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Abstract. Image registration is a fundamental task in medical image
analysis. Many deep learning based methods use multi-label image seg-
mentations during training to reach the performance of conventional al-
gorithms. But the creation of detailed annotations is very time-consuming
and expert knowledge is essential. To avoid this, we propose a weakly
supervised learning scheme for deformable image registration that uses
bounding boxes during training. By calculating the loss function based
on these bounding box labels, we are able to perform an image registra-
tion with large deformations without using densely labeled annotations.
The performance of the registration of inter-patient 3D Abdominal CT
images can be enhanced by approximately 10% only with little annota-
tion effort in comparison to unsupervised learning methods. Taken into
account this annotation effort, the performance also exceeds the perfor-
mance of the label supervised training.

Keywords: deformable image registration · weak supervision · bound-
ing box supervision.

1 Introduction

Medical image registration is the process of the alignment of the anatomical
structures of two or more images in order to be able to do follow up studies,
image-guidance or to plan a treatment. Deep learning methods have become
increasingly important. They have demonstrated low computation times and
are promising to enable real time registration approaches. For the case of brain
image registration [1], which only require small deformation, already satisfac-
tory results could be achieved. The registration of images of highly deformable
body regions, such as the abdominal region or thorax are, due to the respiration
or digestion, more complex and still often solved with conventional algorithms
[2, 3]. Deep learning methods have started to address the challenge of handling
large deformations (for example in the Learn2Reg Challenge, cf. learn2reg.grand-
challenge.org) [4, 5]. Mok et al. [6] use Laplacian pyramids to solve the registra-
tion in a coarse-to-fine scheme inspired by classical algorithms. They show that
label supervision substantially increases the registration accuracy, which is also
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shown by Siebert et al. [7]. In image segmentation, weak label supervision has
already gained interest. Rajchl et al. [8], for example, use an extension of the
GrabCut algorithm and learn segmentation from bounding box annotations. In
this paper, our aim is to close the gap between supervised and unsupervised
registration methods and propose a weakly supervised learning scheme for de-
formable image registration including large deformations and introduce a loss
function based on 3D bounding boxes to decrease the effort of the labeling pro-
cess. We use inter-patient 3D Abdominal CT images and are able to increase the
overlap of organs by approximately 10% in comparison to unsupervised image
registration methods. If the time of the labeling process is taken into account,
the performance of supervised algorithms can also be exceeded.

2 Methods

Fig. 1. Architecture of proposed method: Image features are extracted for IF and IM
separately in two decoders (shared weights). The concatenated features are passed
through a U-Net-like architecture and are finally used to estimate a displacement Φ
to warp IM . The loss consists of three parts: MIND features, regularization and the
proposed bounding box supervision. The resolution in relation to the input resolution
of the different steps are displayed in the layers.

The network consists of two parts: an image feature extraction part and
a displacement estimation part. An overview of the architecture is shown in
Fig. 1. The image feature extraction part extracts the low level features of the
input images in two streams (with shared weights for monomodal registration).
The displacement estimation part uses the concatenated low level features and
estimates the displacement field. The 32 concatenated feature maps of IF and IM
are used as input to extract 32 joint feature maps with a U-Net-like network with
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three encoder and four decoder blocks. Three additional sequences are added to
estimate the displacement field. The final displacement field is generated by
reducing the 32 feature maps to the three displacement dimensions with a 1 × 1
× 1 convolution and transformed to normalized sampling voxel locations (value
range from -1 to 1) with the tanh activation function to match the PyTorch grid
definition. The deformation has the same size as the input images.

To train the network, weak label supervision is used. Instead of using detailed
labels for the calculation of the loss function, bounding boxes are used. The ad-
vantage of this method is that a significant reduction in time can be achieved
and the variance between raters is also lower. A combination of three loss func-
tions is used: the modality independent neighbourhood descriptor (MIND) with
self-similar context (SSC) [10], a diffusion regularization and the mean squared
error for the bounding boxes. The bounding box loss is multiplied by a factor of
two.

To generate the final registration result including large deformations, we
apply the network twice. The first input images are IF and IM . Then, IM is
warped with the first displacement field. The resulting warped moving image is
used as second input.

3 Experiments

To train and evaluate our method, we use the publicly available Learn2Reg
challenge dataset (Task3, 2020). This dataset contains 30 abdominal CT scans
with thirteen manually labeled abdominal organs [4, 5]. For training and testing,
we use the split and validation pairs as in the official challenge. The data is
already preprocessed to same voxel sizes and spatial dimensions. We downsample
the images for the experiments to a size of 144 × 112 × 144 due to GPU memory
requirements. For all labels, tight bounding boxes as well as a bounding box
with a random error of ±5% are generated. The network is trained using Adam
optimizer with a learning rate of 0.001 for 7500 iterations.

We train our network three times: unsupervised (not using the label loss),
with the proposed bounding box loss, and with the voxelwise manually la-
beled organ segmentations. To establish comparability between training with
label and weak label loss, we perform additional runs of supervised training
with less training data. In this way, we simulate manual generation of labels
or bounding boxes that takes the same amount of time. In total, we have five
experiments: unsupervised, tight-weakly-supervised, weakly-supervised, super-
vised and supervised 50%. Tight-weakly refers to perfect bounding boxes, weakly
refers to bounding boxes with an additional error of ±5% and supervised 50%
refers to the experiment with less labeled data.

4 Results

In Table 1 the average Dice scores for all organs are listed for the different
trainings. In comparison to the initial overlap of the organs, the overlap can
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Table 1. Dice scores [%] for spleen , right kidney , left kidney , gall bladder ,
esophagus , liver , stomach , aorta , inferior vena cava , portal and splenic vein
, pancreas , left adrenal gland , and right adrenal gland .

avg ± std

initial 42 34 35 2 23 62 24 33 36 5 15 8 9 25 ± 13

unsupervised 67 57 61 5 33 81 35 54 50 15 21 18 14 39 ± 14
tight-weakly-
supervised 70 67 69 7 33 86 41 53 56 20 27 25 17 44 ± 13
weakly-supervised 67 64 64 6 32 83 40 54 56 18 28 24 16 43 ± 13
supervised 81 73 78 8 43 86 50 67 61 17 25 21 16 48 ± 11
supervised- 50% 67 55 59 6 38 81 39 51 42 10 18 23 9 38 ± 13

be increased by approximately 14%. For the tight bounding box training, the
overlap can be increased by approximately 19% and 18% for the bounding box
training with random error. The label supervised trained network increased the
overlap by approximately 22%. The standard deviation of the Jacobian determi-
nant as well as the proportion of negative values are comparable for all trainings.
It can be shown that a higher Dice score can be obtained for larger organs or for
organs that initially already have a high overlap. The largest organ, the liver,
for example, has the highest initial Dice overlap of 62%, and also the highest
Dice overlap after registration for all variants (in a range of 81− 85%). Organs
with a small initial overlap, e.g. left adrenal gland (initial overlap 8%), also
have a relatively low overlap after registration for all methods (in a range of
18 − 25%). For these organs, however, the Dice of weakly-supervised is higher
than for supervised (e.g. left adrenal gland: 25% for weakly-supervised and 21%
for supervised).

5 Discussion and Conclusion

We presented a deep-learning-based method for deformable image registration
with weak bounding box supervision. We compared our method with an unsuper-
vised and a label supervised training. The resulting registration of our method
shows an improvement of about 5% for the Dice overlap in comparison to the
unsupervised training. To simulate a realistic annotation of bounding boxes, we
added an inter-observer-error of 5% per bounding box side, and showed that the
quality of the result does not change significantly (approximately 1%) compared
to tight bounding boxes. Organs with small initial overlap show the highest Dice
score after the registration with the weak bounding box supervised network.

If the time for the labeling process was taken into account, so that less labels
are available than bounding boxes, the accuracy of the label supervised training
is less than for our bounding box supervision. Hence, for the purpose of medical
image registration the proposed weak supervision strategy (labeling more images
with lower effort) is beneficial.
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