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ABSTRACT

Generating synthetic control arms is a key challenge in clinical research, partic-
ularly in crossover trials where placebo data becomes unavailable after patients
switch to active treatment. The absence of placebo data complicates estimating
long-term efficacy and safety. To solve this, we propose a Gaussian mixture
model that generates counterfactual data without needing control data for train-
ing. This method handles time-varying, continuous doses and estimates effects
between treatment switchers and an extended placebo group, providing valuable
insights for treatment effects, evidence generation, and decision-making.

1 INTRODUCTION

A crossover trial is a valuable design in clinical research, particularly for evaluating the long-term
efficacy and safety of a new medication. Initially, a randomized clinical trial (RCT) is conducted
in which participants are randomly assigned to either the active treatment group or the placebo
group. After the initial phase, participants in the placebo group switch to the active treatment arm
for additional weeks or months in an open-label crossover trial. This design allows researchers to
collect more comprehensive data on the effects of the medication and provides ethical benefits by
eventually offering active treatment to all participants (Elbourne et al., [2002; Nolan et al., 2016
Dwan et al.[2019).

The need for such extended trials arises from the desire to understand the sustained impact of a
treatment beyond the initial trial period. By including a crossover phase, researchers can observe
the effects of the medication on participants who were initially on placebo, thereby enhancing the
robustness of the findings. This approach can reveal whether the benefits observed in the initial RCT
phase are consistent over a longer period and help identify any delayed adverse effects. In addition, it
allows for a more ethical study design, as all participants eventually receive active treatment, which
is particularly important in studies involving serious or chronic conditions.

However, there are still challenges associated with crossover trials. An issue is the potential for
carryover effects, where the impact of the initial treatment phase influences the outcomes in the
crossover phase. This can complicate the interpretation of results. Another problem is the increased
complexity and duration of the trial, which can lead to higher costs and logistical challenges. Ensur-
ing participant adherence over a longer period can also be difficult, which can affect the reliability
of the data (Mills et al.,|[2009; | Heeson, 2020).

One significant challenge associated with crossover trials is the difficulty in accurately estimating
the effects of medications during the extended phase for patients who switched from placebo to ac-
tive treatment (Zhou et al.,2024])). This arises because once the crossover occurs, there is no longer a
placebo group to serve as a control for comparison. Without ongoing placebo data, it becomes chal-
lenging to distinguish between the effects of the medication and other factors such as natural disease
progression or placebo effects that might have persisted. This lack of a concurrent control group
can complicate the interpretation of the results of the extended phase, which can lead to less robust
conclusions about the long-term efficacy and safety of the medication. Consequently, researchers
must carefully consider these limitations when designing and analyzing extended crossover trials.

To address the challenge of estimating the effects between switched patients and a potential extended
placebo group, researchers can utilize several strategies. An approach is to use external placebo data
from historical trials, which can serve as a benchmark for comparison (Letailleur et all [2023).
This method leverages existing data to create a virtual placebo group, allowing a more accurate
estimation of treatment effects during the extended phase (Serrano et al., 2023). However, this
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solution may not always be feasible, especially for rare diseases where historical data is scarce
or nonexistent. In such cases, researchers might consider adaptive trial designs (Pallmann et al.,
2018) that allow modifications based on interim results or Bayesian statistical methods (Berry et al.,
2010) that incorporate prior knowledge and expert opinion to enhance the analysis. Despite these
potential solutions, challenges remain, including ensuring the comparability of external data and
addressing biases that may arise from differences in study populations or methodologies. Therefore,
careful planning and robust statistical techniques are essential to mitigate these issues and derive
meaningful conclusions from extended crossover trials.

The issues described in the crossover trials highlight the broader types and complexity of the design
of synthetic control arms in clinical studies. In modern trial settings, generating synthetic data
remains a challenging problem that machine learning models have yet to fully address. This paper
proposes a model capable of generating synthetic control data by training solely on active arm data.
The approach seeks to overcome limitations in existing methods that require both control and active
data. This model aims to provide a robust alternative for trial designs lacking a conventional control
group using advanced learning techniques.

2 RELATED WORK

2.1 LIMITATION OF SCM IN CREATING A SYNTHETIC CONTROL ARM

Generating synthetic control arms in crossover trials is challenging due to the unavailability of con-
trol group data after patients switch to active treatment. In a standard RCT, control group data are
crucial for comparing outcomes over time. However, in crossover trials—especially those with an
open-label extension phase—patients initially assigned to the control group often switch to the active
treatment after a certain period (e.g., after 12 weeks). This switch means that there are no remain-
ing patients in the control group during the extended phase (e.g., up to 24 weeks). The absence of
extended control data makes it difficult to assess the long-term efficacy and safety of the treatment,
as there is no direct comparison group.

Abadie’s synthetic control method (SCM) attempts to approximate the treatment group’s outcomes
by creating a weighted combination of control units that closely resembles the treatment-assigned
patient data before the intervention (Abadie & Gardeazaball [2003;|Abadie et al.,|2010). This method
relies on the availability of control data to compute the necessary weights. Applying Abadie’s
method becomes problematic in the context of crossover trials lacking extended control data. For
example, in a trial with a 12-week RCT followed by a 12-week open-label extension where all
patients receive the active treatment, no 24-week control data is available. Without this data, we
cannot calculate the weighted sum of the 24-week control outcomes needed to construct a synthetic
control arm for the switched patients. This limitation prevents the direct application of Abadie’s
algorithm in such scenarios. In Zhou et al.| (2024), SCM and difference-in-differences (Abadie,
2005 [Sant’ Anna & Zhaol 2020) methods successfully measured treatment effects in crossover trials
with the availability of external controls; however, this approach is not feasible in studies where
securing external controls is challenging.

2.2 S-LEARNER VS. T-LEARNER

In common types of meta-learner, two distinct concepts are prevalent: the S-learner and the T-
learner (Kiinzel et al.l 2019} |Okasa, 2022). The term ’S-learner’ is derived from the notion of a
single base learner, while *T-learner’ is an abbreviation for two base learners (Shalit et al.l [2017).
In a straightforward scenario involving a treatment group and a control group within a patient data
set, the T-learner estimates two separate base learners: one for the treatment group data and another
for the control group data. Subsequently, it computes the difference between these two base learn-
ers. Estimating individual treatment effects (ITE) based on a Gaussian mixture model exemplifies a
T-learner in the context of counterfactual generation (Ahn & Vashist,2024)). The GMM-based coun-
terfactual generator demonstrated superior performance compared to the synthetic control method
on simulated low-density lipoprotein (LDL) data (Qian et al., 2021) and showed robustness even
when dealing with heavily biased datasets.

However, the algorithm fundamentally operates as a treatment-controlled method, requiring a
learned data distribution model on control units to generate counterfactual outcomes. This reliance
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poses limitations in scenarios where control data are unavailable, such as in crossover trials with no
extended control group. Additionally, its application as a T-learner is confined to data sets with a
small, finite number of groups. As the number of groups increases, preparing distinct base learners,
each trained on different group data, becomes necessary. A significant limitation of such a T-learner
is its inability to accommodate more complex real-world data, where potential treatments can span
a multivariate, time-varying, and continuous domain.

Despite this limitation, the algorithm provides an important conceptual foundation for our work.
Specifically, it functions as a T-learner, assuming separate distribution models for treatment and
control data. Adapting the model into an S-learner framework allows us to develop a unified model
capable of counterfactual inference even for unobserved treatment types. This adaptation allows us
to generate counterfactual data without relying on control data for training. Therefore, our proposed
method builds upon the foundational idea, extending its applicability to control data-unavailable
situations.

3 MODEL

In this section, we outline a latent variable model known as static state analysis (SSA), originally
used in the paper by (Ahn & Vashist,2024), and present how our new ideas are incorporated into this
model. Building on the methodologies, we introduce two key problems. The first problem involves
a brief overview of how to train the SSA model. The second problem concerns what counterfactual
predictions to generate using the trained model.

3.1 STATIC STATE ANALYSIS (SSA)

The static state analysis decomposes a longitudinal dataset {a:(t)} into a time-varying observer ma-
trix W and time-independent state vectors s with additive noises n*) ~ A/(0, lIl(t)):

z®) = ws 4 nO®, (1)

The time-independent state s is referred to as a static state. In this paper, longitudinal data 2*) gen-
erally concatenate all different types of observed data, including baseline data v (e.g., demographic

and genetic information), time-dependent covariates 1®), results y®), and treatments a*). z*) and
W® can be written as z® = [a®; 1?; y®] and WO = (WO, W, W] for t > 1.
Equation (TJ) is decomposed into

a) =ws +n"), )

1 = Wl(t)s + nl(t), and y® = Wl(f)s + nl(,t) with (0 = v = Wff)s + né“. Equation is
our new equation that is directly included as observational data, whereas the original SSA model did
not include it. Although it may appear to be a mere addition of a simple formula, it is important to
note that this single addition fundamentally alters the nature and scope of the algorithm. Equations
(I) and (@) also represent a factor model where the noise model follows a diagonal noise covariance
matrix. This paper is not the first to model treatments or causes directly using a factor model. Wang
& Blei (2019) and Bica et al.| (2020a) successfully removed hidden confounding factors by directly
modeling multiple causes as latent variables.

3.2 PROBLEM I: FITTING OF A MODEL TO A DATA SET

Given an observed data set D = {:cgf)|t € T,,n =1,---,N} C D, our first problem is to
perform SSA by decomposing the data set D into a time-varying matrix W® and a set of static
state vectors S = {spjn = 1,--- , N} C S. To learn the static state space S from the dataset, we

employ a Gaussian mixture model (GMM) probabilistic distribution to model the static state as a
vector-valued random variable, which is given by

K
p(s) =Y meN(s; py, Bie). 3)

k=1

There is no more dependence on treatment notation because treatment data are directly in-
cluded in the observational data. Now, the problem is to estimate a set of parameters Q =
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{W, 7k, py,, Xi, P} that maximizes the expected complete-data log-likelihood by using the ex-
pectation and maximization algorithm:

N
Q=argmaxy_ > (np(x), 5,/Q)) )
n=1teT,

where (s,,) = [ |ds|p(s|x,, Q) x s and (s,sL) = [ |ds|p(s|x,, Q) x ss”. Then, we can also get
—(t
the noise vector as <n£f)> - W( )<sn>.

3.3 PROBLEM II: COUNTERFACTUAL GENERATION WITH NO BACKWARD CAUSATION

Let Q be a maximizer of the log-likelihood function by Eq. (4) for a factual data set Dy = {mEL)t\n =

1,---,N}. The main problem in our paper is to generate a synthetic counterfactual longitudinal
dataset DSMZ) = {azgf_;&) In =1,---,N} from using Q when we assume that we had assigned
/(T:T+6) (1:7496)

alternative treatments a,, ¢ instead of a,, ¢ where we define the colon notation as concate-
nating time-varying data or parameters:

20 ) al™

o=z = 2V , ozt =07 alm ) = : )

IB(T_l) a(T+5—1)

Counterfactual pretreatment data must align as closely as possible with the provided factual pretreat-
ment data (Abadie & Gardeazaball, |2003; Doudchenko et al., 2021). Thus, equivalently, the above

() In =1,.--, N} that satisfies

problem can be written as generating an entire dataset Doy = {@, "

(1) (27")

xn,cf - Fnf

T

The subscript “f” stands for factual, and “cf” is derived from the first letters of counter-factual.
Data obtained through observation is called factual data. On the other hand, data generated through
counterfactual thinking without being observed in the real world is referred to as counterfactual data
in this paper. Counterfactual thinking involves considering hypothetical scenarios, such as imagining
what would happen if a patient who took medication at time 7 had not taken it. Before time 7, the
patient actually did not take the medication, so the factual data and counterfactual data are the same,
which can be expressed as mELTc)r = xngr) The goal of this paper is to obtain counterfactual data.
This can be interpreted in the context of clinical trials as virtual patient data or a synthetic placebo
arm. In the next section, we introduce the basic assumptions of counterfactual thinking and propose
a new method for counterfactual prediction.

4 METHODS

To solve the second problem, this section details the specific assumptions and formulas for generat-
ing counterfactual predictions.

4.1 ASSUMPTIONS

A probabilistic observation refers to the process of observing outcomes that are not deterministic
but rather governed by probability distributions. In other words, instead of a single, fixed outcome,
there are multiple possible outcomes, each with a certain probability of occurring. This concept is
fundamental in fields like statistics, machine learning, and various branches of science and engineer-
ing (Gelman et al.,|1995). The process of obtaining data through observation can be also described
using the following interpretation of the SSA model.
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Probabilistic Observation

Consider a patient with factual data wEZT) has received a course of treatment aET:TM).

Post-treatment factual data can be obtained by sampling the patient’s state s ~

p(s|l™, al" ")) at the realization sp:

QBET:) _ W(T:)Sf + ,'7(7':) (6)

where 77(7*) is a measurement noise vector.

This statement implies a probabilistic observation process in which future outcomes are probabilis-
tically determined by a series of treatments given at the current time 7. However, this statement only
addresses the probabilistic acquisition of factual data and requires separate counterfactual thinking
to handle counterfactual data. It is as follows:

Retrospective Counterfactual Thinking

Suppose the patient with factual data s had instead received an alternative treatment
a7 £ a{""™)  We would then have obtained counterfactual data through the same

observational process at the realization S¢:
i) = Wsy 4™ ™
T:T4+6
s~ plslzrall T, ®)

Here, n(T:) represents the same noise term as in the factual data observation from Eq. @,
reflecting the assumption that the same observational and measurement processes apply,
albeit under the alternative treatment scenario.

Retrospective counterfactual thinking basically refers to the mental process of imagining alternative
outcomes to past events, essentially considering “what might have been” if different actions or cir-
cumstances had occurred. The current point in time at which counterfactual thinking is attempted is
in the future relative to time 7. In other words, 7 is a point in the past. Equations (7) and (8) generate
counterfactual data for times after 7, assuming that the counterfactual data before 7 are exactly the
same as the factual data observed before 7.

4.2 GENERATING A COUNTERFACTUAL STATE

Once we find a maximizer Q estimated by solving problem I, we can sample a factual state s¢
from p(s|x¢) or obtain its expectation sy = (s¢) for a patient with data x¢. As the first step in
counterfactual data generation for the patient, we can generate a counterfactual state by realizing a
vector s from Eq. (8)

K
Set ~ RN (85 g, Zi) ©)
k=1
where st is conditioned on
0 w )
TiT T:T = . - . 10
L R e
Equivalently, we can write a counterfactual state random vector in the form of
R 0 wen)
= o [ L S e
= s+0,+NE (11)

where dagger and ker() denote the pseudo-inverse and a basis of the kernel of [W(7); W (m7+9)],
respectively, and & is a random vector of the following distribution by denoting the treatment differ-
ence on the pseudo-inverse basis as d, and the kernel matrix as IN:
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K
£~ N (E;my, Cy) (12)

k=1

with
Cr. = (NTZ'N)™! (13)
mep = CkNTglzl(/J,k — 8t — 6(1) (14)
N Salpr, = 3

o = ﬂkN( my + Sf + |Il'k k)|Ck‘ (15)

ey TN (N + 85+ 8al e, Sa) [ Cro |2

Notice that 8, in Equations (T1)), (T4), and (T3) is the new term derived by introducing Equation (2)),
and makes a crucial contribution to this paper.

4.3 GENERATING COUNTERFACTUAL OUTCOMES

From Equation @, , and (]'1;1'[), we can generate a counterfactual data vector based on the Gaussian
mixture: & = xr + W (d, + NE) where £ is a realization of Equation (12). More formally, we
can state:

Gaussian Mixture Counterfactual Generator

If a patient with factual data x; had received a treatment differing by d,, the counterfactual
data that we would have obtained is represented as a random variable given by

K
xet ~ > RN (x; zi+ W (8, + Nmy), WNCkNTWT) (16)
k=1
This corresponds to the Gaussian Mixture Counterfactual Generator (GMCQG), defined with
the parameters Q from Equation @)

. J

This formulation reflects a probabilistic approach for generating counterfactual outcomes based on
a single Gaussian mixture model. Note that the GMCG presented in Eq. (16) is not a statically fixed
GMM model but a model where §,, N, C, and m;, dynamically change according to the given

: 5) . . . .
treatment aéfT 7+9) intervention time 7, interval 8, etc.

Because W0™§, = WU N = 0, the random variable XE:fT) is always the same as CCE:T) by

Equation (T6). However, the difference in outcomes made by a particular vector £ in the proba-
bilistic model in Equation (12) is a time-varying individualized treatment effect (ITE) caused by the

difference in treatments ag o) _ aET:H_é) that we can obtain
ITE = yEfT:) - yET:) = WZ(!T:)((sa + N§). (17)
The expected ITE (eITE) we can obtain on average is
K
E[ITE] = E[y ™) |z, agfﬂﬂ_‘;)] - yﬁT:) = W?(f:)(éa +N Zpkmk). (18)
k=1
By using Equations , (T4), and (I5)), we can calculate the conditional averaged treatment effect
(CATE) from Eq.
CATE = E[y""af™, aff ™)~ Ely""|af™, af" "]
K
= WJIND (pemi — qen) (19)
k=1
where
ne = CkNTE,gl(uk — Sf) (20)
N by z
o = — N (N + sl g, Xg)|Ci | . 21

Zk’:l Wk/N(NTLk;/ + Sf|[,l,k,/, Ek/)\C’k/\%
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5 EXPERIMENTS

5.1 ILLUSTRATIVE EXAMPLE OF A CROSSOVER TRIAL
5.1.1 LINEAR EFFICACY

This section demonstrates how the proposed GMCG algorithm by Equation (I6) can be applied to
crossover trial data to generate synthetic control data for illustrative purposes. The data set shown
here is not actual but derived from a simulation model, the details of which can be found in Appendix
In the left panel of Figure|l} data from two arms are depicted using shades of red and blue. The
red-shaded arm represents groups that received the assigned doses over an entire 24-week period,
while the blue-shaded arm represents groups that received the doses only during the last 12 weeks.
Each arm is further subdivided into groups based on different doses of 1 mg and 2 mg, resulting in
a total of four distinct dose groups. Notably, no group remains on placebo for the entire duration,
necessitating the creation of a synthetic control arm to compare to the treatment arms to estimate the
efficacy of the treatment. The GMCG model was trained on 400 patients’ outcome data across the
four groups, each consisting of 100 patients, without additional covariates.

The four thick lines of different colors on the left are randomly selected and displayed, and they
are further dealt with in the four subplots on the right. The first subplot displays data from the
Img group during the second 12-week period, with the algorithm-generated synthetic data marked
by the red dashed line. Comparing these synthetic data with the observed data and the ground-
truth control data, respectively, we observe a perfect match during the first 12 weeks and a close
alignment in the second half. The difference between the observed 12-week 1mg data and the red
dashed synthetic data after the 12th week can be interpreted as the patient’s expected individual
treatment effect (eITE) estimated by Equation (I8). The critical point is that the synthetic control
arm created through the proposed algorithm corresponds individually to the active or crossover arm,
forming a synthetic individually controlled arm. Generating and utilizing the synthetic individually
controlled arm makes it possible to estimate ITEs or eITEs.

This simple example clearly illustrates a problem that does not have a readily available logical
solution despite its apparent simplicity in the reference. For example, look at the blue-colored data.
Seemingly, synthetic control methods could create synthetic control data for the data. However,
traditional synthetic control methods rely on the availability of control units, which are absent here,
to approximate it by taking the weighted sum of them. Thus, this algorithm provides an innovative
way to infer these control data by circumventing the need for explicit control units, highlighting its
capability to solve problems that traditional algorithms cannot address.

12-weeks 1mg 4 —— 12-weeks Img 44 —— 12-weeks 2mg
12-weeks 2mg ground .truth control ground truth control
34 — = synthetic mean control 34 == synthetic mean control

1d
O-WA:

T
o] 12 0 12

24-weeks Img
24-weeks 2mg

outcome

49 — 24-weeks 1mg 47— 24-weeks 2mg
ground truth control ground truth cantrol _—
34 —— synthetic mean control 34 == synthetic mean control

_____ SN m—— =

I T T u
0 12 o] 12 0 12
time (week)

Figure 1: Illustrative crossover trial dataset (linear efficacy) and synthetic control data generation
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5.2  SIMULATED DATA
5.2.1 LDL CHOLESTEROL DATA

For quantitative analysis, LDL cholesterol simulated data was utilized. Data for the treatment and
control groups were created using the PK/PD model (Faltaos et al., 2006} [Yokote et al., 2008} |Kim
et al.| 2011} of statin drugs prescribed to hypercholesterolaemic patients. The experiment was con-
ducted using data with the same characteristics as those generated by SyncTwin (Qian et al., [2021]))
and SSA-GMM (Ahn & Vashist, [2024)).

As explained in Section [2| on the motivation of this paper, the proposed algorithm was developed
by converting SSA-GMM into the S-learner framework. While this greatly enhances its versatility
by allowing application to various types of treatments, its performance should remain equivalent to
the original GMM-based counterfactual generator. However, we achieved better results by finding
optimized parameters in the GMCG algorithm. As shown in Table (1| below, the MAE of SSA-
GMM reached a level of 0.07, but GMCG was able to reduce the error to a much lower level. When
compared to the SyncTwin, SCM (Synthetic Control Method), and CRN (Bica et al., 2020b)) models,
the error gap becomes even larger.

Table 1: LDL Cholesterol Data Experiment Results

N = No+ Ny — 2004200 =400 | N = Ny + N, — 1000 + 200 — 1200
Method = 01 72025 po=05 | po=0.1 po—=025 po—05
GMCG 0.042 0.038 0.043 0.040 0.039 0.035
SSA-GMM | 0.072 0.072 0.076 0.070 0.073 0.069
SyncTwin | 0.308 0.150 0.116 0.178 0.106 0.094
SCM 0.341 0.151 0.150 0.231 0.172 0.158
CRN 0.530 0.631 0.343 0.456 0.404 0.371

5.2.2 LDL CHOLESTEROL DATA WITH NO CONTROLS

The reason for using LDL cholesterol data is not just to show superiority over SSA-GMM and
the other algorithms. As sketched in the introduction and illustratively shown in Section 5.1} it is
intended to be used for more quantitative analysis of crossover trials. However, the composition of
the data differs from that in Table[T] In Table [T} Ny = 200 control data and N; = 200 treatment
data were used. In addition, Ny = 1000 control data and Ny = 200 treatment data were also used
as training data. But now, we aim to evaluate a much more challenging task: using no control data
at all. This is logically unsound because comparing the results of the treatment data with the control
data is the golden standard for determining the treatment effect. Without comparison, the effect of
the treatment cannot be discussed. Instead, we assumed that we would test the experimental data
at various doses. The total duration of the experiment is 7' = 30. Until time ¢ = 25, no patient
receives the drug. After time ¢ = 25, each patient takes a random dose of statin between Omg and
10mg. This marks a crossover point at time ¢ = 25.

After training the model using random doses data, we tested it on the 10mg test data used in Table
and obtained the results shown in Table When comparing the results for N = 1200, the
performance was similar to SCM. Increasing IV slightly improved the results. However, the data
for N = 400 did not train properly. The results in Table [T] were obtained using control data, while
the results in Table |2| were obtained by training the model without control data, highlighting the
notable performance of GMCG. As explained in the Related Work section, models like SCM and
SyncTwin do not function without control data because they create synthetic control by finding
linear or nonlinear combinations of control units. Although recurrent network models like CRN can
be tested, considering the poor results in Table 1] it is not possible to obtain proper results without
training with control data. The results in Tables [I| and 2] are numerical results in terms of MAE, and
examples for visual reference are provided in the Appendix D.

GMM-type algorithms use the EM algorithm to find the local maximum of the given likelihood
function. The EM algorithm for GMCG training also finds the local maximum of the likelihood
function (see Appendix B for the EM algorithm for GMCG). This means that results are influenced
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Table 2: LDL Cholesterol Data Experiment Results (No Control Group)

N = 1200 N = 2000
Method = "0 1" 2025 po—=05 | po—=0.1 po—=025 po—05
GMCG 0.251 0.199 0.168 0.184 0.150 0.152

by the initial values. In the GMCG algorithm for crossover trials, the choice of initial values affected
performance. Applying the EM algorithm from random values may make it difficult to achieve re-
sults like those in Table[2] The data structure of crossover trials is fundamentally curved and requires
multiple mixture components. The synthetic control data by zero dose is particularly influenced by
mixture components derived from low-dose data. Therefore, the GMCG-EM algorithm should be
executed using values obtained by first applying a GMM to data created by low doses. The results
in Table[2]used two mixture components for dose data between Omg and 3mg, one for 3mg to 7mg,
and one for 7mg to 10mg. Thus, a total of X' = 4 mixture components were used.

Although the MAE is larger compared to the GMCG results in Table 1, this method has poten-
tially powerful implications. First, to the best of the authors’ knowledge, this is the first attempt
to solve a causal inference problem without using control data. In the field of clinical trials, there
are single-arm trials (Wang et al.| [2024), but they make control groups using historical or external
controls. However, the GMCG method structurally learns the dose response from the experimental
data alone and extrapolates the prediction for zero dose. Second, clinical trials without any control
data present a new form of clinical trials that are more economical, easier to recruit patients, and
more ethically suitable for patients in many cases where historical or external controls cannot be
sufficiently obtained, thus opening up broader possibilities.

6 CONCLUSION

This paper proposes a counterfactual generator algorithm based on the Gaussian mixture model
to create synthetic control arms. It can generate counterfactual data under typical experimental
conditions where drug dosages vary continuously over time. We demonstrated this algorithm as
a method to generate synthetic placebo arms for clinical trials, such as crossover trials, where a
placebo control arm is absent. The methodology of this algorithm has potential applications in
various causal inference problems, not only in the healthcare field but also in econometrics and
other domains.
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A NOTATIONS

Numbers and Arrays

a A scalar (integer or real)
a A vector
A A matrix
I, Identity matrix with n rows and n columns
I Identity matrix with dimensionality implied by context
diag(a) A square, diagonal matrix with diagonal entries given by a
a A scalar random variable
a A vector-valued random variable
A A matrix-valued random variable
[a; a] = [a] Vectors concatenation
a

A
[4; A] = [ 1 Matrices concatenation

A
Sets and Graphs
A A set
R The set of real numbers
{0,1} The set containing 0 and 1
{0,1,...,n} The set of all integers between 0 and n

Probability and Information Theory

P(a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or
over a variable whose type has not been specified

a~ P Random variable a has distribution P

E«wp[f(z)]or Ef(z)  Expectation of f(x) with respect to P(x)

Var(f(z)) Variance of f(x) under P(x)

Cov(f(x),g(x)) Covariance of f(x) and g(x) under P(x)

N(z;p, %) Gaussian distribution over  with mean p and covariance
by
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B EXPECTATION-MAXIMIZATION ALGORITHMS FOR GMCG

For the case of having noise n*) ~ N(0, \Il(t)) with a diagonal matrix vt Eq. implies a
probability distribution over (*)-space for a given s € RM of the form

1
p(x®]s) = 270D |73 exp {Q(m(t) —WOHT (@)~ (2™ — W(t)s)} 7))

With a Gaussian mixture prior over s defined by Eq. , we obtain the marginal distribution of a(*)
in the form

1 -1
p(z®) Zwk 27V %exp{—Q(sc(t)—W“)uk)TVEf) (a:(t)—W(t),u,k)}, (23)

where the model covariance is ng) =0 L whg, wtT,

We can also use the colon notation z = =) and W = W) defined by Eq. . Then, we have the
conditional distribution and the marginal distribution in the form of

p(xzls) = [27¥| % exp {—;(:c —Ws)Tw Yz — Ws)} (24)
K . 1
p(x) = an 27V |72 exp {—2(x ~Wu )"V (- W,u,k,)} ) (25)
k=1

where Vi, =¥ + WZ, W7, By Bayes’ rule, this leads to the posterior distribution of the form

= Lalsle.R)p(klz) = 3 plk) - pals)plalt)/alt
> (ki) - [2nM|Hexp 2 ((s ) - MW @ - W)

x M ! ((s ) — MWy (g Wuk)) }@26)

where M), = (£;' + Wiy~ lw)—!

Now we have the joint distribution of observational data «,, and the latent variables s,, in the form
of

1
(T, 8n) = |27Tll’|7% exp {—2(mn —Ws,)"v (x, — Wsn)} X
u 1
_1 _
> mil2nEy exp{—2(sn —uk)TZkl(sn—uk)}- )
k=1

By calculating the expectation values

Yak = plklTn) (28)

(suh = / p(sla, ) s |ds| (29)

(sn) = / p(sla) s |ds| 30)

(5n = {8n))(8n — (5a)T) = S plkln) My, 31)
k
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we can obtain the expectation of the complete data log-likelihood in the form of

K
1 _ 1
Z%k{lﬂﬂk—*lnlzﬂ—iﬁ(zk ($n8I)) + pi Ty N (sn) — 5

M=

(L) = SHETE
n=1k=1
1
—3 In|¥| — facT‘l’ x, + W TIW(s,) — ftr(WT‘l’ "W (s,sI))}
K
A S me—1) 32)
k=1
where the expectation values are given by
E-steps:
n|Wpy, V
b = e Wity Vi) (33)
Zk/ Wk/N(wTL'WMk/, Vk/)
(sn)i = g+ MWW (0 — W) (34)
<3n> = Z’Ynk <5n>k (35)
k
<3nsg> =

Z’Ynk (Mk + (<3n>k - <8n>)(<5n>k - <Sn>)T) + <Sn><sn>T (36)
k

with Vi, =¥ 4+ WL, W' and M, = (Z;' + Wiy 'w)—!
Equation (32)) is maximized by the following M-step formulas

M-steps:
S E}ank (37)
1
pe = Z Yk Z%k<5”> %)
L, = n Tnk Z%k SnSh) — My (sn)" — (sn)pp + pppf) (39)
-1
w o [z mn<sn>ﬂ [z<snsz> )
1 nN )
o= Y wal —2Wis,)an + Wissh) W @41
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C ADDITIONAL MATERIALS FOR CROSSOVER TRIAL EXAMPLE

I: ground truth control II: efficacy I + II: crossover trial data

1 — 12-weeks 1mg
J — 12-weeks 2mg
— 24-weeks Img
1 — 24-weeks 2mg

outcome
outcome

0 12 o] 12

time (week) time (week) time (week)

Figure 2: A simple illustrative example of creating crossover trials data.

Data Generation. The linear efficacy data presented in Figure [T] were created using the method
shown in Figure 2] First, as illustrated in the left panel, outcome data for 400 patients were created
by adding noise mainly within the range of -0.2 to 0.2. Figure[TJused these data as the ground-truth
control. The middle panel shows the assumed efficacy for four groups based on the duration and
dosage of the drug used. It was assumed that all patients in each group exhibited the same efficacy.
The assumed curve shape was generated as a function of time, specifically using log(t + 1) for
0 <t < 24. The two blue-shaded curves are horizontal translations of the two red-shaded curves.
The final synthetic crossover trial data, shown in the right panel, were created by combining the
data from panels I and II for each patient. This way represents the simplest form of data and does
not accurately reflect accurate clinical trial data. Clinical data include discontinuous values, missing
values, and various complex covariate structures. While covariate data can provide additional helpful
information for experimental results, they were excluded from this example.

Nonlinear Efficacy. In Figure[I] the synthetic control data arm could be created with only two
different dose groups per arm due to the assumption that the efficacy is proportional to the dose
administered. However, in a more general case, where the relationship between dose and efficacy
is nonlinear, the generation of synthetic control data requires more dose groups. Figure 3] presents
an example that addresses this question, showing four dose groups for each arm: shades of red
representing four dose groups with 0.5, 1.0, 1.5, and 2.0 mg over the full 24-week period, and
shades of blue representing four other groups with the same doses during only the last 12 weeks.

The nonlinear relationship assumed here is modeled by (treatment effect by a dose) = (dose +
0.2 x dose2) x (treatment effect by 1mg dose). Each group consists of 100 individuals, totaling 800
training data. The four small plots on the right show synthetic control data for four hypothetical
patients taking 1.0 mg and 2.0 mg in each arm, with the generated synthetic mean control data
closely approximating the ground truth control.

outcome

Figure 3: Simulated crossover trial dataset (nonlinear efficacy) and synthetic control data generation.

12-weeks 0.5mg
12-weeks 1.0mg
12-weeks 1.5mg
12-weeks 2.0mg
24-weeks 0.5mg
24-weeks 1.0mg
24-weeks 1.5mg
24-weeks 2.0mg

— 12-weeks 1.0mg
ground truth control
== synthetic mean control

—— 12-weeks 2.0mg
44 ground truth control
= = sgynthetic mean control

T
12

T
0 12

—— 24-weeks 1.0mg
ground truth control
—— synthetic mean control

—— 24-weeks 2.0mg
4 ground truth control
— — synthetic mean centrol

12
time (week)
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This problem’s nonlinear effect cannot be adequately captured with only two dose groups per arm.
The Appendix provides additional results related to this issue. This situation is similar to needing
at least three points, rather than just two, to determine a quadratic function’s position, direction, and
curvature. Therefore, more diverse dose levels are necessary in the experimental data to uncover
complex or hidden effects in counterfactual predictions. Therefore, more diverse dose levels are
likely necessary in the experimental data to uncover more complex or hidden effects in counterfac-
tual predictions.

This section demonstrates how the proposed GMCG algorithm can be applied to crossover trial data
and the types of results it can produce. However, it is important to note that this paper does not
claim guaranteed success for all types of crossover trials. As an algorithm within the GMM family,
the GMCG algorithm’s clear and concise mathematical model highlights its potential to tackle new
types of synthetic data generation problems. Discussing this potential alone represents a meaningful
achievement.

Non-trivial Control The ground-truth control data in Figure [T] or 2] follows a simple linear trend,
which may seem trivial. However, the proposed method does not fit the shape or distribution of the
ground-truth control. Figure [3|demonstrates that the ground-truth control data is well predicted even
when following a sine wave pattern.

44 — 12-weeks 1mg — 12-weeks Img — 12-weeks 2mg
12-weeks 2mg 3 ground .truth control 3] ground truth control
= = synthetic mean control = = sgynthetic mean control
— 24-weeks 1mg
I 24-weeks 2mg 2 2
14 19
0+ 0
/ \ e
24 N v N’
-1 ~— -1 =
£ T
S o] 12 0 12
=1
5
3 4 P
14 —— 24-weeks Img — 24-weeks 2mg
ground truth control
3 ground truth control 34 == synthetic mean cantral
— = synthetic mean control
2 4
0
—
: - \\\ ~
N \
“~ N
0 ~ 7 N 2
N\, ' N 7
. ’ ~, -
-1 s -1 A

T T u
0 12 o] 12 0 12
time (week)

Figure 4: Simulated crossover trial dataset (linear efficacy and sinusodial ground truth control) and
synthetic control data generation.

The problem of estimating the nonlinear effect of dosage shown in Figure [3] cannot be adequately
addressed with only two dose groups per arm. Therefore, Figure 3| uses four dose groups per arm.
Figure [5] shows the bad result when only two dose groups are used. It demonstrates that the syn-
thetic control for the 12-week treatment group is pulled upward due to the nonlinear effect, and the
24-week treatment group shows unstable predictions with significant fluctuations. Increasing the
diversity of dosages in the training data, i.e., using more dose groups per arm, can achieve more sta-
ble and accurate counterfactual predictions. For instance, if a hypothetical experiment is conducted
where each patient receives slightly different dosages, as shown in Figure [6 the results improve
even in more complex nonlinearities in efficacy.
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24-weeks Img
24-weeks 2mg

4| = 12-weeks Img 41 —— 12-weeks Img 41 —— 12-weeks 2mg
—— 12-weeks 2mg ground truth control ground truth control
34 — = synthetic mean control 34 — = synthetic mean control

24
14
s~ o~
04 Lo
H T T
S [ 12 0 12
g
3
4 —— 24-weeks 1mg 44— 24-weeks 2mg /
ground truth control ground truth control
34 —— synthetic mean control 34 == synthetic mean control

time (week)

Figure 5: Simulated crossover trial dataset (nonlinear efficacy) and incorrect synthetic control data
generation.

4 4
— 12-weeks 0.25mg — 12-weeks 1.37mg
ground truth control ground truth control
37 == synthetic mean control 317 = = sgynthetic mean control
29 24
19 17
P Rl I
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£ T T
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3 4 4
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Figure 6: Simulated crossover trial dataset (nonlinear efficacy with diverse doses) and synthetic
control data generation.
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D ADDITIONAL RESULTS OF LDL DATA EXPERIMENTS

In this experiment, we did not use dimensionality reduction. Thus, W becomes an identity matrix,
making the EM algorithm of section [B]equivalent to the standard GMM algorithm. Specifically, we
used one component for each of the treatment and control groups, which trivially means performing
single Gaussian density estimation for each group. At this point, there is still an undetermined noise
model: ¥ = o2 (see Appendix B to check how W affects the parameters of Eq. ), and we
manually substituted various o values to obtain the counterfactual predictions given by Eq. (16).
The results are shown in Fig. [/| The figure shows that very small or very large sigma values resulted
in high error values, while values between 0.1 and 1 yielded the lowest error values. Considering
that we added noise with a variance of 0.1 when simulating LDL data, it explains why the lowest
error value in terms of MAE was obtained around 0.1.

10-% 10°5 10-* 1073 102 107t 100 10! 102
2
o

Figure 7: Counterfactual prediction error (MAE) as a function of o2 in the noise covariance model
¥ =21,

Figure[§|plots 15 different patients’ examples obtained by applying the GMCG algorithm to the LDL
cholesterol data. Specifically, for a total time length of T = 30, the simulation was performed at
t = 25 when statin medication was taken, and the factual data, ground truth counterfactual data, and
counterfactual prediction obtained through the GMCG algorithm were plotted on each axis. There
are two points of observation here: the pretreatment data before ¢ = 25 align exactly with the factual
data, and the post-treatment data after ¢ = 25 closely approximate the ground-truth counterfactual
data.
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Figure 8: Several plots derived from the results of py = 0.1 and N = 400 presented in Table[T} Each
subplot represents the data of an individual patient. There are two key points to note here: First,
the pre-treatment data before ¢ = 25 matches exactly between the factual data and counterfactual
prediction. Second, the counterfactual prediction after ¢ = 25 closely approximates the given ground
truth post-treatment data. This serves as further evidence of the excellent results shown in Table[T]
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Figure 9: Several plots derived from the results of py = 0.5 and N = 1200 presented in Table
2] Each subplot represents the data of an individual patient. There are three key points to note
here: First, these results were generated by a GMCG model trained without control data, generating
control data. Second, the pre-treatment data before ¢ = 25 matches exactly between the factual
data and counterfactual prediction. Third, the counterfactual prediction after ¢ = 25 approximates
the given ground truth post-treatment data. This serves as further evidence of the excellent results
shown in Table[T]
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E SIMULATED TUMOR GROWTH DATA

Although the proposed algorithm is designed to generate synthetic control arms, it can also perform
general causal inference, as defined in Section [3.3] This definition aligns with the problem defini-
tions specified in the RMSN and CRN algorithms (Liml 2018} Bica et al.| |2020b)). Therefore, in this
section, we applied the algorithm to tumor growth data (Geng et al.,[2017), which is commonly used
for validating general causal inference algorithms. We used data from approximately 10,000 virtual
patients and applied it to unbiased and biased data for 7" = 10, 20, 30. The number of mixture com-
ponents used in the GMCG model is K = 30. We compared the state-of-the-art CRN model to the
same data and obtained the results. Detailed information is provided in the Appendix.

Table [3] shows the mean absolute error (MAE) obtained by varying § while keeping 7 fixed for
data with 7" = 10 and T' = 20. The error measure was averaged between ¢ = 7 + 1 and ¢t =
744. Surprisingly, the GMM-based GMCG algorithm outperformed the RNN-based CRN regarding
MAE. Results for unbiased data are also summarized in the Appendix.

(T,7) (10, 5) (20,15)
s 1 2 3 4 5 1 2 3 4 5

GMCG || 0.0436 | 0.0484 | 0.0520 | 0.0505 | 0.0497 | 0.0044 | 0.0051 | 0.0054 | 0.0054 | 0.0056
CRN 0.0587 | 0.0596 | 0.0627 | 0.0633 | 0.0644 | 0.0325 | 0.0283 | 0.0283 | 0.0292 | 0.0305

Table 3: Mean absolute errors (MAE) comparison for biased tumor growth data.

As the duration 7' increases, there is a tendency for the error values to decrease. However, this
cannot be solely attributed to the more extended data being learned. Fundamentally, with longer
durations, the tumor is exposed to more therapy sessions, and the tumor size has already reduced.
Consequently, the ground truth counterfactual tumor size for other arbitrary therapy alternatives does
not differ significantly from factual tumor size. While the GMCG results closely approximated the
ground truth counterfactual data or factual data, the CRN’s counterfactual predictions showed some
differences from both of them.

How can a GMM-based algorithm yield better results than an RNN-based adversarial network al-
gorithm? Firstly, it is important to recall that GMM can act as an excellent universal approximator
as the number of mixture components increases (Heaton), 2018). Additionally, Problem I defined
in Section [3.2]is an unsupervised learning problem, and GMM is stably optimized through the EM
algorithm (McLachlan & Krishnan, [2007). The most crucial factor lies in the conditional proba-
bility calculated through Equation (12). Even in regions with sparse training data, the conditional
probability calculates a normalized probabilistic density distribution conditional on the counterfac-
tual assumption, which creates a robust characteristic against bias. This explains the successful
generation of a synthetic control arm in the crossover trials example where training data did not
exist.
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F ADDITIONAL MATERIALS FOR TUMOR DATA EXAMPLE

F.1 USED HYPERPARAMETERS

To train the CRN for our experiments, we used the default hyperparameters. The exact values used
are as follows. These values fall within the optimized hyper-parameters range in Tables 6 and 7 of
Appendix J in the CRN paper (Bica et al.,[2020b).

The encoder’s used hyperparameters:

num_epochs = 100

{ rn_hidden_units : 24,
br_size : 12,
fc_hidden _units : 36,
learning_rate : 0.01,
batch_size : 128,
rnn_keep_prob : 0.9 }

The decoder’s used hyperparameters:

num_epochs = 100

{ mn_hidden _units : 12,
br_size : 18,
fc_hidden_units : 36,
learning_rate : 0.001,
batch_size : 1024,
rnn_keep_prob : 0.9 }

where (br_size) is (balancing representation size) and (rnn_keep_prob) = 1 - (RNN dropout probabil-
ity).

F.2 ADDITIONAL TABLE

(T, 7) (10, 5) (20, 15)
5 1 2 3 4 5 1 2 3 4 5

GMCG || 0.0548 | 0.0636 | 0.0697 | 0.0694 | 0.0682 | 0.0057 | 0.0061 | 0.0071 | 0.0071 | 0.0073
CRN 0.0831 | 0.0795 | 0.0773 | 0.0788 | 0.0776 | 0.0429 | 0.0390 | 0.0348 | 0.0327 | 0.0296

Table 4: Mean absolute errors (MAE) comparison for unbiased tumor growth data for 7' = 10 and
T = 20.

(T,7) (30, 15) (30, 25)
5 1 2 3 4 5 1 2 3 4 5

GMCG || 0.0075 | 0.0072 | 0.0077 | 0.0079 | 0.0081 | 0.0015 | 0.0017 | 0.0019 | 0.0019 | 0.0020
CRN 0.0179 | 0.0226 | 0.0262 | 0.0293 | 0.0321 | 0.0128 | 0.0151 | 0.0167 | 0.0192 | 0.0209

Table 5: Mean absolute errors (MAE) comparison for unbiased tumor growth data for 7' = 30.
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G ASSUMPTIONS

G.1 STANDARD ASSUMPTIONS

This paper adopts Rubin’s potential outcome framework for LDL cholesterol data analysis presented
in Table [T] and is based on standard assumptions commonly found in many studies, such as consis-
tency, overlap, and unconfoundedness. In addition, important new assumptions are discussed in
Section 4.1, where we explore the concept of counterfactual thinking. There are two types of coun-
terfactual thinking: retrospective counterfactual thinking, which examines the effects of altering past
treatments at the current time, and prospective counterfactual thinking, which forecasts the outcomes
of choosing among various possible future treatments at the present moment.

Assumption 1: Consistency. If treatment a(?) = ag:t) was administered to a given patient, then

the potential outcome for treatment aE:t) is the same as the observed factual outcome: yf(tH) =

y“laf"].

Assumption 2: Positivity. If p(x(*) = x()) #£ 0, then p(a® = a®|x() = (V) > 0 for all
(t)

alv.

Assumption 3: Sequential Strong Ignorability. y ‘™ [a®] 1L a® |x(*) for all .

G.2 ALTERNATIVE ASSUMPTIONS FOR POSITIVITY VIOLATION

When the positivity assumption is violated, as with the data used in Table 2, an alternative assump-
tion is needed. Generally, it can be assumed that the conditional expectation of the outcome variable
is a sufficiently smooth function with respect to the treatment variable. This continuity allows for
the estimation of outcomes for treatment values that are not directly observed, i.e.,

Assumption 4: Strong Continuity. E[y|x; = @y, a;r = a] is continuous and differentiable with
respect to treatment to an appropriate order.

Alternatively, it can be assumed that the relationship between the outcome y, the counterfactual
treatment a.s, and the covariates x; follows a specific functional form (e.g., linear or quadratic
regression model). This assumption enables extrapolation to estimate causal effects:

Assumption 5: Functional Form of Outcome Model. E[y|x; = @, a; = acf] = f(xr, acr; 0)
where f is a known functional form, and 6 represents parameters to be estimated.

Specifically, the results in Figure 1 and the various examples in the Appendix were obtained based
on this assumption.
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H PROOF OF GAUSSIAN MIXTURE COUNTERFACTUAL GENERATOR

Lemma 1. Let the random vector &, follow a mixture of multivariate normal distributions with the

k-th mean my, and the k-th covariance matrix Cy, for k = 1,--- | K. Let A be a full-rank matrix
and b be a translation vector. Then the random vector X defined by
x=A&E+Db

has a mixture of multivariate normal distributions with the k-th mean

Amy +b (42)
and the k-th covariance matrix

AC,A" (43)
with the same proportions.
Proof. See|Johnson et al.[(2002) for the proof. O

H.1 PROOF OF GMCG

Proof. Subtracting Eq. (6) from Eq. (7), we obtain the following equation:

) ng:) = W) (se — 5¢).

X
Combining this with Eq. (I0), we can write it as follows:
Xof = Xf + W(Scf — Sf).

Using Eq. to simplify the expression and rearranging the equation with respect to &, we can
organize the equation in the form of b + AE;

X = x+ W(d,+ NE)
= (xr+Wié,) + (WN)E
= b+ AE.

Using Eq. (#2) and (#3) of Lemmal[I] we finally obtain Eq. (I6):

K
Xt~ > (x; 2+ W (8, + Nmy), WNCkNTWT) .
k=1
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