useful, leading to worse performance. We also
compared the performance of ξ-PPO using the correlated proxy points found in Fig. 3.2 against the
independent proxy points found by only considering one RM at a time (Fig. 3.1).

5.1 IMPROVING THRESHOLD IDENTIFICATION

One downside of all methods considered so far is the need for multiple runs to either select a
fixed weighting of RMs or identify proxy points. It would save significant compute—and reduce
environmental impact, particularly for larger models—if it were possible to identify thresholds
over the course of a single training run. Assuming we are allowed a limited number of queries to
the evaluation metric over the course of training, one approach to accomplishing this would be to
use a gradient-free optimizer to update the constraint thresholds to reach better performance. In
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Figure 5.4: Nelder-Mead threshold search saves computation. (Left) Final evaluation performance
versus total number of training steps (including hyperparameters searches). We allowed NM-PPO
twice as many training steps for a single run, 256,000. (Right) An example threshold simplex
trajectory overlaid on a contour plot of predicted evaluation performance from Fig. 3.2. The search
converges to a local maximum.

order to limit the required number of policy updates between threshold updates, we used a local
hill-climbing algorithm, Nelder-Mead (Nelder and Mead, 1965), which iteratively updates a simplex
of thresholds based on the evaluation performance at each point. Once a new set of thresholds is
proposed, we use ξ-PPO to converge to those points and then evaluate the model once they’re reached.
Details are provided in Appendix A.4. We plotted the final evaluation performance of this variant
of our approach, which we term NM-PPO, versus total number of training steps (including runs
used for hyperparameter optimization) of PPO and ξ-PPO in Fig. 5.4. We found that NM-PPO
obtains strong performance over the course of a single run, significantly saving in computation.
Furthermore, the trajectories of simplexes proposed by Nelder-Mead closely follow the predicted
evaluation performance found in Fig. 3.2, converging to local maxima of the surface. In Fig. 5.4,
the trajectory converges to a local maximum rather than the global maximum, though other runs did
indeed find the global optimum as predicted by Fig. 3.2 (Appendix Fig. D.3).

6 DISCUSSION

In this work, we studied reward model overoptimization and the influence of correlation on proxy
points in composite RMs. Then, we introduced a set of approaches for identifying and using these
points as thresholds within a constrained optimization approach to RLHF. One weakness shared by
all approaches—unconstrained and constrained alike—is that at least some minimal degree of access
to the true objective/evaluation metric is required. Though in resource-rich settings this could be
feasible (e.g., by occasionally freezing training and querying human evaluators), ideally, this would
be dispensed with entirely. However, doing so is nontrivial. One weakness of gradient descent-ascent
applied to primal-dual policy optimization is that it does not guarantee that the final policy and
Lagrange multiplier(s) converge to a saddle point, only their averages. It would be an interesting
direction for future work to apply an approach which does have such guarantees, such as ReLOAD
(Moskovitz et al., 2023a). For optimizing the constraint thresholds during a single run, it would be
interesting to explore alternative optimizers to Nelder-Mead, such as Bayesian optimization. Another
interesting direction for future work would be to study the usefulness of a CMDP formulation for
avoiding degeneration/collapse of model outputs, as while a deterministic optimal policy always
exists for standard MDPs, CMDPs may demand optimal policies which are stochastic (Szepesvári,
2020). A similar idea was explored using a maximum entropy formulation by Khalifa et al. (2020).
In general, further testing of our methods is necessary on more domains and with composite RMs
with more components. We believe there are additional interesting avenues to explore in mitigating
overoptimization, such as multi-objective RL (Abdolmaleki et al., 2020) or with constraints added to
supervised learning (Rafailov et al., 2023). More broadly, we believe constrained optimization offers
an important toolbox for approaching the alignment problem.
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A EXPERIMENTAL DETAILS

A.1 SETTING

We use the same general experimental setting as Ramamurthy et al. (2022). The context window was
of length 5, and separating the conversations in this way resulted in 35k training, 3k validation, and
3k test utterances. As in Ramamurthy et al. (2022), we use top-k, k = 20 sampling for decoding. The
inputs to the model are concatenated snippets of human conversation in which changes of speaker are
denoted by a special end-of-utterence (<EOU>) token. The intent classifier reward was derived from
a finetuned RoBERTa model (Liu et al., 2019) which awards a score of 1 if the classified intent of the
model’s utterance matches that of the reference/ground truth utterance and 0 otherwise.

A.2 THE EVALUATION METRIC

As we note in the main text, our objective in constructing an evaluation metric was to find one
for which Goodhart’s Law holds with respect to both the METEOR and intent reward functions,
not to directly model human preferences. We therefore chose three metrics measuring lexical
quality and three metrics measuring text diversity from among the metrics available in the RL4LMs
codebase published by Ramamurthy et al. (2022). Specifically, the lexical metrics we used were
SACREBLEU xs (Post, 2018), ROUGE2 xr (Lin, 2004; Ganesan, 2018), and BLEU xb (Papineni
et al., 2002), and the diversity metrics we used were unique-3 xu, vocab_size-3-nopunct
xv, and max_pred_length-nopunct xm. For each metric, we individually normalized the
score between 0 and 1 (based on the range of observed values across all runs of PPO - METEOR
and PPO - Intent), then averaged the resulting lexical scores and resulting diversity scores, before
averaging the two average category scores. More precisely:

eval_score =
1

2

(
xs + xr + xb

3
+
xu + xv + xm

3

)
. (A.1)

A.3 FITTING THE EVALUATION SCORE SURFACE

The overall procedure is described in Phase 1 of Algorithm 2, where F is the function class for the
evaluation score estimator. In our case, F was the space of polynomials of degree 10. To avoid
predicting high evaluation scores over regions of the METEOR × intent space with little or no data
points, we employed kernel density estimation with a Gaussian kernel to create a mask which hid
parts of the fitted surface over low-density data regions (with a threshold density of 50/square unit).
This approach is purely heuristic and could likely be greatly improved on in future work.

A.4 NELDER-MEAD PPO DETAILS

We provide detailed pseudocode of our approach in Algorithm 3. In practice, we found several
implementation details to be important for ensuring good performance. First, the initial simplex was
crucial. Rather than initialize thresholds randomly across the entire range of possible METEOR
and intent values, we initialize them based on random perturbations of the evaluation of the ini-
tial/pretrained policy (i.e., what the METEOR and intent scores are at the beginning of finetuning).
This was very helpful, as otherwise Nelder-Mead would propose threshold pairs that were effectively
not feasible for the policy to achieve, e.g., a very high METEOR threshold with a very low intent
threshold. Second, we capped the number of iterations allowed for one evaluation/threshold setting
at 1/8 of the total allowed training steps. Without this, the agent would often waste most of its run
trying to hit challenging/infeasible thresholds. If the thresholds couldn’t be reached in that time, the
evaluation score was computed wherever the agent was at that time. Third, the agent cached the eval
scores of previously-reached threshold pairs—if Nelder-Mead proposed a threshold pair that had
been reached before (or is within a elementwise tolerance of ±5% of a previously-reached pair) then
it just returns the evaluation score it measured previously rather than updating the policy to return to
it. The Nelder-Mead hyperparameters we use are α = 1, γ = 2, ρ = 0.5, σ = 0.5—these settings are
untuned, and could likely be adjusted to improve performance.
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Algorithm 1: Constrained PPO for Dialogue Generation

1: Require: Dataset D = {(xm, ym)}Mm=1, initial policy parameters ψ(1), initial parameters for
value functions ϕ(1)0 , . . . , ϕ

(1)
N , constraint thresholds θ(1)1 , . . . , θ

(1)
N , initial Lagrange multipliers

µ(1)

2: for step k = 1, . . . ,K do
3: // Sample experience
4: Uniformly sample M ′ < M contexts xm

′ ∼ U(D)
5: Generate predicted ‘trajectory’ responses

ŷm
′
= (a1, . . . , aT ) ∼ pπ(y) =

T∏
t=1

π(at|st)

where s1 = xm
′

6: Compute generalized advantage estimates:

(Âi)
(k)
t = (δi)t + γµ(δi)t+1 + · · ·+ (γµ)T−t+1(δi)T−1, i = 0, . . . , N,

where (δi)t ≜ ri(st, at, st+1, ym
′
) + γv̄i(st+1)− vi(st).

7: Store advantages and trajectories in buffer B
8: // Update
9: for epoch ℓ = 1, . . . , L do

10: for trajectory batch {((Â0:N )b, (δ0)b, . . . , (δN )b, ŷb)}Bb=1 ∼ U(B) in B do
11: Compute mixed advantage estimates:

(Âµ)
(k)
bt =

(
N −

N∑
i=1

σ
(
µ
(k)
i

))
(Â0)

(k)
bt +

N∑
i=1

σ
(
µ
(k)
i

)
(Âi)

(k)
bt

12: Compute the policy loss:

LPPO = − 1

BT

B∑
b=1

T−1∑
t=0

min{ρbt(ψ(k))(Âµ)
(k)
bt , clip(ρbt(ψ

(k)), 1− ϵ, 1 + ϵ)(Âµ)
(k)
bt },

where ρbt(ψ(k)) =
π
ψ(k) (abt|sbt)

π
ψ(k−1) (abt|sbt)

.

13: Compute the value function losses:

Lvi =
1

BT

B∑
b=1

T−1∑
t=0

1

2
(δi)

2
bt, i = 0, 1 . . . , N

14: Update the policy and value functions via SGD on LPPO + αv

∑N
i=0 Lvi

15: Update the Lagrange multipliers via SGD on Lµ:

Lµi =
1

BT

B∑
b=1

T−1∑
t=0

(vi(sbt)− θi)σ
(
µ
(k)
i

)
16: end for
17: end for
18: Reset buffer B ← ∅
19: end for

A.5 COMPUTATIONAL RESOURCES

All experiments were performed on a single NVIDIA A100 GPU, with each run taking between 8
and 10 hours with the exception of runs for Nelder-Mead PPO, which took approximately 20 hours.
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Algorithm 2: Two-Phase Approach

1: Require: Proxy RMs r1:N = r1, . . . , rN , Evaluation RM r⋆, policy gradient algorithm Alg,
constrained algorithm CAlg (e.g., Algorithm 1)

2: Phase 1: Proxy point identification
3: Evaluation RM dataset D ← ∅
4: for i = 1, . . . , N do
5: Fit Alg on ri, collect K measurements {(r1, . . . , rN , r⋆)k}Kk=1 across training
6: D ← D ∪ {(r1, . . . , rN , r⋆)k}Kk=1
7: end for
8: Fit evaluation RM predictor f⋆r

f⋆r ← argmin
fr∈F

1

NK

N∑
i=1

K∑
k=1

(r⋆ik − f̃r((r1)ik, . . . , (rN )ik))
2

9: Proxy point: θ⋆ ← argmaxr1,...,rN f
⋆
r (r1, . . . , rN )

10: Phase 2: Constrained optimization
11: π⋆ ← CAlg(θ⋆)
12: Return π⋆

Algorithm 3: Nelder-Mead Proxy Point Search

1: Require: Evaluation RM reval, initial simplex thresholds {θj ≜ (θ1:N )j}N+1
j=1 , reflection

coefficient α, expansion coefficient γ, contraction coefficient ρ, shrinkage coefficient σ
2: Fit ξ-PPO using initial thresholds, compute {vπeval(θj)}
3: while not converged do
4: Sort threshold sets by evaluation score (θ1, . . . ,θN+1)

5: Compute the centroid of the N -best thresholds θ̄ = 1
N

∑N
i=1 θi

6: Reflect the worst point θr = θ̄ + α(θ̄ − θN+1)
7: Fit ξ-PPO on the reflected thresholds and compute vπeval(θr)
8: if vπeval(θ1) ≤ vπeval(θr) < vπeval(θN ) then
9: θN+1 = θr

10: GOTO Line 3
11: end if
12: if vπeval(θr) < vπeval(θ0) then
13: Expand: θe = θ̄ + γ(θr − θ̄)
14: Fit ξ-PPO on the expanded thresholds and compute vπeval(θe)
15: if vπeval(θe) < vπeval(θ1) then
16: θN+1 = θe

17: GOTO Line 3
18: else
19: θN+1 = θr

20: GOTO Line 3
21: end if
22: end if
23: Contract: θc = θ̄ + ρ(θN+1 − θ̄)
24: Fit ξ-PPO on the contracted thresholds and compute vπeval(θc)
25: if vπeval(θc) < vπeval(θN+1) then
26: θN+1 = θc

27: GOTO Line 3
28: end if
29: Shrink: θj ← θ1 + σ(θj − θ1), j = 2, . . . , N + 1
30: end while
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A.6 ALGORITHM HYPERPARAMETERS

Hyperparameter PPO PPO-SAT µ-PPO All-PPO ξ-PPO
Steps per Update (M ′) 1,280 1,280 1,280 1,280 1,280
Total Steps (KM ′) 128,000 128,000 128,000 128,000 128,000
Batch Size (B) 64 64 64 64 64
Epochs per Update (L) 5 5 5 5 5
Learning Rate (η) 1e-6 1e-6 1e-6 1e-6 1e-6
Initial KL Coefficient (α0) 0.2 0.2 0.2 0.2 0.2
Target KL 0.5 0.5 - 0.5 -
Discount Factor (γ) 0.99 0.99 0.99 0.99 0.99
GAE λ 0.95 0.95 0.95 0.95 0.95
Clip Ratio (ϵ) 0.2 0.2 0.2 0.2 0.2
Rollouts Top-k 20 20 20 20 20
Value Function Coefficient (αv) 0.5 0.5 - - -
METEOR Coefficient (αmet) 0.5 0.5 - - -
Intent Coefficient (αint) 1.0 1.0 - - -
METEOR Proxy Point (θ⋆meteor) - - 0.23 0.23 0.23
Intent Proxy Point (θ⋆intent) - - 0.48 0.48 0.48
METEOR Value Coefficient - - 0.5 0.5 0.5
Intent Value Coefficient - - 0.5 0.5 0.5
KL Value Coefficient - - 0.2 - 0.2
Lagrange Multiplier Function - - sigmoid sigmoid tanh

Table 2: Experiment Hyperparameters.

B THE KL REGULARIZATION COEFFICIENT

As introduced by Ziegler et al. (2019), it is common in RLHF with PPO to adapt the KL coefficient
αKL with the following update:

et = clip

(
KL[π(·|st);π0(·|st)]− θKL

θKL
,−0.2, 0.2

)
αKL
t+1 = αKL

t (1 + ηKLet),

where θKL is a hyperparameter which effectively acts as an upper limit on the KL from the initial
policy, and ηKL acts like a learning rate. The KL coefficient then follows the path of a Lagrange
multiplier with θKL as its constraint threshold, as the constraint violation KL[π(·|st);π0(·|st)]− θKL
is exactly the gradient with respect to such a Lagrange multiplier.

C ADDITIONAL RELATED WORK

In addition to the discussion in the main text, there is a long history of work on CMDPs. Borkar
(2005) first studied actor-critic approaches in this context, and Bhatnagar and Lakshmanan (2012)
were the first to consider constrained policy optimization with function approximation. More broadly,
Achiam et al. (2017), Chow et al. (2018), Paternain et al. (2019), Tessler et al. (2019), Calian et al.
(2020), Efroni et al. (2020), Stooke et al. (2020), Moskovitz et al. (2023a), and Ding and Lavaei
(2023) all study the problem of integrating constraints into RL. More generally, an important factor
in using a Lagrangian approach to solving CMDPs is the introduction of non-stationarity into the
reward function. RL with non-stationary rewards is an active area of interest in RL (Padakandla
et al., 2020; Cheung et al., 2020; Lecarpentier and Rachelson, 2019), particularly in the context of
continual RL (Khetarpal et al., 2022) often with some form of temporal structure introduced in the
non-stationarity (Xie et al., 2020; 2021). An interesting case in additional to primal-dual optimization
in which non-stationarity is introduced by the agent itself is in the use of epistemic uncertainty for
more efficient exploration, manifested in the form of non-stationary exploration bonuses to reward
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Figure D.1: Performance of the tested methods across various metrics.

(O’Donoghue, 2023; Tarbouriech et al., 2023). Non-stationarity may also be introduced as a means of
modeling more naturalistic reward structures for studying animal behavior (Moskovitz et al., 2021a;
2023b). Finally, another area of related work is regularized policy optimization, whereby the standard
reward-maximizing policy optimization objective is augmented with a regularization term, typically a
divergence measure with respect to some reference policy (Berner et al., 2019; Espeholt et al., 2018).
In the single-task setting, the updated policy is typically regularized to stay close to its current setting,
which has close connections to natural gradient (Kakade and Langford, 2002; Moskovitz et al., 2021b;
Pacchiano et al., 2020), trust region (Schulman et al., 2015), and variational inference (Levine, 2018;
Haarnoja et al., 2018; Abdolmaleki et al., 2018) approaches. In the multitask setting, the policy is
typically regularized towards some default policy which encodes behavior thought to be useful across
a family of tasks, and which may be far from the current policy (Galashov et al., 2019; Teh et al.,
2017; Moskovitz et al., 2022). This setting is quite similar in this sense to KL regularization as used
in RLHF.

D ADDITIONAL RESULTS

D.1 ADDITIONAL METRICS
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Figure D.2: Intermediate thresholds can cause oscillations. Running gradient descent-ascent on
a min-max game only guarantees that the average of the iterates converges to the saddle point. In
practice, this can mean that the Lagrange multiplier(s) and value(s) can oscillate wildly over the
course of training, even if their averages converge. The problem is worse for constraint thresholds
which are intermediate—those that are neither high nor low relative to the range of an individual
reward function (Moskovitz et al., 2023a), but can be hidden by averaging. Above is an example run
of All-PPO, showing this problem can occur.
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Figure D.3: Another example Nelder-Mead simplex trajectory. In this case, Nelder-Mead con-
verged to the global maximum proxy point setting.
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D.2 SAMPLE OUTPUTS

For reference, we provide several random prompts and model outputs for the various methods.

Prompt: They didn ’ t accept me . <EOU> Are you serious ?
<EOU> It ’ s the truth . <EOU> Are you okay ? <EOU> I really
wanted to get into NYU . <EOU>

• Reference: I am really sorry to hear that . <EOU>

• PPO: What were you trying to hide. <EOU> I’m not hiding
anything. <EOU>

• PPO-SAT: What do you mean? Did something happen to you?
<EOU>

• µ-PPO: What do you intend on doing in college? <EOU> I
don’t know if I’ll

• All-PPO: What do you mean u don’t accept people. <EOU>

• ξ-PPO: What did you do? <EOU>

Prompt: I can’t . I’m waiting for Paul , but he’s late . <EOU>
I’ll say the movie’s starting in the minute . <EOU> I know . I
wonder what’s keeping him . <EOU> Looks like he won’t show up
. He’s done this before , hasn’t he ? <EOU> Yeah , a number of
times . <EOU>

• Reference: What’s he trying to pull anyway . <EOU>

• PPO: You’re right. I think he’s been looking for Paul.
<EOU> He said.

• PPO-SAT: So we’re waiting. If you want to stay a bit longer
you can go with Paul. <EOU>

• µ-PPO: You’re looking forward to meeting him tomorrow. <EOU>
I’ll find out. <EOU>

• All-PPO: So we’re waiting.. <EOU> And he just didn’t show up.
<EOU>

• ξ-PPO: So I’m waiting. <EOU> He’s been doing this for a long
time. <

Prompt: What’s wrong with you ? <EOU> I have a sore throat and
headache . <EOU> Do you feel tired ? <EOU> Yes , my whole body
feels weak . And I really feel terrible . <EOU> I’m sorry to
hear that . I’ll have to examine you . <EOU>

• Reference: Ok , go ahead . <EOU>

• PPO: What’s the matter? You’re always so busy. <EOU>

• PPO-SAT: What is your name? <EOU> Moth <EOU> Moth <EOU>

• µ-PPO: What’s wrong with your food? <EOU> No matter what..
I’ll have to check

• All-PPO: What is the most important step of your quest? <EOU>
Making sure that your quest succeeds

• ξ-PPO: What is your condition? Do you have any fever?
<EOU> No
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