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Abstract

Embodied agents equipped with large language001
models (LLMs) and online constructed naviga-002
tion maps have demonstrated promising capa-003
bility for zero-shot vision-language navigation004
(VLN) in unseen environments. However, ex-005
isting agents heavily rely on giant LLMs on the006
cloud, e.g., GPT-4, while directly switching to007
small LLMs, e.g., LLaMA3.2-11b, suffer from008
significant success rate drops due to limited009
model capacity for understanding complex nav-010
igation maps, which prevents deploying VLN011
on local devices. At the same time, the long012
prompt introduced by the navigation map de-013
scription will cause high planning latency on014
local device. In this paper, we propose Effi-015
cientNav to enable on-device zero-shot VLN016
for the first time. To help the smaller LLMs017
better understand the environment, we propose018
semantics-aware memory retrieval to prune re-019
dundant information in navigation maps. To020
reduce planning latency, we propose discrete021
memory caching and attention-based memory022
clustering to efficiently save and re-use the KV023
cache. Extensive experimental results demon-024
strate that EfficientNav achieves 11.1% im-025
provement in success rate on Habitat ObjNav026
Challenge benchmark over GPT-4-based base-027
lines, and demonstrates 6.7× real-time latency028
reduction and 4.7× end-to-end latency reduc-029
tion over GPT-4 planner. Our code is available030
on Anonymous Github.031

1 Introduction032

Vision-language navigation (VLN) in an unseen033

environment is a crucial task for embodied agents034

(An et al., 2024; Sridhar et al., 2024). To enable035

zero-shot VLN, recent studies have proposed to036

leverage the common-sense reasoning and decision-037

making abilities of large language models (LLMs)038

(Chen et al., 2024; Cao et al., 2024). Specifically,039

LLMs act as planners and determine a series of040

navigation sub-goals based on the observed envi-041

ronmental information to guide the agent to the042
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Figure 1: (a) Local devices have limited memory re-
sources. Hence, (b) only smaller LLMs can be used as
the planner, and (c) the KV cache of map information
can not be fully saved. (d) While re-computing the KV
cache will cause long real-time latency.

final destination (Dorbala et al., 2022). However, 043

for long-horizon tasks, simple LLM-based agents 044

are still insufficient as they make decisions based 045

solely on the observations of local environments 046

(Cai et al., 2024). To solve this, navigation maps are 047

usually constructed online and incorporated into 048

the prompts for LLM planning (Chen et al., 2024), 049

thus providing a memory augmentation of the ex- 050

plored area and improving planning performance. 051

Though promising, existing LLM-based meth- 052

ods usually depend on giant LLMs, e.g., GPT-4, 053

to achieve high performance, thus heavily relying 054

on cloud offloading (Wake et al., 2023; Cai et al., 055

2024; Zhou et al., 2024). Hence, it suffers from 056

high communication latency, and a heavy reliance 057

on WiFi or cellular networks. This will introduce 058

long real-time latency, negatively impacting robotic 059

performance. (Khatib, 1986; Mei et al., 2006; Shah 060

et al., 2023a). There will also be privacy concerns 061

(Lin et al., 2024; Ren et al., 2023) and high energy 062

cost (Bahrini et al., 2023; Wu et al., 2024b). Hence, 063

there is a growing demand to develop on-device 064

VLN systems, e.g., on local GPUs or application- 065

specific chips (Karumbunathan, 2022). 066

However, running zero-shot VLN on local de- 067
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vices is very challenging, as local devices have068

limited memory resources. For example, a single069

Jetson AGX Orin (Karumbunathan, 2022) only has070

32GB DRAM. As shown in Figure 1, to meet this071

constraint, on the one hand, only smaller LLMs,072

e.g., LLaMA3.2-11b, instead of giant LLMs, can073

be used, while directly switching to smaller LLMs074

will cause significant success rate drop because of075

lower model capacity (Cao et al., 2024; Long et al.,076

2024). On the other hand, the KV cache of the nav-077

igation map description can not be fully saved in078

device memory. In multi-turn dialogues with the079

planner, this will cause high re-computation cost080

and long real-time latency (Jin et al., 2024).081

In this paper, we propose EfficientNav, the first082

on-device memory-augmented VLN system that083

enables zero-shot in-door navigation. We observe084

that the navigation map description will cause long085

prompt length, whose KV cache can not be fully086

saved due to memory constraints. Hence, we only087

select part of the map description and load their088

KV cache for LLM. However, the KV cache will089

change with the context order. To enable reusing090

the saved KV cache, we propose discrete mem-091

ory caching, clustering the map information into092

groups, and calculating KV cache for each group093

individually. Then only select partial groups for094

LLM. To reduce the impact of ignoring cross-095

attention between groups, we propose attention-096

based memory clustering, using LLM attention to097

cluster related information into the same group. We098

further observe that smaller LLMs can not fully099

understand complex navigation maps. So we pro-100

pose semantics-aware memory retrieval to prune101

redundant map information in the group selection102

process, thus improving the performance of small103

LLMs. We summarize our contributions as follows:104

• We propose discrete memory caching to pre-105

vent saving the KV cache of the whole map106

description and meet the memory constraints.107

• We propose attention-based memory cluster-108

ing to reduce the impact of ignoring cross-109

attention between groups.110

• We propose semantics-aware memory re-111

trieval to efficiently select the relevant groups112

and prune redundant map information.113

• We conduct extensive experiments and show114

that EfficientNav can achieves 11.1% success115

rate improvements over GPT-4-based meth-116

ods on Habitat ObjNav Challenge dataset, and117

Table 1: Comparison with prior-art methods.

Method
Zero-

LLM
On-device Memory

shot Inference Augmented

ViKiNG (Shah and Levine, 2022) ✗ - ! !

NaVid (Zhang et al., 2024) ✗ Vicuna ! ✗

Skip-SCAR (Liu and Zhang, 2024) ✗ - ! !

Pixel Navigation (Cai et al., 2024) ! GPT-4 ✗ ✗

InstructNav (Long et al., 2024) ! GPT-4V ✗ !

MapGPT (Chen et al., 2024) ! GPT-4 ✗ !

LFG (Shah et al., 2023b) ! GPT-4 ✗ !

EfficientNav (Ours) ! LLaMA ! !

Figure 2: Typical flow of one navigation step.

show 6.7× real-time latency and 4.7× end-to- 118

end latency reduction over GPT-4 planner. 119

2 Background 120

Different from classical navigation with pre-built 121

maps (Shah and Levine, 2022), in zero-shot navi- 122

gation tasks, the robot faces inefficiencies during 123

sub-goal planning due to its limited field of view 124

(Cai et al., 2024). To overcome this, a navigation 125

map is usually constructed online to provide a mem- 126

ory of the explored area (Chen et al., 2024). The 127

flow of a navigation step (planning and achieving 128

one sub-goal) is illustrated in Figure 2 (Chen et al., 129

2024; An et al., 2024; Zhou et al., 2024). First, af- 130

ter achieving the last sub-goal, the robot detects 131

the surrounding objects. Second, the information 132

of newly detected objects, e.g., position and se- 133

mantics, is added to the navigation map. Then the 134

navigation map description and the instructions are 135

given to LLM as prompts for sub-goal planning. Fi- 136

nally, the LLM chooses one object in the navigation 137

map as the next sub-goal. To achieve a high success 138

rate, existing works (Chen et al., 2024; Long et al., 139

2024; Shah et al., 2023b) usually use giant models, 140

e.g., GPT-4, as the planner, which prevents the nav- 141

igation system deployed on local devices. While 142

directly switching to smaller LLMs will cause sig- 143

nificant success rate drops (Cao et al., 2024; Kim 144

et al., 2024). At the same time, the amount of map 145

information will increase in each step and intro- 146

duce a long prompt length. Traditional LLM serv- 147
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(a) (b) (c)

Figure 3: (a) Average length of different parts of prompt in different navigation steps. (b) On-device LLM planning
latency in different navigation steps. (c) Memory transfer time with LLaVA-7b when using low-speed storage units.
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Figure 4: (a) Attention score on the most promising sub-goal (ground-truth object) in different navigation steps, and
the attention distribution after (b) 10 steps and (c) 30 steps using LLaVA-34b in sub-goal planning. As the amount
of map information increases with the progression of navigation, the LLM can not fully understand the navigation
map and focus on the most promising sub-goal. We also find this problem on other small open-source LLMs such as
LLaMA and Vicuna. The ground-truth object is chosen by GPT-4o.

ing methods (Kwon et al., 2023; Zheng et al., 2023)148

re-computing the KV cache in each inference will149

cause long prefilling latency, while directly saving150

and reusing the KV cache of history information151

(Jin et al., 2024; Gao et al., 2024) can not meet the152

memory constraints of local devices.153

As shown in Table 1, EfficientNav is the first154

work to enable accurate and efficient on-device155

zero-shot VLN. EfficientNav designs a memory156

selection mechanism to remove redundant informa-157

tion in the navigation map. This helps the smaller158

LLM focus on relevant information and improve159

success rate. For efficiency, EfficientNav designs a160

novel memory caching and clustering mechanism,161

which adaptively clusters objects in the navigation162

map into groups and only selects relevant groups163

for the planner, thus meeting memory constraints164

and enabling KV cache reuse. Note that our method165

is orthogonal and naturally compatible with quan-166

tization (Frantar et al., 2022), pruning (Ma et al.,167

2023), and other LLM compression methods.168

3 EfficientNav: Memory Augmented169

On-device Navigation System170

3.1 Motivation and Overview171

Observation 1: tight memory constraints of local172

device limit the saving of KV cache of naviga-173

tion map description. As discussed in Section 2174

and shown in Figure 3 (a), with the progression of 175

navigation, the amount of map information rapidly 176

increases, thus introducing long prompt length, usu- 177

ally up to thousands of tokens. And re-computing 178

the KV cache in each planning process will cause 179

long prefilling time, which is shown in Figure 3 180

(b). To avoid this cost, (Jin et al., 2024) saves the 181

KV cache of history information in server memory, 182

while as shown in Figure 1 (c), this can not meet 183

the memory constraints of local devices. So a new 184

memory caching mechanism is needed. 185

Observation 2: the tight memory constraint 186

forces to use smaller LLMs, which have lower 187

model capacity and cause success rate drop. To 188

meet the memory constraints of local device, usu- 189

ally tens of gigabyte, we need to use smaller LLMs, 190

e.g., LLaVA-7b. However, directly using them to 191

replace giant LLMs, such as GPT-4, will cause sig- 192

nificant success rate drop (Cao et al., 2024; Kim 193

et al., 2024). In practice, we find this comes from 194

that the smaller LLM with lower capacity can not 195

fully understand complex navigation maps. With 196

the progression of navigation, the LLM can not pay 197

its attention to the important information among 198

the huge amount of map information and choose 199

the correct sub-goal, which is shown in Figure 4. 200

So a memory selection strategy is needed to remove 201

the redundant information for the smaller LLM. 202
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Relevant groups are Group 1 and 3.

CLIP

Group2

Current Position
P = (x, y, z) Clock Sink
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Clustering (Sec. 3.3)
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Retrieval (Sec 3.4)

Group1 Group3

Your goal is to find the toilet.

Obj. Groups Sim.
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…
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…

Bed, Clock, … 

LLM Planning

Discrete Memory Caching
(Sec 3.2)

Group 1 Group 2 Group 3

Update the KV cache of 
newly detected objects 

ThNext sub-goal is the sink at …

Figure 5: Overview of EfficientNav. Sim. stands for similarity.

EfficientNav Overview Based on these obser-203

vations, we propose EfficientNav, the first work204

enabling on-device zero-shot VLN. Figure 5 shows205

the overview of EfficientNav. To meet the memory206

constraints, we propose discrete memory caching207

to cluster objects into groups and calculate the KV208

cache of each group individually. Then only select a209

portion of groups to LLM and load their KV cache210

to device memory. To accurately cluster informa-211

tion and improve success rate, we propose attention-212

based memory clustering, using LLM attention to213

guide group clustering. To help the smaller LLMs214

better understand the navigation map, in group se-215

lection process, we propose semantic-aware mem-216

ory retrieval to efficiently prune redundant map217

information.218

3.2 Discrete Memory Caching219

As discussed in Section 3.1, the memory con-220

straints of local devices prevent saving KV cache221

of all navigation map descriptions. To solve this222

problem, (Gao et al., 2024) saves the KV cache223

in storage units with low speed but large storage224

capacity, e.g., CPU host memory for NVIDIA RTX225

A6000 or disk for Jetson Orin, and load the KV226

cache to the device memory when a request comes.227

However, as local memory can not hold all the228

KV cache at the same time, this method needs to229

re-load the KV cache to device memory in each de-230

coding phase. However, in each planning process,231

LLM needs to decode multiple tokens (around 40232

in practice). The frequent communication between233

device memory and storage units will also cause234

huge latency, which is shown in Figure 3 (c).235

To meet the memory constraint and avoid re-236

computation and frequent memory transfer, we pro-237

pose discrete memory caching. Following (Gao238

et al., 2024), we also save the KV cache in low-239

speed storage units and load the required KV cache240

into device memory. However, as the navigation241

map contains redundancy, we only select partial242

important information according to the memory 243

budget and load KV cache only once, thus reduc- 244

ing transfer cost. 245

However, when selecting information, the or- 246

der of context in prompt will change. When pre- 247

calculating the KV cache, existing works (Liu et al., 248

2024; Zheng et al., 2023) calculate the full attention 249

of the whole context. Then only the KV cache of its 250

longest common prefix with the selected informa- 251

tion can be used. The KV cache after the changed 252

position needs to be re-computed. To solve this, 253

shown in Figure 6 (a), we cluster objects in nav- 254

igation map into groups and compute KV cache 255

of each group individually. Then only select par- 256

tial groups to prompt the LLM planner. Hence, we 257

can decouple the group KV cache and the group 258

order, thus making full usage of saved KV cache 259

and avoiding re-computation. As shown in Figure 260

5, in each navigation step, newly detected objects 261

will be added to existing groups, and we need to 262

add their KV cache to the group KV cache. To 263

avoid changing context order within the group and 264

impacting the existing KV cache, we concatenate 265

the information of new objects at the end of the 266

group information. As shown in Figure 6 (b), in the 267

planning process, when groups with newly added 268

objects are selected, the KV cache of these objects 269

can be directly calculated and saved, without intro- 270

ducing extra computation. We follow the position 271

encoding strategy in LLM inference as (Gim et al., 272

2024). 273

However, discrete memory caching will cause 274

the ignorance of cross-attention between groups, 275

and this may cause LLM performance drop (Yao 276

et al., 2024; Hu et al., 2024). We also need to ensure 277

that the groups with important information are not 278

removed in group selection. So correct memory 279

clustering and memory selection is very important. 280

We will explain our design in Section 3.3 and 3.4. 281
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(a) (b) (c)

Figure 6: (a) When using discrete memory caching, the KV cache of existing groups can be re-used in LLM planning.
(b) When groups with newly added objects are selected, in LLM planning process, the KV cache of these objects
can be directly calculated and saved without impacting existing KV cache. (c) When using attention-based memory
clustering, the newly detected objects will be clustered into different groups according to attention distribution.

3.3 Attention-based Memory Clustering282

As discussed in Section 3.2, to reduce the impact283

of ignoring cross-attention and maintain a high284

success rate, we need to cluster the information ac-285

curately and efficiently. Existing works (Jin et al.,286

2024; Yao et al., 2024) meanly divide the entire287

context into several chunks with the same length.288

However, this does not take into account the rela-289

tionships between related objects in the navigation290

map. For example, the relationship between the291

oven and the pot is closer than the relationship be-292

tween the oven and the bed. By grouping objects293

with closer relationships together and calculating294

their cross-attention, LLMs can better understand295

the navigation map and abstract the environment296

of a larger area. At the same time, the grouping297

granularity is also important. If the granularity is298

too fine, more cross-attention will be ignored, thus299

impacting accuracy. If the granularity is too coarse,300

the KV cache size of each group will become large.301

Hence, only a few groups can be selected for the302

LLM, which will enhance the difficulty of selection303

and may neglect important information.304

To adaptively control object clustering and group305

granularity, we use the attention of LLM itself to306

cluster the newly detected objects into different307

groups. As shown in Figure 6 (c), in the cluster-308

ing process, we input the information of existing309

groups and the newly detected objects into LLM,310

and only infer a few layers (in practice, we find311

around 1
10 layers of the whole model is enough). If312

the mean attention between a newly detected object313

and an existing group exceeds a specific threshold,314

we cluster this object into the group. Otherwise,315

the remaining objects will be added to a new group.316

For the first group, we simply cluster the detected317

objects in the first navigation step into a group.318

By using attention-based memory clustering, we 319

can reduce the difference between discrete attention 320

and full attention. Note that the clustering process 321

will not introduce much extra computation and la- 322

tency. This is because we only compute the first 323

few layers of LLM, and the KV cache of existing 324

groups has been pre-computed and its cache of the 325

first few layers are kept in device memory. 326

3.4 Semantics-aware Memory Retrieval 327

As discussed in Section 3.1, the smaller LLM can- 328

not fully understand complex navigation maps. So a 329

memory selection mechanism is needed to remove 330

redundant information. (Shah et al., 2023b) empiri- 331

cally selects environmental information based on 332

object positions. However, we find when the final 333

goal changes, the relevance of each group to the 334

final goal also changes, which is shown in Figure 7. 335

The empirical selection can not adapt to different 336

final goals, thus showing lower performance. At 337

the same time, it does not consider different device 338

memory budgets. (Cao et al., 2024) uses LLM to se- 339

lect relevant information, while this will introduce 340

extra LLM calls and long real-time latency. 341

Based on this, we propose semantics-aware 342

memory retrieval, efficiently selecting groups ac- 343

cording to semantic information to adapt to differ- 344

ent sub-goals. As the task of removing redundant 345

information is much easier than finding a specific 346

sub-goal, to improve efficiency, we conduct group 347

selection and sub-goal planning in a small-large 348

model collaboration mode. For the easier group se- 349

lection, we use CLIP model (Dorbala et al., 2022) 350

instead of LLM, which only has around 100M pa- 351

rameters and lower inference latency. For the harder 352

sub-goal planning, we use LLM to select one spe- 353

cific object as the sub-goal. In the information se- 354
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Figure 7: For different final goals, the selected times
of different groups are different, thus showing different
relevance. For each final goal, the navigation task is
conducted 15 times with different starting points. The
groups are selected by GPT-4o.

lection process, we use CLIP to encode the object355

information in each group and the final goal. And356

then calculate the similarity between the encod-357

ing results between the final goal and each group,358

which is viewed as the possibility for a group in-359

cluding potential sub-goals. We consider the group360

relevant to the final goal only if the possibility is361

larger than a threshold. To adapt to different de-362

vices with different memory budgets, we formulate363

the group selection as a knapsack problem:364

maximize P =

n∑
i=1

(Pi − threshold) · xi (1)365

subject to
n∑

i=1

Mi · xi ≤ M, xi ∈ {0, 1} (2)366

where Pi denotes the possibility to include sub-367

goals in group i, Mi and M denotes the memory368

usage of KV cache of group i and device mem-369

ory budget, xi denotes whether to select group i,370

n denotes the number of groups. After solving the371

knapsack problem, we can select truly relevant in-372

formation for LLM and meet the memory budget373

at the same time.374

By using semantics-aware memory retrieval, we375

can efficiently select relevant groups adapting to376

different final goals and devices. Note that in each377

planning process, we only update the decoding re-378

sults of the groups with newly detected objects.379

As the inference time of CLIP is much lower than380

LLM, the latency of the selection process is negli-381

gible. At the same time, between two adjacent plan-382

ning processes, the navigation map will not change383

much. So it is likely that some group are both se-384

lected in the current step and last step. Hence, their385

KV cache has been loaded into device memory,386

thus reducing the KV cache loading time, which387

we will further show in our experiments.388

4 Experiments 389

4.1 Experiment Setup 390

Dataset and Evaluation metric. We evaluate 391

EfficientNav on the Habitat ObjNav Challenge 392

dataset (Andrew et al., 2022) based on the Habi- 393

tat simulation platform (Szot et al., 2021). In the 394

simulation platform, the robot can access RGBD 395

observation of the environment. In each task, the 396

robot is placed at a different starting point in the 397

environment and is only instructed to find a spe- 398

cific object, e.g., “TV”, “chair”, “sofa” etc., which 399

is harder than tasks giving detailed, step-by-step di- 400

rections (Anderson et al., 2018; Qi et al., 2020). We 401

evaluate our method on the evaluation set, which 402

has 20 scenes. For each scene, we evaluate 15 tasks. 403

For accuracy, we report two metrics: i) the av- 404

erage success rate (SR), and ii) the success rate 405

penalized by path length (SPL), which both evalu- 406

ates the accuracy and the efficiency of robot trajec- 407

tory. For system efficiency, we report two metrics: 408

i) real-time latency (RtL): the average robot plan- 409

ning time in one navigation step. ii) End-to-end 410

latency (E2EL): the average latency for the robot to 411

complete one navigation task (including multiple 412

navigation steps and robot moving time). 413

Implementation In EfficientNav, we use smaller 414

open-source planners, such as LLaVA and 415

LLaMA3.2. We use a single NVIDIA RTX A6000 416

GPU to deploy LLaVA-7b and LLaMA3.2-11b. 417

When using LLaVA-13b and LLaVA-34b, we de- 418

ploy our system on 2 and 4 NVIDIA RTX A6000 419

GPUs respectively. We also deploy LLaVA-7b on 420

a single Jetson AGX Orin. 421

4.2 Main Results 422

Comparison with state-of-the-art. The compar- 423

ison of SR and SPL is shown in Table 2. Compared 424

with learning-based methods, EfficienNav achieves 425

18.0% SR and 14.7% SPL improvements over the 426

prior-art method OVRL (Yadav et al., 2023), with- 427

out any training cost. This shows the advantage 428

of LLM-based navigation system, which we have 429

discussed in Section 1. Compared with zero-shot 430

methods, EfficientNav achieves 11.1% SR and 431

5.5% SPL improvements over LFG (Shah et al., 432

2023b), which uses GPT-4. Compared with naive 433

LLaVA-34b planner (Chen et al., 2024), Efficient- 434

Nav achieves 37.3% SR and 20.5% SPL improve- 435

ments. Because we use semantics-aware memory 436

retrieval, helping the LLM focus on the most rele- 437
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vant groups and removing redundant information.438

The latency comparison is shown in Table 3.439

Compared with GPT-4 planner (Chen et al., 2024),440

EfficientNav achieves 6.7× real-time latency re-441

duction and 4.7× end-to-end latency reduction, by442

saving the communication time to the cloud server.443

Compared with naive LLaVA planner, Efficcient-444

Nav achieves 8.8× and 6.5× real-time latency re-445

duction and 3.7× and 4.4× end-to-end latency re-446

duction on LLaMA3.2-11b and LLaVA-34b. This447

mainly comes from using discrete memory caching448

to avoid re-computation in the prefilling stage of449

planning. Prior-art solutions such as vllm can ac-450

celerate LLM inference, but they can not solve451

the problem of high re-computation cost, which452

is the main bottleneck. Compared with vllm, Effi-453

cientNav achieves 6.5× and 5.1× real-time latency454

reduction and 3.1× and 3.8× end-to-end latency455

reduction on LLaMA3.2-11b and LLaVA-34b.456

Real-time latency in different navigation steps.457

The amount of map information increases in each458

navigation step. As shown in Figure 8, when using459

traditional serving methods (Kwon et al., 2023),460

the increasing prompt length will introduce high461

recomputation cost and increasing real-time latency.462

However, when using EfficientNav, the real-time463

latency stabilizes after a certain navigation step,464

as we use semantics-aware memory retrieval to465

select partial groups for LLM according to memory466

budget. With the same amount of information given467

to LLM, EffcientNav also shows lower real-time468

latency, as discrete memory caching saves the re-469

computation time of LLM prefilling.470

Planning latency breakdown. Figure 9 shows471

the latency breakdown of one navigation step. Com-472

pared to traditional serving methods (Kwon et al.,473

2023), by avoiding re-computation, discrete mem-474

ory caching can significantly reduce the prefilling475

time of planning by around 20×. And semantics-476

aware memory retrieval removes the redundant in-477

formation, thus reducing the prompt length and478

reducing the computation cost and latency of the479

decoding stage of planning. The latency of mem-480

ory clustering and memory selection is negligible,481

which we discussed in Section 3.3 and 3.4.482

Memory caching distribution and cache hit rate483

of EfficientNav. When using EfficeintNav, in484

each planning process, we only select relevant485

groups for LLM. With larger device memory bud-486

gets for KV cache, we can store more groups in487

Table 2: SR and SPL comparison on Habitat ObjNav
Challenge dataset.

Method Zero-shot LLM SR SPL

DD-PPO (Wijmans et al., 2019) ✗ - 27.9 14.2
SemExp (Chaplot et al., 2020) ✗ - 37.9 18.8
Habitat-web (Ramrakhya et al., 2022) ✗ - 41.5 16.0
L3MVN (Yu et al., 2023) ✗ - 50.4 23.1
OVRL (Yadav et al., 2023) ✗ - 62.0 26.8

ZSON (Majumdar et al., 2022) ! - 25.5 12.6
PixelNav (Cai et al., 2024) ! GPT-4 37.9 20.5
ESC (Zhou et al., 2023) ! - 39.2 22.3
VoroNav (Wu et al., 2024a) ! GPT-3.5 42.0 26.0
LLaVA Planner-34b (Chen et al., 2024) ! LLaVA-34b 42.7 21.0
InstructNav (Long et al., 2024) ! GPT-4V 58.0 20.9
LFG (Shah et al., 2023b) ! GPT-4 68.9 36.0
EfficientNav-11b ! LLaMA3.2-11b 74.2 39.5
EfficientNav-34b ! LLaVA-34b 80.0 41.5

Table 3: Average latency comparison on Habitat ObjNav
Challenge dataset.

Method LLM RtL E2EL

GPT-4 Planner (Chen et al., 2024) GPT-4 5.80s 59.34s

LLaMA Planner-11b (Chen et al., 2024) LLaMA3.2-11b 3.07s 46.40s

vllm (Kwon et al., 2023) LLaMA3.2-11b 2.27s 39.78s

EfficientNav-11b (Ours) LLaMA3.2-11b 0.35s 12.70s

LLaVA Planner-34b (Chen et al., 2024) LLaVA-34b 5.63s 55.32s

vllm (Kwon et al., 2023) LLaVA-34b 4.43s 47.95s

EfficientNav-34b (Ours) LLaVA-34b 0.87s 12.51s
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Figure 8: Comparison of real-time latency in different
navigation steps.

Figure 9: Planning latency (s) breakdown for LLaVA
planner and EfficientNav. The cache loading time in
EfficientNav is included in prefilling stage of planning.

device memory. As discussed in Section 3.4, some 488

selected groups may be just stored in device mem- 489

ory, so we do not need to re-load these groups from 490

storage units. We define the proportion of these 491

groups as cache hit rate. A high hit rate will lead 492
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Figure 10: Comparison on the memory caching distribution and memory cache hit rate with different device memory
budgets for KV cache, using (a) LLaVA-7b, (b) LLaVA-13b, and (c) LLaVA-34b. We define the proportion of
selected groups already stored in device memory as cache hit rate.

to low caching loading time. As shown in Figure493

10, the cache hit rate of EfficientNav increases with494

the device memory budget and rapidly reaches a495

high level. This is because when the memory bud-496

get increases, more relevant groups are stored in497

device memory. At the same time, the semantics of498

each group will not change much between adjacent499

planning processes. So it is likely that some rele-500

vant groups are just loaded to device memory in501

the last few steps, leading to a high cache hit rate.502

4.3 Ablation Study503

Individual influence of our methods. Table 4504

shows the individual influence of our proposed505

methods. In naive LLaVA planner, we empiri-506

cally cluster and select environmental informa-507

tion according to object positions (Zhang and Ma,508

2024; Shah et al., 2023b). By using discrete mem-509

ory caching, compared with naive LLaVA planner510

(Chen et al., 2024), we achieve 2.3× real-time la-511

tency and 1.5× end-to-end latency reduction, by512

re-using KV cache of navigation map description513

and avoiding re-computation. By using attention-514

based memory clustering, we further achieve 20.2%515

SR and 13.2% SPL improvement, by fully consid-516

ering the relationship between objects and reduc-517

ing the impact of ignoring cross-attention. By us-518

ing semantics-aware memory retrieval, we achieve519

16.7% SR and 7.3% SPL improvement, by select-520

ing groups according to semantics and pruning re-521

dundancy. We also achieve 2.7× real-time latency522

and 2.6× end-to-end latency reduction, by select-523

ing groups according to memory budget and avoid-524

ing frequent communication with storage units.525

Impact of device memory budget for KV cache.526

In semantics-aware memory retrieval, we select rel-527

evant groups according to the device memory bud-528

get. Here we evaluate the impact of memory budget529

on success rate and latency using LLaVA-34b. As530

shown in Table 5, on most cases, our method shows531

Table 4: Ablation study on EfficientNav methods with
LLaVA-34b.

Method SR SPL RtL E2EL

LLaVA Planner 42.7 21.0 5.63s 55.32s

+Discrete Memory Caching 43.1 21.0 2.42s 36.94s

+Attention-based Memory Clustering 63.3 34.2 2.32s 32.58s

+Semantics-aware Memory Retrieval 80.0 41.5 0.87s 12.51s

Table 5: Ablation study on different device memory
budgets for KV cache with LLaVA-34b.

Memory Budget SR SPL RtL E2EL

16GB 74.7 37.3 0.59s 14.24s

24GB 79.0 39.1 0.71s 14.29s

32GB 80.0 41.5 0.87s 12.51s

40GB 80.3 41.9 0.93s 11.72s

good robustness. However, when the memory bud- 532

get for KV cache is too small, fewer relevant groups 533

can be selected. Hence, the potential sub-goal may 534

be ignored, which causes success rate drops and 535

longer end-to-end latency. For a larger memory bud- 536

get, more relevant groups can be selected. While 537

the longer prompt length may cause longer plan- 538

ning time, which will slightly increase the real-time 539

latency. 540

5 Conclusion 541

This work proposes EfficientNav, the first work en- 542

abling on-device zero-shot VLN. We propose dis- 543

crete memory caching to enable re-using KV cache 544

and avoid re-computation in LLM planning. We 545

also propose attention-based memory clustering to 546

reduce the impact of ignoring cross-attention. To 547

improve planning performance of smaller LLMs, 548

we propose semantics-aware memory retrieval to 549

remove the redundancy in navigation map. Effi- 550

cientNav overcomes all existing baselines and first 551

enables to run zero-shot VLN on local devices. 552
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6 Limitations553

In this section, we discuss the current limitations554

and potential avenues for future research.555

First of all, in our method, we propose the556

first on-device VLN system that enables efficient557

zero-shot in-door navigation. In fact, our memory558

caching and memory retrieval method also benefits559

the LLM inference on the cloud server by avoid-560

ing re-computation and removing redundant infor-561

mation. However, EfficientNav can not solve the562

problems of high communication latency or privacy563

concerns that cloud serving faces.564

Also, in our experiment, EfficientNav achieves565

6.7× real-time latency reduction compared with566

GPT-4 planner. However, as the inference speed567

of LLM can not reach that of small models, so568

EfficientNav can not be used in applications that569

need extremely low real-time latency.570

7 Ethics Statement571

In our paper, our method first enables efficient572

on-device zero-shot in-door VLN, overcoming the573

tight memory constraints by designing novel mem-574

ory caching and retrieval mechanisms. Our method575

democratized VLN to local devices and can enable576

AI applications such as rescue robots to areas with577

poor connections, protecting privacy and saving578

energy at the same time. However, our LLM-based579

VLN works in a zero-shot manner. This can avoid580

the heavy training cost, but the pre-trained LLM581

may not master some highly specialized knowledge.582

Therefore, in high-risk areas such as chemical lab-583

oratories with hazardous materials, EfficientNav584

should be carefully used.585
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A LLM-based Navigation System831

Currently, LLM-based navigation methods can be832

divided into two categories. The first is end-to-end833

models, such as NaVid (Zhang et al., 2024), which834

directly convert inputs into control policies for the835

robot. However, this approach comes with a signif-836

icant training cost. The second, more mainstream837

and simpler approach, involves using LLMs as a838

high-level planner, and a lower-level controller han-839

dled by the robot itself. (Long et al., 2024; An et al.,840

2024; Shah et al., 2023b; Cai et al., 2024; Kaichen841

et al., 2024). The LLM planner conducts sub-goal842

planning based on the environment and the instruc-843

tion to reach the final goal. The controller (Shah844

et al., 2023c; Sridhar et al., 2024), usually using a845

small neural network, finds a trajectory from the846

current place to the sub-goal and controls the robot847

moving in a real-time manner. As the final goal848

is usually unseen at the beginning, one navigation849

task needs multiple navigation steps. To achieve850

high success rate, existing works (Chen et al., 2024;851

Long et al., 2024; Shah et al., 2023b; Wang et al.,852

2024; Kaichen et al., 2024) all use giant models,853

e.g., GPT-4, as the planner, preventing the navi-854

gation system deployed on local devices. While855

directly switching to smaller LLMs will cause sig-856

nificant success rate drops (Cao et al., 2024; Long857

et al., 2024; Kim et al., 2024).858

As shown in Table 1, EfficientNav is the first859

work to enable accurate on-device zero-shot VLN.860

EfficientNav designs a memory selection mecha-861

nism to remove redundant information in the navi-862

gation map. Hence, help the smaller LLM focus on863

relevant information and improve success rate.864
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