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Abstract

Embodied agents equipped with large language
models (LLMs) and online constructed naviga-
tion maps have demonstrated promising capa-
bility for zero-shot vision-language navigation
(VLN) in unseen environments. However, ex-
isting agents heavily rely on giant LLMs on the
cloud, e.g., GPT-4, while directly switching to
small LLMs, e.g., LLaMA3.2-11b, suffer from
significant success rate drops due to limited
model capacity for understanding complex nav-
igation maps, which prevents deploying VLN
on local devices. At the same time, the long
prompt introduced by the navigation map de-
scription will cause high planning latency on
local device. In this paper, we propose Effi-
cientNav to enable on-device zero-shot VLN
for the first time. To help the smaller LLMs
better understand the environment, we propose
semantics-aware memory retrieval to prune re-
dundant information in navigation maps. To
reduce planning latency, we propose discrete
memory caching and attention-based memory
clustering to efficiently save and re-use the KV
cache. Extensive experimental results demon-
strate that EfficientNav achieves 11.1% im-
provement in success rate on Habitat ObjNav
Challenge benchmark over GPT-4-based base-
lines, and demonstrates 6.7 x real-time latency
reduction and 4.7 x end-to-end latency reduc-
tion over GPT-4 planner. Our code is available
on Anonymous Github.

1 Introduction

Vision-language navigation (VLN) in an unseen
environment is a crucial task for embodied agents
(An et al., 2024; Sridhar et al., 2024). To enable
zero-shot VLN, recent studies have proposed to
leverage the common-sense reasoning and decision-
making abilities of large language models (LLMs)
(Chen et al., 2024; Cao et al., 2024). Specifically,
LLMs act as planners and determine a series of
navigation sub-goals based on the observed envi-
ronmental information to guide the agent to the
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Figure 1: (a) Local devices have limited memory re-
sources. Hence, (b) only smaller LLMs can be used as
the planner, and (c) the KV cache of map information
can not be fully saved. (d) While re-computing the KV
cache will cause long real-time latency.

final destination (Dorbala et al., 2022). However,
for long-horizon tasks, simple LLM-based agents
are still insufficient as they make decisions based
solely on the observations of local environments
(Cai et al., 2024). To solve this, navigation maps are
usually constructed online and incorporated into
the prompts for LLM planning (Chen et al., 2024),
thus providing a memory augmentation of the ex-
plored area and improving planning performance.

Though promising, existing LLM-based meth-
ods usually depend on giant LLMs, e.g., GPT-4,
to achieve high performance, thus heavily relying
on cloud offloading (Wake et al., 2023; Cai et al.,
2024; Zhou et al., 2024). Hence, it suffers from
high communication latency, and a heavy reliance
on WiFi or cellular networks. This will introduce
long real-time latency, negatively impacting robotic
performance. (Khatib, 1986; Mei et al., 2006; Shah
et al., 2023a). There will also be privacy concerns
(Lin et al., 2024; Ren et al., 2023) and high energy
cost (Bahrini et al., 2023; Wu et al., 2024b). Hence,
there is a growing demand to develop on-device
VLN systems, e.g., on local GPUs or application-
specific chips (Karumbunathan, 2022).

However, running zero-shot VLN on local de-
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vices is very challenging, as local devices have Table 1: Comparison with prior-art methods.

limited memory resources. For example, a single
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device memory. In multi-turn dialogues with the
planner, this will cause high re-computation cost
and long real-time latency (Jin et al., 2024).

In this paper, we propose EfficientNav, the first
on-device memory-augmented VLN system that
enables zero-shot in-door navigation. We observe
that the navigation map description will cause long
prompt length, whose KV cache can not be fully
saved due to memory constraints. Hence, we only
select part of the map description and load their
KV cache for LLM. However, the KV cache will
change with the context order. To enable reusing
the saved KV cache, we propose discrete mem-
ory caching, clustering the map information into
groups, and calculating KV cache for each group
individually. Then only select partial groups for
LLM. To reduce the impact of ignoring cross-
attention between groups, we propose attention-
based memory clustering, using LLM attention to
cluster related information into the same group. We
further observe that smaller LLMs can not fully
understand complex navigation maps. So we pro-
pose semantics-aware memory retrieval to prune
redundant map information in the group selection
process, thus improving the performance of small
LLMs. We summarize our contributions as follows:

* We propose discrete memory caching to pre-
vent saving the KV cache of the whole map
description and meet the memory constraints.

* We propose attention-based memory cluster-
ing to reduce the impact of ignoring cross-
attention between groups.

* We propose semantics-aware memory re-
trieval to efficiently select the relevant groups
and prune redundant map information.

* We conduct extensive experiments and show
that EfficientNav can achieves 11.1% success
rate improvements over GPT-4-based meth-
ods on Habitat ObjNav Challenge dataset, and
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Figure 2: Typical flow of one navigation step.

show 6.7 x real-time latency and 4.7 x end-to-
end latency reduction over GPT-4 planner.

2 Background

Different from classical navigation with pre-built
maps (Shah and Levine, 2022), in zero-shot navi-
gation tasks, the robot faces inefficiencies during
sub-goal planning due to its limited field of view
(Cai et al., 2024). To overcome this, a navigation
map is usually constructed online to provide a mem-
ory of the explored area (Chen et al., 2024). The
flow of a navigation step (planning and achieving
one sub-goal) is illustrated in Figure 2 (Chen et al.,
2024; An et al., 2024; Zhou et al., 2024). First, af-
ter achieving the last sub-goal, the robot detects
the surrounding objects. Second, the information
of newly detected objects, e.g., position and se-
mantics, is added to the navigation map. Then the
navigation map description and the instructions are
given to LLM as prompts for sub-goal planning. Fi-
nally, the LLM chooses one object in the navigation
map as the next sub-goal. To achieve a high success
rate, existing works (Chen et al., 2024; Long et al.,
2024; Shah et al., 2023b) usually use giant models,
e.g., GPT-4, as the planner, which prevents the nav-
igation system deployed on local devices. While
directly switching to smaller LLMs will cause sig-
nificant success rate drops (Cao et al., 2024; Kim
et al., 2024). At the same time, the amount of map
information will increase in each step and intro-
duce a long prompt length. Traditional LLM serv-
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Figure 3: (a) Average length of different parts of prompt in different navigation steps. (b) On-device LLM planning
latency in different navigation steps. (c) Memory transfer time with LLaVA-7b when using low-speed storage units.
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ing methods (Kwon et al., 2023; Zheng et al., 2023)
re-computing the KV cache in each inference will
cause long prefilling latency, while directly saving
and reusing the KV cache of history information
(Jin et al., 2024; Gao et al., 2024) can not meet the
memory constraints of local devices.

As shown in Table 1, EfficientNav is the first
work to enable accurate and efficient on-device
zero-shot VLN. EfficientNav designs a memory
selection mechanism to remove redundant informa-
tion in the navigation map. This helps the smaller
LLM focus on relevant information and improve
success rate. For efficiency, EfficientNav designs a
novel memory caching and clustering mechanism,
which adaptively clusters objects in the navigation
map into groups and only selects relevant groups
for the planner, thus meeting memory constraints
and enabling KV cache reuse. Note that our method
is orthogonal and naturally compatible with quan-
tization (Frantar et al., 2022), pruning (Ma et al.,
2023), and other LLM compression methods.

3 EfficientNav: Memory Augmented
On-device Navigation System

3.1 Motivation and Overview

Observation 1: tight memory constraints of local
device limit the saving of KV cache of naviga-
tion map description. As discussed in Section 2

and shown in Figure 3 (a), with the progression of
navigation, the amount of map information rapidly
increases, thus introducing long prompt length, usu-
ally up to thousands of tokens. And re-computing
the KV cache in each planning process will cause
long prefilling time, which is shown in Figure 3
(b). To avoid this cost, (Jin et al., 2024) saves the
KV cache of history information in server memory,
while as shown in Figure 1 (c), this can not meet
the memory constraints of local devices. So a new
memory caching mechanism is needed.

Observation 2: the tight memory constraint
forces to use smaller LL.Ms, which have lower
model capacity and cause success rate drop. To
meet the memory constraints of local device, usu-
ally tens of gigabyte, we need to use smaller LLMs,
e.g., LLaVA-7b. However, directly using them to
replace giant LLMs, such as GPT-4, will cause sig-
nificant success rate drop (Cao et al., 2024; Kim
et al., 2024). In practice, we find this comes from
that the smaller LLM with lower capacity can not
fully understand complex navigation maps. With
the progression of navigation, the LLM can not pay
its attention to the important information among
the huge amount of map information and choose
the correct sub-goal, which is shown in Figure 4.
So a memory selection strategy is needed to remove
the redundant information for the smaller LLM.
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EfficientNav Overview Based on these obser-
vations, we propose EfficientNav, the first work
enabling on-device zero-shot VLN. Figure 5 shows
the overview of EfficientNav. To meet the memory
constraints, we propose discrete memory caching
to cluster objects into groups and calculate the KV
cache of each group individually. Then only select a
portion of groups to LLM and load their KV cache
to device memory. To accurately cluster informa-
tion and improve success rate, we propose attention-
based memory clustering, using LLLM attention to
guide group clustering. To help the smaller LLMs
better understand the navigation map, in group se-
lection process, we propose semantic-aware mem-
ory retrieval to efficiently prune redundant map
information.

3.2 Discrete Memory Caching

As discussed in Section 3.1, the memory con-
straints of local devices prevent saving KV cache
of all navigation map descriptions. To solve this
problem, (Gao et al., 2024) saves the KV cache
in storage units with low speed but large storage
capacity, e.g., CPU host memory for NVIDIA RTX
A6000 or disk for Jetson Orin, and load the KV
cache to the device memory when a request comes.
However, as local memory can not hold all the
KV cache at the same time, this method needs to
re-load the KV cache to device memory in each de-
coding phase. However, in each planning process,
LLM needs to decode multiple tokens (around 40
in practice). The frequent communication between
device memory and storage units will also cause
huge latency, which is shown in Figure 3 (c).

To meet the memory constraint and avoid re-
computation and frequent memory transfer, we pro-
pose discrete memory caching. Following (Gao
et al., 2024), we also save the KV cache in low-
speed storage units and load the required KV cache
into device memory. However, as the navigation
map contains redundancy, we only select partial

important information according to the memory
budget and load KV cache only once, thus reduc-
ing transfer cost.

However, when selecting information, the or-
der of context in prompt will change. When pre-
calculating the KV cache, existing works (Liu et al.,
2024; Zheng et al., 2023) calculate the full attention
of the whole context. Then only the KV cache of its
longest common prefix with the selected informa-
tion can be used. The KV cache after the changed
position needs to be re-computed. To solve this,
shown in Figure 6 (a), we cluster objects in nav-
igation map into groups and compute KV cache
of each group individually. Then only select par-
tial groups to prompt the LLM planner. Hence, we
can decouple the group KV cache and the group
order, thus making full usage of saved KV cache
and avoiding re-computation. As shown in Figure
5, in each navigation step, newly detected objects
will be added to existing groups, and we need to
add their KV cache to the group KV cache. To
avoid changing context order within the group and
impacting the existing KV cache, we concatenate
the information of new objects at the end of the
group information. As shown in Figure 6 (b), in the
planning process, when groups with newly added
objects are selected, the KV cache of these objects
can be directly calculated and saved, without intro-
ducing extra computation. We follow the position
encoding strategy in LLM inference as (Gim et al.,
2024).

However, discrete memory caching will cause
the ignorance of cross-attention between groups,
and this may cause LLLM performance drop (Yao
etal., 2024; Hu et al., 2024). We also need to ensure
that the groups with important information are not
removed in group selection. So correct memory
clustering and memory selection is very important.
We will explain our design in Section 3.3 and 3.4.
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3.3 Attention-based Memory Clustering

As discussed in Section 3.2, to reduce the impact
of ignoring cross-attention and maintain a high
success rate, we need to cluster the information ac-
curately and efficiently. Existing works (Jin et al.,
2024; Yao et al., 2024) meanly divide the entire
context into several chunks with the same length.
However, this does not take into account the rela-
tionships between related objects in the navigation
map. For example, the relationship between the
oven and the pot is closer than the relationship be-
tween the oven and the bed. By grouping objects
with closer relationships together and calculating
their cross-attention, LLMs can better understand
the navigation map and abstract the environment
of a larger area. At the same time, the grouping
granularity is also important. If the granularity is
too fine, more cross-attention will be ignored, thus
impacting accuracy. If the granularity is too coarse,
the KV cache size of each group will become large.
Hence, only a few groups can be selected for the
LLM, which will enhance the difficulty of selection
and may neglect important information.

To adaptively control object clustering and group
granularity, we use the attention of LLM itself to
cluster the newly detected objects into different
groups. As shown in Figure 6 (c), in the cluster-
ing process, we input the information of existing
groups and the newly detected objects into LLM,
and only infer a few layers (in practice, we find
around %0 layers of the whole model is enough). If
the mean attention between a newly detected object
and an existing group exceeds a specific threshold,
we cluster this object into the group. Otherwise,
the remaining objects will be added to a new group.
For the first group, we simply cluster the detected
objects in the first navigation step into a group.

By using attention-based memory clustering, we
can reduce the difference between discrete attention
and full attention. Note that the clustering process
will not introduce much extra computation and la-
tency. This is because we only compute the first
few layers of LLM, and the KV cache of existing
groups has been pre-computed and its cache of the
first few layers are kept in device memory.

3.4 Semantics-aware Memory Retrieval

As discussed in Section 3.1, the smaller LLM can-
not fully understand complex navigation maps. So a
memory selection mechanism is needed to remove
redundant information. (Shah et al., 2023b) empiri-
cally selects environmental information based on
object positions. However, we find when the final
goal changes, the relevance of each group to the
final goal also changes, which is shown in Figure 7.
The empirical selection can not adapt to different
final goals, thus showing lower performance. At
the same time, it does not consider different device
memory budgets. (Cao et al., 2024) uses LLM to se-
lect relevant information, while this will introduce
extra LLM calls and long real-time latency.

Based on this, we propose semantics-aware
memory retrieval, efficiently selecting groups ac-
cording to semantic information to adapt to differ-
ent sub-goals. As the task of removing redundant
information is much easier than finding a specific
sub-goal, to improve efficiency, we conduct group
selection and sub-goal planning in a small-large
model collaboration mode. For the easier group se-
lection, we use CLIP model (Dorbala et al., 2022)
instead of LLM, which only has around 100M pa-
rameters and lower inference latency. For the harder
sub-goal planning, we use LLM to select one spe-
cific object as the sub-goal. In the information se-
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lection process, we use CLIP to encode the object
information in each group and the final goal. And
then calculate the similarity between the encod-
ing results between the final goal and each group,
which is viewed as the possibility for a group in-
cluding potential sub-goals. We consider the group
relevant to the final goal only if the possibility is
larger than a threshold. To adapt to different de-
vices with different memory budgets, we formulate
the group selection as a knapsack problem:

maximize P = Z (P; — threshold) - z; (1)
i=1

n
subject to ZMZ cx; <M, x; €{0,1} (2)
i=1

where P; denotes the possibility to include sub-
goals in group ¢, M; and M denotes the memory
usage of KV cache of group ¢ and device mem-
ory budget, z; denotes whether to select group i,
n denotes the number of groups. After solving the
knapsack problem, we can select truly relevant in-
formation for LLM and meet the memory budget
at the same time.

By using semantics-aware memory retrieval, we
can efficiently select relevant groups adapting to
different final goals and devices. Note that in each
planning process, we only update the decoding re-
sults of the groups with newly detected objects.
As the inference time of CLIP is much lower than
LLM, the latency of the selection process is negli-
gible. At the same time, between two adjacent plan-
ning processes, the navigation map will not change
much. So it is likely that some group are both se-
lected in the current step and last step. Hence, their
KV cache has been loaded into device memory,
thus reducing the KV cache loading time, which
we will further show in our experiments.

4 Experiments

4.1 Experiment Setup

Dataset and Evaluation metric. We evaluate
EfficientNav on the Habitat ObjNav Challenge
dataset (Andrew et al., 2022) based on the Habi-
tat simulation platform (Szot et al., 2021). In the
simulation platform, the robot can access RGBD
observation of the environment. In each task, the
robot is placed at a different starting point in the
environment and is only instructed to find a spe-
cific object, e.g., “TV”, “chair”, “sofa” etc., which
is harder than tasks giving detailed, step-by-step di-
rections (Anderson et al., 2018; Qi et al., 2020). We
evaluate our method on the evaluation set, which
has 20 scenes. For each scene, we evaluate 15 tasks.
For accuracy, we report two metrics: i) the av-
erage success rate (SR), and ii) the success rate
penalized by path length (SPL), which both evalu-
ates the accuracy and the efficiency of robot trajec-
tory. For system efficiency, we report two metrics:
1) real-time latency (RtL): the average robot plan-
ning time in one navigation step. ii) End-to-end
latency (E2EL): the average latency for the robot to
complete one navigation task (including multiple
navigation steps and robot moving time).

Implementation In EfficientNav, we use smaller
open-source planners, such as LLaVA and
LLaMA3.2. We use a single NVIDIA RTX A6000
GPU to deploy LLaVA-7b and LLaMA3.2-11b.
When using LLaVA-13b and LLaVA-34b, we de-
ploy our system on 2 and 4 NVIDIA RTX A6000
GPUs respectively. We also deploy LLaVA-7b on
a single Jetson AGX Orin.

4.2 Main Results

Comparison with state-of-the-art. The compar-
ison of SR and SPL is shown in Table 2. Compared
with learning-based methods, EfficienNav achieves
18.0% SR and 14.7% SPL improvements over the
prior-art method OVRL (Yadav et al., 2023), with-
out any training cost. This shows the advantage
of LLM-based navigation system, which we have
discussed in Section 1. Compared with zero-shot
methods, EfficientNav achieves 11.1% SR and
5.5% SPL improvements over LFG (Shah et al.,
2023b), which uses GPT-4. Compared with naive
LLaVA-34b planner (Chen et al., 2024), Efficient-
Nav achieves 37.3% SR and 20.5% SPL improve-
ments. Because we use semantics-aware memory
retrieval, helping the LLM focus on the most rele-



vant groups and removing redundant information.
The latency comparison is shown in Table 3.
Compared with GPT-4 planner (Chen et al., 2024),
EfficientNav achieves 6.7 real-time latency re-
duction and 4.7 x end-to-end latency reduction, by
saving the communication time to the cloud server.
Compared with naive LLaVA planner, Efficcient-
Nav achieves 8.8 and 6.5 real-time latency re-
duction and 3.7 x and 4.4 x end-to-end latency re-
duction on LLaMA3.2-11b and LLaVA-34b. This
mainly comes from using discrete memory caching
to avoid re-computation in the prefilling stage of
planning. Prior-art solutions such as vllm can ac-
celerate LLM inference, but they can not solve
the problem of high re-computation cost, which
is the main bottleneck. Compared with vllm, Effi-
cientNav achieves 6.5 and 5.1 x real-time latency
reduction and 3.1x and 3.8 x end-to-end latency
reduction on LLaMA3.2-11b and LLaVA-34b.

Real-time latency in different navigation steps.
The amount of map information increases in each
navigation step. As shown in Figure 8, when using
traditional serving methods (Kwon et al., 2023),
the increasing prompt length will introduce high
recomputation cost and increasing real-time latency.
However, when using EfficientNav, the real-time
latency stabilizes after a certain navigation step,
as we use semantics-aware memory retrieval to
select partial groups for LLM according to memory
budget. With the same amount of information given
to LLM, EffcientNav also shows lower real-time
latency, as discrete memory caching saves the re-
computation time of LLM prefilling.

Planning latency breakdown. Figure 9 shows
the latency breakdown of one navigation step. Com-
pared to traditional serving methods (Kwon et al.,
2023), by avoiding re-computation, discrete mem-
ory caching can significantly reduce the prefilling
time of planning by around 20x. And semantics-
aware memory retrieval removes the redundant in-
formation, thus reducing the prompt length and
reducing the computation cost and latency of the
decoding stage of planning. The latency of mem-
ory clustering and memory selection is negligible,
which we discussed in Section 3.3 and 3.4.

Memory caching distribution and cache hit rate
of EfficientNav. When using EfficeintNav, in
each planning process, we only select relevant
groups for LLM. With larger device memory bud-
gets for KV cache, we can store more groups in

Table 2: SR and SPL comparison on Habitat ObjNav
Challenge dataset.

Method | Zero-shot | LLM | SR | SPL
DD-PPO (Wijmans et al., 2019) X - 279 | 14.2
SemExp (Chaplot et al., 2020) X - 379 | 18.8
Habitat-web (Ramrakhya et al., 2022) X - 41.5 | 16.0
L3MVN (Yu et al., 2023) X - 50.4 | 23.1
OVRL (Yadav et al., 2023) X - 62.0 | 26.8
ZSON (Majumdar et al., 2022) v - 255 | 12.6
PixelNav (Cai et al., 2024) v GPT-4 379 | 205
ESC (Zhou et al., 2023) v - 392 | 223
VoroNav (Wu et al., 2024a) v GPT-3.5 42.0 | 26.0
LLaVA Planner-34b (Chen et al., 2024) v LLaVA-34b 427 | 21.0
InstructNav (Long et al., 2024) v GPT-4V 58.0 | 20.9
LFG (Shah et al., 2023b) v GPT-4 68.9 | 36.0
EfficientNav-11b v LLaMA3.2-11b | 74.2 | 39.5
EfficientNav-34b v LLaVA-34b 80.0 | 41.5

Table 3: Average latency comparison on Habitat ObjNav
Challenge dataset.

Method | LLM | RIL | E2EL

GPT-4 Planner (Chen et al., 2024) |  GPT4 | 580s | 5934s

LLaMA Planner-11b (Chen et al., 2024) | LLaMA3.2-11b | 3.07s | 46.40s

vllm (Kwon et al., 2023) | LLaMA3.2-11b | 2.27s | 39.78s

EfficientNav-11b (Ours) | LLaMA3.2-11b | 0.35s | 12.70s

LLaVA Planner-34b (Chen et al., 2024) | LLaVA-34b | 5.63s | 55.32s
vllm (Kwon et al., 2023) | LLaVA-34b | 4.43s | 47.95s
EfficientNav-34b (Ours) | LLaVA-34b | 0.87s | 12.51s
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—e— LLaVA Planner-34b —e— EfficientNav-34b
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Figure 8: Comparison of real-time latency in different
navigation steps.
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Figure 9: Planning latency (s) breakdown for LLaVA
planner and EfficientNav. The cache loading time in
EfficientNav is included in prefilling stage of planning.

device memory. As discussed in Section 3.4, some
selected groups may be just stored in device mem-
ory, so we do not need to re-load these groups from
storage units. We define the proportion of these
groups as cache hit rate. A high hit rate will lead
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Figure 10: Comparison on the memory caching distribution and memory cache hit rate with different device memory
budgets for KV cache, using (a) LLaVA-7b, (b) LLaVA-13b, and (c) LLaVA-34b. We define the proportion of
selected groups already stored in device memory as cache hit rate.

to low caching loading time. As shown in Figure
10, the cache hit rate of EfficientNav increases with
the device memory budget and rapidly reaches a
high level. This is because when the memory bud-
get increases, more relevant groups are stored in
device memory. At the same time, the semantics of
each group will not change much between adjacent
planning processes. So it is likely that some rele-
vant groups are just loaded to device memory in
the last few steps, leading to a high cache hit rate.

4.3 Ablation Study

Individual influence of our methods. Table 4
shows the individual influence of our proposed
methods. In naive LLaVA planner, we empiri-
cally cluster and select environmental informa-
tion according to object positions (Zhang and Ma,
2024; Shah et al., 2023b). By using discrete mem-
ory caching, compared with naive LLaVA planner
(Chen et al., 2024), we achieve 2.3 x real-time la-
tency and 1.5x end-to-end latency reduction, by
re-using KV cache of navigation map description
and avoiding re-computation. By using attention-
based memory clustering, we further achieve 20.2%
SR and 13.2% SPL improvement, by fully consid-
ering the relationship between objects and reduc-
ing the impact of ignoring cross-attention. By us-
ing semantics-aware memory retrieval, we achieve
16.7% SR and 7.3% SPL improvement, by select-
ing groups according to semantics and pruning re-
dundancy. We also achieve 2.7 x real-time latency
and 2.6 x end-to-end latency reduction, by select-
ing groups according to memory budget and avoid-
ing frequent communication with storage units.

Impact of device memory budget for KV cache.
In semantics-aware memory retrieval, we select rel-
evant groups according to the device memory bud-
get. Here we evaluate the impact of memory budget
on success rate and latency using LLaVA-34b. As
shown in Table 5, on most cases, our method shows

Table 4: Ablation study on EfficientNav methods with
LLaVA-34b.

Method | SR | SPL | RiL | E2EL
LLaVA Planner | 42.7 | 21.0 | 5.63s | 55.32s
+Discrete Memory Caching | 43.1 | 21.0 | 2.42s | 36.94s

+Attention-based Memory Clustering ‘ 63.3 ‘ 342 ‘ 2.32s ‘ 32.58s

+Semantics-aware Memory Retrieval ‘ 80.0 ‘ 41.5 ‘ 0.87s ‘ 12.51s

Table 5: Ablation study on different device memory
budgets for KV cache with LLaVA-34b.

Memory Budget | SR | SPL | RiL | E2EL

16GB | 747 | 37.3 | 0.59s | 14.24s
24GB | 79.0 | 39.1 | 0.71s | 14.29s
32GB | 80.0 | 41.5 | 0.87s | 12.51s
40GB | 80.3 | 41.9 | 0.93s | 11.72s

good robustness. However, when the memory bud-
get for KV cache is too small, fewer relevant groups
can be selected. Hence, the potential sub-goal may
be ignored, which causes success rate drops and
longer end-to-end latency. For a larger memory bud-
get, more relevant groups can be selected. While
the longer prompt length may cause longer plan-
ning time, which will slightly increase the real-time
latency.

5 Conclusion

This work proposes EfficientNav, the first work en-
abling on-device zero-shot VLN. We propose dis-
crete memory caching to enable re-using KV cache
and avoid re-computation in LLM planning. We
also propose attention-based memory clustering to
reduce the impact of ignoring cross-attention. To
improve planning performance of smaller LLMs,
we propose semantics-aware memory retrieval to
remove the redundancy in navigation map. Effi-
cientNav overcomes all existing baselines and first
enables to run zero-shot VLN on local devices.



6 Limitations

In this section, we discuss the current limitations
and potential avenues for future research.

First of all, in our method, we propose the
first on-device VLN system that enables efficient
zero-shot in-door navigation. In fact, our memory
caching and memory retrieval method also benefits
the LLM inference on the cloud server by avoid-
ing re-computation and removing redundant infor-
mation. However, EfficientNav can not solve the
problems of high communication latency or privacy
concerns that cloud serving faces.

Also, in our experiment, EfficientNav achieves
6.7x real-time latency reduction compared with
GPT-4 planner. However, as the inference speed
of LLM can not reach that of small models, so
EfficientNav can not be used in applications that
need extremely low real-time latency.

7 Ethics Statement

In our paper, our method first enables efficient
on-device zero-shot in-door VLN, overcoming the
tight memory constraints by designing novel mem-
ory caching and retrieval mechanisms. Our method
democratized VLN to local devices and can enable
Al applications such as rescue robots to areas with
poor connections, protecting privacy and saving
energy at the same time. However, our LLM-based
VLN works in a zero-shot manner. This can avoid
the heavy training cost, but the pre-trained LLM
may not master some highly specialized knowledge.
Therefore, in high-risk areas such as chemical lab-
oratories with hazardous materials, EfficientNav
should be carefully used.
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A LLM-based Navigation System

Currently, LLM-based navigation methods can be
divided into two categories. The first is end-to-end
models, such as NaVid (Zhang et al., 2024), which
directly convert inputs into control policies for the
robot. However, this approach comes with a signif-
icant training cost. The second, more mainstream
and simpler approach, involves using LLMs as a
high-level planner, and a lower-level controller han-
dled by the robot itself. (Long et al., 2024; An et al.,
2024; Shah et al., 2023b; Cai et al., 2024; Kaichen
et al., 2024). The LLM planner conducts sub-goal
planning based on the environment and the instruc-
tion to reach the final goal. The controller (Shah
et al., 2023c; Sridhar et al., 2024), usually using a
small neural network, finds a trajectory from the
current place to the sub-goal and controls the robot
moving in a real-time manner. As the final goal
is usually unseen at the beginning, one navigation
task needs multiple navigation steps. To achieve
high success rate, existing works (Chen et al., 2024;
Long et al., 2024; Shah et al., 2023b; Wang et al.,
2024; Kaichen et al., 2024) all use giant models,
e.g., GPT-4, as the planner, preventing the navi-
gation system deployed on local devices. While
directly switching to smaller LLMs will cause sig-
nificant success rate drops (Cao et al., 2024; Long
et al., 2024; Kim et al., 2024).

As shown in Table 1, EfficientNav is the first
work to enable accurate on-device zero-shot VLN.
EfficientNav designs a memory selection mecha-
nism to remove redundant information in the navi-
gation map. Hence, help the smaller LLM focus on
relevant information and improve success rate.
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