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Abstract
With the rapid growth of intelligent devices such
as smartphones and unmanned aerial vehicles,
vast amounts of sequential data are generated at
the network edge, offering rich resources for edge
federated continual learning. However, the con-
tinuous influx of data introduces significant spa-
tiotemporal heterogeneity: temporally, data distri-
bution shifts over time lead to catastrophic forget-
ting; spatially, non-independent and identically
distributed (non-IID) data across devices hinder
global model convergence. While overcoming
these challenges, it is inevitable to consider the in-
herent constraints of edge devices, including lim-
ited computational and storage capability. To this
end, we propose Spatial-Temporal Elastic Weight
Consolidation (ST-EWC) method, by which each
device trains a local neural network model using
only its own data within the current time period,
without revisiting data from other devices and pre-
vious time periods, meanwhile local models are
periodically sent to a server for global model ag-
gregation. The key point of ST-EWC is that the
local model update is guided by Fisher diagonal
matrices based regularization terms applied across
both spatial and temporal dimension. Experimen-
tal results demonstrate that ST-EWC significantly
mitigates catastrophic forgetting, accelerates con-
vergence, and improves average accuracy, under
the settings of the temporally domain-incremental
and spatially non-IID PermutedMNIST and PACS
datasets.
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1. Introduction
With the rapid proliferation of intelligent devices such as
smartphones and unmanned aerial vehicles (UAVs), massive
amounts of sequential data are generated at the network
edge. This necessitates the ability of these edge devices
to adapt incrementally to new data, rather than retraining
from scratch. Considering the limited computational and
storage capabilities of edge devices, as well as the need
to preserve data privacy, performing federated continual
learning (FCL) in edge networks becomes necessary. For
instance, the challenge of changing data distributions caused
by user mobility in edge networks is addressed (Jin et al.,
2022), using an incremental learning approach that updates
local models over time in a federated manner. Similarly,
Wu et al. (Wu et al., 2024) tackle the poor generalization
of pre-trained models and the resource limitations of UAVs
by combining online learning with federated learning (FL),
enabling UAVs to update their models with real-time data
and adapt to new environment.

The most significant issue for FCL in edge networks arises
from the dynamic nature of data, which arrives in batches
over time, introducing complexities related to both temporal
and spatial data heterogeneity, as shown in Figure 1. Tempo-
ral data heterogeneity refers to shifts in data distributions
over time, driven by factors such as evolving trends, sea-
sonal variations, and changes in user behavior. These fluc-
tuations require models to continuously adapt, as failing to
do so can lead to performance degradation. A critical issue
in this context is catastrophic forgetting, where models lose
previously acquired knowledge when adapting to new data.
Spatial data heterogeneity, on the other hand, stems from
the non-independent and identically distributed (non-IID)
nature of data across different devices, due to the fact that
each device typically collects data under unique conditions.
As a result, locally trained models may fail to generalize
well when aggregated into a global model, leading to slower
convergence and reduced accuracy. Addressing these issues
requires specialized techniques that mitigate catastrophic
forgetting while ensuring global model convergence, mean-
while considering the limited computational and storage
resources on edge devices.

To this end, we propose a Spatial-Temporal Elastic Weight
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Figure 1. An illustration of spatial-temporal data distribution in
edge networks.

Consolidation (ST-EWC) method to enhance the FCL in
edge networks. In this approach, edge devices cooperate in
the learning process with support from a centralized node,
such as a server located at the network edge. Within each
time period, the following process is iteratively performed
until the global neural network model converges: 1) Each
device updates its local model using only its own data from
the current time period. To mitigating forgetting of knowl-
edge acquired in earlier time periods, a Temporal Fisher
Diagonal Matrix (T-FDM)-based regularization is applied.
In parallel, to adapt to new local data while maintaining gen-
eralization to other devices’ data, a Spatial Fisher Diagonal
Matrix (S-FDM)-based regularization is also incorporated.
2) After completing the local model update, each device
updates its S-FDM using the latest local model. 3) The up-
dated local models and corresponding S-FDMs are sent to
the server. 4) The server aggregates the local models to con-
struct a new global model. 5) The new global model, along
with other devices’ updated local models and S-FDMs, is
distributed back to all devices to begin the next round of
local updates. Once the global model has converged within
the current time period, the T-FDM is updated in a federated
manner to guide model updates in future time periods. The
contributions of this paper is summarized as:

• ST-EWC applies EWC constraints in both the spatial
and temporal domains to guide local model updates.
Specifically, the spatial EWC constraint is formulated
as an S-FDM-based regularization term that identi-
fies and preserves model parameters important for
data from other devices, thereby ensuring cross-device
knowledge retention. Meanwhile, the temporal EWC
constraint utilizes the T-FDM to identify parameters
critical to data from previous time periods, helping to
retain essential knowledge from past experiences while
training on current data.

• ST-EWC allows each device to train its local model
using only data from the current time period, without
accessing data from other devices or previous time
periods. This approach significantly reduces computa-
tional and storage overhead compared to retraining on
accumulated historical data, making it well-suited for
resource-constrained edge devices.

• Extensive experiments on the temporally domain-
incremental and spatially non-IID PermutedMNIST
and PACS datasets demonstrate that ST-EWC miti-
gates catastrophic forgetting, accelerates convergence,
and improves average accuracy by effectively balanc-
ing S-FDM-based regularization—focused on current
knowledge acquisition—and T-FDM-based regulariza-
tion, which mitigates catastrophic forgetting.

2. Related Work
2.1. Continual Learning

To address the learning challenge in dynamic environments
where data arrives continually over time, various types of
continual learning (CL) methods have been proposed to
mitigate catastrophic forgetting and improve model perfor-
mance across multiple time periods. These methods can be
broadly categorized into three types (De Lange et al., 2019):
replay-based methods, parameter isolation methods, and
regularization-based methods, each of which has its own
advantages and disadvantages.

Replay-based methods mitigate forgetting by storing and
replaying samples from previous periods, either as raw data
or pseudo-samples generated by generative models, such
as iCaRL (Rebuffi et al., 2017). While effective in preserv-
ing past knowledge, these methods demand extra memory,
making them less suitable for resource-limited edge net-
works. Parameter isolation methods allocate distinct model
components (e.g., subnetworks or masks) to each period, as
seen in PackNet (Mallya & Lazebnik, 2018). This kind of
methods prevents interference between periods at the cost
of growing neural network scale, which increases computa-
tional costs. Regularization-based methods, such as EWC
(Kirkpatrick et al., 2017), avoid storing historical data by
introducing temporal EWC constraints on model parame-
ter updates. These approaches reduce computational and
memory costs, but may gradually degrade performance over
long sequences due to limited regularization strength. Fortu-
nately, carefully selecting appropriate regularization terms
can effectively alleviate this degradation.

In comparison, regularization-based methods—with their
lower computational and memory requirements—are more
suitable for edge networks. However, the aforementioned
methods are typically implemented in a centralized manner,
requiring raw data to be transmitted from edge devices. This
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leads to prohibitively high communication overhead and
raises significant privacy concerns when directly applied in
edge network environments.

2.2. Federated (Continual) Learning

FL (McMahan et al., 2017) offers inherent advantages for
edge network environments that are resource-constrained
and privacy-sensitive. However, spatial data heterogeneity
incurred by the non-IID data among devices, poses signif-
icant challenges to FL. Recent studies have proposed vari-
ous innovative solutions to address these challenges: The
DISCO algorithm (Guo et al., 2022), which dynamically
schedules device participation to tackle imbalances in data
volume and variations in computational and communica-
tion capabilities across edge devices, significantly improv-
ing convergence speed and accuracy; To address the data
heterogeneity in large-scale edge networks, a hierarchical
personalized FL framework based on model-agnostic meta-
learning has been proposed in (You et al., 2023), enhancing
overall learning performance. The FedCurv algorithm, pro-
posed in (Shoham et al., 2019), introduces a regularization
term in the spatial dimension during local model updates,
effectively improving the model’s generalization across de-
vices. While existing studies have extensively addressed
spatial data heterogeneity, they have largely neglected the
challenges posed by temporal data heterogeneity.

The combinations of FL and CL for edge artificial intelli-
gence have been discussed in (Wang et al., 2024), enabling
models to continuously adapt to dynamic data. Mainstream
methods include: replay mechanism (Wei et al., 2024), (Qi
et al., 2023) and its variants (Mei et al., 2024), (Usman-
ova et al., 2022), which store or generate a subset of past
data and combine it with new data to mitigate forgetting
during model updates; as well as parameter isolation meth-
ods (Yoon et al., 2021), which allocate dedicated parameter
components for data from each time period and device to
prevent forgetting. However, these existing methods typi-
cally require additional memory or computational resources,
making them less suitable for deployment in edge networks.
In contrast, our approach seeks to leverage the advantages
of regularization-based method to enhance the federated
continual learning on edge devices with limited resources.

3. Problem Description and Preliminaries
As illustrated in Figure 1, we consider an edge networks
with K devices, in which device k ∈ K ≜ {1, ...,K}
sequentially collects data over time. For simplicity, we
denote the data collected by device k during period t ∈ T ≜
{1, ..., T} as Dk,t and Dk,t = {(xt

kj , y
t
kj)}

nk,t

j=1 consists
of nk,t data samples, with xt

kj and ytkj representing the
input and label of the j-th sample of device k in period t.
Then, the total data collected during period t is given by

Dt =
⋃

k∈K Dk,t and Dt = {(xt
j , y

t
j)}

nt
j=1 consists of nt

data samples, where xi
j and yij represent the input and label

of the j-th data sample in period t, respectively.

We aim to find the optimal model θt that performs well not
only on the current period’s data Dt, but also on the previous
data {D1,D2, ...,Dt−1}. To achieve this, we define a global
loss function to assess the performance of model θt, as
follows:

L(θt,At) =
1

|At|

t∑
i=1

ni∑
j=1

ℓ(θt,xi
j , y

i
j), (1)

where At =
⋃t

i=1 Di represents the cumulative data up to
period t and ℓ denotes a generic loss function, such as the
cross-entropy loss or the mean squared error loss. It will
achieve an optimal solution to update model θt following
(1), but along with prohibitively large amount of data to be
stored on edge devices. This poses significant challenges
for edge devices such as UAVs and smartphones, which
typically have limited storage and computational resources.

To address this issue, we adopt the EWC method to update
model θt using only the current period’s data, without re-
visiting previous data. This approach significantly reduces
the computational and storage burdens on edge devices.
While mitigating the forgetting of past knowledge, the EWC
selectively preserves model parameters that are crucial to
previous periods’ data, protecting them from drastic changes
during model updates. The core innovation of EWC lies
in encoding parameter importance information as a regu-
larization term in the loss function, thereby establishing
an “elastic constraint” in the parameter space to safeguard
learned knowledge (Aich, 2021), (Hashash et al., 2022).
With the EWC, the global loss function is rewritten as:

L(θt,Dt) =
1

nt

nt∑
j=1

ℓ(θt,xt
j , y

t
j)

+
λ1

2

t−1∑
i=1

(θt − θi,∗)TF i(θt − θi,∗). (2)

In (2), the first term represents the loss on the current pe-
riod’s data, while the second term can be regarded as a
temporal regularization term that protects the knowledge
learned from previous data, with λ1 > 0 as a weight factor.
Additionally, F i is the T-FDM, corresponding to the opti-
mal model θi,∗ in period i. For ease of understanding and
future use, we adopt the superscript t instead of i and give
the T-FDM in period t as follows:

F t =

E ⊙ 1

nt

nt∑
j=1

(
∂ℓ(θt,∗,xt

j , y
t
j)

∂θt,∗

)(
∂ℓ(θt,∗,xt

j , y
t
j)

∂θt,∗

)T

.

(3)
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Here, E is an identity matrix with the same dimensions
as the T-FDM, and ⊙ denotes element-wise matrix mul-
tiplication. Moreover, θt,∗ is the optimal model for (2)
minimization in period t, which can be achieved using the
gradient decent method. Particularly, in the r-th gradient
descent, θt is updated following

θt
r = θt

r−1 − η ▽ L(θt
r−1,Dt)

= θt
r−1 − η

(
1

nt

nt∑
j=1

▽ℓ(θt
r−1,x

t
j ,y

t
j)

+ λ1

t−1∑
i=1

(θt
r−1 − θi,∗)F i

)
, (4)

with learning rate η and initial model θt0.

In the centralized EWC method (Hashash et al., 2022), the
server executes the following procedures in period t for (2)
minimization: 1) collects the data from edge device to at-
tain Dt; 2) updates the model following (4) to achieve the
optimal solution θt,∗. In this way, the catastrophic forget-
ting brought by the temporal data heterogeneity is mitigated
effectively. However, it is often infeasible in practical edge
networks to collect the data from edge devices for central-
ized learning, due to high communication costs and privacy
concerns. Therefore, there is a need for the distributed im-
plementation of EWC method, during which the spatial data
heterogeneity among edge devices adversely affecting the
learning performance has to be tackled. In this regard, we
further extend the EWC method into the spatial dimension
and devise ST-EWC method for edge federated continual
learning. The details will be presented in the next section.

4. Our ST-EWC Method
4.1. Design Philosophy

We take period t as an example to elaborate on the dis-
tributed implementation of EWC method. The aim in period
t is to achieve θt,∗ using data Dt (distributed among K
devices) to minimize the global loss in (2). Without data
sharing with the server, device k instead minimizes the fol-
lowing local loss:

Lk(θ
t
k,Dk,t) =

1

nk,t

nk,t∑
j=1

ℓ(θt
k,x

t
kj , y

t
kj)

+
λ1

2

t−1∑
i=1

(θt
k − θi,∗)TF i(θt

k − θi,∗), (5)

where F i for previous period i is broadcast by the server
and is a known parameter for device k. Then, device k

updates local model θtk in the r-th gradient descent as

θt
r,k = θt

r−1,k − η ▽ Lk(θ
t
r−1,k,Dk,t)

=θt
r−1,k− η

(
1

nk,t

nk,t∑
j=1

ℓ(θt
r−1,k,x

t
kj ,y

t
kj)

+λ1

t−1∑
i=1

(θt
r−1,k−θi,∗)F i

)
. (6)

After one-time local gradient descent, device k then sends
updated model θt

r,k to the server. Further, the server aggre-
gates all model updates from K edge devices as follows:

θt
r =

K∑
k=1

nk,t

nt
θt
r,k

=

K∑
k=1

nk,t

nt

(
θt
r−1,k − η

1

nk,t

nk,t∑
j=1

ℓ(θt
r−1,k,x

t
kj , y

t
kj)

− ηλ1

t−1∑
i=1

(θt
r−1,k − θi,∗)F i

)
. (7)

With θt
r−1,k for edge device k equal to θt

r−1 broadcast by
the server, (7) is the same with (4). That is, in period t, the
distributed implementation of EWC method is comprised
of the following procedures: 1) The server sends F i and
an initial model θt

0 to all edge devices; 2) Edge device k
updates local model following (6) and sends the update to
the server; 3) The server aggregates the local model updates
following (7) and sends the aggregated model to all edge
devices; 4) Repeat the second and third procedures until
achieving the optimal model θt,∗.

During the distributed implementation described above, two
key issues arise:

• How to obtain T-FDM F t after obtaining the opti-
mal model θt,∗?

• How to address the negative impact of spatial data
heterogeneity among edge devices on achieving the
optimal model θt,∗?

In the distributed implementation, the T-FDM has to be
calculated in a distributed manner. To this end, edge device
k computes a local T-FDM as

F t
k =

E⊙ 1

nk,t

nk,t∑
j=1

(
∂ℓ(θt,∗,xt

kj , y
t
kj)

∂θt,∗

)(
∂ℓ(θt,∗,xt

kj , y
t
kj)

∂θt,∗

)T

,

(8)

and then sends it to the server for global aggregation:
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Figure 2. Federated continual learning flow with the proposed ST-EWC.

F t =

K∑
k=1

nk,t

nt
F t
k

=E⊙ 1

nt

K∑
k=1

nk,t∑
j=1

(
∂ℓ(θt,∗,xt

kj , y
t
kj)

∂θt,∗

)(
∂ℓ(θt,∗,xt

kj , y
t
kj)

∂θt,∗

)T

,

(9)

to finally attain a same T-FDM as (3).

To mitigate the adverse effects of spatial data heterogene-
ity, we further incorporate the EWC method in the spatial
dimension. Specifically, we add an additional spatial reg-
ularization term for edge device k during its local model
update in the r-th gradient descent, as follows:

θt
r,k =θt

r−1,k − η

(
1

nk,t

nk,t∑
j=1

▽ℓ(θt
r−1,k,x

t
kj , y

t
kj)

+ λ1

t−1∑
i=1

(θt
r−1,k − θi,∗)F i

+ λ2

K∑
k′=1
k′ ̸=k

(θt
r−1,k − θt

r−1,k′)F t
r−1,k′

)
, (10)

where λ2 > 0 is a weight factor for the spatial regulariza-
tion term and F t

r−1,k′ represents the S-FDM, initialized as
F t
0,k′ = 0. For edge device k, its S-FDM is calculated as:

F t
r,k =

E⊙ 1

nk,t

nk,t∑
j=1

(
∂ℓ(θt

r,k,x
t
kj , y

t
kj)

∂θt
r,k

)(
∂ℓ(θt

r,k,x
t
kj , y

t
kj)

∂θt
r,k

)T

.

(11)

Note that, the S-FDMs preserve the important knowledge
learned from other devices. Hence, the local model update in
(10) can prevent the updated model on device k from drifting
away from this crucial knowledge, thereby promoting the
convergence of local model toward a global optimum.

4.2. Learning Flow

Based on the design philosophy, we then elaborate on the
learning flow with the proposed ST-EWC method. For
clarity, we assume that after R communication rounds, the
global model updated with (7) converges to the optimal
model θt,∗ in period t. As shown in Figure 2, the first R
rounds are used for local model update following (10) and
global model aggregation following (7), while the R+ 1-th
round is used to update T-FDM F t following (9). To clarify
the design philosophy of our method, we only consider one-
time local model update in the last subsection. Inspired
by the idea in Federated Learning (McMahan et al., 2017)
that increased local computation is beneficial for learning
acceleration, we propose a more general learning flow in
Algorithm 1, in which each local model is updated E times
in the first R rounds.

4.2.1. DISTRIBUTED LEARNING

In detail, we start with an initialization process in period
t, during which the server broadcasts the S-FDM F t−1

and initial global model θt
0 to all edge devices. Then, the

learning process lasts R rounds. In the r-th round, the
following steps are executed.

(1) Local model update: Edge device k performs E local
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model updates, with the e-th update given by:

θt,e
r,k =θt,e−1

r,k − η

(
1

nk,t

nk,t∑
j=1

▽ℓ(θt,e−1
r,k ,xt

kj , y
t
kj)

+ λ1

t−1∑
i=1

(θt,e−1
r,k − θi,∗)F i

+ λ2

K∑
k′=1
k′ ̸=k

(θt,e−1
r,k −θt

r−1,k′)F t
r−1,k′

)
, (12)

where the initial local model is set as θt,0
r,k = θt

r−1 and the
final updated local model is further labeled as θt

r,k = θt,E
r,k .

In fact, (12) is an extension of (10), generalizing from a one-
time local model update to multiple updates. For broader
applicability, the gradient descent in (12) can be replaced
with more advanced optimizers such as stochastic gradient
descent (SGD) or adaptive moment estimation (Adam).

(2) S-FDM calculation: After the local model update, edge
device k calculates the S-FDM F t

r,k according to (11).

(3) Local model and S-FDMs upload: Edge device k sends
its updated local model θt

r,k and S-FDM F t
r,k to the server.

(4) Global model aggregation: After receiving all updated
local models from K edge devices, the server follows (7) to
aggregate these local models for a new global model θt

r.

(5) Model and S-FDMs download: The server sends the
global model θt

r, along with the updated local models θt
r,k′

and S-FDMs F t
r,k′ from other devices, to edge device k.

4.2.2. DISTRIBUTED T-FDM CALCULATION

After R rounds of distributed learning, the attained model
θtR+1 converges to the optimal model θt,∗. This optimal
model is sent by the server to edge devices at the end of
round R. Consequently, in round R + 1, edge devices
immediately compute the T-FDM in a federated manner:

(1) Local T-FDM calculation: After receiving θt,∗, edge
device k calculates its local T-FDM F t

k according to (8).

(2) Local T-FDM upload: Edge device k uploads its local
T-FDM F t

k to the server.

(3) T-FDM aggregation: After receiving all the local T-
FDMs from K devices, the server follows (9) to aggregate
them for the distributed learning in the next period.

5. Experimental Setup and Results
5.1. Experimental Setup

In our experiments, we utilize the domain-incremental Per-
mutedMNIST (Hashash et al., 2022) and PACS (Li et al.,
2017) datasets to evaluate the performance of the proposed

Algorithm 1 The proposed learning flow in the t-th period
1: Distributed Learning:
2: Server sends θt

0 and F t−1 to devices;
3: for Round r = 1 to R do
4: for Device k = 1 to K do
5: for Local update e = 1 to E do
6: Following (12), device k updates θt,e−1

r,k ;
7: end for
8: Following (11), device k computes F t

r,k;
9: Device k sends θt

r,k = θt,E
r,k and F t

r,k to server;
10: end for
11: Following (7), server aggregates {θt

r,1, ...,θ
t
r,K} for

θt
r;

12: Server sends θt
r, θt

r,k′ and F t
r,k′ to device k;

13: end for
14: Distributed T-FDM Calculation:
15: for Device k = 1 to K do
16: Following (8), device k computes F t

k ;
17: Device k uploads F t

k to server;
18: end for
19: Following (9), server aggregates {F t

1 , ...,F
t
K} for F t.

method. These datasets consist of a series of domains in
which the input distribution changes over time, while the
output label space remains unchanged. The PermutedM-
NIST dataset is a variant of the standard MNIST dataset,
where the pixels of the handwritten digit images are ran-
domly permuted in each period. This results in visually
distinct versions of the same digits across periods, effec-
tively simulating different data distributions in temporal
dimension. For PermutedMNIST, we set the number of
periods as T = 5 and number of devices is set to K = 20.
To simulate a non-IID data distribution in spatial dimen-
sion, each device is assigned data from only two of the ten
digit classes. A multi-layer perceptron (MLP) is used for
training on PermutedMNIST, consisting of an input layer,
two hidden layers with ReLU activations and Dropout reg-
ularization, and a final output layer. The MLP model is
trained using the cross-entropy loss and SGD optimizer
with a learning rate of η = 0.1. The number of rounds is set
to R = 100 in each period and the number of local updates
is set to E = 1 in each round.

The PACS dataset consists of four distinct visual domains:
Sketch, Cartoon, Art Painting, and Photo, and each domain
shares the same set of object categories. In our setup, each
domain corresponds to a distinct period, thereby resulting
in T = 4 periods. We consider K = 10 devices, each of
which is assigned data from three different object categories
to simulate a non-IID data distribution in the spatial dimen-
sion. For PACS, we employ a convolutional neural network
(CNN), comprised of two convolutional layers with ReLu ac-
tivations, two max-pooling layers, and two fully connected
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(a) PermutedMNIST

(b) PACS

Figure 3. Test accuracy w.r.t. period 1 vs. number of rounds.

layers with ReLU activations. The CNN model is trained
using the cross-entropy loss and Adam optimizer with a
learning rate of η = 0.0001. In each period, the number of
rounds is set to R = 20, with each round comprising E = 5
local updates. To evaluate the effectiveness of our ST-EWC
method, we compare it against the following baselines:

• FedAvg: FedAvg is a widely used FL algorithm
(McMahan et al., 2017), which corresponds to our
method with λ1 = 0 and λ2 = 0.

• FedCurv: FedCurv applies EWC only in the spatial
dimension (Shoham et al., 2019), which corresponds
to our method with λ1 = 0.

• TimeEWC: TimeEWC is a distributed implementa-
tion of the proposed method in (Hashash et al., 2022),
which applies EWC only in the temporal dimension
and corresponds to our method with λ2 = 0.

We further define three metrics to evaluate the test perfor-
mance: test accuracy with respect to (w.r.t.) period 1, aver-
age accuracy across multiple periods, and overall accuracy
on all test datasets. In period t, denote the current test
dataset by Ct with data size ct and accumulated test dataset
by Ot ≜ {C1, ..., Ct} with data size ot =

∑t
i=1 ci. As a

basis, we denote Acc((·), (·)) as the test accuracy on dataset
(·) evaluated using the model (·). Accordingly, in period t,
the test accuracy w.r.t. period 1 is defined as

Acc1t = Acc(θt
r, C1). (13)

(a) PermutedMNIST

(b) PACS

Figure 4. Overall accuracy vs. number of rounds.

This metric is used to evaluate the forgetting degree of the
r-th model θt

r w.r.t. period 1. The overall accuracy of the
r-th model θt

r in period t is given by:

Ãcct = Acc(θt
r,OT ), (14)

which evaluates the test performance of model θt
r on the

combined test datasets from all T periods. The average
accuracy over the first period t is calculated as

Acct =

t∑
i=1

ci
ot
Acc(θt,∗, Ci), (15)

which is a weighted average of the test accuracies of the
converged model θt,∗.

5.2. Result Analysis

Figure 3 illustrates the test accuracy w.r.t. the first pe-
riod. This figure shows 5-period MLP training for the
PermutedMNIST dataset and 4-period CNN training for
the PACS dataset, with each period consisting of 100 and
20 rounds, respectively. In the first period, the temporal
regularization term in our ST-EWC is inactive, resulting in
comparable learning performance to FedCurv. Similarly,
TimeEWC behaves like FedAvg. That is, thanks to the ef-
fectiveness of spatial regularization term, both ST-EWC and
FedCurv outperform TimeEWC and FedAvg in terms of
convergence rate and test accuracy. In the subsequent pe-
riods, ST-EWC—enhanced by the temporal regularization
term—surpasses FedCurv, while TimeEWC outperforms
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(a) PermutedMNIST

(b) PACS

Figure 5. Average accuracy vs. number of periods.

FedAvg, exhibiting reduced forgetting with respect to the
first period. Comparing ST-EWC and TimeEWC, we further
observe that ST-EWC demonstrates superior knowledge re-
tention, as it effectively addresses spatial data heterogeneous
and better approaches the global optimal model in each pe-
riod. Consequently, our ST-EWC achieves the best learning
performance with respect to the first period and exhibits the
lowest degree of forgetting of historical knowledge.

Figure 4 compares the overall accuracy of different meth-
ods, measured on the combined test datasets from all pe-
riods. For all methods, the overall accuracy increases as
the number of periods grows. This is because, in the ini-
tial period, the model has only learned partial knowledge
and thus performs poorly on future data. By contrast, in
the final period, the model has accumulated and integrated
knowledge from all periods, thereby significantly improv-
ing its overall accuracy. Notably, our ST-EWC consistently
achieves the highest overall accuracy on both the Permut-
edMNIST and PACS datasets, with the performance gains
becoming more pronounced as the number of periods in-
creases. This highlights the effectiveness of ST-EWC in
mitigating catastrophic forgetting and preserving learned
knowledge over time. Additionally, Figure 5 illustrates the
average accuracy of the four methods. As the number of pe-
riods increases, all methods suffer from forgetting, resulting
in decreasing average accuracy. Nevertheless, our ST-EWC
consistently outperforms the other baselines, achieving the
hightest average accuracy.

In our ST-EWC method, the spatial regularization term fo-

(a) PermutedMNIST

(b) PACS

Figure 6. Average accuracy of ST-EWC.

cuses on learning from the current period’s data, while the
temporal regularization term emphasizes retaining knowl-
edge from previous periods. As shown in Figure 6, achiev-
ing optimal average accuracy requires a balance between
these two regularization terms. Specifically, when the tem-
poral weight factor λ1 is too large, the model becomes
overly focused on preserving past knowledge, thereby hin-
dering effective learning on current data and resulting in
decreased average accuracy. Conversely, an excessively
large spatial weight factor λ2 overly emphasizes current
performance, potentially interfering with temporal regular-
ization and also degrading average accuracy. Ultimately,
when both λ1 and λ2 are set to relatively small values, our
method achieves a well-balanced trade-off between current
learning and historical retention, yielding near-optimal aver-
age accuracy.

6. Conclusion
This paper has addressed the challenges of spatial and tem-
poral heterogeneity in edge federated continual learning.
To this end, we have proposed ST-EWC, a method that in-
corporates elastic weight consolidation constraints across
both spatial and temporal dimensions. Experimental results
have verified that ST-EWC effectively mitigates catastrophic
forgetting, accelerates model convergence, and improves
average accuracy, by striking a good balance between retain-
ing historical knowledge and adapting to new data. These
findings underscore the potential of our method for enabling
adaptive and privacy-preserving edge intelligence.
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