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Abstract
A number of methods have been proposed for
causal effect estimation, yet few have demon-
strated efficacy in handling data with complex
structures, such as images. To fill this gap, we pro-
pose Causal Multi-task Deep Ensemble (CMDE),
a novel framework that learns both shared and
group-specific information from the study popu-
lation. We provide proofs demonstrating equiv-
alency of CDME to a multi-task Gaussian pro-
cess (GP) with a coregionalization kernel a priori.
Compared to multi-task GP, CMDE efficiently
handles high-dimensional and multi-modal covari-
ates and provides pointwise uncertainty estimates
of causal effects. We evaluate our method across
various types of datasets and tasks and find that
CMDE outperforms state-of-the-art methods on a
majority of these tasks.

1. Introduction
Estimating the causal effect of an action is a fundamen-
tal step in determining whether it is significant enough to
change human behavior in real-world settings. This is com-
monly used to help us understand the potential impact of an
action and to inform decision-making. For example, gov-
ernments often judge the impact of an implemented policy
by gauging public opinion regarding said policy (Page &
Shapiro, 1983). Researchers can assess the efficacy and risk
of a medical procedure through the use of both clinical tri-
als, which examine the medical conditions of patients both
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with and without having the treatment, and observational
data, such as electronic health records (Jensen et al., 2012;
Zhang et al., 2019). In recent years, people have come up
with a variety of approaches that leverage machine learning
models to discover causal relationships (Guo et al., 2020;
Li & Zhu, 2022). Such methods include, for example, Tar-
geted Maximum Likelihood Estimator (Van Der Laan &
Rubin, 2006), Bayesian Additive Regression Trees (Chip-
man et al., 2010), and Double/Debiased Machine Learning
methods (Chernozhukov et al., 2018). Many recent studies
focus on learning the individualized treatment effect (ITE)
or conditional average treatment effect (CATE) by using
deep learning models (see a more comprehensive review in
Section 4) or meta-learners (Künzel et al., 2019).

As technology progresses, an increasing number of datasets
containing more complex and comprehensive infromation
have become available for causal analysis. These datasets
often include high-dimensional covariates, such as images,
posing unique challenges for causal inference. While pre-
vious methods have demonstrated promising performance
on a variety of causal inference tasks, including the In-
fant Health and Development (IHDP (Brooks-Gunn et al.,
1992)), Twins (Almond et al., 2005), and Jobs (LaLonde,
1986), few have been specifically evaluated on datasets with
high-dimensional and multi-modal structures. In some sit-
uations, these complex covariates play a significant role
in causal analysis. For instance, neuroimaging is essential
in studying how human brain solves problems with multi-
sensory causal inference (Kayser & Shams, 2015), and brain
imaging has been used to forecast treatment response in
depression (Drysdale et al., 2017), showing that informa-
tion about causal relationships are embedded in complex
data types. This highlights the need for further research on
methods that can effectively handle high-dimensional and
multi-modal covariates in causal analysis. In this paper, we
propose a deep learning framework to address this challenge.
Our main contributions are summarized as follows:

• We propose the Causal Multi-task Deep Ensemble
(CMDE) framework which estimates the CATE by
learning both shared and group-specific information
from control and treatment groups in the study popula-
tion using separate neural networks.

• We demonstrate the relationship between CMDE and
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multi-task Gaussian process (GP) framework (Alaa &
Van Der Schaar, 2017) both through analytical proof
and empirical evaluation.

• We propose an alternative configuration of CMDE to
handle covariates in a multi-modal setting (e.g., images
and tabular data).

• By conducting experiments on semi-synthetic and real-
world datasets containing covariates with various num-
ber of dimensions and modalities, we show that CMDE
outperforms the state-of-the-art methods by improving
estimation of the treatment effects.

2. Background
2.1. Problem Setup

We will use lower-case letters (e.g., x, t, y) for individual
samples, upper-case letters (e.g., X,T, Y ) for random vari-
ables, and bold upper-case letters (e.g., X,T ,Y ) for a set
of samples throughout the paper. We consider a general set-
ting in causal inference where we assign a specific treatment
to a group of individuals. Each individual is represented by
a D-dimensional feature vector X ∈ X ⊂ RD (X denotes
the training input space) and is associated with a treatment-
assignment indicator T ∈ {0, 1}. The corresponding poten-
tial outcomes are denoted by Y (0) ∈ R and Y (1) ∈ R where
the superscripts 0 and 1 represent assignment to the control
group and the treatment group, respectively. We assume
there exist a joint distribution P

(
X,T, Y (0), Y (1)

)
which

satisfies 0 < P (T = 1|X) < 1 and the strong ignorability
assumption

(
Y (0), Y (1)

)
⊥⊥ T |X as given in the Rubin-

Neyman causal model (Rosenbaum & Rubin, 1983; Rubin,
2005). Our goal is to estimate the conditional average treat-
ment effect (CATE) from a training dataset containing N

data points D =
{
xi, ti, y

(t)
i

}N

i=1
where CATE can be com-

puted as CATE := E
[
Y (1) − Y (0)|X

]
. We denote Y (T )

and Y (1−T ) as factual and counterfactual outcomes, respec-
tively. That is, we have Y (T ) = (1− T )Y (0) + TY (1) and
Y (1−T ) = TY (0) + (1− T )Y (1).

2.2. Multi-task Gaussian Processes (GPs)

We first introduce the background of multi-task GPs. A GP
is a stochastic process that is completely defined by a mean
function µ : X → R and a kernel function k : X × X → R
(Rasmussen, 2003). Without loss of generality, we assume
that the mean function µ(x) is zero for simplicity, as is
common in the literature. A single-output function f : X →
R following a GP is written as

f ∼ GP (0, k) . (1)

For any finite subset X = {xi}Ni=1, f(X) follows a multi-
variate Gaussian distribution with mean zero and covariance

matrix k(X,X) ∈ RN×N with entries k(xi, xj) where
1 ≤ i, j ≤ N . We extend a GP to a multi-task learning
scenario by defining a vector-valued function f : X → RC ,
and we can write the corresponding multi-task GP as

f ∼ GP (0,K) , (2)

where K : X × X → RC×C denotes a matrix-valued ker-
nel function. Again, any finite subset f(X) ∈ RN×C

follows a multivariate Gaussian distribution with mean
zero and covariance matrix K(X,X) ∈ RNC×NC con-
structed from the set of kernel values (K (xi, xj))c,c′ with
1 ≤ i, j ≤ N and 1 ≤ c, c′ ≤ C, giving the form
vec(f(X)) ∼ N (0,K(X,X)) where vec(·) denotes vec-
torization which transforms f(X) from RN×C to RNC .

Alaa & Van Der Schaar (2017) used a multi-task GP for
causal inference by setting the number of tasks equal to
the number of potential outcomes, which is C = 2 for a
binary treatment T ∈ {0, 1}. Here, f = [f0, f1]

T , where
f0 approximates the potential outcome for T = 0, and f1
approximates the potential outcome for T = 1. Defining
e = [−1, 1]T , we can then approximate CATE as

CATE(x) :=E
[
Y (1) − Y (0)|X

]
=fT (x)e = f1(x)− f0(x).

(3)

2.3. Coregionalization Models

A common approach to construct a multi-task GP is to use
coregionalization models (Alvarez et al., 2012). For exam-
ple, we can construct the matrix-valued kernel function K
from a single-output kernel by using the Intrinsic Coregion-
alization Model (ICM (Goovaerts et al., 1997)),

KICM(x, x′) = k(x, x′)B, (4)

where k : X × X → R is a scalar-valued kernel function
and B ∈ RC×C is called a coregionalization matrix. If a
function follows f ∼ GP (0,KICM), then each of its entries
fc can be expressed as a linear combination of functions
sampled from a GP with zero mean and covariance function
k. That is, for a coregionalization matrix with rank(B) = R,
we have fc(x) =

∑R
r=1 a

r
cu

r(x) where ur(x) ∼ GP(0, k)
for all r ∈ [1, R].

We can construct a more generalized model by using a
Linear Model of Coregionalization (LMC (Journel & Hui-
jbregts, 1976; Goovaerts et al., 1997)) to define K ,

KLMC(x, x
′) =

Q∑
q=1

kq(x, x
′)Bq, (5)

where kq : X ×X → R is again a scalar-valued kernel func-
tion and Bq ∈ RC×C for all q ∈ [1, Q]. It is straightforward
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to see that the LMC can be viewed as a mixture of Q ICMs.
Likewise, if a function follows f ∼ GP (0,KLMC), then
we have fc(x) =

∑Q
q=1

∑Rq

r=1 a
r
c,qu

r
q(x) where ur

q(x) ∼
GP(0, kq) for all r = 1, ..., Rq with rank(Bq) = Rq and all
q = 1, ..., Q.

2.4. Relationship between NNs and GPs

As stated by Matthews et al. (2018), a random deep NN
with appropriate activation function will converge in distri-
bution to a GP. Specifically, let fNN : X → R be a function
implemented by a NN with zero-mean i.i.d. parameters
and continuous activation function ϕ which satisfies the
following linear envelope property:

|ϕ(u)| ≤ β +m|u| ∀u ∈ R, (6)

if there exist β,m ≥ 0. This property is satisfied by many
common nonlinearities (e.g., ReLU, softplus, tanh, etc.).
Functions that violate this property (e.g., exponential) will
induce heavy-tail behavior in the post activation. Under
these conditions, fNN will converge in distribution to a GP
in the infinite width limit,

fNN
d−→ GP (0, kNN) , (7)

where kNN : X × X → R is a NN-implied kernel function
and can be numerically estimated in a recursive manner (Lee
et al., 2017). However, for a single NN without a Bayesian
formulation, its prediction can only be viewed as a sample
corresponding to a GP prior. To enable a full GP posterior
interpretation, we adopt the sample-then-optimize approach
proposed by Matthews et al. (2017) by constructing and
training a deep ensemble as we will discuss in the following
section.

3. Causal Multi-task Deep Ensemble
Here, we formally present our Causal Multi-task Deep En-
semble (CMDE) framework and elaborate on its relationship
to coregionalization models. The ensemble’s predictions are
made by averaging over all its baselearners. The architec-
ture of a single baselearner in our ensemble is depicted in
Figure 1 where features X are passed into 3 neural networks
fH , fT , fHT : X → R separately as shown in Figure 1a.
Each baselearner follows the same architecture but has a
different random initialization, which we will show corre-
sponds to different draws from a multi-task GP prior. We
expect fH and fT to learn group-specific information from
control and treatment group, respectively, and fHT to learn
shared information between the two groups. Each base-
learner learns a multi-output function f̂ = [f̂0, f̂1]

T which
generates two outputs Ŷ (0) and Ŷ (1) representing the poten-

Figure 1. The overall architecture of a baselearner in our causal
multi-task deep ensemble where f in (a) and (b) can be one of
the fH , fHT , or fT . Here the treatment assignment indicator T is
only used to obtain the corresponding factual outcome Y (T ) for
training and is not passed into fH , fT , or fHT as an input.

tial outcomes for treatment assignment T ∈ {0, 1}:

Ŷ (0) = f̂0(X) := αHfH(X) + αHT fHT (X), (8)

Ŷ (1) = f̂1(X) := αHT fHT (X) + αT fT (X), (9)

where αH , αT , and αHT are trainable parameters that need
to be initialized a priori. With this formulation, we claim
the following theorem.

Theorem 3.1. If all fH , fT , and fHT are neural networks
with identical depth, zero-mean i.i.d. parameters with the
same variance, and continuous activation function ϕ which
satisfies the linear envelope property given in (6), then f̂
converges in distribution to a GP with zero mean and ICM
kernel in the infinite width limit a priori:

f̂ d−→ GP (0,KICM) , (10)

where KICM(x, x
′) = kNN(x, x

′)B, x, x′ ∈ X , and kNN is
the kernel function implied by fH , fT , and fHT , and

B =

[
α2
H + α2

HT α2
HT

α2
HT α2

T + α2
HT

]
. (11)
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Proof. To prove Theorem 3.1, we calculate the covariance
matrix between f̂(x) and f̂(x′) as below (note that the ex-
pectations are taken with respect to the parameters of the
functions inside the expectation):

cov
(

f̂(x), f̂(x′)
)

(12)

= E
[̂
f(x)̂f(x′)T

]
− E

[̂
f(x)

]
E
[̂
f(x′)

]T
(13)

=

[
E[f̂0(x)f̂0(x′)] E[f̂0(x)f̂1(x′)]

E[f̂1(x)f̂0(x′)] E[f̂1(x)f̂1(x′)]

]
. (14)

From (13) to (14), we drop the term E
[̂
f(x)

]
E
[̂
f(x′)

]T
as

all the parameters in fH , fT , and fHT are initialized by i.i.d.
zero mean random variables. We can then calculate each
entry in (14) separately as follows:

E[f̂0(x)f̂0(x′)]

= α2
HE[fH(x)fH(x′)] + α2

HTE[fHT (x)fHT (x
′)], (15)

E[f̂0(x)f̂1(x′)] = α2
HTE[fHT (x)fHT (x

′)], (16)

E[f̂1(x)f̂0(x′)] = E[f̂0(x)f̂1(x′)]

= α2
HTE[fHT (x)fHT (x

′)], (17)

E[f̂1(x)f̂1(x′)]

= α2
TE[fT (x)fT (x′)] + α2

HTE[fHT (x)fHT (x
′)]. (18)

From (15) to (18), we make use of the fact that the param-
eters of fH , fT , and fHT are independent of each other
a priori. Also, since fH , fT , and fHT share the same
depth and initialization strategy, then as elaborated in Sec-
tion 2.4, we have E[fH(x)fH(x′)] = E[fT (x)fT (x′)] =
E[fHT (x)fHT (x

′)] = kNN(x, x
′) in the infinite width limit.

Therefore, as the width of fH , fT , and fHT goes to infinity,
we have:

E[f̂0(x)f̂0(x′)] = (α2
H + α2

HT )kNN(x, x
′),

E[f̂0(x)f̂1(x′)] = E[f̂1(x)f̂0(x′)] = α2
HT kNN(x, x

′),

E[f̂1(x)f̂1(x′)] = (α2
T + α2

HT )kNN(x, x
′).

By substituting the equations above back into (14), we get

cov
(

f̂(x), f̂(x′)
)
=

kNN(x, x
′)

[
α2
H + α2

HT α2
HT

α2
HT α2

T + α2
HT

]
,

(19)

which completes our proof for Theorem 3.1.

In addition, by following a similar approach, we can also

construct f̂ = [f̂0, f̂1]
T as below:

f̂0(X) :=

Q∑
q=1

αq
Hfq

H(X) + αq
HT f

q
HT (X), (20)

f̂1(X) :=

Q∑
q=1

αq
HT f

q
HT (X) + αq

T f
q
T (X), (21)

where fq
H , fq

T , and fq
HT share the same depth and initializa-

tion strategy for the same value of q. With this formulation,
it can be shown that f̂ converges in distribution to a GP
with zero mean and LMC kernel in the infinite width limit a
priori (see detailed proof in Appendix A):

f̂ d−→ GP (0,KLMC) , (22)

where KLMC(x, x
′) =

∑Q
q=1 k

q
NN(x, x

′)Bq . Here kqNN is the
kernel function implied by fq

H , fq
T , or fq

HT and

Bq =

[
(αq

H)
2
+ (αq

HT )
2

(αq
HT )

2

(αq
HT )

2
(αq

T )
2
+ (αq

HT )
2

]
. (23)

In theory, our method can also be extended to the multiple-
treatment case T ∈ {1, ..., C}, where we can construct

f̂ =
[
f̂1, ..., f̂C

]T
as follows:

f̂c(X) :=

c−1∑
d=1

αdcfdc(X) + αcfc(X) +

C∑
d=c+1

αcdfcd(X)

∀ c = 1, ..., C,

(24)

where fc learns the group-specific information and fdc, fcd
learn the shared information. With this formulation, we can
also prove that f̂ converges in distribution to a GP with an
ICM kernel as elaborated in Appendix B. Our framework
can also be simplified so each baselearner only contains 2
networks as shown in Appendix C. However, we will stick to
the 3-network architecture in our experiments as it facilitates
the explanation of the role of each network and enhances
the clarity of our statement. Note that we only state the
equivalence between CMDE and a multi-task GP a priori.
According to He et al. (2020), the equivalence between a
deep ensemble and a GP may still hold a posteriori (i.e.,
after training) if we augment the forward pass of each NN in
the baselearner by adding a random and untrainable function
δ(·). However, we do not claim this equivalence, as the
parameters of fH , fT , and fHT become dependent on each
other. Consequently, we are unable to eliminate the cross-
terms when calculating cov

(
f̂(x), f̂(x′)

)
.

3.1. Extension to Multi-modal Covariates

In some cases, the covariates X contain multiple modalities
(e.g., X = {X1, X2} where X1 is an image and X2 is in
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a tabular format). As illustrated in Figure 1b, we adapt
CMDE to such situations by introducing an inner product
between the extracted representations from each modalities
of X . Specifically, let Zm be the extracted representation
from the mth input modality by a neural network. We can
construct f as follows

f(X) :=
∑
j

∏
m

(Zm)j , (25)

where (Zm)j represents the jth entry in Zm and f is one
of the fH , fHT , or fT . As proved by Lee et al. (2017) and
Jiang et al. (2022), this mechanism yields a multiplicative
kernel kmul =

∏
m (kNN)m where (kNN)m is the kernel

function implied by the neural network used to extract the
representation Zm from the input modality Xm. With this
formulation, the multi-output function f̂ still converges to
an ICM or LMC kernel (depending on how we construct f̂)
except that we replace kNN with kmul.

3.2. Training of CMDE

A common goal in causal inference is to minimize the preci-
sion in estimating heterogeneous effect (PEHE (Hill, 2011))
loss, which is defined as

L̂
(

f̂;Y (T ),Y (1−T )
)
=

1

N

N∑
i=1

(
f̂
T
(xi)e − (1− 2ti)

(
y
(1−ti)
i − y

(ti)
i

))2
,

(26)

where e = [−1, 1]T , Y (T ) =
{
y
(ti)
i

}N

i=1
are the factual

outcomes, and Y (1−T ) = {y(1−ti)
i }Ni=1 are the counterfac-

tual outcomes. To train CMDE, we want to minimize the
following regularized empirical loss,

f̂
∗
= arg min

f̂∈HK

L̂
(

f̂;Y (T ),Y (1−T )
)
+ λ∥̂f∥2HK

, (27)

where HK is a vector-valued Reproducing Kernel Hilbert
Space (vvRKHS) equipped with an inner product ⟨· , ·⟩HK ,
and reproducing kernel K : X × X → R2×2. The regular-
ization term smooths the loss based on the GP prior.

However, we cannot compute PEHE directly because we
only observe the factual outcomes. Instead, we minimize
the following empirical Bayesian PEHE risk with respect to
f̂ using stochastic gradient descent (SGD) with L2 regular-
ization:

R̂ =
1

N

N∑
i=1

(
y
(ti)
i − E

[
ŷ
(ti)
i

∣∣xi

])2
+
∥∥∥Var

[
ŷ
(1−ti)
i

∣∣xi

]∥∥∥
1
,

(28)

where ŷ(ti)i and ŷ
(1−ti)
i are the potential outcomes estimated

by each estimator in CMDE as given in (8) and (9). The

empirical mean and variance in (28) are computed over all
the estimators in the ensemble. It has been proved by Alaa
& Van Der Schaar (2017) that minimizing this risk is equiva-
lent to minimizing the expectation of L̂

(
f̂;Y (T ),Y (1−T )

)
with respect to the posterior distribution of the counterfac-
tual outcomes, which leads to a kernel that considers not
only factual errors but also generalization to counterfactuals.

4. Related Work
There exist several previous studies that focus on learning
the potential outcomes with deep models or ensemble mod-
els, including Balancing Counterfactual Regression (Johans-
son et al., 2016), the Counterfactual Regression Network
(CFRNet (Shalit et al., 2017)), and Bayesian Additive Re-
gression Trees (BART) (Chipman et al., 2010). These works
generally attempt to learn a function f : X × {0, 1} → R
which takes both the covariates and the treatment indicator
as inputs. The treatment effect for an individual x can thus
be estimated as τ(x) ≈ τ̂f (x) = f(x, t = 1)− f(x, t = 0).
However, the representation power of the treatment indi-
cator t can be significantly diluted when the dimension
of the covariates x becomes high, which can negatively
affect the estimation of potential outcomes (Alaa & Van
Der Schaar, 2017; Alaa et al., 2017). Besides this line of
work, Alaa & Van Der Schaar (2017) proposed a multi-task
GP framework that directly outputs the potential outcomes
for both t = 0 and t = 1 by learning a multi-output function
f : X → R2. The treatment effect in this case is estimated
as τ(x) ≈ τ̂f(x) = f(x)T e where e = [−1, 1]T . Similar to
CMGP, our deep ensemble model also learns a multi-output
function while we replace the GPs with NNs to handle
larger datasets and high-dimensional covariates, especially
in cases where NNs outperform traditional GP approaches
(e.g., images).

To the best of our knowledge, there is limited research on
utilizing deep ensemble learning for causal inference in the
existing literature. One notable study in this domain is the
work by Hartford et al. (2021), which focuses on treatment
effect estimation using an ensemble of deep network-based
instrumental variable estimators. Ensembles are commonly
employed in machine learning and have been recognized for
their effectiveness in reducing variance. In our approach, we
adopt the ensemble method to approximate the full multi-
task Gaussian process (GP) prior, whereby each baselearner
can be viewed as a stochastic draw from this prior.

It is also worth noting that CFRNet learns a balanced repre-
sentation such that the induced distributions for control and
treatment groups look similar. Specifically, CFRNet consists
of a network Φ which learns a representation from the covari-
ates followed by two networks h which learns hypotheses
h0 and h1. This concept was employed in several subse-
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quent studies on deep causal inference, including the Causal
Effect Variational Autoencoder (CEVAE, (Louizos et al.,
2017)), the Deep Counterfactual Network (DCN (Alaa et al.,
2017)), and the Deep Orthogonal Networks (DONUT (Hatt
& Feuerriegel, 2021)). In contrast, our CMDE framework
learns 3 representations which contains both group-specific
and shared information from control and treatment groups.
This provides more modeling flexibility, especially when
the control and treatment groups are highly imbalanced.

As we explain in Section 3.1, CMDE can be extended to han-
dle multi-modal covariates. One recent study that focused
on multi-modal causal inference is the Deep Multi-modal
Structural Equations (DMSE) (Deshpande et al., 2022). A
key distinction between DMSE and our method is that our
causal graph does not include any latent variables. While we
acknowledge the potential benefits of latent-variable-based
approaches in certain scenarios, their performance heavily
relies on the complexity and accurate specification of the
latent variable distribution, as emphasized by Rissanen and
Marttinen (2021).

The equivalence between NNs and GPs is also highly rel-
evant to our method. Neal first proved that single-hidden-
layer NNs become GPs as the width of the hidden layer goes
to infinity (Neal, 1996; 2012). This proof was then extended
to deep neural networks (DNNs) by Lee et al. (2017) who
designed an efficient implementation to calculate the NN-
implied kernel and Matthews et al. (2018) who empirically
evaluated the convergence rate via maximum mean discrep-
ancy (MMD). Garriga-Alonso et al. (2018) also proved that
convolutional neural networks (CNNs) are GPs in the limit
of infinite number of channels. These findings allow us to
simulate GP behavior using the outputs from NNs.

5. Experimental Results
We conduct experiments on a total of 6 datasets: one purely
synthetic dataset, 3 benchmark datasets, and 2 datasets with
multiple input modalities1. The detailed experimental setup
is given in Appendix D.

5.1. Synthetic Dataset

To empirically show the convergence of CMDE to its GP
counterpart as the width of NNs goes to infinity, we first test
CMDE on a synthetic dataset (see detailed data generation
process in Appendix D.1) and compare it to a causal multi-
task GP (CMGP) (Alaa & Van Der Schaar, 2017) with an

1The code to replicate all experiments is available at:
https://github.com/jzy95310/ICK/tree/main/
experiments/causal_inference

Twins:
√
ϵ̂PEHE Jobs: Rpol(π)

In-
sample

Out-of-
sample

In-
sample

Out-of-
sample

CMDE .32 ± .00 .32 ± .01 .05 ± .01 .26 ± .02
CMGP .44 ± .00 .44 ± .01 .12 ± .02 .30 ± .02
CEVAE .32 ± .00 .32 ± .01 .11 ± .03 .29 ± .03
GANITE .33 ± .00 .33 ± .01 .10 ± .02 .30 ± .01
X-RF .30 ± .00 .33 ± .01 N/A N/A
X-BART .32 ± .00 .32 ± .01 N/A N/A
CFR-
Wass .32 ± .00 .32 ± .01 .09 ± .03 .28 ± .02

CFR-
MMD .32 ± .00 .32 ± .01 .08 ± .04 .28 ± .03

DONUT .32 ± .00 .32 ± .01 .09 ± .05 .27 ± .03

Table 1. Performance of CATE estimation on the Twins (left) and
the Jobs (right) datasets for both in-sample and out-of-sample
settings. Lower

√
ϵ̂PEHE or Rpol(π) is better. For Jobs, we do not

report the results of X-learner as it directly estimates the individual
treatment effect (ITE) instead of y(t).

ICM kernel,

KICM(x, x′) = kNN(x, x
′)B,

kNN(x, x
′) = 2

π sin−1

(
2x̃TΣx̃′√

(1+2x̃TΣx̃)(1+2x̃′T Σx̃′)

)
,

where x̃ = [1, x1, x2, ..., xD] (e.g., a constant concatenated
to the feature vector) and Σ ∈ RD×D is a pre-defined pa-
rameter representing the covariance of the weights in a
single-hidden-layer NN. To evaluate how well we estimate
the treatment effect, we use the PEHE metric

ϵPEHE = 1
N

∑N
i=1

(
E
y
(0)
i ,y

(1)
i ∼Y

[
y
(1)
i − y

(0)
i

]
−
(
ŷ
(1)
i − ŷ

(0)
i

))2
,

(29)

where y(0), y(1) are true outcomes and ŷ
(0)
i , ŷ

(1)
i are pre-

dicted outcomes. As shown in Figure 2, the two methods
yield very similar mean predictions and PEHE values except
that CMDE tends to extrapolate with less confidence (i.e.
higher standard deviation) where there exist fewer observed
samples. We attribute this effect to only using 10 estima-
tors for CMDE. We also plot the group-specific and shared
components αHfH , αT fT , and αHT fHT in CMDE, which
reveals that fHT learns the overall shape shared by the two
response surfaces while fH and fT learn the magnitude of
difference between the two surfaces.

5.2. Benchmark Datasets

We then evaluate CMDE on 3 frequently used benchmark
datasets in the existing causal inference literature: a dataset
acquired from the Atlantic Causal Inference Conference
held in 2019 (ACIC2019 (Dorie et al., 2019)), the Twins

6

https://github.com/jzy95310/ICK/tree/main/experiments/causal_inference
https://github.com/jzy95310/ICK/tree/main/experiments/causal_inference


Estimating Causal Effects using a Multi-task Deep Ensemble

Figure 2. Predictions for the control and treatment groups on the synthetic dataset by CMDE (left) and multi-task GP with ICM kernel
(middle) where dots represent observed samples, lines represent mean predictions, and shaded regions represent predicted values within
2 standard deviations. In addition, we also plot the contribution of group-specific and shared components for CMDE (right). It can be
observed that fHT learns the shared features between the control and treatment groups and fH and fT learns the group-specific features.

Figure 3. Performance of CATE estimation (
√
ϵPEHE) on a dataset

acquired from the Atlantic Causal Inference Conference held in
2019 (ACIC2019). Lower

√
ϵPEHE is better. Most of the methods

exhibit saturated performance with > 500 training samples.

dataset containing twins birth in the United States from
1989 to 1991 (Almond et al., 2005), and the Jobs dataset
studied by LaLonde (1986) which is composed of random-
ized data based on state-supported work programs and non-
randomized data from observational studies (see data pre-
processing details in Appendix D.2). For evaluation metrics,
we use ϵPEHE as given in (29) for ACIC2019 since we know
the true expected values of Y (0) and Y (1). For the Twins
dataset, since we observe both the factual and counterfactual
outcomes (i.e. y(0)i and y

(1)
i ) on the paired data but do not

know the underlying distribution Y , we use the following

empirical PEHE:

ϵ̂PEHE = 1
N

∑N
i=1

((
y
(1)
i − y

(0)
i

)
−
(
ŷ
(1)
i − ŷ

(0)
i

))2
.

(30)
For the Jobs dataset, only the factual outcomes are observed,
so we use a metric called policy risk,

Rpol (πf ) = 1−
∑N

i=1 y
(ti)

i 1[πf (xi)=ti]∑N
i=1 1[πf (xi)=ti]

, (31)

where we let the policy πf of a model f to be πf (x) = 1 if
f(x, t = 1) > f(x, t = 0) and πf (x) = 0 otherwise. We
compare CMDE with a total of 8 benchmark models: multi-
task GP (CMGP (Alaa & Van Der Schaar, 2017)), CEVAE
(Louizos et al., 2017), Generative Adversarial Nets (GAN-
ITE (Yoon et al., 2018)), X-learner (Künzel et al., 2019) of
which the base learners are random forests (RF) and BART
(Chipman et al., 2010), Counterfactual Regression Network
(CFRNet (Shalit et al., 2017)) with 2-Wasserstein distance
and Maximum Mean Discrepancy (MMD), and Deep Or-
thogonal Networks (DONUT (Hatt & Feuerriegel, 2021)).
For the ACIC2019 dataset, we vary the training set size to
compare algorithms in Figure 3, and observe that CMDE
gives the lowest error (ϵPEHE) on the treatment effect. Fur-
thermore, as shown in Table 1, CMDE demonstrates com-
petitive performance compared to other benchmark models
in terms of PEHE on the Twins dataset, and outperforms all
other benchmark models in terms of policy risk on Jobs.

5.3. Datasets with Multi-modal Covariates

To demonstrate CMDE’s strength in terms of handling high-
dimensional and multi-modal covariates as described in
Section 3.1, we further adopt 2 datasets: a semi-synthetic
COVID-19 dataset built upon a collection of patients’ chest
X-ray images and their corresponding demographic infor-

7
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Figure 4. Results of CATE estimation
(
√
ϵPEHE) on the semi-synthetic COVID-

19 dataset with different propensities
where the covariates are either X-ray im-
ages (left) or demographic information
(right). CMDE with multi-modal covari-
ates (both images and demographic in-
formation) are marked as CMDE-mul in
both figures. The lines and error bars
represent mean and half of the standard
deviation of

√
ϵPEHE, respectively. The

error of DCN-PD with demographic in-
formation is too high so we do not show it
in the right figure for better visualization.

mation and diagnosis (e.g., COVID-19 or other viral pneu-
monia, bacterial pneumonia, fungal pneumonia, etc.) (Co-
hen et al., 2020) and a real-world dataset from the Student-
Teacher Achievement Ratio (STAR) experiment (Word et al.,
1990) with some features replaced by images with corre-
sponding characteristics from the UTK dataset (Zhang et al.,
2017). The details such as dataset pre-processing and model
architectures can be found in Appendix D.3.

We first conduct experiments on the semi-synthetic COVID-
19 dataset under different propensity score settings. The
results of CATE estimation for CMDE and benchmark deep
causal models (i.e. CFRNet (Shalit et al., 2017), Deep
Counterfactual Network with Propensity Dropout (DCN-
PD (Alaa et al., 2017)), and DONUT (Hatt & Feuerriegel,
2021)) are shown in Figure 4. It can be observed that, with
multi-modal covariates (i.e. both X-ray images and de-
mographic information), CMDE-mul achieves the lowest
PEHE compared to other benchmarks with only the X-ray
images as covariates (or model inputs). In addition, CMDE-
mul demonstrates superior performance compared to all
other benchmarks with demographic information as covari-
ates when the propensity score (i.e. P (T = 1|x)) is close
to 0.5. However, when the propensity score ranges from 0.1
to 0.3, CMDE with only demographic information yields
better results. In other words, CMDE seems to benefit from
using simpler covariate information when the control and
treatment groups are relatively imbalanced. We attribute
this phenomenon to a bias-variance tradeoff. Specifically,
we note that the estimation variance tends to be larger when
using simpler covariates compared to more complex ones.
Conversely, incorporating additional information (e.g., bias
reduction) through the use of more comprehensive covari-
ates can lead to more accurate predictions. In situations
where there is insufficient overlap between the control and
treatment groups, the overall variance will increase. How-
ever, the increase in variance will be more substantial in
cases involving complex covariates. Therefore, in scenar-
ios with limited overlap, it may be advantageous to reduce

the set of covariates, as the full estimation process may be
dominated by error stemming from the variance term.

We also compare CMDE with the same 3 benchmark models
on another real-world dataset from the STAR experiment
which studied the effect of class size on the students’ per-
formance and test scores. Since the original dataset corre-
sponds to a randomized control trial and the true average
treatment effect (ATE) can be estimated directly, we use
the following ATE error as our evaluation metric in this
experiment:

ϵATE =

∣∣∣∣ATEtrue−
1

N

N∑
i=1

E
[
ŷ
(1)
i |xi

]
−E

[
ŷ
(0)
i |xi

] ∣∣∣∣. (32)

The results of CATE estimation are visualized as bar plots
as shown in Figure 5. We can see that CMDE outperforms
other benchmark models with only the images or the stu-
dents’ information as covariates. Furthermore, with multi-
modal covariates (i.e., both images and students’ informa-
tion), CMDE-mul yields the smallest ATE error with the
lowest predictive uncertainty.

6. Discussion
NN architectures in CMDE As we show in Section 3,
fH , fT , and fHT need to have the same depth and ini-
tialization strategy to guarantee CMDE’s convergence to
a multi-task GP with ICM kernel. While this requirement
is essential for theoretical considerations, it does not pose
a significant practical limitation. In practice, if the distri-
butions of control and treatment groups exhibit significant
difference, it is recommended either to use LMC kernel or
to employ different NN architectures for each function.

Limitations While CMDE has shown excellent results in
our experiments, we identify some potential limitations to be
addressed in future work. For example, the hyperparameters
(e.g., width, depth, initial parameter values, etc.) of NNs
in CMDE can be hard to tune for specific tasks. We also

8
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Figure 5. Box plots of CATE estimation (ϵATE)
on the STAR dataset where the covariates are
either images (left) or the students’ informa-
tion (right). CMDE with multi-modal covari-
ates (both images and students’ information) are
marked as CMDE-mul on the x-axis in both fig-
ures. The boxes extend from the 1st quantile to
the 3rd quantile of ϵATE with a line at the median.
We do not show DCN-PD-dem on the right for
cleaner visualization.

find the performance of CMDE, in some cases, is sensitive
to the initial values of the coefficients applied to NNs (e.g.,
αH , αT , and αHT ), although we set these coefficients to be
trainable. This requires us to have some prior knowledge
about which type of information, group-specific or shared,
is more dominant in specific datasets. A detailed discussion
is given in Appendix E.

Applications We believe CMDE is applicable to a vari-
ety of real-world causal inference scenarios involving high-
dimensional and multi-modal covariates, such as using med-
ical records and images to estimate treatment effects in
observational studies, or using A/B testing to determine the
efficacy of a new version of user interface.

Societal Impact Currently we are not aware of any new
potential negative societal impacts of our work; however,
like all machine learning methods that could be applied in
the wild, the societal impact will depend on the task at hand.
For example, the STAR dataset uses pictures of individuals
to estimate causal effects; image processing can encode
unwanted biases and checks should be in place before the
deployment of any such system.

7. Conclusion
We present a framework for estimating the causal effect of
a treatment using a multi-task deep ensemble which learns
both group-specific and shared information from control
and treatment groups using separate neural networks. The-
oretically, we demonstrate that our framework converges
to a multi-task GP with an ICM/LMC kernel. We also
provide empirical evidence of this relationship and visu-
alize the contribution of each neural network components
in our framework. Experimental results on various types
of datasets demonstrate superior performance of CMDE
compared to state-of-the-art approaches.
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A. Proof of Convergence to LMC Kernel
As stated in Section 3, by constructing f̂ as below:

f̂0(X) :=

Q∑
q=1

αq
Hfq

H(X) + αq
HT f

q
HT (X), (33)

f̂1(X) :=

Q∑
q=1

αq
HT f

q
HT (X) + αq

T f
q
T (X), (34)

where fq
H , fq

T , and fq
HT share the same depth and initialization strategy for the same value of q, we can again separately

compute each term in cov
(

f̂(x), f̂(x′)
)

as follows (again, note that the expectations are taken with respect to the parameters
of the functions inside the expectation):

E[f̂0(x)f̂0(x′)] = E

[(
Q∑

q=1

αq
Hfq

H(x) + αq
HT f

q
HT (x)

)(
Q∑

q=1

αq
Hfq

H(x′) + αq
HT f

q
HT (x

′)

)]

=

Q∑
q=1

(αq
H)

2 E [fq
H(x)fq

H(x′)] + (αq
HT )

2 E [fq
HT (x)f

q
HT (x

′)] , (35)

E[f̂0(x)f̂1(x′)] = E

[(
Q∑

q=1

αq
Hfq

H(x) + αq
HT f

q
HT (x)

)(
Q∑

q=1

αq
HT f

q
HT (x

′) + αq
T f

q
T (x

′)

)]

=

Q∑
q=1

(αq
HT )

2 E [fq
HT (x)f

q
HT (x

′)] , (36)

E[f̂1(x)f̂0(x′)] = E

[(
Q∑

q=1

αq
HT f

q
HT (x) + αq

T f
q
T (x)

)(
Q∑

q=1

αq
Hfq

H(x′) + αq
HT f

q
HT (x

′)

)]

=

Q∑
q=1

(αq
HT )

2 E [fq
HT (x)f

q
HT (x

′)] , (37)

E[f̂1(x)f̂1(x′)] = E

[(
Q∑

q=1

αq
HT f

q
HT (x) + αq

T f
q
T (x)

)(
Q∑

q=1

αq
HT f

q
HT (x

′) + αq
T f

q
T (x

′)

)]

=

Q∑
q=1

(αq
HT )

2 E [fq
HT (x)f

q
HT (x

′)] + (αq
T )

2 E [fq
T (x)f

q
T (x

′)] . (38)

For (35) to (38), we get rid of the cross terms based on the fact that the parameters of different neural networks all have
zero mean and are independent of each other. Note that fq

H , fq
T , and fq

HT share the same depth and initialization strategy as
stated in Theorem 3.1 for the same value of q, indicating that E[fq

H(x)fq
H(x′)] = E[fq

T (x)f
q
T (x

′)] = E[fq
HT (x)f

q
HT (x

′)] =
kqNN(x, x

′) for q = 1, 2, ..., Q in the infinite width limit a priori. Therefore, we have:

E[f̂0(x)f̂0(x′)] =

Q∑
q=1

(
(αq

H)
2
+ (αq

HT )
2
)
kqNN(x, x

′),

E[f̂0(x)f̂1(x′)] = E[f̂1(x)f̂0(x′)] =

Q∑
q=1

(αq
HT )

2
kqNN(x, x

′),

E[f̂1(x)f̂1(x′)] =

Q∑
q=1

(
(αq

HT )
2
+ (αq

T )
2
)
kqNN(x, x

′).
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Substituting the expressions above back into cov
(

f̂(x), f̂(x′)
)

as given in (14), we get:

cov
(

f̂(x), f̂(x′)
)
=

Q∑
q=1

kqNN(x, x
′)Bq where Bq =

[
(αq

H)
2
+ (αq

HT )
2

(αq
HT )

2

(αq
HT )

2
(αq

HT )
2
+ (αq

T )
2

]
. (39)

This proves that f̂ will converge in distribution to a GP with zero mean and LMC kernel in the infinite width limit a priori.

B. Proof of Convergence to ICM Kernel for the Multiple-Treatment Case

As elaborated in Section 3, for multiple-treatment case T ∈ {1, ..., C}, we can construct f̂ =
[
f̂1, ..., f̂C

]T
as follows:

f̂c(X) :=

c−1∑
d=1

αdcfdc(X) + αcfc(X) +

C∑
d=c+1

αcdfcd(X) ∀ c = 1, ..., C − 1, (40)

where fc learns the group-specific information and fdc, fcd learn the shared information. Similar to Appendix A, we can
calculate each separate term in cov

(
f̂(x), f̂(x′)

)
(again, note that the expectations are taken with respect to the parameters

of the functions inside the expectation). For diagonal terms, we have:

E[f̂c(x)f̂c(x′)]

= E

[(
c−1∑
d=1

αdcfdc(x) + αcfc(x) +

C∑
d=c+1

αcdfcd(x)

)(
c−1∑
d=1

αdcfdc(x
′) + αcfc(x

′) +

C∑
d=c+1

αcdfcd(x
′)

)]

=

c−1∑
d=1

α2
dcE [fdc(x)fdc(x

′)] + α2
cE[fc(x)fc(x′)] +

C∑
d=c+1

α2
cdE [fcd(x)fcd(x

′)] . (41)

For off-diagonal terms, we have:

E[f̂c(x)f̂c′(x′)]

= E

(c−1∑
d=1

αdcfdc(x) + αcfc(x) +

C∑
d=c+1

αcdfcd(x)

)c′−1∑
d=1

αdc′fdc′(x
′) + α′

cfc′(x
′) +

C∑
d=c′+1

αc′dfc′d(x
′)


= α2

cc′E[fcc′(x)fcc′(x′)], (42)

where c < c′. For c > c′, we have αcc′ = αc′c (i.e. the covariance matrix is symmetric). Here we again get rid of the
cross terms based on the fact that the parameters of different neural networks all have zero mean and are independent
of each other. If all neural networks in this formulation (i.e. a total of C(C + 1)/2 networks) share the same depth
and initialization strategy as stated in Theorem 3.1, indicating that E[fc(x)fc(x′)] = kNN(x, x

′) ∀ c = 1, ..., C and
E[fcc′(x)fcc′(x′)] = kNN(x, x

′) ∀ c < c′ and c′ = 1, ..., C in the infinite width limit a priori, then we can further write the
diagonal and off-diagonal terms in cov

(
f̂(x), f̂(x′)

)
as:

E[f̂c(x)f̂c(x′)] =

(
α2
c +

c−1∑
d=1

α2
dc +

C∑
d=c+1

α2
cd

)
kNN(x, x

′),

E[f̂c(x)f̂c′(x′)] = α2
cc′kNN(x, x

′).

With this, we derive:

cov
(

f̂(x), f̂(x′)
)
= kNN(x, x

′)


α2
1 +

∑C
d=2 α

2
1d α2

12 · · · α2
1C

α2
12 α2

12 + α2
2 +

∑C
d=3 α

2
2d · · · α2

2C
...

...
. . .

...
α2
1C α2

2C · · ·
∑C−1

d=1 α2
dC + α2

C

 . (43)

This proves that f̂ will converge in distribution to a GP with zero mean and ICM kernel in the infinite width limit a priori
when there exists a total of C treatments, i.e. T ∈ {1, ..., C}.
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C. Two-Network Architecture for CMDE
The architecture of each baselearner in CMDE as presented in Section 3 can be simplified to the following two-network
architecture (i.e. fA and fB):

Ŷ (0) = f̂0(X) := α0fA(X) + β0fB(X), (44)

Ŷ (1) = f̂1(X) := α1fA(X) + β1fB(X). (45)

Following a similar procedure as given in Appendices A and B, we have:

E[f̂0(x)f̂0(x′)] = α2
0E[fA(x)fA(x′)] + β2

0E[fB(x)fB(x′)] = (α2
0 + β2

0)kNN(x, x
′), (46)

E[f̂0(x)f̂1(x′)] = α0α1E[fA(x)fA(x′)] + β0β1E[fB(x)fB(x′)] = (α0α1 + β0β1)kNN(x, x
′), (47)

E[f̂1(x)f̂0(x′)] = E[f̂0(x)f̂1(x′)] = (α0α1 + β0β1)kNN(x, x
′), (48)

E[f̂1(x)f̂1(x′)] = α2
1E[fA(x)fA(x′)] + β2

1E[fB(x)fB(x′)] = (α2
1 + β2

1)kNN(x, x
′). (49)

The covariance function then becomes:

cov
(

f̂(x), f̂(x′)
)
= kNN(x, x

′)

[
α2
0 + β2

0 α0α1 + β0β1

α0α1 + β0β1 α2
1 + β2

1

]
. (50)

Therefore, f̂ will still converge in distribution to a GP with zero mean and ICM kernel in the infinite width limit a priori with
this two-network architecture.

D. Details of Experimental Setup
D.1. Synthetic Dataset

We construct the synthetic dataset in Section 5.1 by following the steps below. For i = 1, 2, ..., N , do

xi ∼ N
(
0, σ2

x

)
,

ti ∼ Bern(pi) where pi =
1

1 + exp(−xi)
,

ξi ∼ N
(
0, σ2

ξ

)
,

µ
(0)
i = 1 +

1

1 + exp(−xi)
,

µ
(1)
i = 2 +

1

1 + exp(−xi)
,

y
(0)
i = µ

(0)
i + ξi,

y
(1)
i = µ

(1)
i + ξi,

yi = y
(0)
i if ti = 0 else y

(1)
i .

For our experiment, we set σ2
x = 9 and σ2

ξ = 0.0025 and sample N = 3000 data points. The CMDE model consists of 10
estimators where fH , fT , and fHT in each estimator are single-hidden-layer neural networks with ReLU activation and
2048 units in the hidden layer. We set the initial values of αH , αT , and αHT to be αH = 0, αT = 0, and αHT = 1. All
weight and bias parameters in fH , fT , and fHT are independently drawn from a normal distribution N (0, σ2

wI) a priori and
σ2
w = 0.1.

D.2. Benchmark Datasets

We elaborate the data pre-processing details in the sub-sections below. The model hyperparameter details are listed in Table
2. Also, note that for Twins and Jobs dataset, we use both the training and validation set to evaluate the models for in-sample
setting and just the test set to evaluate the models for out-of-sample setting. We repeat the experiments on Twins and Jobs
dataset 10 times and report the mean and the standard deviation as given in Table 1.
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ACIC Twins Jobs

CMDE

number of estimators = 10
LMC kernel (Q = 2),

depth = 2, width = 512,
α1
H = α1

T = α1
HT = 1,

α2
H = α2

T = α2
HT = 1,

softplus activation

number of estimators = 10
LMC kernel (Q = 2),

depth = 2, width = 512,
α1
H = α1

T = 1, α1
HT = 0.1,

α2
H = α2

T = 1, α2
HT = 0.1,

tanh activation

number of estimators = 10
LMC kernel (Q = 2),

depth = 2, width = 512,
α1
H = α1

T = 1, α1
HT = 0.1,

α2
H = α2

T = 1, α2
HT = 0.1,

tanh activation

CMGP
LMC kernel with
RBF base kernel N/A

LMC kernel with
RBF base kernel

CEVAE † † †

GANITE
kG = kI = 256,

depth = 0, hdim = 100,
α = 0.1, β = 0

kG = kI = 128,
depth = 5, hdim = 8,

α = 2, β = 2

kG = kI = 128,
depth = 3, hdim = 4,

α = 1, β = 5
X-learner-
RF number of estimators = 100 number of estimators = 100 N/A

X-learner-
BART number of estimators = 100 number of estimators = 100 N/A

CFRNet-
Wass

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

α = 0.1, ReLU activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,
α = 1, tanh activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,
α = 1, tanh activation

CFRNet-
MMD

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

α = 0.1, ReLU activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,
α = 1, tanh activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,
α = 1, tanh activation

DONUT
depth (ϕ and h) = 2,

width (ϕ and h) = 512,
ReLU activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

tanh activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

tanh activation

Table 2. Model hyperparameters used for CMDE and other benchmark models in the ACIC2019, Twins, and Jobs experiments. † To save
space, for CEVAE, please refer to the source code for hyperparameter details.

D.2.1. ATLANTIC CAUSAL INFERENCE CONFERENCE (ACIC) DATASET

The covariates in ACIC2019 dataset are either simulated or drawn from publicly available datasets. We take the high-
dimensional version (where we have 185 covariates in total) for our experiments. The full training and test sets contain a
total of 6.4M and 16K data points, respectively. Due to time and memory constraints, we pick a small subset containing
2000 data points from each of the training and test sets. The download link is provided below:
https://sites.google.com/view/acic2019datachallenge/data-challenge?pli=1

D.2.2. TWINS DATASET

The Twins dataset contains the information of twin births in the United States from 1989 to 1991. It contains 40 covariates
pertaining to pregnancy, twin births, and parents. The treatment is defined as T = 1 as being the heavier twin and T = 0 as
being the lighter twin. The outcome is defined as the 1-year mortality. The full dataset contains a total of 11400 data points
and we average over 10 train-validation-test splits with a ratio of 56:24:20.

D.2.3. JOBS DATASET

The Jobs dataset studied by LaLonde is a widely used benchmark where the treatment T is job training and the outcome
Y is the individual’s income in 1975. The covariates include 8 variables such as age, education, race, and income in
1974. The dataset consists of a randomized portion based on the National Supported Work program (722 samples) and a
non-randomized portion acquired from observational studies (2490 samples). Before conducting the experiment, we convert
Y (income in 1975) into binary outcomes (i.e. employed/unemployed or 1[Y = 0]). The test set is sampled only from the
randomized portion and we average over 10 train-validation-test splits with a ratio of 56:24:20.
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D.3. Datasets with Multi-modal Covariates

We give the details of data generation and pre-processing for each experiment in the sub-sections below. For CMDE
and benchmark deep causal models, we use a convolutional neural network (CNN) architecture when we have images as
covariates and a fully connected neural network architecture when we have tabular data (e.g., demographic information in
COVID-19 dataset) as covariates. The details of model architectures are displayed in Table 3. We repeat the experiments on
both datasets 10 times and report the corresponding statistics as given in Figures 4 and 5.

D.3.1. DATA GENERATION PROCEDURE OF THE SEMI-SYNTHETIC COVID-19 DATASET

We create a semi-synthetic dataset based on a publicly available COVID-19 X-ray dataset. The dataset includes 951 images
and some other demographic and image-related information, collected from several public sources (Cohen et al., 2020).
After data cleaning and imputation, 857 samples are used in our analysis and we use a train-validation-test splito ratio of
40:20:40. The variables we include are patient id, offset, sex, age, RT-PCR-positive, survival, intubated, intubation-present,
went-icu, in-icu.

We generate potential outcomes using both demographic and image information. For image, we categorize the diagnosis of
the X-ray into the following categories: viral pneumonia, bacterial pneumonia, fungal pneumonia, pneumonia caused by
other causes (lipoid and aspiration), pneumonia by unknown cause, and tuberculosis. We use these categories to represent
image information. The potential outcome Y is defined as general overall severity of diseases and T is the binary treatment.
Larger value of Y indicates worse prognosis. The potential outcomes are generated by the following equations:

Y (0) = β0 + βT
1 Xd + βT

2 Xim + βT
3 Xd ⊗Xd + ϵ0,

Y (1) = β0 + βT
1 Xd + βT

2 Xim + βT
3 Xd ⊗Xd + βT

t1Xim + βT
t2Xd ⊗Xim + ϵ1,

where ϵ0 ,ϵ1 ∼ N(0, 0.1) , Xd is the vector of demographic variables, Xim is the vector of diagnosis categories and ⊗ is the
symbol of Kronecker product. We assign values of β in a clinically meaningful way and β3 and βt2 are sparse matrices in
the sense that only a few variables would interact with each other. More details of the data generating process such as the
exact values of β could be found in our source code.

For treatment, we consider two main scenarios: observational study randomized study. The results of observational study
setting are shown in Figure 4, where treatment depends on some covariates:

p(xi) =
1

1 + exp(−βtxi)
,

T ∼ Bern
(

p2p(xi)

p(X)/N

)
,

where X = (Xd, Xim), p2 = {0.1, 0.2, 0.3, 0.4, 0.5}. The p2p(xi)
p(X)/N term is to control the mean of p(xi) to mimic an

unbalanced assignment mechanism and P (T = 1|X) is called the propensity score. In randomized study setting, treatment
does not depend on any covariates. Specifically, we set T ∼ Bern(p1) where p1 = {0.1, 0.2, 0.3, 0.4, 0.5} to mimic an
unbalanced assignment mechanism. The results of CATE estimation in this setting are presented in Figure D1. It turns out
that the conclusions derived from this figure are very similar to the ones we state in Section 5.3.

D.3.2. DATA PRE-PROCESSING PROCEDURE OF THE STAR DATASET

The effect of class size on student’s achievement is an important topic in the American K-12 education system. To study the
effect, the State Department of Education in Tennessee conducted a four-year longitudinal, class-size randomized study
called The Student/Teacher Achievement Ratio (STAR) from 1985 to 1989. Using the first graders’ data from the STAR
project, we estimate the effect of class size on class-level mathematical performance on a standardized test. Since the
original dataset corresponds to a randomized study, the true effect of class size can be estimated directly. Following similar
covariate selection as Deshpande et al. (2022), we use highest degree obtained by teacher, career ladder position of teacher,
number of years of experience of teacher, and teacher’s race as numerical features. To construct multi-modal covariates,
the students’ gender and ethnicity are replaced by images of corresponding characteristics from the UTK dataset (Zhang
et al., 2017). All categorical covariates are converted into one-hot encoding. Test scores and all continuous covariates are
normalized using min-max normalization. Observations with any missing values are filtered out, resulting in a total of 6563
data points. The train-validation-test split ratio is again set to be 40:20:40.
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Figure D1. Results of CATE estimation
(
√
ϵPEHE) on the semi-synthetic COVID-

19 dataset in randomized study setting
where the covariates are either X-ray im-
ages (left) or demographic information
(right). CMDE with multi-modal covari-
ates (both images and demographic in-
formation) are marked as CMDE-mul in
both figures. The lines and error bars
represent mean and half of the standard
deviation of

√
ϵPEHE, respectively. The

error of DCN-PD with demographic in-
formation is too high so we do not show it
in the right figure for better visualization.

COVID-19 dataset STAR dataset
Image covariates Tabular data covariates Image covariates Tabular data covariates

CMDE

#estimators = 10
ICM kernel, depth = 2,

#channels in hidden
layers = 64,

filter size = 3,
stride = 1

αH = αT = 1,
αHT = 0.5,

softplus activation

#estimators = 10
ICM kernel, depth = 2,

width = 512,
αH = αT = 1,
αHT = 0.5,

softplus activation

#estimators = 10
ICM kernel, depth = 2,

#channels in hidden
layers = 64,

filter size = 3,
stride = 1

αH = αT = 1,
αHT = 0.1,

softplus activation

#estimators = 10
ICM kernel, depth = 2,

width = 512,
αH = αT = 1,
αHT = 0.1,

softplus activation

CFRNet

depth (ϕ and h) = 2,
#channels in hidden

layers of ϕ and h = 64,
filter size = 3,

stride = 1,
α = 0.01,

softplus activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

α = 0.01,
softplus activation

depth (ϕ and h) = 2,
#channels in hidden

layers of ϕ and h = 64,
filter size = 3,

stride = 1,
α = 0.01,

softplus activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

α = 0.01,
softplus activation

DCN-PD

depth (shared and
idiosyncratic

networks) = 2,
#channels in hidden layers

of shared and
idiosyncratic

networks = 64,
filter size = 3,

stride = 1,
softplus activation

depth (shared and
idiosyncratic

networks) = 2,
width (shared and

idiosyncratic
networks) = 512,

softplus activation

depth (shared and
idiosyncratic

networks) = 2,
#channels in hidden layers

of shared and
idiosyncratic

networks = 64,
filter size = 3,

stride = 1,
softplus activation

depth (shared and
idiosyncratic

networks) = 2,
width (shared and

idiosyncratic
networks) = 512,

softplus activation

DONUT

depth (ϕ and h) = 2,
#channels in hidden layers

of ϕ and h = 64,
filter size = 3,

stride = 1,
softplus activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

softplus activation

depth (ϕ and h) = 2,
#channels in hidden layers

of ϕ and h = 64,
filter size = 3,

stride = 1,
softplus activation

depth (ϕ and h) = 2,
width (ϕ and h) = 512,

softplus activation

Table 3. Model hyperparameters used for CMDE and other deep causal benchmark models in the COVID-19 X-ray image and STAR
experiments
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Figure E1. Predictions for the control and treatment groups on the synthetic dataset by CMDE (left) with αH = 1, αT = 1, αHT = 0
and multi-task GP with ICM kernel (middle) where dots represent observed samples, lines represent mean predictions, and shaded regions
represent predicted values within 2 standard deviations. In addition, we also plot the contribution of group-specific and shared components
for CMDE (right). It can be observed that with inappropriate coefficient initializaiton, CMDE fails to capture the response surfaces of the
control and treatment groups and yields a much larger error on treatment effect estimation than multi-task GP.

E. Discussion on Fine-tuning of Coefficients
As mentioned in the Discussion, CMDE is sensitive to the initial values of the coefficients applied in NNs (e.g. αH , αT ,
and αHT ), thus requiring us to have some prior knowledge about which type of information, group-specific or shared, is
more dominant. This is dependent on the task at hand. For example, in the synthetic data example in Section 5.1, the shared
information between the two groups (i.e, shape of the two curves) is important for estimating the potential outcomes when
there is no group-specific information. Note that we refer to the group-specific information as the distinct features of the
covariates X in each group, and here the two curves are only off by a constant instead of anything related to the covariate X
(see Appendix D.1 for the data generation procedure). Therefore, we initialize the coefficients to be αH = αT = 0 and
αHT = 1. To verify this point, we also repeat this experiment by setting αH = αT = 1 and αHT = 0. We realize that
without correctly capturing the shape of the two curves, CMDE performs much worse on the treatment effect estimation as
shown in Figure E1. On the contrary, the Twins dataset contains 40 covariates pertaining to pregnancy, twin births, and
parents. The treatment is defined as T = 1 as being the heavier twin and T = 0 as being the lighter twin. The outcome is
defined as the 1-year mortality rate. Here, our prior knowledge is that the unique features of each child will contribute more
to the mortality rate, so we initialize the coefficients to be αH = αT = 1 and αHT = 0.1.

F. Accessibility of the Datasets
All datasets used in our experiments are available at https://github.com/jzy95310/ICK/tree/main/data
and are released under the MIT license. For ACIC, Twins, Jobs, and STAR, the original datasets have an open-access
license and are publicly available. For COVID-19 experiment, the original dataset is available at: https://github.
com/ieee8023/covid-chestxray-dataset where each image has a specified license including Apache 2.0, CC
BY-NC-SA 4.0, and CC BY 4.0. All other files and scripts are released under a CC BY-NC-SA 4.0 license.
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