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Abstract

User behavior data collected through surveys is foundational to applications in
AdTech, personalization, and consumer intelligence. However, the structured na-
ture of survey fielding governed by routing logic, platform constraints, and user
fatigue results in pervasive missingness that is non-random and logic-driven. These
gaps hinder the effectiveness of downstream systems that rely on user representa-
tions. We present a Transformer-based framework for imputing missing responses
in multi-choice behavioral survey data. Our model encodes survey responses as flat-
tened multi-hot vectors with associated binary masks indicating fielded questions.
Through column-wise attention and mask-aware supervision, the model learns
high-fidelity imputations while honoring routing logic. To enforce plausibility, we
apply strict logical enforcement that filters predictions based on domain-aligned
consistency rules. Empirically, we evaluate imputation performance under syn-
thetic masking across increasing sparsity levels, demonstrating robust F1 and recall
even in highly incomplete settings. Our ablation studies confirm the importance of
structured attention and supervision masking. We further conduct a responsible
imputation audit, assessing fairness across age, gender, and ethnicity- capturing
both model fit and outcome parity. The results reveal stable performance across
subgroups, indicating suitability for equitable industrial deployment. Our approach
closes a critical gap between modeling sophistication and real-world deployment
constraints in survey data pipelines, setting a precedent for responsible and scalable
imputation.

1 Introduction

Survey-based data collection is a cornerstone of user behavior modeling across a wide range of
industries, including AdTech, market research, political polling, and personalized recommendations.
Unlike passively logged behavioral data, survey responses offer a direct, interpretable lens into user
attitudes, preferences, and intentions; all of which are critical for building robust downstream systems.
In large-scale platforms, surveys are routinely deployed to tens of millions of users, capturing granular
traits ranging from media habits and product affinity to lifestyle preferences and purchasing intent.

However, despite their interpretability, survey datasets are often riddled with structured missingness.
Users are typically shown only a subset of the total questionnaire due to a combination of factors
including routing logic, fatigue management, regulatory constraints, and business-specific survey
design. For instance, a user’s answer to one question may gate whether subsequent questions are
shown; others may be shown only in specific regions or demographics. The resulting dataset, once
transformed into a machine-readable tabular format, contains a sparse binary vector for each user,
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where positive entries indicate selected responses and the remaining entries are either implicitly unob-
served or explicitly not shown. Importantly, this missingness is highly non-random and logic-driven
often violating assumptions made by traditional imputation techniques which assume randomness in
the missing data.

This structured sparsity presents a fundamental challenge for modeling. High-dimensional multi-
hot vectors, often with thousands of possible response keys, must be interpreted despite having
only a small fraction of positive entries per user. Moreover, any system designed to fill in these
missing responses or impute behavior must not only generalize effectively but also adhere to logical
and regulatory constraints. For example, it would be unacceptable for a model to infer alcohol
consumption for a pregnant woman, or to predict mutually exclusive selections in a single-choice
question as simultaneously true.

To address these challenges, we propose a Transformer [12]-based architecture specifically tailored
for imputation over structured survey data. Unlike standard sequence models, our formulation treats
survey responses as unordered feature sets and introduces column-wise attention to capture inter-
question relationships. A key feature of our method is masked supervision; the model is trained only
on entries for which responses were observed, avoiding the pitfalls of noisy or unverifiable gradients.
In addition, we incorporate a causally aligned mechanism to enforce consistency, prevent logically
invalid outputs, and align predictions with downstream constraints.

The contributions of this work are twofold. First, we present an imputation framework that is
compatible with survey data collection logic, scalable to massive production workloads, and robust
to extreme sparsity. We evaluate the model under both natural and synthetic missingness settings,
introducing controlled mask perturbations to test generalization. Second, we introduce a responsible
audit framework that evaluates fairness and consistency across sensitive user subgroups. Taken
together, these contributions lay the foundation for scalable and fair imputation systems that can
serve as infrastructure for a range of applications in behavior modeling and personalization that rely
on surveys.

2 Related Work

Classical statistical approaches such as mean/mode imputation, regression-based filling, and k-nearest
neighbors [3] have long been used for dealing with missing values in survey datasets. Among the
most commonly used is Multiple Imputation by Chained Equations (MICE) [[11], which performs
conditional modeling for each variable. It assumes that data is missing at random and that joint
distributions can be reliably estimated under that assumption. However, in our setting, where
missingness is governed by deterministic survey logic and routing constraints such assumptions are
violated, often leading to biased or unreliable imputations. Reference [10] extends the idea by using
random forests to iteratively impute missing values. While it improves robustness and is suitable
for mixed-type data, it scales poorly to high-dimensional sparse settings and still cannot incorporate
logical dependencies or feature hierarchies inherent in survey structures.

Deep learning has introduced more flexible imputation techniques capable of modeling complex
dependencies. GAIN [13] applies adversarial training to estimate missing data by treating imputation
as a data generation task. While powerful, GAIN requires careful training to stabilize the generator-
discriminator dynamics and performs suboptimally in sparse settings with deterministic missingness
patterns. HI-VAE [8] combines VAEs with specialized likelihoods for categorical, ordinal, and
continuous data. It provides better support for heterogeneous data types but assumes full input during
training and does not directly support structured supervision through masking, making it difficult to
apply in our context. More recently, VIME [14]] explores self and semi-supervised imputation, but it
targets dense tabular inputs and does not generalize well to user level logic-based sparsity.

Transformers have seen growing adoption in non-sequential domains, especially for tabular data.
TabTransformer [7] embeds categorical variables and applies attention over them in supervised
settings. SAINT [9] extends this by applying inter-column attention in a row-wise fashion, and FT-
Transformer [6] integrates numerical and categorical features through learned tokenization. However,
most of these models assume full input availability at train time and are focused on supervised
prediction tasks, not imputation. Moreover, they do not explicitly model missingness or apply
masking mechanisms that distinguish observed vs. unobserved fields. SAITS [4]], by contrast, applies
Transformers to time-series imputation by modeling the temporal and feature-wise relationships



jointly. While SAITS does leverage masking and is tailored for missing data, its assumption of
temporal ordering does not hold for our use case involving binary multi-hot survey vectors with
no natural sequence. Our model draws on this line of work but retools the attention mechanism
for unordered, sparse, high-dimensional survey data, explicitly incorporates structured supervision
through masking, and introduces a decoupled causal layer to enforce logic.

There is growing recognition that imputation models can amplify existing biases when errors dis-
proportionately affect protected groups. Reference [5] discuss fairness in algorithmic outcomes and
suggest that pre-processing stages, including imputation, warrant scrutiny. Reference [2] conducted
a comprehensive study analyzing how various imputation techniques impact fairness in machine
learning. Their findings indicate that the choice of imputation method can substantially alter fairness
outcomes, emphasizing the need for careful selection of imputation strategies in fairness-critical
applications.

3 Problem Formulation

In large-scale survey deployments, each user is exposed to a personalized subset of questions based on
routing logic, gating conditions, or experimental design. As a result, the final dataset is characterized
by structured, non-random missingness. To model this appropriately, we formalize the data and
imputation task as follows.

Let Q = {q1, g2, ---, gm } be a set of survey questions, where each question g; is associated with a set
of possible response options O = {01, 02, ...0; }. In our survey design, depending on the nature of
the question, the response type can fall into one of three categories - single, multi and binary select.
For single select, the user is allowed to select exactly one response (e.g., "Which streaming platform
do you use most?"). For multi-select questions, the user may select one or more responses (e.g.,
"Which types of media do you consume weekly?") and for binary select, the question is encoded as a
presence/absence of a single response key, i.e., a missing selection is interpreted as the complement
(e.g., "Do you drink energy drinks?").

Each response option across all questions is assigned an unique key. Let the total number of response
keys across all questions be D. These keys are flattened into a binary response vector z; € {0, 1}
for each user ¢, where each entry corresponds to whether the user selected the associated option. In
addition, each user is associated with a binary mask vector m; € {0, 1}D , where m; j, = 1 indicates
that the user was shown the question associated with key k, and m; ;, = O indicates that the question
was not asked. This distinction is crucial, as it indicates

e If m;;, = 1and x; ;, = 1, the user selected the response.
e If m; , = 1 and z; ;, = 0, the user saw the response but did not select it.

* If m; ;, = O the user was not shown the question, and x; j, is unknown.

This setup leads to a partially observed multi-hot representation per user, where meaningful super-
vision is possible only at the positions where m; ; = 1. The imputation objective is to predict the
full response vector 2; € {0, 1}, estimating the likelihood of each potential response, including
those for which m; ;, = 0. Importantly, the model must learn from observed user behavior to impute
missing entries in a logically and contextually consistent manner. The task is framed as a supervised
learning problem, where the model learns to predict x; j, only for dimensions where m; ;, = 1, and
generalizes this behavior to unseen portions of x; ;. (Where m; j, = 0) during inference.

4 Methodology

Our imputation model is designed to operate over structured survey data represented in a flattened,
multi-hot encoding format. Each user is mapped to a high-dimensional binary vector indicating which
response keys were selected. Due to survey routing logic, the majority of entries are structurally not
observed rather than simply unselected. A depiction of the data collection strategy is shown in Fig
The corresponding binary mask indicates which entries were shown to the user. Our architecture
processes this sparse binary input using a masked, noise-regularized Transformer framework with a
column-wise attention mechanism and causally-aligned output processing.
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Figure 1: Illustration of the data collection. Users respond to a subset of questions (K) drawn from
a larger survey, with selections made from categorical response options. These are flattened into a
multi-hot binary vector representing selected and unselected responses. Aggregated across users, this
produces a sparse binary matrix of shape N x D where N are the total users and D are the total
number of response keys.

4.1 Input Representation and Masking

Let z € {0,1} denote the input vector for a given user, where D is the total number of unique
response keys in the survey. Each position z; = 1 indicates that the user selected the associated
response key and z; = 0 indicates that it was not selected or not shown. To distinguish between these
two cases, we introduce a binary mask vector m € {0, 1}%, where m; = 1 means the corresponding
question was asked and a valid label exists for z;, while m; = 0 denotes unfielded positions. The
imputation objective is to predict the values of unobserved entries (where m; = 0), while training is
conducted only on known entries (where m; = 1) to ensure validity of supervision.

4.2 Embeddings and Self-Attention

Each response key is associated with a unique, learnable embedding vector. We define an embedding
table £ € RP*¢, where each row E; corresponds to a response key and e is the embedding dimension.
These embeddings are looked up for all response keys, preserving consistent input length and allowing
the model to learn inter-key dependencies even among unobserved entries. The resulting sequence of
embeddings is passed into a stack of Transformer encoder blocks, where attention is computed across
columns, not temporal or positional indices. This column-wise attention enables the model to capture
latent semantic relationships across the entire response space. This workflow is shown in Fig[2]
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Figure 2: Model architecture. A user’s binary input vector = is embedded via a learnable embedding
table F. Gaussian noise is injected both before and after the transformer block (G, G2) to encourage
robustness. The output is filtered using the mask vector m to compute loss only on valid entries. A
logic enforcement layer applies logical rules to convert probability vectors into final imputed outputs.

4.3 Noise Injection

To improve generalization in the presence of extreme sparsity and encourage resilience to input
variability, we incorporate Gaussian noise injection at two stages of the model: pre-attention and
post-attention. Gaussian noise (i1 is added to the embeddings before they enter the transformer
block. This corruption simulates uncertainty in the input space and forces attention heads to rely
on distributed cues. After the computation, another noise term G is added to the attention outputs
before they proceed to the prediction head. This second injection helps regularize contextualized
representations and smooths the learning signals.

4.4 Mask-Aware Supervision

Supervision is applied only in dimensions where valid ground truth is available. During training, we
compute the binary cross-entropy (BCE) loss over the positions where m; = 1, ensuring that the
model is not penalized for predictions on entries that were never shown to the user. Formally, the loss
is given by:
D
L= "m;-BCE(y:, i) (1)

i=1

where y; € {0,1} is the true label and ¢; € {0,1} is the model’s prediction. This masked loss
encourages focused learning and avoids introducing noise from unverifiable labels. It also aligns
tightly with the survey routing logic, as the model is only asked to reconstruct the subset of behavior
that was actually observed.



4.5 Prediction and Causal Alignment

At inference time, the model produces a probability vector ; € [0, 1]¥ via sigmoid activation. To
align with downstream business constraints and enforce logical consistency, a logical enforcement
layer is applied to the predictions. This logic is a bayesian optimization algorithm that aims to match
the predicted distribution with the observed distribution for each response key. For single-select
questions, only the highest-scoring response is retained; for multi-select and binary questions, an
adaptive threshold is used to determine inclusion. This process is critical to ensure that the imputations
remain interpretable and consistent for downstream consumption.

S Experiments and Evaluations

In high-dimensional survey data, where the label space is dominated by the absence of responses,
the choice of evaluation metrics must be made with care. While metrics such as accuracy and area
under the ROC curve (AUC) are commonly used in binary classification tasks, they can present a
misleading picture in sparse multi-hot settings [1] such as ours. Hence for our experiments, we report
precision, recall and F1-score. The results are evaluated on a held-out dataset of ~ 3500 users after a
80,10,10 train/test/validation split of the dataset. Furthermore, the models were trained for 10 epochs
(in all experiments) with repeat mode to prevent data exhaustion.

5.1 Synthetic Masking of Labels

To evaluate the robustness of our model under increasingly sparse supervision, we design a synthetic
masking experiment that artificially hides a fraction of the already limited labeled responses in the
data. It is important to note that the underlying dataset is inherently sparse due to survey routing
logic; most questions are not shown to each user, and the observed labels comprise only a small
subset of the total response space. In this experiment, we apply additional random masking on top of
that existing sparsity to simulate even more aggressive missingness.

Specifically, for each user vector x, we select a random subset where m; = 1 i.e., where a question
was shown and the response is known; and set those values to zero. This masking is performed
at rates of 15%, 30%, and 50%, representing increasingly constrained test-time observation. The
no-mask setting corresponds to evaluation on the original dataset, without synthetic masking, but still
reflects the natural sparsity of fielded responses. Table [[| summarizes these findings.

Table 1: Performance metrics under varying levels of synthetic masking applied to observed labels
during evaluation. Note that these masking rates are applied on top of the already sparse label space
due to survey routing logic.

Setting (% of Masking) Precision Recall F1

50 0.9792 0.2576  0.4079
30 0.9573 0.6209 0.7532
15 0.9279 0.7448 0.8263

0 (No artificial mask) 0.8859 0.8121 0.8474

As the masking percentage increases, we observe a consistent rise in precision and a corresponding
drop in recall and F1. This trend reveals the model’s increasing conservatism under high uncertainty.
It becomes less willing to make positive predictions, and hence makes fewer mistakes, but also misses
more true positives. At 50% masking, recall deteriorates sharply, lowering the F1 score despite very
high precision.

This pattern is an expected and informative outcome. It indicates that the model maintains high
confidence in its predictions when label availability is abundant but degrades gracefully as available
supervision decreases. In practical terms, this result demonstrates robustness under conditions where
different surveys vary in depth and routing logic. It also reinforces the challenge of imputing long-tail
behaviors with little to no supervision.



Table 2: Ablation results for two core model components: transformer and mask-aware supervision.

Ablation
Setting Precision Recall Fl1

I* + MP 0.8832 0.7706  0.8231
I+T¢ 0.8308 0.6962  0.7575
I+T+M 0.8859 0.8121 0.8474
2] defines the base model

PM represents masked supervision

°T represents transformer block

5.2 Ablation: Self-Attention & Masked Supervision

To evaluate the contribution of column-wise attention to imputation performance, we conduct an
ablation in which the transformer block is removed from the architecture. Instead of computing
contextualized representations via feature interactions, each embedded response key is passed through
a shared MLP in isolation, without attending to other responses. This setup eliminates the model’s
ability to model co-occurrence patterns or structural dependencies across different survey responses.
It serves as a test of whether the architecture benefits from learning latent inter-feature semantics.
We evaluated this variant using standard imputation metrics under a fixed thresholding regime (0.5
cutoff), and compared it against the full model. Findings are presented in Table[2]

The ablated model achieves reasonably high precision, but recall drops notably compared to the
full model, leading to a lower overall F1 score. This indicates that without column-wise attention,
the model becomes more conservative. It is still able to make correct positive predictions, but
is unable to recover as many true positives. In effect, the model lacks the context needed to
confidently activate less obvious or indirectly related behaviors. This result confirms that column-
wise attention is a meaningful contributor to performance in this setting. By enabling the model to
learn associations between otherwise distant or structurally unrelated response keys, attention allows
for richer imputations, particularly in the presence of high-dimensional sparsity.

To understand the role of mask-aware supervision in guiding model learning, we ablate this mechanism
by training the model on all entries in the input vector x, regardless of whether a label was observed.
In this variant, the loss is computed across the entire response space, treating all unasked questions
(where m; = 0) as having meaningful supervision targets. This setting deviates from the logic-aware
approach used in the full model, where supervision is restricted only to entries that were explicitly
shown to the user during the survey. Although the ablated variant leverages more data points during
training in a naive sense, it introduces noise and label ambiguity by treating structurally missing
entries as valid targets.

This variant suffers the most pronounced performance drop among the ablations. Both precision and
recall degrade, and F1 is substantially decreased. These results confirm that ignoring the supervision
mask during training injects noise into the learning process. The model attempts to predict values
for entries with unknown ground truth, effectively confusing absent data. The lowered precision and
recall suggest that this leads to overfitting on unreliable targets and under performance on valid ones.
This ablation highlights the importance of aligning the learning objective with the known structure of
the data collection process. Masked supervision not only respects the logic of survey fielding, but
also acts as a safeguard against spurious correlations and label noise.

6 Responsible Imputations

In high-impact industrial applications, particularly those involving user behavior modeling for seg-
mentation and personalization, the integrity of model predictions must be examined not only through
the lens of performance metrics but also through fairness and representational equity. To that end,
we conducted a dedicated fairness audit of our imputation model grounded in two distinct but com-
plementary perspectives of responsibility: fit-based responsibility and outcome-based responsibility.
Table 3] summarizes the sample sizes for each subgroup included in the fairness audit. The analysis
was conducted on a subset of approximately ~40,000 users.



Table 3: Sample sizes of each subgroup used in the fairness audit. These statistics provide context for
interpreting group-level performance and error metrics.

Group Sub-Group Counts
18-24 658
25-34 1186
Age Group 35-44 1542
45-54 1447
55-64 1337
65+ 1254
Gender Male 3404
Female 4020
Asian 466
Black 1247
Hispanic 912
Ethnicity Middle Eastern/ North African 52
Native American 261
White 5270
Other 120
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Figure 3: Fairness audit. Top: average cross-entropy loss with error bars for age buckets, ethnicity
categories, and gender. Bottom: group-wise precision, recall, and F1 scores. The audit captures
both fit-based responsibility (via cross-entropy) and outcome-based responsibility (via classification
metrics).



Fit-based responsibility emphasizes that the model should demonstrate equitable learning behavior
across subgroups. That is, its ability to fit observed data, to correctly learn from and reconstruct
user responses, should not vary substantially depending on user identity attributes such as gender,
age, or ethnicity. We operationalize this by computing the average cross-entropy loss for each group,
along with its margin of error. This analysis, shown in Fig [3|revealed minor disparities. Younger
users exhibited slightly higher cross-entropy values compared to older users, and some ethnicity
subgroups had marginally elevated error, particularly those with smaller sample sizes. However, none
of these differences crossed thresholds that would suggest structural unfairness or bias. The margins
of uncertainty (£0.005) around these values further confirmed that observed variations were within
the bounds of sampling noise rather than indicative of model prejudice.

In parallel, we conducted an outcome-based responsibility analysis, which evaluates how well-
calibrated the model is across demographic lines. Here, the focus shifts from learning effectiveness
to the expected quality of outcomes. We quantified this using precision, recall, and F1 scores
disaggregated across these subgroups. The results indicate consistently high performance across the
board. For instance, gender-wise comparisons showed near-identical F1 scores for male and female
users, with both groups exhibiting strong and balanced precision and recall. A similar pattern held
across age bands, where older users achieved marginally higher F1 scores, potentially reflecting more
stable or habitual response patterns. Ethnicity-based analysis revealed no group falling below parity
in imputation quality, with F1 scores across groups ranging within a narrow and acceptable band.

Together, these two lenses provide a multidimensional view of fairness. While fit-based metrics
confirm that the model learns equally well from all segments of the population, outcome-based
measures assess whether the model’s predictions carry different levels of confidence or reliability
across those same segments. Integrating both into our audit reflects a comprehensive and responsible
approach to fairness in model evaluation, one that goes beyond surface-level parity to probe the deeper
mechanics of equity in learning and inference. Our fairness analysis shows no evidence of systematic
disadvantage for any group. The model appears to generalize equitably, and any minor disparities
observed are well within acceptable statistical variance. These findings reinforce the viability of
deploying the model in production settings while also underscoring the importance of continual
fairness monitoring, especially as the model encounters new populations or adapts to evolving data
distributions over time.

7 Conclusion and Future Work

In this work, we presented a logic-aware imputation framework tailored for structured survey response
data; a uniquely sparse and high-dimensional domain ubiquitous in behavioral modeling for industrial
applications such as AdTech, personalization, and consumer intelligence. By framing the imputation
problem as a supervised task over masked binary labels and treating user responses as unordered,
multi-hot vectors, we designed a Transformer-based model architecture that respects the structural
and operational realities of survey data collection.

The proposed model introduces multiple innovations in the field to handle these challenges: column-
wise attention for learning inter-response dependencies, mask-aware supervision that aligns with
routing logic, Gaussian noise injection for robustness, and a causality layer that enforces logical
and business constraints post-inference. Through experimentation, we demonstrated the model’s
effectiveness under synthetic masking regimes, outperforming strong ablations and naive baselines.
Our responsible audit further validated the approach along both fit-based and outcome-based axes,
revealing equitable performance across key groups.

While these results establish a strong foundation, several promising directions remain. The current
model does not explicitly capture causal dependencies between responses; incorporating structural
priors or causal graph constraints could improve coherence and reduce over-imputation. Future work
could explore differentiable constraint learning to internalize consistency within the model itself.
Finally, our framework could be extended to semi-supervised or multitask settings, where imputed
outputs directly inform downstream classifiers or audience definitions. Altogether, this work lays the
groundwork for responsible, scalable, and interpretable survey imputations enabling better behavioral
understanding while maintaining fairness and logical integrity.
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A Experiments & Implementation Details

Model is implemented in TensorFlow and trained using the Keras functional API. The model consists
of standard layers - embeddings, dense, multi-head attention, and a prediction head with dynamic
masking.

The implementation details are given below.

* Model Size: ~ 355 million parameters
* Optimizer : Adam with default settings of 51 = 0.9, 82 = 0.99, and learning rate of 1e — 03.
* Loss: Binary Cross Entropy

* Hyperparameters : Included parameters like activation function for dense layers, gaussian
noise (G & G2) and attention heads. The choices were carefully determined during research,
and hyperopt tuning library was used to find the optimal values for training.
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e Batch Size: 128

* Epochs: Trained to 30 epochs with training_steps_per_epoch = 1000 and
validation_steps_per_epoch = 100. The data was loaded with repeat enabled to prevent
data exhaustion; shuffle was turned on to discourage any ordering.

* Hardware: Model was trained for 4 hours on a single A10G instance GPU using AWS Cloud
Infrastructure.

For each of the experiments, we used the same hardware configuration as used during training. Each
experiment was trained to epochs in ~ 1 hour. The instance we used lists the following configuration.
* Memory : 128 GB
* Storage : 900 GB
* GPU Memory : 24 GB
e vCPUs : 32
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the core contributions: a
Transformer-based model tailored for sparse survey data and fairness auditing. These
claims align well with the method and experiments presented in the paper. Aspirational
goals are set aside for future work. There’s no overclaiming, and all major results support
the original scope.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We openly acknowledge several limitations. We highlight that while the model
performs well under synthetic masking, it does not address time-evolving behavioral drift,
which is deferred to future work. Additionally, the business thresholding layer is treated
as a post-processing step and not learned jointly, which may constrain flexibility. Fairness
analysis is based on self-reported demographics, which introduces potential sampling bias
and labeling limitations. These disclosures reflect a responsible and transparent presentation
of the model’s current boundaries.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is primarily empirical in nature and does not propose formal
theoretical results or proofs. Its focus lies in the design, implementation, and evaluation
of a Transformer-based imputation system for industrial survey data. While it presents
architectural innovations and extensive experimental validations, it does not include formal
theorems, assumptions, or mathematical proofs that would warrant evaluation under this
criterion.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the data pre-processing, problem
formulation, model architecture, training setup, and evaluation methodology, sufficient for
reproduction of the main experimental results. It specifies the masking regimes, ablation
configurations, fairness evaluation dimensions, and the use of controlled corruption (noise
injection) during training. Though code and data are not explicitly released, the paper does
not rely on proprietary elements that are undisclosed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The paper does not provide open access to the dataset or source code. Due to
the proprietary nature of the user behavior survey data maintained under business agreements,
the dataset cannot be released publicly.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper outlines training/test split strategy, masking percentages, ablation
designs, and evaluation metrics. Implementation details are provided in the appendix to
support reproducibility.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and standard deviations in its responsible imputa-
tion section, specifically across demographic groups for both fit-based (cross-entropy) and
outcome-based (F1, precision, recall) metrics. These are presented alongside subgroup sizes,
providing transparency into the statistical robustness of the evaluations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper notes training was conducted using GPU-enabled machines with
sufficient memory to handle large-scale survey data, and model efficiency is discussed in the
context of industrial deployment. Exact details are presented in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper adheres to the NeurIPS Code of Ethics by ensuring privacy-safe
handling of user survey data, avoiding misuse through responsible modeling, and conducting
fairness audits across demographic groups.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not explicitly discuss societal impacts, either positive or
negative.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of high-risk models or datasets, nor
does it describe safeguards for such cases.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not explicitly reference or reuse any third-party code, data, or
models requiring attribution or license disclosure.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are being introduced or released as part of this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve any crowdsourcing experiments or direct interaction
with human subjects. All analyses are conducted on anonymized survey data.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve direct data collection from human subjects or any
experimental interaction that would require informed consent or IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not use LLMs as a component of its core methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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