
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOENCODER-BASED GENERAL-PURPOSE REPRE-
SENTATION LEARNING FOR ENTITY EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in representation learning have successfully leveraged the under-
lying domain-specific structure of data across various fields. However, represent-
ing diverse and complex entities stored in tabular format within a latent space
remains challenging. In this paper, we introduce DEEPCAE, a novel method
for calculating the regularization term for multi-layer contractive autoencoders
(CAEs). Additionally, we formalize a general-purpose entity embedding frame-
work and use it to empirically show that DEEPCAE outperforms all other tested
autoencoder variants in both reconstruction performance and downstream predic-
tion performance. Notably, when compared to a stacked CAE across 13 datasets,
DEEPCAE achieves a 34% improvement in reconstruction error.

1 INTRODUCTION

The underlying structure of data can be defined by its organization and relationships, encompassing
semantic meaning, spatial positioning, and temporal sequencing across a range of domains. Lately,
this structure has been leveraged to build use case-agnostic data representations in a self-supervised,
auto-regressive, or augmentative manner (Pennington et al., 2014; Devlin et al., 2018; Liu et al.,
2019; Conneau et al., 2019; Caron et al., 2020; Oord et al., 2018; He et al., 2020; Higgins et al.,
2016), including the prediction of next tokens given the previous ones in GPTs (OpenAI, 2023), and
image rotation (Gidaris et al., 2018).

Real world entities, such as products and customers of a company, generally stored in tabular for-
mat, can also be represented as multi-dimensional vectors, or embeddings. The demand for reusable
entity embeddings is growing across research and business units, as a universally applicable repre-
sentation for each entity can drastically reduce pre-processing efforts for a wide range of predictive
models. This, in turn, can shorten development cycles and potentially enhance predictive perfor-
mance. For example, customer embeddings could greatly improve sales and marketing analyses in
large enterprises.

In industry settings, data pre-processing and feature engineering steps can constitute a large portion
of a project’s lifespan and result in duplicated efforts: Munson (2012) and Press (2016) showed that
the average estimated percentage of time spent by data scientists for retrieving, pre-processing and
feature-engineering data is between 50% and 70% of a data science project’s lifespan. Furthermore,
scientists may encounter challenges in feature selection and in identifying relationships within the
data (e.g., correlation and causality). Complexity - frequently arising from high-dimensionality -
can result in both overfitting and underfitting. Holistically, projects with different objectives relying
on similar data could benefit from a unified shared pre-processing and feature engineering process,
which would produce pre-processed data for a general purpose.

While text and images are structurally organized (syntax and semantics in text, spatial structure
in images), tabular data does not necessarily exhibit such relations between features that could be
leveraged for modeling purposes. Although many recent modality-specific representation learning
methods (e.g. Transformers for text (Vaswani et al., 2017)) leverage the increase in computational
capabilities, classical representation learning applicable to tabular data has yet to be advanced.

In this work, (1) we propose DEEPCAE, which extends the contractive autoencoder (CAE) frame-
work (Rifai et al., 2011b) to the multi-layer setting while preserving the original regularization
design, unlike stacked CAE approaches; (2) we outline a general-purpose end-to-end entity embed-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ding framework applicable to a variety of domains and different embedding models. We use the
proposed framework to evaluate different representation learning methods across 13 publicly avail-
able classification and regression datasets, covering a multitude of entities (A.1). We measure both
the reconstruction error as well as the downstream performance on the dataset’s respective classifi-
cation or regression task when using the embeddings as input. We show that DEEPCAE performs
especially well in entity embedding settings (see Figure 2).

Our original contribution is the extension of the mathematical simplification introduced by Rifai
et al. (2011b) for the calculation of the Jacobian of the entire encoder in the contractive loss from
single-layer to multi-layer settings (see Section 4). This extension makes training the entire multi-
layer encoder computationally feasible, allowing for increased degrees of freedom, while maintain-
ing the benefits of regularization.

2 PRELIMINARIES

Autoencoders are a specific type of neural network designed for unsupervised learning tasks, whose
main purpose is to encode inputs into a condensed representation, and are often used for dimen-
sionality reduction and feature learning. The usually lower-dimensional space in which the input
is projected is referred to as latent space, or embedding space. An autoencoder is comprised of
two parts: an encoder, which transforms the input into its latent representation (embeddings), and a
decoder that reconstructs the input from the obtained embeddings during training (Rumelhart et al.,
1986). The encoder and the decoder are trained simultaneously with the objective of minimizing the
reconstruction loss, i.e., a measure of how well the decoder can reconstruct the original input from
the encoder’s output.

Methods like Principal Component Analysis (PCA) dominated the field before autoencoders were
introduced. Baldi & Hornik (1989) showed that a single layer encoder without a non-linear activa-
tion function converges to a global minimum that represents a subspace of the corresponding PCA.
Thanks to their non-linearity, autoencoders allow for a more sophisticated and effective feature ex-
traction, which motivates the use of autoencoders compared to PCA for many applications.

When using autoencoders for dimensionality reduction, the information bottleneck represented by
the embedding layer (which is smaller than the input) prevents the encoder from learning the identity
function. However, some applications can benefit from over-complete representations, i.e. represen-
tations that have a higher latent dimension than their original dimension (e.g. in image denoising
Xie et al. (2012) or sparse coding Ranzato et al. (2006)), which work with other methods of regular-
ization. Nonetheless, research has shown that even for applications with an information bottleneck,
some forms of regularization can lead to more robust latent representations (Rifai et al., 2011b). One
of these methods are contractive autoencoders (CAE).

Moreover, unlike traditional autoencoders, which directly output a latent representation, Variational
Autoencoders (VAE) follow a stochastic approach by producing a multivariate distribution parame-
terized by µ, σ in the latent space Kingma & Welling (2013).

2.1 CONTRACTIVE AUTOENCODERS

Contractive Autoencoders (CAE) contract the input into a lower-dimensional non-linear manifold
in a deterministic and analytical way (Rifai et al., 2011b). Being able to learn very stable and
robust representations, CAE were proven to be superior to Denoising Autoencoders (DAE) (see
Rifai et al. (2011b)) - where the autoencoder is trained to remove noise from the input for robust
reconstructions. In order to achieve the contractive effect, CAE regularize by adding a term to
the objective function J (·, ·) alongside the reconstruction loss d(·, ·): the squared Frobenius norm
∥ · ∥2F of the Jacobian Jf (x) of the encoder w.r.t. the input x. This encourages the encoder to learn
representations that are comparatively insensitive to the input (see Sec. 2 Rifai et al. (2011b)). The
objective function can be formally expressed as:

J (θ, ϕ) :=
∑
x∈D

(d(x, Dθ(Eϕ(x))) + λ||Jf (x)||2F) (1)

where λ is used to factorize the strength of the contractive effect, Dθ(·) is the decoder parameterized
by θ and Eϕ(·) is the encoder parametrized by ϕ. As shown in Section 5.3 of Rifai et al. (2011b),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

CAE effectively learns to be invariant to dimensions orthogonal to the lower-dimensional manifold,
while maintaining the necessary variations needed to reconstruct the input as local dimensions along
the manifold. Geometrically, the contraction of the input space in a certain direction of the input
space is indicated by the corresponding singular value of the Jacobian. Rifai et al. (2011b) show that
the number of large singular values is much smaller when using the CAE penalty term, indicating
that it helps in characterizing a lower-dimensional manifold near the data points.
This property of CAE improves the robustness of the model to irrelevant variations in the input
data, such as noise or slight alterations, ensuring that the learned representations are both stable and
meaningful in capturing the essential features of the data. Additionally, Rifai et al. (2011b) showed
the ability to contract in the vicinity of the input data using the contraction ratio defined as the ratio
of distances between the two points in the input space in comparison to the distance of the encod-
ings in the feature space. This ratio approaches the Frobenius norm of the encoder’s Jacobian for
infinitesimal variations in the input space.
Rifai et al. (2011a) also proposed higher order regularization, which leads to flatter manifolds and
more stable representations. However, the additional computational cost comes with a limited posi-
tive effect, which leads us to use the standard version of first order.

Moreover, Rifai et al. (2011b) show that stacking CAEs can improve performance. A stacked CAE
is a series of autoencoders where the embeddings of the first autoencoder are further embedded and
reconstructed using the second autoencoder, and so on. Thereby, the contractive penalty term of the
encoder is calculated in isolation with respect to the other autoencoders.

3 RELATED WORK

While research dedicated to embedding generic or entity-based tabular data is relatively scarce,
substantial work has been conducted on embedding data from various other domains including text
(Muennighoff et al., 2022; Devlin et al., 2018; Zhang et al., 2023), images, and videos (Kingma &
Welling, 2013; Higgins et al., 2016; Comas et al., 2020).

3.1 TABULAR DATA EMBEDDING

Ucar et al. (2021) propose to learn representations from tabular data by training an autoencoder
with feature subsets, while reconstructing the entire input from the representation of the subset dur-
ing training as a measure of regularization. Using this methodology, they obtained state-of-the-art
results when using the representation for classification. However, they did not perform any dimen-
sionality reduction and hence did not make a comparison on reconstruction quality. Huang et al.
(2020) applied a Transformer to encode categorical features obtaining only minor improvements
over standard autoencoders despite using a significantly more complex architecture when compared
to a simple multilayer perceptron (MLP). Gorishniy et al. (2022) found that complex architectures
such as Transformers or ResNets (see He et al. (2015)) are not necessary for effective tabular repre-
sentation learning, which is in line with our results (see Figure 5).

3.2 ENTITY EMBEDDING

As outlined in Section 1, our work aims to embed entities stored in tabular data, especially in in-
dustrial settings, where entities are usually platform users, customers, or products. While several
approaches have been taken to solve this problem, they usually represent only parts of entities.
These include Fey et al. (2023) with an attempt to build a framework for deep learning on relational
data and various works on embedding proprietary user/customer interaction data for downstream
predictions (Wang et al., 2023; Chitsazan et al., 2021; Chamberlain et al., 2017; Mikolov et al.,
2013). Fazelnia et al. (2024) propose a high-level framework for embedding all available informa-
tion of an entity, including using modality-specific encoders before using a standard autoencoder
to produce a unified representation that can then be used for a variety of downstream applications.
They also observe a general improvement of downstream prediction performance, but limit their
work to their specific proprietary use-case in the audio industry.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

In this Section, (1) we outline DEEPCAE to extend the CAE framework to multi-layer settings
while preserving the original regularization design, in contrast to stacked CAE approaches; and
(2) we describe our general-purpose entity embedding framework that unifies data pre-processing
efforts, which we use to evaluate various embedding models, including DEEPCAE.

4.1 DEEPCAE: IMPROVEMENTS TO MULTI-LAYER CAE

Contemplating a multi-layer CAE in our benchmark, we analyze related work and find that, to the
best of our knowledge, all use stacking (Wu et al., 2019; Aamir et al., 2021; Wang et al., 2020). This
includes Rifai et al. (2011b), who originally proposed the CAE. By stacking the encoders, the layer-
wise loss calculations are added up, in contrast to the originally proposed formula in Equation 1
by Rifai et al. (2011b). However, we argue that since ||Jf (x)||2F ̸=

∑k
i=1 ||Ji(xi−1)||2F with

k being the number of encoder layers, simple stacking puts an unnecessary constraint onto the
outputs of hidden layers before reaching the bottleneck layer. The unnecessary constraint originates
from penalizing each layer separately using the layer’s Jacobian. Instead, when calculating the
Jacobian for the entire encoder at once, the encoder has a much higher degree of freedom, while still
encouraging a small overall derivative that is responsible for the contractive effect. Consequently, we
propose using the actual Jacobian Jf (x) of the entire encoder, in line with the originally proposed
formula.

Calculating the Jacobian for the entire encoder with respect to every input would be computationally
intractable already for two layers when using automatic gradient calculation such as the jacobian
function in Pytorch Paszke et al. (2019)1. For a single fully connected layer with a sigmoid activa-
tion, Rifai et al. (2011b) proposed to calculate the Frobenius norm of the Jacobian of the encoder
as:

∥Jf (x)∥2F =

dh∑
i=1

(hi(1− hi))
2

dx∑
j=1

W 2
ij (2)

where f is the encoder, x is its input, h is its activated output of the encoder and W is the weight
matrix of the fully connected encoder layer. Rifai et al. (2011b) show that the computational com-
plexity decreases from O(dx × d2h) to O(dx × dh), where dx is the input space, and dh is the
dimension of the hidden embedding space. Note that the term in the outer sum is just the squared
derivative of the sigmoid activation function.
To ease the processing of negative input values, we use the tanh(x) activation function and hence
exchange the aforementioned derivative for the derivative of the tanh(x) activation function. The
Frobenius norm of the Jacobian then calculates as:

∥Jf (x)∥2F =

dh∑
i=1

(1− h2
i)

2
dx∑
j=1

W 2
ij . (3)

Note that the fact that the above penalty term can be calculated as a double summation of the layer
output and the weight matrix makes this calculation highly efficient. However, as this only works
for a single-layer encoder, we provide the necessary derivations for the multi-layer setting in the
following, ultimately leading to the DEEPCAE. We start by defining the encoder f as a composite
function of its layers (including the activation functions):

f := lk ◦ lk−1 ◦ ... ◦ l1 (4)

where each layer l consists of a standard fully connected layer and a tanh(x) activation. In order to
obtain the multi-layer encoders derivative (i.e. the Jacobian matrix), we employ the chain rule:

δf

δx
=

δlk
δlk−1

· δlk−1

δlk−2
· ... · δl1

δx
. (5)

1Initial attempts to employ this method revealed substantial computational demands, even for relatively
straightforward cases such as MNIST. The training duration, when applied under identical settings as our pro-
posed methodology, was projected to extend over several days rather than mere hours.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Given the presence of a distinct Jacobian matrix for each layer in the model, we can rewrite this as
follows:

Jf (x) = Jlk(xk−1) · Jlk−1
(xk−2) · ... · Jl1(x0) (6)

where x0 = x is the input to the encoder.

Given Equation 3, the Jacobian of each layer can be expressed as:

Jlk(xk−1) = diag(1− x2
k) ·W (7)

where diag(1 − x2
k) is a diagonal matrix, where the diagonal elements are constituted by the com-

ponents of the vector xk, which represents the output of the layer. This is used with Equation 6 to
obtain the Jacobian of the entire encoder. The final penalty term is obtained by taking the squared
Frobenius norm of the Jacobian Jf (x), expressed as ∥Jf (x)∥2F . In our experiments, the full loss
function uses the Mean Squared Error (MSE) as the reconstruction loss (cf. Equation 1).

Assuming there are k layers, and weights matrices of dimension dx × dh, the complexity of stacked
CAEs is O(k × dx × dh), as the Jacobian is calculated for each layer. Instead, in DEEPCAE the
computation of the contractive regularization term is driven by the calculation of the Jacobian of
the entire encoder with respect to the input (Equation 6): the overall complexity of DEEPCAE is
O(k× d3x), due to the multiplication of Jacobian matrices2. As such, the complexity of both stacked
CAEs and DEEPCAE scales linearly with the number of layers, but scales cubically with the input
size for DEEPCAE, making it less efficient than stacked CAEs, which have a quadratic complexity
instead.

Finally, we call our proposed method DEEPCAE, i.e., a multi-layer contractive autoencoder where
the contractive loss calculation is based on the Jacobian of the entire encoder, in line with the orig-
inal design by Rifai et al. (2011b). We compare DEEPCAE to a stacked CAE, and observe that
DEEPCAE outperforms it (see Section 5.2).

4.2 ENTITY EMBEDDING FRAMEWORK

We outline a general-purpose entity embedding framework (see Figure 1) to generate embeddings
and evaluate their quality, and use it to compare DEEPCAE to other embedding methods. This
framework can serve as inspiration for practitioners to serve multiple downstream applications with
the same entity representation, possibly creating different variants by parameterizing input features
and embedding models used.

Starting from the raw data characterizing an entity (e.g. customer metadata, metrics, third-party
information), we combine and pre-process it to obtain a tabular dataset. In some cases there may
exist additional data structures such as text (e.g. with a natural language description) and time
series (e.g. customers purchase patterns per month). Those additional modalities are then embedded
through specific encoders such as a pre-trained BERT (Devlin et al., 2018) for textual data, and
TS2Vec (Yue et al., 2021) for time-series data. The dataset with all combined features is then fed
into an autoencoder model to produce the entity embeddings, which are optionally concatenated
with the labels of the corresponding problems, and finally used in downstream applications. This
worked for us in a proprietary industrial setting. The datasets in the benchmark do not include text
or time series data.

To find the embedding model that is best suited on average for general-purpose entity embedding,
we benchmark a variety of autoencoders, including the standard linear autoencoder architecture, a
contractive autoencoder, a variational autoencoder and a Transformer-based autoencoder. Beyond
the mentioned autoencoder variants, we also employ KernelPCA by Schölkopf et al. (1997) as a
non-linear baseline.

5 EXPERIMENTS & RESULTS

To identify the best general-purpose entity embedding model, we begin with a comprehensive bench-
mark on 13 different tabular datasets, as detailed in Section 5.1. We first assess whether the embed-
dings produced by each method broadly capture the original information using their reconstruction

2Note that dx ≥ dh.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: General-purpose embedding framework for multi-modal data and multiple downstream
applications. Specific modalities such as text and time-series are embedded via specific methods,
and then combined with other tabular data to be fed into the general embedding model. The resulting
embedding is then optionally combined with labels, and used by downstream applications.

performance. This is important as general purpose embeddings should be usable for a plethora
of downstream applications as introduced in Figure 1. Hence they should capture as much of the
available information in the original data as possible and not only that relevant to a specific task.
Secondly we directly assess the usability of the embeddings for downstream applications compared
the original data. This serves the purpose of testing whether the general purpose embeddings still
contain enough use case specific information to make good predictions. Finally, we compare our
DEEPCAE to the commonly used STACKEDCAE in Section 5.2.

5.1 AUTOENCODERS BENCHMARK

We consider the following embedding models: DEEPCAE, a standard linear autoencoder STAN-
DARDAE, a standard autoencoder based on convolutional layers CONVAE, a variational autoen-
coder VAE, a Transformer-based autoencoder TRANSFORMERAE, and KERNELPCA (Schölkopf
et al., 1997) as a non-linear baseline. We use an adapted version of the Transformer autoencoder
in our benchmarks. It uses a transformer block to create a richer representation of the data in en-
coder. This representation is then embedded using a small fully connected network projecting into
the latent dimension. The decoder consists of a transformer block followed by a linear layer which
projects back into the original dimension. All neural network based models are trained with two
layers and a compression rate of 50%.

We compare the performances of the models across 13 publicly available tabular datasets listed
in Appendix A.1. Before training, commonly used pre-processing methods are applied to convert
the data into a fully numerical format. This includes one-hot encoding of numerical features, data
type casting, dropping and imputing missing values as well as date conversion to distinct features
(year, month, day, weekday). The detailed results for both the reconstruction performance and
the downstream performance are provided in Appendix A.3. Details on the model architectures
employed are outlined in Appendix A.2.

5.1.1 RECONSTRUCTION PERFORMANCE

To evaluate the quality of the resulting embeddings in downstream task-agnostic settings, we pro-
pose to assume that reconstruction performance is positively correlated with embedding quality:
embeddings that are a rich source of information for the decoder to reconstruct the input will benefit
downstream models in task resolution.
We first performed hyperparameter optimization using Asynchronous Sucessive Halving (ASHA)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(Salinas et al., 2022), and then trained each autoencoder and KERNELPCA to evaluate the recon-
struction performance on a distinct test set. The reconstruction performance is normalized by that
of KERNELPCA to account for the “reconstructability” of a given dataset at a compression rate of
50%.

Figure 2: Mean Squared Error (MSE) of reconstruction across 13 datasets (see Appendix A.1),
normalized by KernelPCA as the non-linear baseline and aggregated by the geometric mean in
logarithmic scale. See STACKEDCAE comparison in Figure 5. Error bars show a 95% confidence
interval. Lower is better.

From our results in Figure 2, we observe that simpler architectures with a nuanced regularization
beyond the information bottleneck (i.e. DEEPCAE) and the vanilla single-layer autoencoder (i.e.
STANDARDAE) perform best on average in reconstructing the data. We also observe how the more
complex Transformer-based autoencoder performs subpar. We discuss these results in Section 6.

5.1.2 DOWNSTREAM PERFORMANCE USING EMBEDDINGS

In pursuit of the best general-purpose entity embedding model, we also assessed the performance
of downstream prediction tasks based on the embeddings. This fits well with the workflow of our
framework in Figure 1. We trained XGBOOST (Chen & Guestrin, 2016) predictors with the em-
beddings produced by the set of embedding models described in the previous Section. We then
normalized the measured performance by that of an equivalent predictor trained on the raw input
data with no loss of information3. We use XGBOOST as it is a popular baseline method for classifi-
cation and regression tasks.
We observe that most embedding variants show competitive performance when compared to a pre-
dictor trained on raw data - TRANSFORMERAE and VAE do not. The drop in performance is only
marginal for STANDARDAE and DEEPCAE, and is naturally due to the loss of information during
the embedding process. It is important to note that in industry or big data settings it is often times
infeasible to train the model on all of the data, where we expect increased performance when using
embedded data versus either feature subsets or less data for dimensional requirements.

Interestingly, despite the sub-optimal reconstruction performance of KernelPCA (see Figure 2), it
outperformed all autoencoders on downstream performance. Moreover, we observe that the decline
in downstream performance of most autoencoders is minimal for classification tasks (see Figure 3
- higher is better), while it is more substantial for regression (see Figure 4 - lower is better). These
results highlight the capabilities of DEEPCAE and standard autoencoders when it comes to general-
purpose entity embedding. We discuss these results in Section 6.

We also applied embeddings on top of a set of customers and tested on internal predictive use
cases, including classification and regression. We observe comparative performance or significant
improvements on all of the downstream applications where we used customer embeddings to train

3After the pre-processing described above has been applied.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Performance on downstream classification tasks across the classification datasets (see
Appendix A.1), normalized by the performance of a predictor trained on the raw data and aggregated
by the geometric mean. See STACKEDCAE comparison in Figure 6. Higher is better.

Figure 4: Performance on downstream regression tasks across the regression datasets (see Ap-
pendix A.1), normalized by the performance of a predictor trained on the raw data and aggregated
by the geometric mean. See STACKEDCAE comparison in Figure 7. Lower is better.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the existing application model, despite all downstream models being fed with custom pre-processed
and feature engineered data. Performance metrics and problem settings are omitted.

5.2 DEEPCAE VS. STACKEDCAE

To provide evidence for our line of argument in Section 4.1 stating that a stacked CAE puts un-
necessary constraint onto the hidden layers of the encoder, thereby inhibiting its performance, we
benchmark DEEPCAE against a stacked CAE on the aforementioned datasets. We observe that
DEEPCAE outperforms STACKEDCAE by 34% in terms of reconstruction performance (see Fig-
ure 5), and in terms of downstream performance (see Appendix A.4.2 Figure 6 and Figure 7)

Finally, we compare DEEPCAE and STACKEDCAE on the MNIST hand-written digits dataset as
well, in line with CAE’s experiments in Rifai et al. (2011b), and observe a 15% improvement over
STACKEDCAE.

Figure 5: Comparison of stacked CAE and DEEPCAE, normalized by KERNELPCA as a non-
linear baseline and aggregated by the geometric mean in logarithmic scale. Error bars show a 95%
confidence interval. Lower is better.

The shown improvements in performance through DEEPCAE come at a certain cost: we observe
that the average training time across all 13 datasets in our benchmark (cf. Appendix A.1) for DEEP-
CAE is roughly 6 minutes, while it is only about 3.5 minutes with StackedCAE. The median training
time is about 2.5 minutes for both, which confirms that DEEPCAE scales worse than a comparable
StackedCAE. The full comparison is given in Appendix A.4.2. For many real-world applications,
training times of a few minutes are negligible in the trade-off even for small performance improve-
ments, making DEEPCAE the preferred choice.

6 DISCUSSION

6.1 DIFFERENCES IN RECONSTRUCTION AND DOWNSTREAM PERFORMANCE

We observe that the reconstruction performance of the various autoencoders is in line with the down-
stream performance when using the corresponding embeddings (see Figure 2 and Figure 3). Notably,
the performance of KERNELPCA surpasses expectations based on the reconstruction benchmark in
Figure 2, as it achieves the highest performance in both downstream regression (see Figure 4) and
classification benchmarks (see Figure 3).

We hypothesize this difference to be caused by the different incentive of KERNELPCA compared
to an autoencoder: KERNELPCA identifies principal components, i.e., the directions of maximum
variance in the high-dimensional feature space to which the dataset is mapped using a non-linear
kernel. By prioritizing principal components, the maximum possible amount of information is re-
tained. While this may not lead to the the best reconstruction in terms of MSE, it explains why
KERNELPCA informs downstream predictions so well.

In contrast, the autoencoder’s primary incentive for maximizing the information stored in its em-
bedding space is the information bottleneck imposed by the reduced dimensionality and the need
to minimize reconstruction loss. However, this approach introduces some slack, as it may deprior-
itize features with low average magnitude but high variance, which are less penalized by the MSE

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

reconstruction loss compared to high-magnitude, low-variance features. Future research could ex-
plore new loss functions or incorporate feature normalization to address this limitation and improve
information retention.

6.2 INVERSE RELATIONSHIP BETWEEN MODEL SIZE AND PERFORMANCE

We observe that autoencoder variants with smaller parameter sets exhibit superior performance in
both reconstruction and downstream tasks. With reference to the detailed results (see Appendix A.3),
we observe that both TRANSFORMERAE and VAE perform comparatively well on larger datasets,
but still show lower performance than simpler embedding architectures. Therefore, we hypothesize
that these models require large amounts of data for effective training - as is often the case with mod-
els that have complex architectures or large parameter sets. While a simple single-layer autoencoder
is known to produce transformations similar to those of PCA (Baldi & Hornik, 1989), Transformers
and convolutional neural networks (CNNs) augment the input for the extraction of features and rep-
resentations that are usually of higher dimensionality. While they succeed at representing the input
well in a numerical format (e.g. using attention in Transformers (Vaswani et al., 2017)), this may be
counterproductive when the objective is to produce a compact, lower-dimensional representation of
the input.

6.3 SUPERIORITY OF DEEPCAE

Considering all of our benchmarks, and in particular reconstruction performance in Figure 2, we
observe DEEPCAE outperforms all of the other embedding models thanks to the regularization
introduced by the contractive loss applied across the entire encoder in a multi-layer setting. As
explained in detail in Rifai et al. (2011b), this approach helps the model focus on the most relevant
aspects of the input while becoming invariant to noise, thereby reducing the risk of overfitting.

7 CONCLUSIONS

In this paper, addressing the need for a general-purpose entity embedding model, we proposed
DEEPCAE as an extension to the contractive autoencoder CAE in multi-layer settings. We showed
that DEEPCAE outperforms all the other tested embedding methods, including a stacked CAE, in
terms of both reconstruction quality and downstream performance of classification and regression
tasks using the resulting embeddings. The improvement of DEEPCAE over a stacked CAE in terms
of reconstruction quality is 34%.

Moreover, we outlined a general-purpose entity embedding framework to (a) produce embeddings
with different modalities and embedding models, (b) use such embeddings in downstream tasks
substituting or augmenting pre-processed data, and (c) evaluate the best embeddings in terms of
both reconstruction loss for a task-agnostic purpose and downstream task performance.

Through our experiments, we observed that simpler autoencoders with nuanced regularization, in-
cluding DEEPCAE, outperform more complex ones, and conclude that these are best suited for
robust dimensionality reduction yielding rich embedddings. Furthermore, we argue that the aug-
mentative capabilities of more complex architectures like Transformers and CNNs are not neces-
sarily useful in the production of a compact representation of an entity. Finally, we found that
while KERNELPCA is outperformed in terms of reconstruction performance by most of the tested
autoencoders, it achieves the best performance in informing downstream predictions with its repre-
sentations. We concluded that this is due to the inherent limitation of autoencoders, where the focus
on minimizing reconstruction loss can introduce slack, leading to suboptimal retention of variance
compared to methods explicitly designed to maximize it.

Despite the promising results of DEEPCAE and the successful internal testing on large datasets,
the computational complexity introduced by extending the contractive loss to multi-layer settings
across the entire encoder may pose scalability challenges for large datasets and high-dimensional
data. Future research could focus on addressing these limitations by optimizing the computational
complexity of DEEPCAE for scalability. Exploring the integration of new loss functions, including
variance maximization, or incorporating more robust feature engineering techniques could further
improve the model’s ability to retain information.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have submitted the source code necessary to re-
produce all experiments as part of the supplementary materials. Detailed descriptions of the data
pre-processing steps, assumptions, model architecture, hyperparameters, and training procedure are
provided throughout the paper, appendix, and the source code. Details on how to run the source
code are provided in the repository’s README.md file. We ran each experiment three times and
reported the average performance, particularly in terms of reconstruction performance. We ensured
the statistical significance of our results by using appropriate evaluation metrics and statistical tests.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Aamir, Nazri Mohd Nawi, Fazli Wahid, and Hairulnizam Mahdin. A deep contractive
autoencoder for solving multiclass classification problems. Evolutionary Intelligence, 14:1619–
1633, 2021.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2(1):53–58, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90014-2. URL https://www.sciencedirect.com/
science/article/pii/0893608089900142.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Benjamin Paul Chamberlain, Ângelo Cardoso, C.H. Bryan Liu, Roberto Pagliari, and Marc Pe-
ter Deisenroth. Customer lifetime value prediction using embeddings. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, pp. 1753–1762, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450348874. doi: 10.1145/3097983.3098123. URL https://doi.org/10.1145/
3097983.3098123.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16. ACM, August 2016. doi: 10.1145/2939672.2939785. URL http://dx.doi.org/
10.1145/2939672.2939785.

Nima Chitsazan, Samuel Sharpe, Dwipam Katariya, Qianyu Cheng, and Karthik Rajasethupathy.
Dynamic customer embeddings for financial service applications, 2021.

Armand Comas, Chi Zhang, Zlatan Feric, Octavia Camps, and Rose Yu. Learn-
ing disentangled representations of videos with missing data. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 3625–3635. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper files/paper/2020/
file/24f2f931f12a4d9149876a5bef93e96a-Paper.pdf.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ghazal Fazelnia, Sanket Gupta, Claire Keum, Mark Koh, Ian Anderson, and Mounia Lalmas. Gen-
eralized user representations for transfer learning, 2024. URL https://arxiv.org/abs/
2403.00584.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning
on relational databases, 2023. URL https://arxiv.org/abs/2312.04615.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

12

https://www.sciencedirect.com/science/article/pii/0893608089900142
https://www.sciencedirect.com/science/article/pii/0893608089900142
https://doi.org/10.1145/3097983.3098123
https://doi.org/10.1145/3097983.3098123
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://proceedings.neurips.cc/paper_files/paper/2020/file/24f2f931f12a4d9149876a5bef93e96a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/24f2f931f12a4d9149876a5bef93e96a-Paper.pdf
https://arxiv.org/abs/2403.00584
https://arxiv.org/abs/2403.00584
https://arxiv.org/abs/2312.04615

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir Mo-
hamed, and Alexander Lerchner. Early visual concept learning with unsupervised deep learning,
2016.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark. arXiv preprint arXiv:2210.07316, 2022. doi: 10.48550/ARXIV.2210.07316.
URL https://arxiv.org/abs/2210.07316.

M. Arthur Munson. A study on the importance of and time spent on different modeling
steps. SIGKDD Explor. Newsl., 13(2):65–71, may 2012. ISSN 1931-0145. doi: 10.1145/
2207243.2207253. URL https://doi.org/10.1145/2207243.2207253.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

OpenAI. Gpt-4 technical report, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Cur-
ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Gil Press. Data preparation: Most time-consuming, least enjoyable data science task, survey says.
Forbes, Mar 2016. URL https://www.forbes.com/sites/gilpress/2016/03/
23/data-preparation-most-time-consuming-least-enjoyable-data-
science-task-survey-says/.

Marc' aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann Cun. Efficient learn-
ing of sparse representations with an energy-based model. In B. Schölkopf, J. Platt, and
T. Hoffman (eds.), Advances in Neural Information Processing Systems, volume 19. MIT
Press, 2006. URL https://proceedings.neurips.cc/paper files/paper/2006/
file/87f4d79e36d68c3031ccf6c55e9bbd39-Paper.pdf.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin, and
Xavier Glorot. Higher order contractive auto-encoder. In Dimitrios Gunopulos, Thomas Hof-
mann, Donato Malerba, and Michalis Vazirgiannis (eds.), Machine Learning and Knowledge Dis-
covery in Databases, pp. 645–660, Berlin, Heidelberg, 2011a. Springer Berlin Heidelberg.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international
conference on international conference on machine learning, pp. 833–840, 2011b.

13

https://arxiv.org/abs/2210.07316
https://doi.org/10.1145/2207243.2207253
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://proceedings.neurips.cc/paper_files/paper/2006/file/87f4d79e36d68c3031ccf6c55e9bbd39-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/87f4d79e36d68c3031ccf6c55e9bbd39-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation, parallel distributed processing, explorations in the microstructure of cognition,
ed. de rumelhart and j. mcclelland. vol. 1. 1986. Biometrika, 71(599-607):6, 1986.

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric Ar-
chambeau. Syne Tune: A library for large scale hyperparameter tuning and reproducible re-
search. In International Conference on Automated Machine Learning, AutoML 2022, 2022. URL
https://proceedings.mlr.press/v188/salinas22a.html.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component anal-
ysis. In International conference on artificial neural networks, pp. 583–588. Springer, 1997.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of
tabular data for self-supervised representation learning. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 18853–18865. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper files/paper/2021/
file/9c8661befae6dbcd08304dbf4dcaf0db-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017. URL https://arxiv.org/abs/1706.03762.

Siyu Wang, Xiaocong Chen, Quan Z Sheng, Yihong Zhang, and Lina Yao. Causal disentan-
gled variational auto-encoder for preference understanding in recommendation. arXiv preprint
arXiv:2304.07922, 2023.

Wenjuan Wang, Xuehui Du, Dibin Shan, Ruoxi Qin, and Na Wang. Cloud intrusion detection
method based on stacked contractive auto-encoder and support vector machine. IEEE transactions
on cloud computing, 10(3):1634–1646, 2020.

Edmond Q. Wu, X. Y. Peng, Caizhi Z. Zhang, J. X. Lin, and Richard S. F. Sheng. Pilots’ fatigue
status recognition using deep contractive autoencoder network. IEEE Transactions on Instrumen-
tation and Measurement, 68(10):3907–3919, 2019. doi: 10.1109/TIM.2018.2885608.

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep
neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://proceedings.neurips.cc/paper files/paper/2012/
file/6cdd60ea0045eb7a6ec44c54d29ed402-Paper.pdf.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, and Bixiong Xu.
Learning timestamp-level representations for time series with hierarchical contrastive loss. CoRR,
abs/2106.10466, 2021. URL https://arxiv.org/abs/2106.10466.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng Dou, and Jian-Yun Nie. Retrieve anything to
augment large language models, 2023. URL https://arxiv.org/abs/2310.07554.

14

https://proceedings.mlr.press/v188/salinas22a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/9c8661befae6dbcd08304dbf4dcaf0db-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9c8661befae6dbcd08304dbf4dcaf0db-Paper.pdf
https://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper_files/paper/2012/file/6cdd60ea0045eb7a6ec44c54d29ed402-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6cdd60ea0045eb7a6ec44c54d29ed402-Paper.pdf
https://arxiv.org/abs/2106.10466
https://arxiv.org/abs/2310.07554

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 BENCHMARKING DATASETS

Table 1: List of classification datasets used to benchmark the different autoencoder variants.

Dataset Description # Instances # Features
before pre-processing after pre-processing

Adult Predict if income exceeds
$50k/yr.

48842 14 107

Bank Marketing Predict customer behaviour
based on data customer
metadata.

45211 16 46

Churn Modelling Churn prediction for bank
customers.

10000 14 2947

Customer Retention Retail Marketing effects on cus-
tomer behaviour.

30801 15 32

Shoppers Predict online shoppers pur-
chasing intention.

12330 14 20

Students Predict students’ dropout
and academic success.

4424 36 40

Support2 Predict patient outcome. 9105 42 72
Telco Customer Churn Predict behavior to retain

customers.
7043 21 47

Table 2: List of regression datasets used to benchmark the different autoencoder variants.

Dataset Description # Instances # Features
before pre-processing after pre-processing

Abalone Predicting the age of
abalone from physical
measurements.

4177 8 11

AirQuality Predict PM2.5 amount in
Beijing Air.

43824 12 15

California Housing Prices Predict price of houses in
California based on property
attributes.

20600 10 14

Parkinsons Predict UPDRS scores in
Parkinsons patients.

43824 12 15

Walmart Predict weekly store sales in
stores.

6435 6 6

15

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
https://www.kaggle.com/datasets/uttamp/store-data
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success
https://archive.ics.uci.edu/dataset/880/support2
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://archive.ics.uci.edu/dataset/1/abalone
https://www.kaggle.com/datasets/stealthtechnologies/preeeeeeee
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://archive.ics.uci.edu/dataset/189/parkinsons+telemonitoring
https://www.kaggle.com/datasets/yasserh/walmart-dataset

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 AUTOENCODER MODEL ARCHITECTURES AND HYPERPARAMETERS FOR BENCHMARK

Table 3: Detailed architecture and hyperparameters of all models used in the overall benchmark,
as well as in the CAE comparison. Hyperparameter tuning was conducted using Asynchronous
Successive Halving (ASHA). Model convergence during training was detected using automatic early
stopping when no more than 0.2% progress were made in the last 30 epochs.

Model Synonym Architecture Hyperparameters (fixed) Hyperparameters (tuned)

Standard
Autoencoder

StandardAE Single fully connected linear layer
for both encoder and decoder fol-
lowed by a TanH action respec-
tively.

- Learning rate, opti-
mized separately for
each dataset.

Deep
Contractive
Autoencoder

DEEPCAE Single fully connected linear layer
for both encoder and decoder for
the overall benchmark and two lay-
ers for the CAE comparison, each
followed by a TanH action respec-
tively.

For the CAE
comparison the
last encoder layer
that outputs the
final embed-
ding has dinput ·
compressionrate
and the first en-
coder layer’s
output dimension
is the average
between dinput
and dembedding .

Learning rate, opti-
mized separately for
each dataset. Fac-
tor λ for the contrac-
tive loss penalty term
with a minimum of
1e-8.

Stacked
Contractive
Autoencoder

StackedCAE Two CAE that are stacked on top
of each other. During training,
the contractive loss is calculated for
each encoder separately and finally
summed up to get the full loss of the
StackedCAE. All parts use a fully-
connected layer followed by a TanH
activation function.

Two CAE are
used in stacking,
where the last en-
coder that outputs
the final embed-
ding has dinput ·
compressionrate
and the first en-
coder’s output
dimension is
the average be-
tween dinput and
dembedding .

Learning rate, opti-
mized separately for
each dataset. Fac-
tor λ for the contrac-
tive loss penalty term
with a minimum of
1e-8.

Convolutional
Autoencoder

ConvAE The encoder has two 1D convolu-
tional layers followed by a fully
connected layer with a ReLU acti-
vation and another fully connected
layer with a TanH activation. The
decoder has the same in reverse
using transposed 1D convolutional
layers.

Number of chan-
nels: 32 and 64
respectively.

Learning rate, opti-
mized separately for
each dataset.

Variational
Autoencoder

VAE The encoder consists of 3 1D con-
volutional layers with ReLU acti-
vations followed by two fully con-
nected linear layers with ReLU ac-
tivations and another linear layer
without activation function. The de-
coder has 3 fully connected linear
layers, each followed by a ReLU
activation, which are then followed
by 3 transposed 1D convolutional
layers, with the first two having a
ReLU activation and the last one
having a TanH activation.

Number of chan-
nels: 32 and 64
respectively.

Learning rate, opti-
mized separately for
each dataset.

Transformer
Autoencoder

TransformerAE The encoder uses a Transformer en-
coder block followed by a linear
layer projecting to the latent di-
mension. The decoder asymmetri-
cally applies a Transformer encoder
block to the embedding, then a lin-
ear layer with a TanH activation
projecting back to the original input
size.

- Learning rate, opti-
mized separately for
each dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 AUTOENCODER BENCHMARK RESULTS ON TABULAR DATA

This Section contains the reconstruction performance normalized by KernelPCA as a non-linear
baseline and the downstream prediction performance using XGBoost normalized by the perfor-
mance using the original data. The normalization is done to account for the compressability and
the predictability in the data respectively in order to focus the comparison on the actual performance
of the different methods instead of peculiarities of the datasets. The dimensionality reduction used
in all experiments is ∼ 50% (a bit more or less depending for an odd number of features).

A.3.1 RECONSTRUCTION PERFORMANCE

Table 4: Detailed reconstruction performance measured by MSE on the test set and normalized by
the performance of KernelPCA as a non-linear baseline. These results are aggregated from 3 runs
each by the geometric mean after normalization with the best architecture bold per dataset.

Model ConvAE DeepCAE JointVAE PCA StandardAE TransformerAE
Dataset

Abalone 0.036197 0.019002 2.008874 1.000000 0.019761 5.544257
Adult 0.110526 0.007267 0.033237 1.000000 0.005416 1.082742
AirQuality 0.180395 0.362211 0.763212 1.000000 0.410198 22.147542
BankMarketing 0.013223 0.041366 0.030352 1.000000 0.051086 2.739541
BlastChar 0.014618 0.051815 0.235746 1.000000 0.032801 1.102616
CaliforniaHousing 0.113429 0.045474 0.185709 1.000000 0.043760 2.186066
ChurnModelling 0.375843 0.017928 1.027224 1.000000 0.084324 1.009939
Parkinsons 0.050406 0.028633 0.145312 1.000000 0.014828 1.213129
Shoppers 0.067997 0.043577 0.136218 1.000000 0.050750 2.245169
Students 0.021861 0.068385 0.080112 1.000000 0.303356 1.277324
Support2 0.146305 0.052456 0.458493 1.000000 0.049362 1.050818
TeaRetail 0.206707 0.077327 0.333247 1.000000 0.078757 1.616520
Walmart 0.919744 0.514398 0.937297 1.000000 0.270195 1.575301

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3.2 DOWNSTREAM PREDICTION PERFORMANCE USING XGBOOST (REGRESSION)

Detailed downstream prediction performance on regression tasks using XGBoost as a predictor,
normalized by the performance of an XGBoost predictor using the original input data as a baseline.

ConvAE
Dataset MAE RMSE

Abalone 1.132376 1.153945
AirQuality 1.721003 1.681062
CaliforniaHousing 1.623004 1.513682
Parkinsons 2.173558 2.817144
Walmart 1.267090 1.123822

DeepCAE
Dataset MAE RMSE

Abalone 0.987676 0.971155
AirQuality 1.362350 1.382708
CaliforniaHousing 1.408168 1.334347
Parkinsons 3.988678 3.954593
Walmart 1.222966 1.132243

JointVAE
Dataset MAE RMSE

Abalone 1.365242 1.302344
AirQuality 1.666696 1.665982
CaliforniaHousing 2.233703 2.006338
Parkinsons 2.962213 3.479520
Walmart 1.263175 1.142287

PCA
Dataset MAE RMSE

Abalone 1.005668 1.012301
AirQuality 1.321127 1.310630
CaliforniaHousing 1.458043 1.388065
Parkinsons 2.220364 2.475317
Walmart 1.178869 1.109217

RawData
Dataset MAE RMSE

Abalone 1.000000 1.000000
AirQuality 1.000000 1.000000
CaliforniaHousing 1.000000 1.000000
Parkinsons 1.000000 1.000000
Walmart 1.000000 1.000000

StandardAE
Dataset MAE RMSE

Abalone 0.956885 0.942567
AirQuality 1.544251 1.536671
CaliforniaHousing 1.428828 1.365434
Parkinsons 3.524651 3.548474
Walmart 1.209172 1.120310

TransformerAE
Dataset MAE RMSE

Abalone 1.468045 1.390867
AirQuality 2.147099 2.009472
CaliforniaHousing 2.985684 2.519476
Parkinsons 42.516824 32.692168
Walmart 1.237763 1.128470

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3.3 DOWNSTREAM PREDICTION PERFORMANCE USING XGBOOST (CLASSIFICATION)

Detailed downstream prediction performance on classification tasks using XGBoost as a predictor,
normalized by the performance of an XGBoost predictor using the original input data as a baseline.

Table 5: Detailed downstream prediction performance benchmark using embeddings for ConvAE

Dataset Accuracy F1-Score Precision Recall

Adult 0.929678 0.913346 0.918707 0.929678
BankMarketing 0.979011 0.971462 0.968239 0.979011
BlastChar 0.997085 0.997553 0.998359 0.997085
ChurnModelling 0.942164 0.923247 0.922109 0.942164
Shoppers 0.988376 0.987051 0.986287 0.988376
Students 0.921477 0.906162 0.903675 0.921477
Support2 0.920583 0.920699 0.919202 0.920583
TeaRetail 0.989646 0.988597 0.990347 0.989646

Table 6: Detailed downstream prediction performance benchmark using embeddings for DeepCAE

Dataset Accuracy F1-Score Precision Recall

Adult 0.970205 0.967522 0.967207 0.970205
BankMarketing 0.982305 0.975414 0.972976 0.982305
BlastChar 1.019614 1.015770 1.018335 1.019614
ChurnModelling 0.976173 0.972559 0.972565 0.976173
Shoppers 0.996083 0.993851 0.993530 0.996083
Students 0.939219 0.928102 0.922177 0.939219
Support2 0.930580 0.930654 0.929096 0.930580
TeaRetail 0.999370 0.999127 0.999447 0.999370

Table 7: Detailed downstream prediction performance benchmark using embeddings for JointVAE

Dataset Accuracy F1-Score Precision Recall

Adult 0.959662 0.956317 0.955630 0.959662
BankMarketing 0.984841 0.975484 0.973440 0.984841
BlastChar 0.993764 0.986410 0.989725 0.993764
ChurnModelling 0.955355 0.939221 0.939243 0.955355
Shoppers 0.976478 0.973899 0.972452 0.976478
Students 0.863138 0.843025 0.836567 0.863138
Support2 0.710556 0.577013 0.484665 0.710556
TeaRetail 0.986997 0.985919 0.987166 0.986997

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Detailed downstream prediction performance benchmark using embeddings for PCA

Dataset Accuracy F1-Score Precision Recall

Adult 0.989686 0.987487 0.988160 0.989686
BankMarketing 0.987527 0.980019 0.978381 0.987527
BlastChar 0.986332 0.977079 0.982530 0.986332
ChurnModelling 0.990686 0.984750 0.990024 0.990686
Shoppers 0.975901 0.974295 0.973405 0.975901
Students 0.975969 0.971726 0.968566 0.975969
Support2 0.935426 0.935604 0.934297 0.935426
TeaRetail 1.000669 1.000591 1.000704 1.000669

Table 9: Detailed downstream prediction performance benchmark using RawData

Dataset Accuracy F1-Score Precision Recall

Adult 1.000000 1.000000 1.000000 1.000000
BankMarketing 1.000000 1.000000 1.000000 1.000000
BlastChar 1.000000 1.000000 1.000000 1.000000
ChurnModelling 1.000000 1.000000 1.000000 1.000000
Shoppers 1.000000 1.000000 1.000000 1.000000
Students 1.000000 1.000000 1.000000 1.000000
Support2 1.000000 1.000000 1.000000 1.000000
TeaRetail 1.000000 1.000000 1.000000 1.000000

Table 10: Detailed downstream prediction performance benchmark using embeddings for Standar-
dAE

Dataset Accuracy F1-Score Precision Recall

Adult 0.973385 0.971705 0.970977 0.973385
BankMarketing 0.981957 0.974102 0.971464 0.981957
BlastChar 1.006581 1.006332 1.007093 1.006581
ChurnModelling 0.984983 0.971822 0.978060 0.984983
Shoppers 0.984788 0.983711 0.982997 0.984788
Students 0.953892 0.943782 0.939768 0.953892
Support2 0.916583 0.917243 0.916844 0.916583
TeaRetail 0.997522 0.997200 0.997544 0.997522

Table 11: Detailed downstream prediction performance benchmark using embeddings for Trans-
formerAE

Dataset Accuracy F1-Score Precision Recall

Adult 0.874236 0.758505 0.668993 0.874236
BankMarketing 0.976538 0.921295 0.870823 0.976538
BlastChar 0.953328 0.823488 0.723387 0.953328
ChurnModelling 0.918418 0.821588 0.732518 0.918418
Shoppers 0.927442 0.848716 0.781538 0.927442
Students 0.766732 0.621802 0.528587 0.766732
Support2 0.705916 0.571017 0.478356 0.705916
TeaRetail 0.826057 0.732774 0.658180 0.826057

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.4 CAE COMPARISON: ADDITIONAL BENCHMARKS

This subsection provides additional detail on the comparison of a stacked CAE to DEEPCAE in-
cluding a comparison on the MNIST dataset (on which the CAE was benchmarked against other
autoencoder variants in the paper where it was proposed (Rifai et al., 2011a)). This subsection
also provides details on hyperparameters and downstream performance for the datasets used in our
main benchmark as listed in Appendix A.1. Beyond that, we provide training times for DEEPCAE,
StackedCAE, StandardAE and KernelPCA to discuss the training-cost to performance trade-off that
should be considered when using DEEPCAE in a production setting.

A.4.1 CONTRACTIVE AUTOENCODER BENCHMARK ON MNIST

Hyperparameters This is the configuration used for both DEEPCAE and the StackedCAE in the
comparison on the MNIST dataset.

Parameter Value
Layer configuration4 1024, 768, 512
Learning rate 1.7× 10−4

Number of training epochs 70

Table 12: Model configuration and training parameters for both DEEPCAE and StackedCAE when
tested on MNIST.

The factor of the squared Frobenius norm of the Jacobian was customized for the stacked and non-
stacked implementation to match roughly for a comparable amount of regularization.

CAE comparison on downstream performance CAE comparison on MNIST In advance of this
comparison, optimal hyperparameters (see Appendix A.4.1) were determined by automatic hyper-
parameter optimization using a Bayesian Optimizer by Salinas et al. (2022).

Table 13: MSE between the reconstruction and the original input on the MNIST dataset. Best
performance is underlined, our DEEPCAE model is in bold.

Model Test error Training error

DEEPCAE 1.09e−3 ±2.28e−11 1.08e−3 ±4.82e−13

StackedCAE 1.28e−3 ±1.42e−11 1.27e−3 ±2.48e−12

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.4.2 CONTRACTIVE AUTOENCODER ON MAIN BENCHMARK

CAE training time comparison We ran the training on all 13 datasets of our main benchmark (cf.
Appendix A.1) on an AWS EC2 G6 12xlarge instance and recorded the time it takes to train each
model. This instance has 48 vCPUs with 192GB of memory on which KernelPCA was run and 4
Nvidia L4 GPUs (only one of which was used) on which all the other model were trained.

Model Mean Sum Median
DEEPCAE 379.898 5318.575 163.092
PCA 610.688 8549.637 43.226
StackedCAE 209.424 2931.939 166.812
StandardAE 144.487 2022.811 105.452

Table 14: Comparison of training runtime in seconds aggregated across datasets.

Dataset DeepCAE PCA StackedCAE StandardAE
Abalone 64.571754 1.574754 91.712114 57.058129
Adult 180.479015 3454.350542 510.017265 367.365018
AirQuality 358.648072 483.217805 543.527262 215.523452
BankMarketing 270.102090 3462.096079 265.821518 228.812137
BlastChar 104.311800 24.381219 165.118584 88.736802
CaliforniaHousing 197.238101 57.737437 308.244799 269.509454
ChurnModelling 3071.532588 76.326727 131.427339 118.550694
Parkinsons 322.272196 9.473348 194.684602 92.139630
Shoppers 145.704254 68.812643 185.583005 142.062517
Students 113.253082 3.664414 120.685410 49.178837
Support2 81.931536 28.714640 108.195054 91.094806
TeaRetail 245.165447 873.916772 168.504457 194.547937
Walmart 124.583019 4.098899 124.324791 92.353986

Table 15: Comparison of training runtime in seconds for each dataset.

CAE comparison on downstream performance The following plots show the performance of
the corresponding XGBoost predictors when using the embeddings from DEEPCAE compared to
embeddings from a stacked CAE, KernelPCA and a XGBoost predictors trained on the original data
that did not go through any embedding model. The results clearly show how DEEPCAE outperforms
a stacked CAE on both classification and regression downstream tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 6: Comparison of stacked CAE and DEEPCAE in terms of downstream classification perfor-
mance, when using the corresponding embeddings as the information source. Results are normalized
by the performance of a predictor trained on the raw data as a baseline and aggregated by the geo-
metric mean. Higher is better.

Figure 7: Comparison of stacked CAE and DEEPCAE in terms of downstream regression perfor-
mance, when using the corresponding embeddings as the information source. Results are normalized
by the performance of a predictor trained on the raw data as a baseline and aggregated by the geo-
metric mean. Lower is better.

23

	Introduction
	Preliminaries
	Contractive Autoencoders

	Related Work
	Tabular data embedding
	Entity embedding

	Methodology
	DeepCAE: Improvements to multi-layer CAE
	Entity Embedding Framework

	Experiments & Results
	Autoencoders Benchmark
	Reconstruction performance
	Downstream performance using embeddings

	DeepCAE vs. StackedCAE

	Discussion
	Differences in reconstruction and downstream performance
	Inverse relationship between model size and performance
	Superiority of DeepCAE

	Conclusions
	Appendix
	Benchmarking Datasets
	Autoencoder Model Architectures and Hyperparameters for Benchmark
	Autoencoder Benchmark Results on Tabular Data
	Reconstruction Performance
	Downstream Prediction Performance using XGBoost (Regression)
	Downstream Prediction Performance using XGBoost (Classification)

	CAE Comparison: Additional benchmarks
	Contractive autoencoder benchmark on MNIST
	Contractive autoencoder on main benchmark

