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Abstract

Ptychography is an imaging technique which aims to re-
cover the complex-valued exit wavefront of an object from
a set of its diffraction pattern magnitudes. Ptychography is
one of the most popular techniques for sub-30 nanometer
imaging as it does not suffer from the limitations of typical
lens based imaging techniques. The object can be recon-
structed from the captured diffraction patterns using itera-
tive phase retrieval algorithms. Over time many algorithms
have been proposed for iterative reconstruction of the ob-
ject based on manually derived update rules. In this paper,
we adapt automatic differentiation framework to solve prac-
tical and complex ptychographic phase retrieval problems
and demonstrate its advantages in terms of speed, accuracy,
adaptability and generalizability across different scanning
techniques.

1. Introduction
Nano-scale imaging is central to many research as well

as industrial applications. While there are numerous ways
to achieve nanometer resolution, X-ray ptychography [1, 2]
remains one of the most versatile techniques. This is be-
cause electron microscopy is limited to imaging through
samples that are no thicker than 1 µm, X-ray microscopy
requires lenses, whose aperture limits resolution, and sin-
gle shot Coherent Diffration Imaging (CDI) [3] requires the
samples to have limited physical extents. In X-ray ptychog-
raphy, far-field coherent diffraction patterns are recorded at
the detector, as a finite coherent beam is scanned across the
sample with overlap in the spots scanned, as shown in Fig-
ure 1.

The diffraction patterns recorded at the detector are the
intensities of the propagated object exit wavefront. If the
detector lies in the far-field, this exit wavefront undergoes
Fraunhofer diffraction, and the propagation function is the
Fourier transform. Since the phase of these diffraction pat-
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Figure 1: Schematic of a ptychography setup. A coherent
X-ray beam is focused onto a spot on the sample. A detector
is used to record the far field diffracted intensity as the fo-
cused beam is scanned across the sample. Ptychography re-
covers the phase and absorption contrast at a resolution well
below the size of the focused beam (e.g., Figure 6 shows 23
nm resolution from a 100 nm probe beam).

terns is lost, one cannot recover the object wavefront by
simply using the inverse Fourier transform. Mathemati-
cally, the phase retrieval problem is ill-posed and hence
the solution is non-unique [4]. In order to recover the
phase, phase retrieval algorithms make use of priors and
constraints specific to the problem at hand. In ptychogra-
phy, the constraints are imposed due to redundancy in the
captured data resulting from the partial overlap of neigh-
boring scan points.

In order to recover the lost phase, several phase re-
trieval algorithms have been proposed. The most popular
techniques in phase retrieval use an alternating projections
scheme [5], where a randomly initialized complex-valued
object wavefront function is iteratively updated by replac-



ing the magnitudes of its diffraction pattern by the measured
diffraction magnitudes. Variants of this approach for pty-
chography are Ptychographical Iterative Engine (PIE) [2]
and Difference Map [6].

An alternative to this approach is to formulate the phase
retrieval problem as an optimization problem [7]. Here, we
establish a cost function that evaluates the error between
our measurement and the one that our forward model pre-
dicts from our estimate of the complex object field. The cost
function is then differentiated with respect to the object field
to perform gradient descent optimization. The advantage of
gradient based methods is that, based on the constraints of
the problem, we can use out of the box gradient optimiza-
tion techniques like Gauss-Newton [8], conjugate gradient
[7], quasi-Newton [9], etc.

A major drawback of this formulation is that the gra-
dient expression for the backward model needs to be ex-
plicitly derived every time the cost function is modified. In
practice, when performing ptychography experiments, it is
often necessary to adapt the cost function to accommodate
changes in the experimental setup.

Automatic differentiation (AD) [10], also known as al-
gorithmic differentiation, offers a more general solution to
the optimization problem. The key idea is to formulate
the cost function using only basic mathematical functions
and operations for which analytic derivative functions are
known. An AD framework can then be used to automati-
cally find the analytic derivative of the cost function with
respect to the independent variables, which in turn allows
us to perform optimization using gradient descent. As we
show in this paper, Automatic Differentiation Ptychogra-
phy (ADP) offers a very flexible framework to express the
forward model for complex ptychography setups. Further-
more, no explicit algorithm to invert the model is necessary
since gradient descent optimization is performed automati-
cally using algorithmic differentiation.

The application of algorithmic differentiation to phase
retrieval was highlighted by Jurling and Fienup who derived
the complex valued elementary operations specific to phase
retrieval algorithms by hand [11]. More recently, Nashed
et al. successfully applied AD to ptychographic phase re-
trieval with step-scan and a known probe [12] and high-
lighted its advantages in terms of convergence and scal-
abitily to distributed multi-GPU computing architectures.

In this paper, we show that AD can be used as a unifying
framework to evaluate how changes in the forward model
affect reconstruction performance. Here we focus our study
on the effect of unknown probe functions (i.e. probe re-
trieval) and continuous probe motion (i.e., fly-scan mode)
with AD as a general framework to solve these complex
ptychographic problems, which we collectively refer to as
ADP. Thus, the main contributions of this paper are:

• Develop ADP as a generalized framework (in Tensor-
flow) to solve for challenging ptychographic models

such as simultaneous probe retrieval and flyscan sam-
pling by extending existing AD techniques for pty-
chography

• Demonstrate the advantages of ADP in terms of speed
and accuracy by using optimized minibatch size and
learning rate

• Show experimental results of reconstructions from fly-
scan X-ray ptychography diffraction patterns captured
at the Argonne Advanced Photon Source facility

It is important to note that, in this paper, we use the back-
propagation learning algorithm to solve an inverse problem,
and do not train a deep neural network for a classification
or regression task. ADP is implemented using Tensorflow
framework, which makes it scalable and easy to use.

2. Background
2.1. Phase Retrieval

Phase retrieval is the process of computationally solving
for the phase φ(k) of a complex signal A(k)ejφ(k), given
only its magnitude A(k). In lensless CDI techniques, the
far-field diffraction pattern (Fourier pattern) is recorded at
the detector plane. Since detectors can only detect inten-
sity, phase information of the wavefront is lost. Without
this phase information, we cannot recover the original im-
age by employing a simple inverse FFT operation. Phase
retrieval algorithms are iterative computational techniques
which aim to recover this lost phase by imposing some pri-
ors or constraints to the problem. Many algorithms have
been proposed with different constraints like the Gerchberg-
Saxton Error Reduction (ER) algorithm [13] which assumes
phase only objects, and the Hybrid input-output algorithm
(HIO) [14, 5, 15], which assumes that the object has fi-
nite spatial extent. Ptychography is a technique where con-
straints are imposed by the overlapping scan areas in the
object space.

2.2. Ptychography
Ptychography was proposed by Hoppe [1] as a technique

to determine the relative phase between different crystalline
planes and hence the crystal structure. With the develop-
ment of advanced detectors, stable X-ray sources and pow-
erful computers, ptychography was adopted as a technique
for X-ray microscopy. In X-ray ptychography, a limited
area of an extended object is scanned by a probe beam pro-
ducing a diffraction pattern at the far field detector plane.
Figure 1 is a simplified schematic of a ptychography exper-
iment. Each adjacent scan point has to have an overlap in
the object space. This data redundancy (each point in ob-
ject space contributes to multiple diffraction patterns) im-
poses the constraints required by phase retrieval algorithms
to work, effectively turning an under-determined non-linear



system into a determined non-linear system by oversam-
pling.

The forward model for ptychography can be written as:

ψi(r) = P (r − ri) ◦O(r). (1)

Where complex value object O(r) interacts with a com-
plex valued probe beam P (r) at position ri to produce a
complex valued wavefront ψi(r) with ◦ denoting multipli-
cation. This wavefront propagates to the far field detector
plane, approximated by a Fourier transform, where only the
intensity Ii of the propagated wavefront is recorded, such
that

Ii(k) = |F [ψi(r)]|2, (2)

where F denotes the Fourier transform from real space r
to reciprocal space k. Here r and k are treated as scalar
variables, but generalization to 2D image coordinates is
straightforward.

2.3. Scanning

In ptychography, a probe beam is scanned across the ob-
ject and the corresponding diffraction patterns are recorded
at the detector. Among the known ptychographic scanning
techniques, step-scan and fly-scan are the two popular ones
used in practice.

2.3.1 Step-scan

Step scan represents the traditional acquisition mode for
ptychography. In step scan, the probe moves in a move-
settle-acquire sequence, where the detector does not acquire
data while the probe is moving or settling. Since the move-
settle time is typically larger compared to the acquire time,
especially for small steps, the detector is effectively idle for
most of the time. This limits the area that can be scanned in
a given period of time and thus step-scan can take very long
to image the complete area under investigation.

2.3.2 Fly-scan

In fly-scan [16, 17], the probe and the detector move at a
constant velocity along the scan direction relative to the ob-
ject. The data is captured over the exposure time while the
probe is in motion, resulting in an incoherent sum of the
diffraction patterns of the scanned area. Since the detec-
tor does not have a settle time, fly-scanning is much faster
compared to step-scan.

2.4. Current Methods

PIE: Algorithms such as Ptychographical Iterative Engine
(PIE) [2] were developed to make use of redundancy in pty-
chography datasets to iteratively reconstruct the complex

object exit wavefront. PIE assumes that the complex illu-
mination function of the probe used for scanning is known.
The object is randomly initialized as O0(r) where On(r) is
the estimated object after n iterations. ψni (r) is calculated
from On(r) using equation 1. Replacing the magnitude of
F [ψni (r)] by the magnitude of the measured diffraction pat-
tern (given by equation 2) defines:

Ψn
i (k) =

√
Ii(k)

F [ψni (r)]

|F [ψni (r)]|
. (3)

A new ψ
′n
i (r) is calculated from Ψn

i (k) using the inverse
Fourier transform operation, such that

ψ
′n
i (r) = F−1[Ψn

i (k)]. (4)

The residual (ψ
′n
i (r)−ψni (r)) is then used to iteratively

update the object On(r) as follows:

On+1(r) = On(r) + α
P ∗i (r − ri)
|P ∗i (r − ri)|2max

(ψ
′n
i (r)− ψni (r)),

(5)
where ∗ is the complex conjugate operator, and α a scalar
∈ [0, 1] to control the contribution of the residual step.

ePIE: In a ptychography experiment, it is technically chal-
lenging to determine the exact complex beam profile of the
probe. PIE algorithm assumes that the probe is known, and
hence can only be used in situations when a previous esti-
mate of the illumination function is given. A variant of the
PIE algorithm, extended PIE or ePIE was developed [18]
to simultaneously reconstruct the probe and the object. In
ePIE, at each iteration, the probe is updated as

Pn+1(r) = Pn(r)+α
O∗ni (r + ri)

|O∗ni (r + ri)|2max
(ψ

′n
i (r)−ψni (r))

(6)
Thus, at every iteration, each pixel in the object gets up-

dated as many times as the number of diffraction patterns to
which it contributes to, and the probe gets updated as many
times as the number of scan points. It is import to note that
ePIE requires a good initialization of the probe for good
convergence.

Multi-probe ePIE: All CDI phase retrieval methods de-
pend on the quality of the high-resolution speckle informa-
tion in a diffraction pattern. Because of the beam partial
coherence properties, setup stability issues, signal to noise
ratio, among other reasons, the measured signal can suffer
from reduced fringe contrast due to the incoherent superpo-
sition of diffraction patterns. This is often the reason why
fly-scan ptychography reconstruction algorithms face chal-
lenges in achieving the required resolution. They assume
that the probe is focused on a single spot when the diffrac-
tion pattern is captured. This problem can be addressed by



employing multiple probe functions, or modes, in the for-
ward model [19]. This forward model is given by the fol-
lowing equations:

ψij(r) = Pj(r − ri) ◦O(r) (7)

Ii(k) =

Q∑
j=1

|F [ψij(r)]|2 (8)

Where, j is the probe mode index and Q is the number of
probe modes.

Multi-probe mode decomposition produces better recon-
structions than single-probe for fly-scan datasets [17] at
the cost of increasing the number of unknowns by Q ×
sizeof(P ). It does not, however, constrain the probe es-
timates to physical constraints imposed by the experimental
setup, such as non-Cartesian scan trajectories and fly scan
acquisition.

3. Automatic Differentiation
Automatic Differentiation (AD) automatically calculates

analytic partial derivatives of any function with respect to
the independent variables. Most AD techniques use a com-
putational graph to calculate the analytic derivatives, which
is a direct application of the chain rule for derivatives in
calculus. The key idea in AD is that if the analytic func-
tional form for the derivatives of elementary functions are
known, we can use the chain rule, the product of these par-
tial derivatives, to find the analytic derivative function for
any complex composition of these functions.

In the last few years, there has been a growing interest
in AD, both in academia and industry [20], especially be-
cause of its application to the backpropagation algorithm
in deep-learning. For many deep-learning applications, it
is necessary to calculate the gradients of the cost function
across multiple layers (of the order of 100) of mathematical
operations. Any numerical differentiation method would
quickly run into numerical errors in calculating gradients
across multiple operations due to finite floating point preci-
sion and the computational load. AD alleviates the problem
by calculating the analytic derivative using the chain rule.

In this paper, we use Tensorflow [21], a Python based
library developed by Google to find the analytic gradients
for complex deep neural network architectures.

3.1. Computational Graph
For calculating the analytic derivative of a composition

of functions, the forward model for the function is imple-
mented as a directed, acyclic graph known as computa-
tional graph, where operators and variables (as well as their
derivatives) are contained in the vertices or nodes of the
graph. The roots of graph are the independent variables or
constants, while the leaves of the graph are the dependent
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Figure 2: Computational Graph for ADP with probe re-
trieval. Traversal of the data flow graph from left to right
expresses calculation of the objective function from the un-
known object function O(r) to the objective expressed by
E in Eq. 9. This traversal is equivalent to functional com-
position of elemental operators (shown in yellow) whose
analytic derivatives relative to the independent variables are
known. Gradient descent optimization is performed by ap-
plying the chain rule to backpropagate partial derivatives
through the network.

variables. To find the gradients for the independent vari-
ables, the computational graph is traversed in reverse order
(from leaves to root), accumulating the gradients at each
node according to the chain rule, and eventually updating
the root variables using the accumulated gradients. Figure
2 shows the computational graph for step-scan ADP with
simultaneous probe retrieval. Here, the probe and object
are the independent variables (shown in orange) which are
equivalent to weights in neural networks. The diffraction
intensities and relative scan shifts are constants (input data)
shown in green, while all other variables are intermediate
variables. It is important to note that although we use the
deep-learning framework, ADP is not a machine learning
algorithm for two reasons: 1) it does not need training data,
2) the learned variables do not generalize to other datasets;
they define a best-fit forward model to the measured data.

3.2. Automatic Differentiation Ptychography
(ADP)

As mentioned in Section 1, one approach for ptycho-
graphic reconstruction is to formulate it as an optimization
problem, where we minimize a cost function. An impor-
tant distinction between conventional gradient descent and
ADP algorithms is that, for ADP, no explicit knowledge of
the gradient is required because the gradient is computed
automatically via the chain rule using the computational
graph. For ptychography, we formulate the cost function
as described in equation 9 for step-scan and equation 11 for
fly-scan. The AD framework then calculates the analytic ex-
pression for the gradient of the cost function with respect to
the independent variables and evaluates it using the values
of these variables at an instant. An optimizer then calcu-
lates the gradients and iteratively updates the independent
variables, here the object O(r) and the probe P (r).



3.3. Optimizer

An optimizer is a function that takes the gradients and/or
higher order derivatives and generates the values of updates
to be made to the corresponding variables. Over time, many
variants of gradient descent have been proposed such as
Stochastic Gradient Descent (SGD), AdaGrad, RMSProp,
etc. In this paper we use Adam (Adaptive Moment Estima-
tion) [22], which is a modification of the RMSProp opti-
mizer, using running averages on both, gradient and second
moment of the gradients.

Every optimizer takes a set of parameters, called hyper-
parameters, which need to be chosen by the user. This offers
the user flexibility and control over convergence in terms of
speed and accuracy.

3.4. Minibatch

In ePIE and ADP, at each iteration, updates are calcu-
lated for each scan point independently. In ePIE, an update
is made to the object after calculating the gradients for each
scan point. This allows subsequent gradient calculations to
make use of the updates made to the object within the same
iteration. Alternatively, we can calculate the updates for
multiple scan points in parallel and make a collective up-
date to the object once. Minibatch size (m) for a gradient
update is thus the number of scan points used for making a
single update.

Using smaller minibatch sizes corresponds to larger
number of updates per iteration, and hence requires less
number of iterations to converge. On the other hand, each
iteration takes longer since updates are made sequentially.
Thus, minibatch size is a parameter that trades-off speed for
accuracy at each iteration.

It has been shown that the update rules for ePIE can be
obtained from minimization of the cost function in equation
9 [23]. Thus, ePIE is a special case of the ADP formulation
for ptychography where the minibatch size, m = 1.

4. Algorithm

In this section, we describe the forward ADP model for
both step-scan and fly-scan. Since ADP is formulated as an
optimization problem, we need a cost function correspond-
ing to the forward model.

4.1. Step-scan ADP

Step-scan, as mentioned in Section 2.3.1, is a scanning
mode for ptychography, where a beam is focused at one spot
while the diffraction pattern is captured. To recover the ob-
ject O(r), we formulate the cost function as:

E =
1

m

∑
i∈M
{|F [ψi(r)]| −

√
Ii(k)}2 (9)

where ψi(r) is defined by equation 1, M contains the in-
dices of a minibatch of size m and F denotes the Fourier
transform.

4.2. Single-mode Fly-scan ADP

Fly-scan, as mentioned in Section 2.3.2, is a scan-
ning mode for ptychography, where a focused probe beam
is scanned across the object at constant velocity while a
diffraction pattern is captured. This modification in the
scanning technique can me modelled by calculating ψij(r)
according to equation:

ψij(r) = P (r − (ri + jδ)) ◦O(r) (10)

where ri corresponds to the beginning position of the fly-
scan corresponding to Ii, j ∈ {1, 2, ...S}, where S is the
number of diffraction patterns to average over to model fly-
scan, δ = d/S, and d is the fly-distance. The cost function
for fly-scan is:

E =
1

m

∑
i∈M

{ S∑
j=1

{|F [ψij(r)]| −
√
Ii(k)}

}2

(11)

where ψij(r) is defined by equation 10, M contains the
indices of a minibatch of size m and F denotes Fourier
Transform.

By comparing the cost functions of equations 1 and 7, we
can see that Fly-scan ADP depends on just a single probe
P that is shifted to S different locations while multi-mode
ePIE uses S different probes. This more accurate forward
model reduces the amount of unknowns that must be es-
timated, and hence produces higher reconstruction quality
than multi-probe ePIE.

4.3. Probe Retrieval

As mentioned in Section 2.4, in a ptychography experi-
ment, its very difficult to know the exact complex beam pro-
file of the probe. Thus, we need to simultaneously solve for
both, the object and the probe. While the object is initial-
ized randomly, a random initialization of the probe leads to
a slow convergence and lower accuracy. In ePIE, this lim-
itation is overcome by making a good initial guess of the
probe according to some heuristics. In this paper, we make
no assumptions about the probe. The probe is initialized as
P 0(r) given by the equation:

P 0(r) = F−1
[ N∑
i=1

√
Ii(k)

]
, (12)

where N is the number of measured diffraction patterns.
We show that this initialization results in better overall per-
formance.



Another practical difficulty in determining the probe and
the object simultaneously is that since initially the object
is randomly initialized, the gradient updates to the probe
in the first few iterations is random. This results in a poor
probe estimation, which in-turn affects object reconstruc-
tion, leading to slower convergence and lower accuracy. To
alleviate this problem, we start updating the probe only af-
ter a few updates to the object. This ensures that the probe
is updated only after we have a rough estimate of the object,
leading to a faster convergence. We have experimented with
different starting points for the probe update, and the obser-
vation was that the convergence PSNR did not vary much,
so long as the probe retrieval starts after convergence with-
out probe retrieval.

5. Experiments
In this section, we perform experiments with both, sim-

ulated and real experimental data.

5.1. Metrics

Speed: To compare the computational speed of ADP and
ePIE, we run both algorithms on a Nvidia TITAN X GPU,
for fixed time.

Accuracy: To compare the quality of reconstruction, we
calculate (Peak Signal to Noise Ratio) PSNR between the
reconstruction and ground truth images.

For a fair comparison, we use GPU optimized ePIE im-
plementation in Ptycholib [24].

5.2. Simulation

5.2.1 Data

Step-scan: For step-scan simulation, integrated-chip im-
ages of size 512× 512 are used as object ground truth, with
beam diameter of 35×35 and probe size of 128×128. The
step size along both scan direction was set to 8 pixels, which
corresponds to ptychographic oversampling of 77%.
Fly-scan: For fly-scan simulation, integrated-chip images
of size 256 × 256 are used as object ground truth, with
beam diameter of 35 × 35 and probe size of 64 × 64.The
step size along both direction was set to 8 pixels, which
corresponds to ptychographic oversampling of 77%. The
object was scanned from left to right, hence the horizontal
direction is fly-direction.

5.2.2 Optimization parameters

ADP offers flexibility to choose hyper-parameters which
can be used to optimize convergence and trade speed for
accuracy. In this paper we focus on 2 hyper-parameters:
minibatch and learning rate.

Minibatch: Minibatch offers a trade-off between speed
and accuracy. Increasing the minibatch size m results in

slower convergence in terms of iteration, but each iteration
is relatively fast.
Learning Rate: Learning rate is the length of the step taken
at each update. A higher learning rate corresponds to faster
convergence, but converges to a lower accuracy.

Figure 4a shows the 2D color contour of PSNR for differ-
ent values of minibatch m and learning rate lr for step-scan
and fly-scan respectively.

Since PIE and its variants (ePIE and multi-probe ePIE)
rely on explicit update rules calculated by hand, it can only
accommodate special case where m = 1. Figure 4b shows
that m = 1 is sub-optimal. Since ADP is a cost function
optimization at each step, we can easily vary the minibatch
size by changing the number of scan-points that contributes
to the cost function in each update.

5.2.3 Probe retrieval: ePIE vs ADP

In this section we compare the performance of ePIE and
ADP with and without probe retrieval. Figure 3a shows
the results for ePIE and ADP on step-scan dataset and Fig-
ure 3b shows the results for multi-probe ePIE and flyscan
ADP on fly-scan dataset. We can see that the reconstruc-
tion improves significantly if we simultaneously update the
probe and object, especially with ADP (indicated by the
sharp jump at 50s and 25s for step-scan and fly-scan re-
spectively). We also observe that without probe updates, the
step-scan ADP begins to diverge. It is important to notice
that even without probe retrieval, APD outperforms ePIE on
both step-scan and fly-scan in terms of PSNR after 200s.

5.2.4 ePIE vs Step-scan ADP

Here, we compare ADP against ePIE on step-scan data of
simulated chip images. Both algorithms were run on the
same computational resource for 200s. Based on Figure 4a,
we choose m = 64 and lr = 0.0045 for step-scan ADP.
Figure 4b shows the PSNR plot for ePIE and step-scan ADP
with optimized parameters, as well as with m = 1 and
m = N (complete dataset) to emphasize the importance
of minibatch optimization.

From Figure 4b, we can see that step-scan ADP results
in faster convergence as well as 5db higher PSNR at the end
of 200s.

5.2.5 Multi-probe ePIE vs single probe fly-scan ADP

In this section, we make a comparative analysis of the
Multi-probe ePIE algorithm with single-probe ADP on sim-
ulated fly-scan data. Both algorithms were run on the same
computational resource for 200s. We choose m = 16 and
lr = 0.009 based on Figure 4a. Figure 4b shows the PSNR
plot for multi-probe ePIE and single-probe fly-scan ADP
with optimized parameters, as well as with m = 1 and
m = N (complete dataset).
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Figure 3: Comparative PSNR plots for ADP and ePIE
on step-scan and fly-scan data. Solid lines represent with
probe retrieval and dashed lines represent without probe re-
trieval. (a) The comparisons are made on simulated step-
scan data. The probe estimation for step-scan ADP starts
after 50s. (b) The comparisons are made on simulated fly-
scan data. The probe estimation for single-probe fly-scan
ADP starts after 25s.

Here we see a clear advantage of ADP as it not only con-
verges faster, but leads to almost 8db higher convergence
compared to multi-probe ePIE.

To quantify the performance, Figure 5d and 5e shows
the horizontal (fly-direction) and vertical (non-fly direction)
line errors (distance from ground truth) for multi-probe
ePIE and single-probe ADP. We can clearly see that the
error multi-probe ePIE is much higher than that of ADP,
justifying the performance.

5.3. Experimental Results

In order to validate our algorithm’s performance, we
tested it on real data acquired by the Bionanoprobe at the
21-ID-D beamline for the Advanced Photon Source (APS).
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Figure 4: Optimal parameter selection criteria for ADP.
(a) PSNR contours for learning rate and minibatch size
shows that we can achieve much higher accuracy by tun-
ing the minibatch and learning rate. (b) Optimal minibatch
size of 64 converges much faster than ePIE. We also show
m=1 and m=2401 (full dataset) for ADP for comparison.
(c) Optimal minibatch size of 16 converges much faster
than multi-probe ePIE. We also show m=1 and m=600 (full
dataset) for flyscan ADP. We see that ADP step-scan shows
a 5db improvement, whereas ADP fly-scan shows 8db im-
provement over ePIE and milti-probe ePIE
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Figure 5: Qualitative analysis of fly-scan ADP and multi-
probe ePIE. (a) Simulated ground truth chip image (b)
multi-probe ePIE reconstruction (c) single-probe ADP re-
construction (d) Horizontal and (e) vertical line plot for dis-
tance from ground truth phase in radians

It is a sample of a 8-Gbit SK Hynix DRAM chip which was
fabricated on a 32 nm technology node with an initial wafer
thickness of 130 µm. It is a 135×135 Cartesian grid fly-
scan data covering 7.9 µm×7.9 µm area. A 10 KeV (1.24
Å) X-ray source with probe beam of diameter 100 nm and
a step-size of 60 nm was used, resulting in 40% overlap. A
detector with a pixel-size of 172 µm was placed at a dis-
tance of 2.1 meters downstream to collect the diffraction
patterns. The central 256×256 pixels of the detector data
was used for the reconstruction. Such large datasets usu-
ally contain experimental noise resulting from finite photon
count, positional inaccuracies from scanning stage, beam
intensity fluctuations due to air, scattering, changes in tem-
perature and bad detector pixel.

Figure 6a shows the reconstructed IC image using single-
probe Fly-scan ADP algorithm. The reconstruction consists
of 2.6 Mega-pixels, with each pixel corresponding to 5.91
nm in physical dimensions. We only show the phase re-
construction because amplitude contrast is very low due to
strong absorption of X-rays. Figure 6d shows that a 23 nm
resolution was achieved despite using a 100 nm probe beam.

6. Conclusion

In this paper we presented a generalized ptychographic
reconstruction algorithm based on Automatic Differentia-
tion (ADP). We show that ADP has advantages over current
state of the art algorithms like PIE (ePIE and multi-probe
ePIE), both in terms of speed and accuracy. We also show
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Figure 6: Experimental results for Hynix DRAM inte-
grated circuit. (a) Phase reconstruction for experimental
diffraction data collected at APS, Argonne. (b) Zoomed re-
gion for region in blue box in (a). (c) Reconstructed probe.
Phase shown in color while amplitude shown as magnitude.
(d) Edge response (10%-90%) of 23 nm, suggesting a reso-
lution of about ∆x = 23 nm.

that using ADP, a more accurate forward model for flyscan
can be used to reconstruct sharp features while state-of-the-
art reconstruction algorithms like multi-probe ePIE can not.
We demonstrate the flexibility of the ADP framework by
modifying the forward model, implementing it as a com-
putational graph, and using the same AD algorithm to solve
the inverse problem. We also showed that ADP is much eas-
ier to adapt to modifications to the forward model, since the
solution to the inverse problem is automatically calculated
by the computational graph. The algorithms were evaluated
on both, synthetic and real experimental data to establish
their superior convergence properties, as well as evaluated
on a GPU to demonstrate their scaling capabilities with par-
allelization. Lastly, we showed the performance of ADP
with different minibatch sizes to emphasize its flexibility in
terms of speed/accuracy trade-off.

7. Future Work

Thick samples require larger flux, which may be
achieved by reducing the spatial and temporal coherence of
the beam. In the future, we plan to extend ADP to incorpo-
rate the partial spatial and temporal coherence of the probe.
We also plan to have a comparative analysis of the differ-



ent Ptychography algorithms at different oversampling ra-
tios (diffraction oversampling and ptychographic oversam-
pling) as well as the effect of priors and regularization. Ad-
ditionally, we also plan to extend ADP to 3D ptychographic
reconstruction of a volume, eliminating the need for ex-
plicit reconstruction of 2D projections when performing 3D
imaging.

8. Acknowledgement
We are thankful to USC for providing access to the vir-

tual testbed to generate ptychography simulation for chip
designs. We also gratefully acknowledge the Advanced
Photon Source at Argonne National Laboratory for the ex-
perimental chip data. The authors of this work were funded
by IARPA RAVEN grant /No. 86101156 // FA8650-17-C-
9112; National Science Foundation (NSF) CAREER grant
IIS-1453192; Defense Advanced Research Projects Agency
(DARPA) (REVEAL HR0011-16-C-0028); and Office of
Naval Research (ONR) grant N00014-15-1-2735. The Bio-
nanoprobe is funded by NIH/NCRR High End Instrumenta-
tion (HEI) grant (1S10RR029272-01) as part of the Ameri-
can Recovery and Reinvestment Act (ARRA).

References
[1] W. Hoppe, “Beugung im inhomogenen

Primärstrahlwellenfeld. I. Prinzip einer Phasen-
messung von Elektronenbeungungsinterferenzen,”
Acta Crystallographica Section A, vol. 25, pp. 495–
501, Jul 1969.

[2] J. M. Rodenburg and H. M. Faulkner, “A phase re-
trieval algorithm for shifting illumination,” Applied
physics letters, vol. 85, no. 20, pp. 4795–4797, 2004.

[3] J. Miao, P. Charalambous, J. Kirz, and D. S. yre, “An
extension of the methods of x-ray crystallogra phy to
allow imaging of micron-size non-crystalline speci-
mens,” Nature, vol. 400, pp. 342–344, 1999.

[4] A. M. J. Huiser and P. van Toorn, “Ambiguity of
the phase-reconstruction problem,” Opt. Lett., vol. 5,
pp. 499–501, Nov 1980.

[5] J. R. Fienup, “Phase retrieval algorithms: a compari-
son,” Appl. Opt., vol. 21, pp. 2758–2769, Aug 1982.

[6] P. Thibault, M. Dierolf, A. Menzel, O. Bunk,
C. David, and F. Pfeiffer, “High-resolution scan-
ning x-ray diffraction microscopy,” Science, vol. 321,
no. 5887, pp. 379–382, 2008.

[7] M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval
with transverse translation diversity: a nonlinear opti-
mization approach,” Opt. Express, vol. 16, pp. 7264–
7278, May 2008.

[8] J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlin-
ear optimization algorithm for partially coherent phase
retrieval and source recovery,” IEEE Transactions on
Computational Imaging, vol. 2, no. 3, pp. 310–322,
2016.

[9] J. Li and T. Zhou, “Numerical optimization algorithm
of wavefront phase retrieval from multiple measure-
ments,” arXiv preprint arXiv:1607.01861, 2016.

[10] L. B. Rall, “Automatic differentiation: Techniques and
applications,” 1981.

[11] A. S. Jurling and J. R. Fienup, “Applications of algo-
rithmic differentiation to phase retrieval algorithms,”
JOSA A, vol. 31, no. 7, pp. 1348–1359, 2014.

[12] Y. S. Nashed, T. Peterka, J. Deng, and C. Jacobsen,
“Distributed automatic differentiation for ptychogra-
phy,” Procedia Computer Science, vol. 108, pp. 404–
414, 2017.

[13] R. W. Gerchberg and W. O. Saxton, “Practical al-
gorithm for determination of phase from image and
diffraction plane pictures,” OPTIK, no. 2, pp. 237–&.

[14] J. R. Fienup, “Reconstruction of an object from the
modulus of its fourier transform,” Opt. Lett., vol. 3,
pp. 27–29, Jul 1978.

[15] J. R. Fienup, “Reconstruction of a complex-valued
object from the modulus of its fourier transform us-
ing a support constraint,” J. Opt. Soc. Am. A, vol. 4,
pp. 118–123, Jan 1987.

[16] J. N. Clark, X. Huang, R. J. Harder, and I. K. Robin-
son, “Continuous scanning mode for ptychography,”
Optics letters, vol. 39, no. 20, 2014.

[17] J. Deng, Y. S. Nashed, S. Chen, N. W. Phillips, T. Pe-
terka, R. Ross, S. Vogt, C. Jacobsen, and D. J. Vine,
“Continuous motion scan ptychography: characteriza-
tion for increased speed in coherent x-ray imaging,”
Optics express, vol. 23, no. 5, pp. 5438–5451, 2015.

[18] A. M. Maiden and J. M. Rodenburg, “An improved
ptychographical phase retrieval algorithm for diffrac-
tive imaging,” Ultramicroscopy, vol. 109, no. 10,
pp. 1256–1262, 2009.

[19] P. Thibault and A. Menzel, “Reconstructing state
mixtures from diffraction measurements,” Nature,
vol. 494, no. 7435, pp. 68–71, 2013.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
nature, vol. 521, no. 7553, p. 436, 2015.



[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, et al., “Tensorflow: Large-scale machine
learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[23] C. Yang, J. Qian, A. Schirotzek, F. Maia, and
S. Marchesini, “Iterative Algorithms for Ptycho-
graphic Phase Retrieval,” ArXiv e-prints, May 2011.

[24] Y. S. Nashed, D. J. Vine, T. Peterka, J. Deng, R. Ross,
and C. Jacobsen, “Parallel Ptychographic Reconstruc-
tion,” Optics Express, vol. 22, no. 26, pp. 32082–
32097, 2014.


