

LARGER DATASETS CAN BE REPEATED MORE: A THEORETICAL ANALYSIS OF MULTI-EPOCH SCALING IN LINEAR REGRESSION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 While data scaling laws of large language models (LLMs) have been widely
 014 examined in the one-pass regime with massive corpora, their form under limited
 015 data and repeated epochs remains largely unexplored. This paper presents a
 016 theoretical analysis of how a common workaround, training for multiple epochs on
 017 the same dataset, reshapes the data scaling laws in linear regression. Concretely,
 018 we ask: to match the performance of training on a dataset of size N for K epochs,
 019 how much larger must a dataset be if the model is trained for only one pass?
 020 We quantify this using the *effective reuse rate* of the data, $E(K, N)$, which we
 021 define as the multiplicative factor by which the dataset must grow under one-pass
 022 training to achieve the same test loss as K -epoch training. Our analysis precisely
 023 characterizes the scaling behavior of $E(K, N)$ for SGD in linear regression under
 024 either strong convexity or Zipf-distributed data: (1) When K is small, we prove
 025 that $E(K, N) \approx K$, indicating that every new epoch yields a linear gain; (2) As
 026 K increases, $E(K, N)$ plateaus at a problem-dependent value that grows with
 027 N ($\Theta(\log N)$ for the strongly-convex case), implying that larger datasets can be
 028 repeated more times before the marginal benefit vanishes. These theoretical findings
 029 point out a neglected factor in a recent empirical study by [Muennighoff et al. \(2023\)](#),
 030 which claimed that training LLMs for up to 4 epochs results in negligible loss
 031 differences compared to using fresh data at each step, *i.e.*, $E(K, N) \approx K$ for
 032 $K \leq 4$ in our notation. Supported by further empirical validation with LLMs, our
 033 results reveal that the maximum K value for which $E(K, N) \approx K$ in fact depends
 034 on the data size and distribution, and underscore the need to explicitly model both
 035 factors in future studies of scaling laws with data reuse.

1 INTRODUCTION

036 Scaling laws ([Hestness et al., 2017](#); [Kaplan et al., 2020](#); [Hoffmann et al., 2022](#)) have emerged as a
 037 central framework for characterizing the behavior of large language model (LLM) pre-training. The
 038 Chinchilla scaling law ([Hoffmann et al., 2022](#)) established robust empirical trends in performance
 039 as a joint function of model size and dataset size under the one-pass training paradigm, in which
 040 each data point is used at most once. This assumption, however, is becoming increasingly untenable.
 041 The quest for more capable models has driven an unprecedented escalation in data requirements:
 042 from fewer than 10 billion tokens for GPT-2, to 300 billion for GPT-3 ([Brown et al., 2020](#)), 2 trillion
 043 for Chinchilla and LLaMA 2 ([Hoffmann et al., 2022](#); [Touvron et al., 2023](#)), and 36 trillion for
 044 Qwen3 ([Yang et al., 2025](#)). Projections further suggest that the pool of publicly available data may be
 045 exhausted as early as 2028 ([Villalobos et al., 2024](#)).

046 A common response to this emerging data scarcity is to train models for multiple epochs over the
 047 same dataset. Recent empirical studies have begun to examine the consequences of such repetition:
 048 for example, [Muennighoff et al. \(2023\)](#) and [Xue et al. \(2023\)](#) show that moderate reuse can still yield
 049 competitive pre-training performance. Yet the fundamental scaling behavior of multi-epoch training
 050 remains poorly understood—particularly from a theoretical standpoint.

051 In this paper, we study a fundamental question in understanding how multi-epoch training affects
 052 the data scaling laws: *To what extent does training for K epochs on N samples can be effectively*

seen as one-pass training with an increased number of data samples? Formally, let $\mathcal{L}(K, N)$ denote the expected loss of K -epoch training on N samples. We define the *effective dataset size* $N'(K, N)$ as the minimal number of samples in one-pass training that achieves a comparable or lower loss $\mathcal{L}(1, N') \leq \mathcal{L}(K, N)$. In this paper, we concern about the ratio $E(K, N) = N'(K, N)/N$, which we term as the *effective reuse rate* of the data, a key quantity that characterizes how many times larger the dataset must grow to match the same performance as K -epoch training (see the detailed version in Definition 3.1).

In a recent study of scaling laws for multi-epoch training, Muennighoff et al. (2023) encountered this question and proposed an empirical approximation: $N'(K, N) = (1 + R^*(1 - e^{-(K-1)/R^*})) \cdot N$, where R^* is a fitted constant ($R^* \approx 15.39$ in their experiments). This formula suggests that the benefit of repetition grows with K but saturates exponentially at $(1 + R^*) \cdot N$ as K increases. While supported by some empirical evidence in their study, this approximation still leads to a noticeable gap between scaling law predictions and empirical results (see Figure 3 in their paper). Moreover, the formula implies that the ratio $E(K, N) = N'(K, N)/N$ is independent of N , so the benefit of repeating the dataset K times is equivalent to increasing its size by a factor that depends only on K , regardless of how large N is. It remains unclear to what extent this independence holds in general.

Our Contributions. In this paper, we approach the above question on the effective reuse rate of data in the setting of linear regression, a setting that is simple enough to reveal the key mechanisms of data reuse, while still tractable for precise analysis under stochastic gradient descent (SGD). We provide a theoretical characterization of $E(K, N)$ in various regimes, and point out a neglected factor in the empirical study of Muennighoff et al. (2023): the effective reuse rate depends not only on the number of epochs K , but also on the dataset size N . In fact, larger datasets can be repeated more. Our main contributions are as follows:

1. In Section 4, we study the strongly convex case of linear regression, and show that when K is small, $E(K, N) \approx K$, indicating that every new epoch leads to a linear gain. As K increases, $E(K, N)$ saturates at a problem-dependent value of order $\Theta(\log N)$, suggesting that larger datasets can be repeated for more epochs before the marginal benefit vanishes.
2. In Section 5, we go beyond the strongly convex case and study a class of Zipf-law distributed data, and show that $E(K, N)$ exhibits a similar scaling behavior to the strongly convex case, except that the saturation point scales as a power of N instead of $\log N$.
3. Technically, we derive the optimal learning rate (Lemma 4.4) for multi-epoch SGD in linear regression and its corresponding approximation formula for the expected excess risk up to an $o(1)$ multiplicative error (Lemma G.1). These results may be of independent interest.
4. In Section 6, we conduct LLM pretraining experiments up to 200B repeated tokens, and empirically validate our theoretical predictions. The results confirm that $E(K, N) \approx K$ for small K , and that for fixed K , the effective reuse rate increases monotonically with N . This provides direct evidence for our main conclusion: larger datasets can be repeated more.

2 RELATED WORK

Data Reuse in LLM Pre-Training. Empirically, there is a long debate over the effect of data reuse in LLM pre-training. Some works (Lee et al., 2021; Hoffmann et al., 2022; Hernandez et al., 2022; Wang et al., 2023) suggested it may be harmful, while some work (Taylor et al., 2022) reported the benefit of data reusing when the number of epochs is small ($K \leq 4$). Xue et al. (2023) then discovered a degradation phenomenon in multi-epoch training and investigated relevant factors and regularization methods to tackle it. Muennighoff et al. (2023) trained LLMs under different configurations and also found that reusing data is as good as using fresh data in the first few epochs. Yet, as the number of epochs increases, the returns for repetitions diminish. In our work, from a theoretical perspective, we rigorously analyzed the effect of data reuse using non-asymptotic techniques, and we defined and calculated the effective reuse rate under two cases, shedding light on the theoretical understanding of data reusing in LLM pre-training.

Comparison with Lin et al. (2025). A recent study on linear regression with data reusing (Lin et al., 2025) is among the most relevant to our results. They showed that when the number of epochs is relatively small (smaller than some power of the dataset size), the order of loss remains the same as one pass SGD for the same iterations, which aligns with our results. However, their results

108 only imply that $E(K, N) = \Theta(K)$ for small K , while our analysis directly gives the explicit loss
 109 characterization with $o(1)$ relative error bound and a more exact description of the effective reuse
 110 rate, which reflects the data reusing scaling behaviour. Our analysis is across various problem setups,
 111 and further shows the general scaling trend of data reusing under different problem setups.
 112

113 3 PRELIMINARIES

114
 115 **Notations.** We use $\|\cdot\|$ to denote the ℓ_2 -norm of vectors and the corresponding operator norm
 116 of matrices. For two sequences $(A_n)_{n=0}^\infty$ and $(B_n)_{n=0}^\infty$, we write $A_n = O(B_n)$, or alternatively
 117 $A_n \lesssim B_n$, $B_n = \Omega(A_n)$, $B_n \gtrsim A_n$, if there exist constants $C > 0, N > 0$ such that $|A_n| \leq C|B_n|$
 118 for all $n \geq N$. We write $A_n = \Theta(B_n)$, or alternatively $A_n \asymp B_n$, if both $A_n = O(B_n)$ and
 119 $A_n = \Omega(B_n)$ hold. Moreover, for some variable n , we write $A_n = o_n(B_n)$ if for every constant
 120 $c > 0$, there exists $n_0 > 0$ such that $|A_n| < c|B_n|$ for all $n \geq n_0$. In this paper, when n is
 121 clear from the context, we write $A_n = o(B_n)$ for short. Furthermore, we write $A_n = \omega(B_n)$ if
 122 $B_n = o(A_n)$. For matrices $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$, we use $\prod_{l=1}^n \mathbf{A}_l$ to denote the product $\mathbf{A}_1 \mathbf{A}_2 \dots \mathbf{A}_n$.
 123 Let $\|\mathbf{u}\|_{\mathbf{S}} = \sqrt{\mathbf{u}^\top \mathbf{S} \mathbf{u}}$ for a vector \mathbf{u} and a positive semi-definite (psd) matrix \mathbf{S} .
 124

125 **Linear Regression Problem.** We focus on a linear regression setup, where data point $(\mathbf{x}, y) \in$
 126 $\mathbb{R}^d \times \mathbb{R}$ follows a joint distribution \mathcal{D} and $\|\mathbf{x}\| \leq D$ for some constant D . W.L.O.G., we assume
 127 that the covariance matrix of data input is diagonal, i.e., $\mathbf{H} := \mathbb{E}[\mathbf{x}\mathbf{x}^\top] = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$,
 128 where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$. A direct corollary is that $\lambda_1 \leq D^2$. For a given data input \mathbf{x} , the label
 129 y is generated by $y := \langle \mathbf{w}^*, \mathbf{x} \rangle + \xi$, where $\mathbf{w}^* \in \mathbb{R}^d$ is the ground-truth weight and ξ represents
 130 the independent random label noise with $\mathbb{E}[\xi] = 0$ and $\mathbb{E}[\xi^2] = \sigma^2$. We aim to train a linear model
 131 $f(\mathbf{x}; \mathbf{w}) := \langle \mathbf{w}, \mathbf{x} \rangle$ to predict the data label, where $\mathbf{w} \in \mathbb{R}^d$ is the trainable parameter. We use
 132 MSE-loss $\ell(\mathbf{w}; \mathbf{x}, y) := \frac{1}{2}(f(\mathbf{x}; \mathbf{w}) - y)^2$ to measure the fitting error. Then, the population loss is
 133 defined as $\mathcal{L}(\mathbf{w}) := \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[\ell(\mathbf{w}; \mathbf{x}, y)]$. Further we define the excess risk $\mathcal{R}(\mathbf{w}) := \mathcal{L}(\mathbf{w}) - \frac{1}{2}\sigma^2$,
 134 which is the expected population loss minus the irreducible loss $\frac{1}{2}\sigma^2$.
 135

136 **Multi-Epoch SGD Training Algorithm.** Consider a finite training dataset with N data points
 137 $\{(\mathbf{x}_0, y_0), (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{N-1}, y_{N-1})\}$, where the data points (\mathbf{x}_i, y_i) are i.i.d. sampled from the
 138 distribution \mathcal{D} . We use K -epoch stochastic gradient descent (SGD) with random shuffling to minimize
 139 the loss function. And the initial parameter \mathbf{w}_0 is set to 0. Formally, we denote K independent
 140 random permutations of $[N]$ by π_1, \dots, π_K . And we define $j_t := \pi_{k_t}(i_t)$, where $i_t := t \bmod N$,
 141 $k_t := \lfloor t/N \rfloor + 1$. Then we have the update rule for K -epoch SGD with N data points
 142

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla_{\mathbf{w}} \ell(\mathbf{w}_t; \mathbf{x}_{j_t}, y_{j_t}) = (\mathbf{I} - \eta \mathbf{x}_{j_t} \mathbf{x}_{j_t}^\top) \mathbf{w}_t + \eta \xi_{j_t} \mathbf{x}_{j_t}.$$

143 Next, given a K -epoch SGD over N data points, with learning rate η , we define $\mathcal{W}_{K, N, \eta}$ to be the
 144 distribution of \mathbf{w}_{KN} . The randomness within \mathbf{w}_{KN} comes from the random draw of the dataset,
 145 label noise ξ , and the shuffling in SGD. Based on this, we define the expected excess risk of a given
 146 K -epoch SGD over N data points, with learning rate η as $\bar{\mathcal{R}}(K, N; \eta) := \mathbb{E}_{\mathbf{w} \sim \mathcal{W}_{K, N, \eta}}[\mathcal{R}(\mathbf{w})]$. We
 147 assume $\eta \leq D^{-2}$ for training stability.

148 **Comparing Performance under Optimal Learning Rate Regime.** To compare the performance
 149 of one-pass and multi-epoch SGD, we consider the settings where the learning rates for both methods
 150 are tuned to the optimal. Formally, we introduce the notion of the *optimal expected excess risk* of
 151 K -epoch SGD for N samples as $\bar{\mathcal{R}}^*(K, N) := \min_{\eta \in (0, \frac{1}{D^2}]} \{\bar{\mathcal{R}}(K, N; \eta)\}$. To calculate this value
 152 in math, we will show in the next section that we can get a learning rate choice that can approximately
 153 achieve the above optimal expected excess risk $\bar{\mathcal{R}}^*(K, N)$ both for one-pass and multi-epoch SGD.
 154 Following our discussion in the introduction, we define the *effective reuse rate* as follows:

155 **Definition 3.1** (Effective Reuse Rate). *Given K -epoch SGD trained with N fresh data samples, the
 156 effective reuse ratio is defined as: $E(K, N) := \frac{1}{N} \min\{N' \geq 0 : \bar{\mathcal{R}}^*(1, N') \leq \bar{\mathcal{R}}^*(K, N)\}$.*

157 That is, the effective reuse rate measures how many times larger the dataset must grow under one-pass
 158 training to match the performance of K -epoch training, both under the optimal learning rate regime.

159 4 MULTI-EPOCH SCALING IN STRONGLY CONVEX LINEAR REGRESSION

160 In the study of linear regression problems, the strongly convex case is a classical and central theoretical
 161 framework, serving as the standard entry point before many relaxing to weaker conditions (Hastie,

162 2009; Ge et al., 2019). In Section 4.1, we first give the problem setups and the main results of the
 163 effective reuse rate. In Section 4.2, we give a proof sketch for our theoretical results, and the detailed
 164 proof of this section can be found in Appendix G.

165 4.1 MAIN RESULTS

167 As we focus on the strongly convex case, we make the following assumption on the minimum
 168 eigenvalue of the Hessian matrix.

169 **Assumption 4.1** (Strong Convexity). *We assume that $\lambda_d \geq \mu$ for some constant $\mu > 0$.*

171 For simplicity, we make the following prior for the ground-truth weight \mathbf{w}^* .

172 **Assumption 4.2** (Parameter Prior). *The ground truth \mathbf{w}^* satisfies $w_i^* \neq 0$ for all $i \in [d]$.*

174 As the number of samples N can be very large in practice, training on the entire dataset for a large
 175 amount of epochs can be computationally expensive. This motivates us to impose an upper bound on
 176 the number of epochs K . Technically, this helps us to rule out cases with severe overfitting.

177 **Assumption 4.3** (Computationally feasible number of epochs). *We assume that the training dataset
 178 size N and number of epochs K satisfy $K = O(N^{0.1})$.*

179 Here, the exponent 0.1 is chosen for ease of calculation, though it may not be tight.

180 To compute $E(K, N)$, we first precisely characterize the optimal expected excess risk. In particular,
 181 we derive asymptotic expansions for $\bar{\mathcal{R}}^*(K, N)$ in the regimes $K = o(\log N)$ and $K = \omega(\log N)$,
 182 each expressed as a leading term accompanied by an explicitly controlled higher-order remainder.

183 **Theorem 4.1** (Multi-Epoch Data Scaling Law). *Under Assumptions 4.1 to 4.3, for multi-epoch SGD
 184 with the number of epochs K , dataset size of N , it holds that*

$$\bar{\mathcal{R}}^*(K, N) = \begin{cases} \frac{\sigma^2 \text{tr}(\mathbf{H})}{8\lambda_d} (1 + o_N(1)) \cdot \frac{\log(KN)}{KN} & \text{for } K = o(\log N), \\ \frac{\sigma^2 d}{2} (1 + o_N(1)) \cdot \frac{1}{N} & \text{for } K = \omega(\log N). \end{cases}$$

189 Theorem 4.1 describes how expected excess risk decays with number of epochs K and dataset size
 190 N when choosing the optimal learning rate. When $K \ll \log N$, then $\bar{\mathcal{R}}^*(K, N) = \Theta\left(\frac{\log T}{T}\right)$ where
 191 $T = KN$; by contrast, when $K \gg \log N$, then $\bar{\mathcal{R}}^*(K, N) = \Theta\left(\frac{1}{N}\right)$ which does not depend on K ,
 192 showing that endless data reuse turns to be useless.

193 Next we propose the expression of $E(K, N)$ by applying Theorem 4.1.

195 **Theorem 4.2.** *Under Assumptions 4.1 to 4.3, for multi-epoch SGD with the number of epochs K ,
 196 dataset size of N , it holds that*

$$E(K, N) = \begin{cases} (1 + o_N(1)) \cdot K & \text{for } K = o(\log N), \\ \frac{\text{tr}(\mathbf{H})}{4\lambda_d d} (1 + o_N(1)) \cdot \log N & \text{for } K = \omega(\log N). \end{cases}$$

200 Theorem 4.2 pinpoints two regimes for the effective reuse rate in the strongly convex case. The first
 201 one is an *effective-reuse regime*: when $K \ll \log N$, then $E(K, N) = K(1 + o(1))$. This suggests
 202 that each extra epoch is essentially as valuable as a fresh pass. The second one is a *limited-reuse*
 203 *regime*: when $K \gg \log N$, then $E(K, N) = \frac{\text{tr}(\mathbf{H}) \log N}{4\lambda_d d} (1 + o_N(1))$, which means additional epochs
 204 yield only logarithmic gains. This further implies that the model has effectively “seen” the dataset
 205 enough times that additional repetition is redundant.

206 Together, these two asymptotic descriptions expose a phase transition when the quantity
 207 $\lim_{N \rightarrow \infty} \frac{K}{\log N}$ changes from 0 to ∞ . For the former case ($\lim_{N \rightarrow \infty} \frac{K}{\log N} = 0$), multi-epoch
 208 training behaves like unlimited data augmentation; for the latter ($\lim_{N \rightarrow \infty} \frac{K}{\log N} = \infty$), the benefits of
 209 reusing data all but vanish, capping $E(K, N)$ at $\Theta(\log N)$. This insight provides a precise guideline
 210 for practitioners: one should allocate epochs up to order $\log N$ to maximize effective data utilization,
 211 but pushing K significantly beyond that yields rapidly diminishing returns.

213 **Larger Datasets Can Be Repeated More.** Our theorem provides the following insight. Fixing the
 214 data distribution, as we collect more data, the largest possible epoch number K in the effective-reuse
 215 regime also increases. This means that for larger datasets, multi-epoch training is able to reuse every
 data point more effectively. Specifically, for the setup we study in this section, if we have collected N

216 data points in total, then with multi-epoch training, we can get a performance comparable to one-pass
 217 training on $\Theta(N \log N)$ data points, which is superlinear in the number of data points we collected.
 218

219 This finding points out a neglected factor in the data-constrained scaling laws proposed in [Muennighoff et al. \(2023\)](#), which assumed a uniform effective number of epochs across different fresh data sizes.
 220 In Section 6.3, we validate this insight by showing that the effective reuse rate indeed increases with
 221 the dataset size in LLM pretraining.
 222

223 4.2 PROOF SKETCH

224 We now provide a proof sketch of our main results. First, we need to compute the optimal expected
 225 excess risk $\bar{\mathcal{R}}^*(K, N)$. This requires us to compute $\bar{\mathcal{R}}(K, N; \eta)$ and then select the optimal learning
 226 rate η^* that minimizes $\bar{\mathcal{R}}(K, N; \eta)$. However, due to the random shuffling and multi-pass processing
 227 of the training data, directly analyzing $\bar{\mathcal{R}}(K, N; \eta)$ is intractable. To overcome this, we seek an
 228 analytic approximation of $\bar{\mathcal{R}}(K, N; \eta)$, which is derived through the following steps.
 229

230 **Step 1: Bias-Variance Decomposition for Training Dynamics.** Following the widely-applied
 231 bias-variance decomposition approach to analyzing the dynamics of SGD training ([Neu & Rosasco, 2018](#);
 232 [Ge et al., 2019](#); [Zou et al., 2021](#); [Wu et al., 2022a](#)), we define $\theta_t = \mathbf{w}_t - \mathbf{w}^*$ and examine
 233 the following two processes of bias and variance: $\theta_{t+1}^{\text{bias}} = \theta_t^{\text{bias}} - \eta \langle \theta_t^{\text{bias}}, \mathbf{x}_{j_t} \rangle \mathbf{x}_{j_t}$, $\theta_{t+1}^{\text{var}} =$
 234 $\theta_t^{\text{var}} - \eta \langle \theta_t^{\text{var}}, \mathbf{x}_{j_t} \rangle \mathbf{x}_{j_t} + \eta \xi_{j_t} \mathbf{x}_{j_t}$, where two processes are initialized as $\theta_0^{\text{bias}} = \mathbf{w}_0 - \mathbf{w}^*$ and
 235 $\theta_0^{\text{var}} = \mathbf{0}$. It follows that $\theta_t = \theta_t^{\text{bias}} + \theta_t^{\text{var}}$, with $\mathbb{E}[\theta_t^{\text{var}}] = \mathbf{0}$. We can then decompose the excess
 236 risk $\mathcal{R}(\mathbf{w}_t)$ into two components: the *bias term* and the *variance term*, which we formalize as follows
 237 $\mathcal{R}(\mathbf{w}_t) = \frac{1}{2} \|\theta_t\|_{\mathbf{H}}^2 = \frac{1}{2} \|\theta_t^{\text{bias}}\|_{\mathbf{H}}^2 + \frac{1}{2} \|\theta_t^{\text{var}}\|_{\mathbf{H}}^2$.
 238

239 **Step 2: Analytic Risk Approximation by Matrix Concentration.** A key challenge in tracking the
 240 dynamics of multi-epoch SGD training arises from the non-commutative nature of the matrices in
 241 the weight updates, which depend on randomly shuffled and multi-pass data. For example, the bias
 242 weight evolves as $\theta_{KN}^{\text{bias}} = \left(\prod_{k=1}^K \left(\prod_{l=1}^N \left(\mathbf{I} - \eta \mathbf{x}_{\pi_k(l)} \mathbf{x}_{\pi_k(l)}^\top \right) \right) \right) \theta_0^{\text{bias}}$, where we can see that one
 243 data point appears more than once across different epochs. Thus, the above matrix multiplication
 244 involves massive correlated data, which makes calculating the bias term $\mathbb{E}[\|\theta_{KN}^{\text{bias}}\|_{\mathbf{H}}^2]$ intractable.
 245 To resolve this issue, we borrow tools from concentration inequalities for matrix products [Huang et al. \(2022\)](#).
 246 Specifically, we use the following result:

247 **Lemma 4.1** (Corollary of Theorem 7.1 in [Huang et al. \(2022\)](#)). *Given n data points such that
 248 $\mathbf{z}_0, \dots, \mathbf{z}_{n-1} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{H})$, and defining $\mathbf{A} = \prod_{j=0}^{n-1} (\mathbf{I} - \eta \mathbf{z}_j \mathbf{z}_j^\top)$, we have $\mathbb{E}\|\mathbf{A} - \mathbb{E}\mathbf{A}\|^l \leq$
 249 $\left(\sqrt{\delta_A \eta^2 n l} \right)^l$, where $\delta_A := \tilde{C} 8eD^4 \log d$ for some absolute constant $\tilde{C} > 0$.*
 250

251 However, several obstacles prevent us from directly applying Lemma 4.1 to our problem. For example,
 252 we actually need to control error terms like $\mathbb{E}\left\| \prod_{i=K}^{k+1} \mathbf{A}^{(i)} - (\mathbb{E}\mathbf{A})^l \right\|$, where $\mathbf{A}^{(i)}$ represents the
 253 product of sequential updates through all samples in epoch i (see the formal definition in Equation (1),
 254 Appendix E). To address this, our main idea is to derive a tight upper bound for the original term, and
 255 decompose this upper bound into the sum of a series of sub-terms for which we can apply Lemma 4.1.
 256 (see the detailed derivation in Appendix G.2.1 and Appendix G.2.2)
 257

258 Finally, we derive an error bound on matrix deviations based on our calculations, which is a higher-
 259 order infinitesimal of the main term when $\eta \in \left[\Omega(T^{-1}), o(T^{-\frac{3}{4}}) \right]$ and $K = o(\eta^{-1} T^{-\frac{3}{4}})$, with
 260 $T := KN$ denoting the total number of training steps. This provides a theoretical guarantee for us to
 261 approximate the risk function with a tractable expression. For the bias term, we have
 262

$$\begin{aligned} \mathbb{E}\left[\|\theta_{KN}^{\text{bias}}\|_{\mathbf{H}}^2\right] &= \mathbb{E}\left[\left\| \left(\prod_{k=1}^K \left(\prod_{l=0}^{N-1} \left(\mathbf{I} - \eta \mathbf{x}_{\pi_k(l)} \mathbf{x}_{\pi_k(l)}^\top \right) \right) \right) \theta_0 \right\|_{\mathbf{H}}^2\right] \\ &\approx \left\| \left(\prod_{k=1}^K \mathbb{E}\left[\prod_{l=0}^{N-1} \left(\mathbf{I} - \eta \mathbf{x}_{\pi_k(l)} \mathbf{x}_{\pi_k(l)}^\top \right) \right] \right) \theta_0 \right\|_{\mathbf{H}}^2 \\ &= \|((\mathbf{I} - \eta \mathbf{H})^{KN}) \theta_0\|_{\mathbf{H}}^2, \end{aligned}$$

270 where the approximation step follows from Lemma 4.1, and the last equation follows the facts that
 271 $\mathbb{E} [\mathbf{x}_{\pi_k(l)} \mathbf{x}_{\pi_k(l)}^\top] = \mathbf{H}$ and \mathbf{x}_i is uncorrelated with \mathbf{x}_j for $i \neq j$. For the variance term, the data
 272 correlation issue is similar to what we met in the bias term case. Again, leveraging Lemma 4.1 and
 273 following a similar analysis, we can get an approximation formula for the variance term as shown:
 274

$$\begin{aligned} \mathbb{E} [\|\boldsymbol{\theta}_{KN}^{\text{var}}\|_{\mathbf{H}}^2] &\approx \frac{2\sigma^2}{N} \text{tr} \left(\frac{(\mathbf{I} - (\mathbf{I} - \eta\mathbf{H})^{KN}) ((\mathbf{I} - \eta\mathbf{H})^N - (\mathbf{I} - \eta\mathbf{H})^{KN})}{\mathbf{I} + (\mathbf{I} - \eta\mathbf{H})^N} \right) \\ &\quad + \eta\sigma^2 \langle \mathbf{H}, (\mathbf{I} - (\mathbf{I} - \eta\mathbf{H})^{2KN}) (2\mathbf{I} - \eta\mathbf{H})^{-1} \rangle. \end{aligned}$$

275 **Step 3: Narrowing the Range for Optimal Learning Rate.** However, despite we have an analytic
 276 approximation for risk, it is important to note that this approximation holds only for a specific range
 277 of parameters. For a detailed discussion, refer to Lemma G.1. To mitigate this, we first determine
 278 a reasonable range for the optimal learning rate in two steps: First, we choose $\tilde{\eta} = \frac{\log KN}{2\lambda_d KN}$ as a
 279 reference learning rate; Then, by comparing the losses for the reference learning rate and other
 280 candidate learning rates, we can eliminate a large range of values. This analysis helps narrow down
 281 the potential range of learning rates (Lemma G.5 for small K and Lemma G.6 for large K). Within
 282 this range, we further simplify the risk approximation to make it more tractable for optimization, as
 283 shown in the following lemmas:
 284

285 **Lemma 4.2 (Small K).** *Let $\mathbf{H} = \mathbf{P}\mathbf{D}\mathbf{P}^\top$ be the canonical form of \mathbf{H} under similarity,
 286 and let $\tilde{\theta}_d^2 := \sum_{l=d-n_d+1}^d (\mathbf{P}\boldsymbol{\theta}_0)_l^2$. Under Assumption 4.1 and 4.3, for learning rate $\eta \in$
 287 $[\frac{\log KN}{3\lambda_d KN}, \frac{D^2 \text{tr}(\mathbf{H}) \log KN}{\lambda_d \text{tr}(\mathbf{H}^2) KN}]$, $K = o(\log N)$, we have $\bar{\mathcal{R}}(K, N; \eta) = M(K, N; \eta)(1 + o(1))$ with
 288 $M(K, N; \eta) := \frac{1}{2}\tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta KN) + \frac{\eta \text{tr}(\mathbf{H}) \sigma^2}{4}$.*

289 **Lemma 4.3 (Large K).** *We define $\tilde{\theta}_d^2$ as the same as Lemma 4.2. Under Assumption 4.1 and 4.3,
 290 for learning rate $\eta \in [\frac{\log KN}{3\lambda_d KN}, o(\frac{1}{N})]$ and $K = \omega(\log N)$, we have $\bar{\mathcal{R}}(K, N; \eta) = M(K, N; \eta)(1 + o(1))$ with
 291 $M(K, N; \eta) = \frac{1}{2}\tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta KN) + \frac{\eta \text{tr}(\mathbf{H}) \sigma^2}{4} + \frac{\sigma^2 d}{2N}$.*

292 **Step 4: Deriving the Approximately Optimal Learning Rate.** At this point, we have narrowed
 293 down the range for the optimal learning rate and simplified the risk approximation. The next step is
 294 to approximate the optimal expected excess risk. To achieve this, we differentiate the simplified risk
 295 function $M(K, N; \eta)$ in Lemma 4.2 and Lemma 4.3 with respect to the learning rate η and give the
 296 critical point $\eta = \eta'(K, N)$, which are presented as follows:
 297

298 **Lemma 4.4 (Approximately Optimal Learning Rate).** *Under Assumption 4.1 and 4.3, we consider K -
 299 epoch SGD with N fresh data and learning rate $\eta = \eta'(K, N) = \frac{\log \rho KN}{2\lambda_d KN}$, where $\rho := \frac{4\tilde{\theta}_d^2 \lambda_d}{\text{tr}(\mathbf{H}) \sigma^2}$. Then
 300 it holds for $K = o(\log N)$ or $K = \omega(\log N)$ that $\bar{\mathcal{R}}(K, N; \eta'(K, N)) = \bar{\mathcal{R}}^*(K, N)(1 + o(1))$.*

301 Using Lemma 4.4, we complete the proof as follows. By evaluating the risk at the approximately optimal
 302 learning rate $\eta'(K, N) = \frac{\log \rho KN}{2\lambda_d KN}$, we obtain an approximation of the optimal risk (Theorem 4.1),
 303 based on which we derive the effective reuse rate (Theorem 4.2).

304 5 A SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

305 Natural data distributions often exhibit power law structures. To capture this phenomenon, we go
 306 beyond the strongly convex case and analyze a stylized linear regression model with Zipf-distributed
 307 data, where the excess risk admits a closed-form expression and the effective reuse rate can be
 308 characterized explicitly.

309 Through this setup, we can see that the effective reuse rate exhibits a similar scaling behavior: as
 310 the number of epochs K increases, $E(K, N)$ initially grows linearly but eventually saturates at a
 311 problem-dependent value that increases with N . In contrast to the strongly convex case, however, the
 312 saturation point does not scale as $\sim \log N$ but instead scales as a power of N .

313 **Problem Setup.** We use the same notation for excess risk, one-pass and multi-epoch SGD, and
 314 *i.i.d.* training data as in Section 3. We specify the data distribution as a Zipf distribution over d
 315 one-hot data points, where the i -th data point is $\mathbf{x}^{(i)} = \mu_i \mathbf{e}_i$ for some $\mu_i > 0$ and the probability

of sampling the i -th data point is $p_i = c \cdot i^{-\alpha}$ for some constants $c > 0$ and $\alpha > 1$. The label is generated by $y = \langle \mathbf{w}^*, \mathbf{x} \rangle$ with no label noise. The ground-truth weight $\mathbf{w}^* \in \mathbb{R}^d$ follows an isotropic prior distribution.

Assumption 5.1 (Parameter Prior). \mathbf{w}^* is sampled from a prior distribution with $\mathbb{E}[\mathbf{w}^* \mathbf{w}^{*\top}] = \mathbf{I}$.

Interpretation. This setup can be interpreted as a simplified model of real-world data with heavy-tailed feature distributions. Each coordinate represents an atomic feature that appears with Zipf-distributed probability, mimicking the long-tailed statistics observed in domains such as text and natural language. The scaling factors μ_i encode feature importance, which may reflect, for instance, effects introduced by feature weighting or normalization.

5.1 RESULTS ON POWER-LAW SPECTRUM

Assumption 5.2 (Power-Law Spectrum). *There exist two constants $a, b > 0$ with $a - b > 1$ such that the data input distribution satisfies that $p_i = ci^{-(a-b)}$ and $\Lambda_i = i^{-b}$, where $c = \left(\sum_{i=1}^d \frac{1}{i^{a-b}}\right)^{-1}$.*

Here we establish matching upper and lower bounds for $\bar{\mathcal{R}}^*(K, N)$ in the small- K and large- K regimes, given the solvable model. Comparing with the strongly convex case, we observe a different scaling behavior: when $K \ll N^{\frac{b}{a-b}}$, $\bar{\mathcal{R}}^*(K, N)$ decays as a power law in KN , with exponent $\frac{a-1}{a}$; whereas when $K \gg N^{\frac{b}{a-b}}$, $\bar{\mathcal{R}}^*(K, N)$ exhibits a power-law decay in N and is independent of K .

Theorem 5.1. *Consider a K -epoch SGD over N fresh data. Under Assumptions 5.1-5.2, and given the data dimension $d = \Omega((KN)^{\frac{1}{a}})$, it holds that*

$$\bar{\mathcal{R}}^*(K, N) \asymp \begin{cases} (KN)^{-\frac{a-1}{a}} & \text{for } K = o(N^{\frac{b}{a-b}}) \\ N^{-\frac{a-1}{a-b}} & \text{for } K = \omega(N^{\frac{b}{a-b}}). \end{cases}$$

Then we derive the formula of $E(K, N)$ by first solving the equation $\bar{\mathcal{R}}^*(1, T') = \bar{\mathcal{R}}^*(K, N)$ based on Theorem 5.1, and divide T' by N .

Theorem 5.2 (Multi-Epoch Scaling Under Power-Law Spectrum). *Consider a K -epoch SGD over N fresh data. Under Assumptions 5.1-5.2, and given the data dimension $d = \Omega((KN)^{\frac{1}{a}})$, it holds that*

$$E(K, N) = \begin{cases} K(1 + o(1)) & \text{for } K = o(N^{\frac{b}{a-b}}) \\ \Theta(N^{\frac{b}{a-b}}) & \text{for } K = \omega(N^{\frac{b}{a-b}}). \end{cases}$$

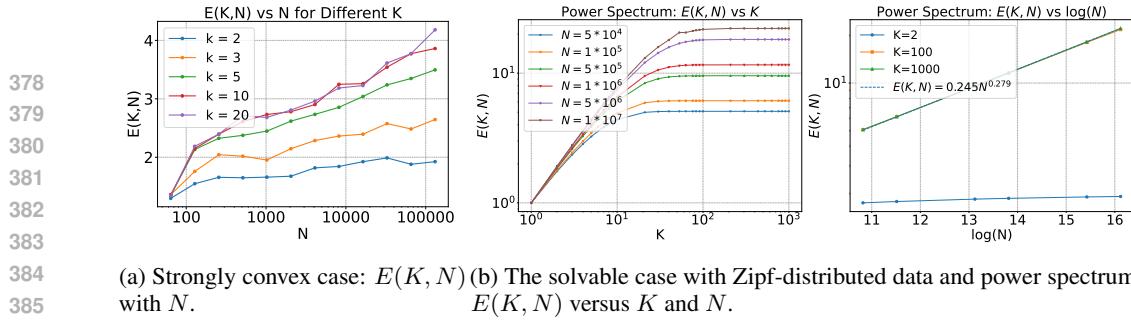
Under the assumption of a logarithmic power-law spectrum, the trend of the effective reuse rate as a function of K approximates the phenomena described in Theorem 4.2 in the strongly convex setting and the trend described in Theorem 4.2 under the power-law spectrum assumption. We still observe an effective-reuse regime ($E(K, N) \approx K$) when K is relatively small ($K \ll N^{b/(a-b)}$), and as K increases, the effective reuse rate undergoes a phase transition, converging to an upper bound determined by N , entering the limited-reuse regime ($E(K, N) = \Theta(N^{b/(a-b)})$).

We can see that the exponent of this power of N is determined by the rate of eigenvalue decay of the Hessian and the rate of norm decay of the parameter with respect to dimension. The proofs of Theorem 5.1 and Theorem 5.2 are given in Appendix I.2 and Appendix I.3 respectively.

5.2 RESULTS ON LOGARITHMIC POWER-LAW SPECTRUM

Further, we aim to understand under the same Hessian matrix, how the data distribution correlated with \mathbf{P} and Λ affects the effective reusing rate. By changing the spectrum of Λ , we can also obtain matching upper lower bounds for $\bar{\mathcal{R}}^*(K, N)$ and a characterization for $E(K, N)$, which behave differently from the power-spectrum case. Here we present only the latter; the former can be seen in Appendix D.

Assumption 5.3 (Logarithmic Power-Law Spectrum). *There exist two constants $a > 1, b > 0$ such that the data input distribution satisfies that $p_i = ci^{-a} \log^b(i+1)$ and $\Lambda_i = 1/\log^b(i+1)$, where $c = \left(\sum_{i=1}^d i^{-a} \log^b(i+1)\right)^{-1}$.*



(a) Strongly convex case: $E(K, N)$ (b) The solvable case with Zipf-distributed data and power spectrum: $E(K, N)$ versus K and N .

Figure 1: Simulation experiments for strongly-convex linear regression and the solvable case with Zipf-distributed data and power spectrum. Results show that $E(K, N)$ is approximately proportional to some function of N when N is relatively small, and $E(K, N) \approx K$ when N is relatively large. For the solvable case with Zipf-distributed data and power spectrum, we also fit the effective reuse rate using the formula $E(K, N) = c_1 N^{c_2}$ suggested by Theorem 5.2, and the fitted exponent $c_2 = 0.279 \approx \frac{b}{a-b} = \frac{2}{7}$ matches our theory.

Theorem 5.3 (Multi-Epoch Scaling Under Logarithmic Power-Law Spectrum). *Under Assumptions 5.1, Assumption 5.3, and given the data dimension $d = \Omega((KN)^{\frac{1}{a}})$ for a one-pass SGD and a K -epoch SGD over N fresh data, it holds that*

$$E(K, N) = \begin{cases} K(1 + o(1)) & \text{for } K = o(\log^b N) \\ \Theta(\log^b N) & \text{for } K = \omega(\log^b N). \end{cases}$$

The Saturation Point Varies across Different Problem Setups. The phase transition point where the effectiveness of data reusing changes from effectively reused to limitedly reused varies across different problem setups. In strongly convex linear regression problems, this phase transition happens when the limit $\lim_{K \rightarrow \infty} \frac{K}{\log N}$ changes from 0 to ∞ . And in the above power spectrum and log-power spectrum case, the limit turns to be $\lim_{K \rightarrow \infty} \frac{K}{N^{b/(a-b)}}$ and $\lim_{K \rightarrow \infty} \frac{K}{\log^b N}$.

6 EXPERIMENTS

6.1 SIMULATIONS IN SECTION 4

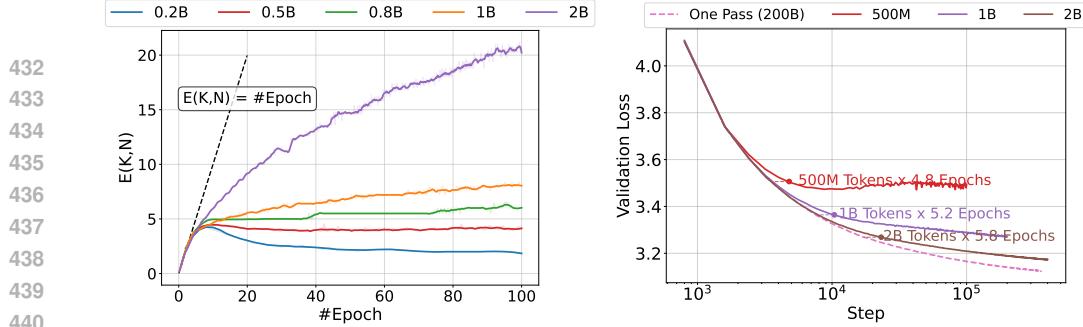
First, we conduct our experiments on synthetic dataset with a strongly convex linear regression to verify the characterization of effective reuse rate $E(K, N)$ in Theorem 4.2.

Experiments Setup. We generate data pairs (\mathbf{x}_i, y_i) where $\mathbf{x}_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{I}_d)$ with dimension $d = 100$. For the label y_i , we generate it as $y_i = \langle \mathbf{w}^*, \mathbf{x}_i \rangle + \xi_i$, where \mathbf{w}^* is the ground truth generate by standard Gaussian with unit variance. Also, $\xi_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$. Here in our simulation, we set σ to 0.1. To make our simulation aligned with the theoretical setup, we set the learning rate $\eta \propto \frac{\log KN}{KN}$, and we grid search the ratio $c := \frac{\eta}{\log KN/KN}$ for the c^* which minimizes the final loss given training steps $T = KN$.

Results. As shown in Figure 1a, we plot $E(K, N)$ as a function of $\log N$ for various fixed values of K . Each curve corresponds to a fixed number of epochs (e.g., $K = 3, 5, \dots, 20$) and illustrates how the effective reuse rate $E(K, N)$ grows with dataset size. For small data size ($\log N \ll K$), the effective reuse factor increases roughly linearly with $\log N$, indicating that adding more data substantially boosts the one-pass equivalent performance. However, as N becomes large ($\log N \gg K$), each curve flattens out and approaches an asymptote at $E(K, N) \approx K$. In other words, once the dataset is sufficiently large relative to the number of epochs, additional passes through the same data yield no further benefit beyond a factor of K . This behavior is exactly as predicted by Theorem 4.2: when K is much smaller than $\log N$, we have $E(K, N) \approx K$ (nearly full K -fold data reuse), whereas when K is large relative to $\log N$, the effective reuse saturates and grows only on the order of $\log N$.

6.2 SIMULATIONS IN SECTION 5.1

We now verify the predictions of Theorem 5.2 using synthetic data generated under the spectral assumptions of Section 5 with a power-law decay Hessian spectrum (Assumption 5.2). In all sub-



(a) The effective reuse rate $E(K, N)$ as a function of the epoch number K . (b) Training loss as a function of training steps for different fresh data sizes.

Figure 2: The effective reuse rate $E(K, N)$ over K and training curves in language model experiments. Figure 2a shows that $E(K, N) \approx K$ when K is small, to be specific, $K \leq 4$. Figure 2b plots the points where $E(K, N) = 0.8K$ under different configurations, and we observe that $E(K, N)$ increases as N increases, indicating that larger datasets can be repeated more.

figures of Figure 1b, we set the data dimension d to 10^5 and tune all the learning rates to their optimal values. Here we set $a = 4.5$ and 1 .

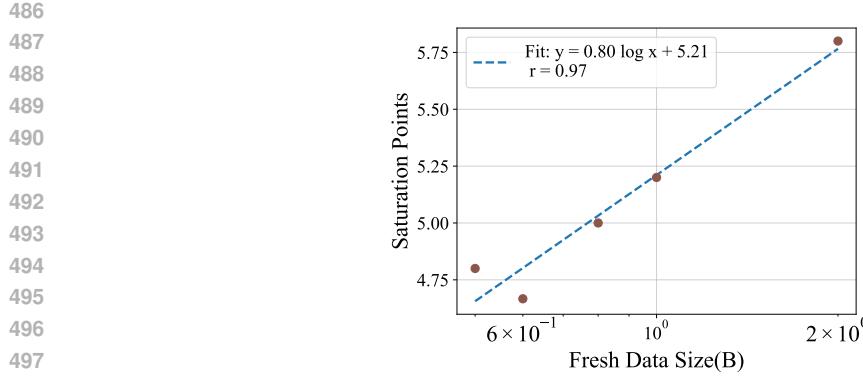
Results. Figure 1b plots $E(K, N)$ versus K and $\log N$ for the solvable model with Zipf-distributed data. The curves depicting $E(K, N)$ versus K show that $E(K, N) \approx K$ when K is relatively small and saturate to some value depending on N when K is large. In the right panel, which describes the relationship between $E(K, N)$ and $\log N$, we observe that when K is small (namely $K = 2$), $E(K, N)$ increases and approaches K as $\log N$ increases, and the plots overlap when K is large. Those phenomena provide empirical confirmation of the scaling behaviors predicted by Theorem 5.2. We also fit $E(K, N)$ in the large- K regime with a power-form function as stated in Theorem 5.2. The fitted exponent is $0.279 \approx \frac{b}{a-b} = \frac{2}{7}$, aligning with our theory.

6.3 EMPIRICAL VERIFICATION IN LARGE LANGUAGE MODELS

Experiments Setup. We conduct experiments on a large language model to empirically validate the hypothesis that larger datasets allow for more effective repetition. We perform pretraining runs with fresh data sizes of 0.2B, 0.5B, 0.8B, 1.0B, and 2B tokens, each trained for 100 epochs. As a control, we also include a run with 200B fresh tokens. For each fresh dataset size N and training epoch K , we approximate the effective reuse rate $E(K, N)$ by determining the effective fresh data size $N_f(K, N)$ required to achieve the same validation loss after one pass through the data. The effective reuse rate is then computed as: $E(K, N) = \frac{N_f(K, N)}{N}$.

Our experiments utilize a 0.3B parameter model adapted from the Qwen2.5-0.5B architecture (Qwen et al., 2025) and a subset of the DCLM dataset, totaling 200B tokens. A separate subset of the DCLM dataset is reserved for validation. Crucially, we use a constant learning rate schedule across all experiments to align with our theoretical analysis and mitigate the confounding effects of learning rate schedules, as reported in prior work (Hoffmann et al., 2022; Luo et al., 2025). Figure 2a depicts the relationship between $E(K, N)$ and K . Figure 2b depicts the training curves for different data sizes, and marks the points of different curves where $E(K, N) = \lambda K$, where λ controls how strict the criterion is for determining when multi-epoch training begins to underperform one-pass training. Given such λ , we denote the corresponding number of training epochs as $K(\lambda, N)$, which we refer to as saturation points. In our experiments, we take $\lambda = 0.75$. Further, in Figure 3, we show the precise relationship between $K(\lambda, N)$ and N . More details regarding the experiment setup are available in Appendix C.1.

Previous Work: When $K \leq 4$, $E(K, N) \approx K$. Our theoretical analysis indicates that $E(K, N)$ should be close to K when K is small (e.g., $K \leq 4$). In Figure 2a, when the epoch number is small (approximately ≤ 5), we observe that $E(K, N)$ increases at a rate comparable to the epoch number, as indicated by the black dashed line. Thus our predictions of $E(K, N)$ when K is small aligns with the data-constrained scaling laws (Muennighoff et al., 2023).

Figure 3: The saturation points $K(\lambda, N)$ as a function of the dataset size N .

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Larger Datasets Allow More Repetition. $E(K, N)$ increases with the number of fresh data sizes and eventually saturates for sufficiently large fresh datasets. Our results challenge the data-constrained scaling laws proposed by Muennighoff et al. (2023), which assume a uniform effective number of epochs across different fresh data sizes. In Figure 2b, we show that at the critical points where one-pass training start to outperform multi-epoch training significantly, $E(K, N)$ increases as N increases. This suggests the continued potential for scaling pretraining through multi-epoch training with larger datasets.

Fitting Experiments. In Figure 3, to provide real-world evidence that larger datasets can be repeated more, we plot the saturation point values for different N to illustrate how they vary with N . Then we fit them as a function of N ; see Appendix C.2 for details of the fitting procedure.

Surprisingly, though we do not claim that $E(K, N) = \Theta(\log N)$ holds for general LLM trainings when K is large, as we calculated in the strongly convex linear regression case, here we do observe that $K(\lambda, N)$ gradually increases when N increases, and it follows that $K(\lambda, N) \approx 0.80 \log N + 5.21$ with the correlation coefficient being $r = 0.97$. In this formula, the dataset N is measured in billions of tokens (B).

Experiments with Learning Rate Decay. For further investigation of the scaling behaviour of multi-epoch training, we conduct LLM experiments with a non-constant learning rate schedule, aligning with the common practice in reality. Specifically, we additionally repeat the above analysis with a WSD learning rate schedule with linear decay. The experimental setup and results are described in Appendix C.3.

7 CONCLUSION

In this paper, we characterize how multi-epoch training reshapes data scaling laws through the notion of effective reuse rate $E(K, N)$, defined as the multiplicative factor by which the dataset must grow under one-pass training to achieve the same test loss as K -epoch training on N samples. In linear regression with SGD, we prove that when K is small, $E(K, N) \approx K$; as K grows, $E(K, N)$ plateaus at a value of order $\Theta(\log N)$ under strong convexity and at a power of N under a data distribution with power-law structure. Therefore, repeating data is not equivalent to scaling by a constant independent of N ; larger datasets can be repeated more before returns diminish.

Several directions remain open for future study. (i) Our analysis is limited to the linear model, and it would be interesting to extend the framework to more complex and realistic settings, such as neural networks with feature learning. (ii) Our work focuses on reusing the whole dataset with multiple epochs. However, to fully explore the potential of data reuse, one can consider a more efficient and heuristic approach to repeating data, such as data mixing, curriculum learning, or reusing only high-quality data. (iii) Technically, our main results rely on strong convexity. In the non-strongly convex regime, we provide a solvable case with a Zipf-law data distribution. It would be interesting to generalize these proof ideas to general non-strongly convex linear regression.

540 REFERENCES
541

542 Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,
543 Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative
544 mixed-modal language models. In *International Conference on Machine Learning*, pp. 265–279.
545 PMLR, 2023.

546 Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan. Repetita iuvant:
547 Data repetition allows sgd to learn high-dimensional multi-index functions, 2025. URL <https://arxiv.org/abs/2405.15459>.
548

549 Alexander Atanasov, Jacob A Zavatone-Veth, and Cengiz Pehlevan. Scaling and renormalization in
550 high-dimensional regression. *arXiv preprint arXiv:2405.00592*, 2024.

552 Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
553 scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.
554

555 Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
556 Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
557 longtermism. *arXiv preprint arXiv:2401.02954*, 2024.

558 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
559 laws. *arXiv preprint arXiv:2402.01092*, 2024a.
560

561 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve neural
562 scaling laws. *arXiv preprint arXiv:2409.17858*, 2024b.
563

564 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
565 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
566 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

567 François Charton and Julia Kempe. Emergent properties with repeated examples. *arXiv preprint
568 arXiv:2410.07041*, 2024.
569

570 Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and Florent Krzakala.
571 The benefits of reusing batches for gradient descent in two-layer networks: Breaking the curse of
572 information and leap exponents, 2024. URL <https://arxiv.org/abs/2402.03220>.
573

574 Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger conver-
575 gence rates for least-squares regression. *Journal of Machine Learning Research*, 18(101):1–51,
576 2017.

577 Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails: Model
578 collapse as a change of scaling laws. *arXiv preprint arXiv:2402.07043*, 2024.
579

580 Damien Ferbach, Katie Everett, Gauthier Gidel, Elliot Paquette, and Courtney Paquette. Dimension-
581 adapted momentum outscals sgd. *arXiv preprint arXiv:2505.16098*, 2025.
582

583 Gerald B Folland. *Real analysis: modern techniques and their applications*. John Wiley & Sons,
1999.

584

585 Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
586 near optimal, geometrically decaying learning rate procedure for least squares. *Advances in neural
587 information processing systems*, 32, 2019.

588 Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. The heavy-tail phenomenon in sgd. In
589 Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine
590 Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 3964–3975. PMLR, 18–
591 24 Jul 2021. URL <https://proceedings.mlr.press/v139/gurbuzbalaban21a.html>.
592

593 Trevor Hastie. The elements of statistical learning: data mining, inference, and prediction, 2009.

594 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
 595 Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
 596 modeling. *arXiv preprint arXiv:2010.14701*, 2020.

597

598 Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk, Nelson
 599 Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, et al. Scaling laws and interpretability
 600 of learning from repeated data. *arXiv preprint arXiv:2205.10487*, 2022.

601

602 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 603 Md Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 604 empirically. *arXiv preprint arXiv:1712.00409*, 2017.

605

606 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 607 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 608 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

609

610 De Huang, Jonathan Niles-Weed, Joel A Tropp, and Rachel Ward. Matrix concentration for products.
Foundations of Computational Mathematics, 22(6):1767–1799, 2022.

611

612 Marcus Hutter. Learning curve theory. *arXiv preprint arXiv:2102.04074*, 2021.

613

614 Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and surrogate
 615 data, 2024. URL <https://arxiv.org/abs/2402.04376>.

616

617 Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Power laws for hyperparameter
 618 optimization. *arXiv preprint arXiv:2302.00441*, 2023.

619

620 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 621 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

622

623 Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser, Rafael Rafailov, David L
 624 Donoho, and Sanmi Koyejo. Collapse or thrive? perils and promises of synthetic data in a
 625 self-generating world. *arXiv preprint arXiv:2410.16713*, 2024.

626

627 Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
 628 sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024.

629

630 Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
 631 Burch, and Nicholas Carlini. Deduplicating training data makes language models better. *arXiv
 preprint arXiv:2107.06499*, 2021.

632

633 Binghui Li, Fengling Chen, Zixun Huang, Lean Wang, and Lei Wu. Unveiling the role of learning
 634 rate schedules via functional scaling laws. *arXiv preprint arXiv:2509.19189*, 2025a.

635

636 Houyi Li, Wenzhen Zheng, Jingcheng Hu, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie
 637 Xuyang, Yuantao Fan, Shuigeng Zhou, Xiangyu Zhang, and Dixin Jiang. Predictable scale:
 638 Part i – optimal hyperparameter scaling law in large language model pretraining, 2025b. URL
<https://arxiv.org/abs/2503.04715>.

639

640 Xuheng Li and Quanquan Gu. Understanding sgd with exponential moving average: A case study in
 641 linear regression. *arXiv preprint arXiv:2502.14123*, 2025.

642

643 Junhong Lin and Lorenzo Rosasco. Optimal rates for multi-pass stochastic gradient methods, 2019.
 644 URL <https://arxiv.org/abs/1605.08882>.

645

646 Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear
 647 regression: Compute, parameters, and data. *arXiv preprint arXiv:2406.08466*, 2024.

648

649 Licong Lin, Jingfeng Wu, and Peter L Bartlett. Improved scaling laws in linear regression via data
 650 reuse. *arXiv preprint arXiv:2506.08415*, 2025.

648 Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Zhiyuan Liu, Maosong Sun, Kaifeng Lyu,
 649 and Wenguang Chen. A multi-power law for loss curve prediction across learning rate schedules.
 650 *arXiv preprint arXiv:2503.12811*, 2025.

651 Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
 652 *arXiv preprint arXiv:2210.16859*, 2022.

654 Alexandru Meterez, Depen Morwani, Costin-Andrei Oncescu, Jingfeng Wu, Cengiz Pehlevan, and
 655 Sham Kakade. A simplified analysis of sgd for linear regression with weight averaging. *arXiv*
 656 *preprint arXiv:2506.15535*, 2025.

657 Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural scaling.
 658 *Advances in Neural Information Processing Systems*, 36, 2024.

660 Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
 661 Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
 662 models. *Advances in Neural Information Processing Systems*, 36:50358–50376, 2023.

663 Yoonsoo Nam, Nayara Fonseca, Seok Hyeong Lee, and Ard Louis. An exactly solvable model for
 664 emergence and scaling laws. *arXiv preprint arXiv:2404.17563*, 2024.

666 Gergely Neu and Lorenzo Rosasco. Iterate averaging as regularization for stochastic gradient descent.
 667 In *Conference On Learning Theory*, pp. 3222–3242. PMLR, 2018.

668 Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of compute-
 669 optimal neural scaling laws, 2025. URL <https://arxiv.org/abs/2405.15074>.

671 Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of stochastic
 672 gradient descent on hard learning problems through multiple passes, 2018. URL <https://arxiv.org/abs/1805.10074>.

674 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 675 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 676 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 677 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 678 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 679 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 680 <https://arxiv.org/abs/2412.15115>.

681 Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold,
 682 2020. URL <https://arxiv.org/abs/2004.10802>.

684 Xian Shuai, Yiding Wang, Yimeng Wu, Xin Jiang, and Xiaozhe Ren. Scaling law for language
 685 models training considering batch size. *arXiv preprint arXiv:2412.01505*, 2024.

686 Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
 687 Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
 688 *arXiv preprint arXiv:2211.09085*, 2022.

690 Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. *arXiv preprint*
 691 *arXiv:2408.11029*, 2024.

692 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 693 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 694 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

696 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*.
 697 Cambridge University Press, 2018.

698 Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
 699 Will we run out of data? limits of llm scaling based on human-generated data, 2024.

701 Peihao Wang, Rameswar Panda, and Zhangyang Wang. Data efficient neural scaling law via model
 702 reusing. In *International Conference on Machine Learning*, pp. 36193–36204. PMLR, 2023.

702 Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
 703 real-world neural representations generalize. In *International Conference on Machine Learning*,
 704 pp. 23549–23588. PMLR, 2022.

705 Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. Last iterate
 706 risk bounds of sgd with decaying stepsize for overparameterized linear regression, 2022a. URL
 707 <https://arxiv.org/abs/2110.06198>.

708 Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. The power
 709 and limitation of pretraining-finetuning for linear regression under covariate shift, 2022b. URL
 710 <https://arxiv.org/abs/2208.01857>.

711 Zhangjie Xia, Chi-Hua Wang, and Guang Cheng. Data deletion for linear regression with noisy sgd.
 712 *arXiv preprint arXiv:2410.09311*, 2024.

713 Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not to repeat:
 714 Insights from scaling llm under token-crisis. *Advances in Neural Information Processing Systems*,
 715 36:59304–59322, 2023.

716 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 717 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 718 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 719 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 720 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 721 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 722 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 723 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 724 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

725 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
 726 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 727 12104–12113, 2022.

728 Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster, and
 729 Sham Kakade. How does critical batch size scale in pre-training? *arXiv preprint arXiv:2410.21676*,
 730 2024.

731 Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
 732 of constant-stepsize sgd for linear regression. In *Conference on Learning Theory*, pp. 4633–4635.
 733 PMLR, 2021.

734 Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P. Foster, and Sham M. Kakade.
 735 The benefits of implicit regularization from sgd in least squares problems, 2022. URL <https://arxiv.org/abs/2108.04552>.

736 Nicolas Zucchet, Francesco d’Angelo, Andrew K Lampinen, and Stephanie CY Chan. The emer-
 737 gence of sparse attention: impact of data distribution and benefits of repetition. *arXiv preprint*
 738 *arXiv:2505.17863*, 2025.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	CONTENTS		
757			
758	1	Introduction	1
759			
760	2	Related Work	2
761			
762	3	Preliminaries	3
763			
764	4	Multi-Epoch Scaling in Strongly Convex Linear Regression	3
765			
766	4.1	Main Results	4
767			
768	4.2	Proof Sketch	5
769			
770	5	A Solvable Case with Zipf-distributed Data	6
771			
772	5.1	Results on Power-Law Spectrum	7
773			
774	5.2	Results on Logarithmic Power-law Spectrum	7
775			
776	6	Experiments	8
777			
778	6.1	Simulations in Section 4	8
779			
780	6.2	Simulations in Section 5.1	8
781			
782	6.3	Empirical Verification in Large Language Models	9
783			
784	7	Conclusion	10
785			
786	A	The Use of Large Language Models (LLMs)	17
787			
788	B	Additional Related Works	17
789			
790	C	Additional Experimental Details for LLM Training	18
791			
792	C.1	Pretraining Setup	18
793			
794	C.2	Fitting Experiments	18
795			
796	C.3	Experiments with WSD Learning Rate Schedule	19
797			
798	D	Additional Results and Simulations for Logarithmic Power-Law Spectrum	20
799			
800	D.1	Scaling Law for Logarithmic Power-Law Spectrum	20
801			
802	D.2	Simulations in Section 5.2	20
803			
804	E	Additional Notations	20
805			
806	F	Proof Outline in Strongly Convex Linear Regression	21
807			
808	G	Proof of Main Results in Strongly Convex Linear Regression	22
809			
	G.1	Step I: A Concrete Version of Bias-Variance Decomposition	22
	G.2	Step II: Risk Approximation and Error Bound Analysis	22
	G.2.1	Variance Term Analysis: Proof of Lemma G.2	23

810	G.2.2 Bias Term Analysis: Proof of Lemma G.3	30
811		
812	G.3 Step III: Narrowing the Range for Optimal Learning Rate	33
813		
814	G.3.1 A description of the Range of Optimal Learning Rate, Small- K Case	34
815	G.3.2 A description of the Range of Optimal Learning Rate, Large- K Case	35
816	G.3.3 An Approximation of the Excess Risk, Small- K Case	36
817	G.3.4 An Approximation of the Excess Risk, Large- K Case	37
818		
819	G.4 Step IV: Deriving the Approximately Optimal Learning Rate, Proof of Lemma 4.4	38
820		
821	G.4.1 Proof of Lemma 4.4, small K	38
822	G.4.2 Proof of Lemma 4.4, large K	39
823		
824	G.5 Proof of Theorem 4.1	39
825		
826	G.6 Proof of Theorem 4.2	41
827		
828	H Proof Outline for the Solvable Case with Zipf-distributed Data	43
829		
830	I Proof of Main Results for the Solvable Case with Zipf-distributed Data	44
831		
832	I.1 A Closed Formula for the Excess Risk: Proof of Lemma I.1	44
833		
834	I.2 Scaling Laws for Power-Law Spectrum: Proof of Theorem 5.1	45
835		
836	I.2.1 Proof of Theorem 5.1: Small- K Case	45
837	I.2.2 Proof of Theorem 5.1: Large- K Case	49
838		
839	I.3 $E(K, N)$ for Power-Law Spectrum: Proof of Theorem 5.2	50
840		
841	I.3.1 Proof of Theorem 5.2, small- K case	50
842	I.3.2 Proof of Theorem 5.2, Large- K Case	51
843		
844	I.4 Scaling Laws for Logarithmic Power-Law Spectrum: Proof of Theorem D.1	52
845		
846	I.4.1 Proof of Theorem D.1: Small- K Case	52
847	I.4.2 Proof of Theorem D.1, Large- K case	56
848		
849	I.5 $E(K, N)$ for Logarithmic Power-Law Spectrum: Proof of Theorem 5.3	57
850		
851	I.5.1 Proof of Theorem 5.3, Small- K Case	57
852	I.5.2 Proof of Theorem 5.3, Large- K Case	57
853		
854	J Additional Technical lemmas	58
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
865866 In this paper, we use LLMs (mainly GPT-5 series) to polish some of the sections in our paper, and to
867 check the grammatical issues. Besides that, we use LLMs to debug our code in LLM experiments
868 (Section 6.3) and simulation experiments for Section 4 and Section 5. Also, LLMs are used to help
869 improve the plotting scripts.
870871 B ADDITIONAL RELATED WORKS
872873 **Data Reuse in Synthetic Setting.** Besides the real-world LLM pre-training regime, many works
874 also reported the improvement of data reusing under synthetic settings empirically (Charton & Kempe,
875 2024; Kazdan et al., 2024) or theoretically (Zucchetti et al., 2025; Dandi et al., 2024; Arnaboldi et al.,
876 2025).
877878 **Empirical Findings on Scaling Laws.** Scaling laws reveal the relationships between large-scale
879 model training loss and various factors such as model size, data size, and compute budget. These
880 laws were initially observed by Hestness et al. (2017), but gained significant influence through the
881 work of Kaplan et al. (2020), and have since been further developed in a series of studies (Henighan
882 et al., 2020; Hoffmann et al., 2022; Zhai et al., 2022; Kadra et al., 2023; Aghajanyan et al., 2023;
883 Muennighoff et al., 2023; Bi et al., 2024; Shuai et al., 2024; Kumar et al., 2024; Tissue et al., 2024;
884 Luo et al., 2025). Notably, Muennighoff et al. (2023) further refined these models by incorporating
885 the number of training epochs into a more complex scaling law, which empirically describes the
886 effect of data reuse. In our work, we provide a theoretical analysis of how the effective reuse rate
887 $E(K, N)$ relies on the epoch number K and fresh data size N , highlighting the role of N in the
888 scaling behavior of $E(K, N)$, a factor that was overlooked in Muennighoff et al. (2023).
889890 **Theoretical Explanations for Scaling Laws.** A series of studies (Sharma & Kaplan, 2020; Hutter,
891 2021; Maloney et al., 2022; Wei et al., 2022; Jain et al., 2024; Michaud et al., 2024; Nam et al., 2024;
892 Atanasov et al., 2024; Dohmatob et al., 2024; Bahri et al., 2024; Bordelon et al., 2024a; Lin et al.,
893 2024; Paquette et al., 2025; Bordelon et al., 2024b; Zhang et al., 2024; Ferbach et al., 2025; Li et al.,
894 2025a) have sought to theoretically explain scaling laws from various perspectives. Among these,
895 recent works (Bordelon et al., 2024a; Paquette et al., 2025; Lin et al., 2024; Bordelon et al., 2024b)
896 have analyzed scaling laws by tracking the training dynamics of SGD through linear regression setup.
897 Specifically, Bordelon et al. (2024a) investigated a full-batch gradient flow setup, while Paquette et al.
898 (2025) and Bordelon et al. (2024b) focused on online SGD with a sufficiently small constant learning
899 rate. Additionally, Lin et al. (2024) studied a geometric decaying learning rate schedule (LRS) (Ge
900 et al., 2019; Wu et al., 2022a). Recently, Li et al. (2025a) proposed a functional scaling law that
901 characterizes the loss dynamics for general LRSSs. However, these scaling law studies did not account
902 for the impact of data reuse. In contrast, our work examines the scaling behavior of multi-epoch SGD
903 training within the context of a linear regression setup.
904905 **SGD Analysis in Linear Regression.** The analysis of SGD in linear regression has been extensively
906 studied over the years, encompassing both one-pass and multi-epoch SGD. In the context of one-pass
907 SGD, Zou et al. (2021); Meterez et al. (2025) considered an SGD procedure with a constant step size
908 and averaged iterates, offering a sharp risk bound in terms of the eigenvalues of the covariance matrix.
909 Gurbuzbalaban et al. (2021) examined one-pass SGD with batch size and proved that the distribution
910 of the SGD iterates will converge to a heavy-tailed stationary distribution. Zou et al. (2022) compared
911 the performance of SGD in the absence of ridge regression. Wu et al. (2022a) and Wu et al. (2022b)
912 studied SGD in linear regression under covariate shift. Xia et al. (2024) considered SGD updates with
913 noisy gradient and analyzed the perfect deleted point problem. Li & Gu (2025) considered SGD with
914 exponential moving average in the linear regression setting. For multi-epoch SGD, Lin & Rosasco
915 (2019) examined a scenario in which gradients are sampled uniformly at random and mini-batches
916 are allowed. They analyzed the effects of mini-batch size, number of epochs, and learning rate,
917 carefully combining these parameters to achieve the optimal convergence rate. Pillaud-Vivien et al.
918 (2018) showed that while single-pass averaged SGD is optimal for a certain class of "easy" problems,
919 multiple passes are required to achieve optimal prediction performance on a different class of "hard"
920 problems, provided that an appropriate step size is chosen. In contrast to the matching upper and
921

918 lower bounds derived by our theory, however, all the above works were only able to derive an upper
 919 bound for the loss.
 920

921 C ADDITIONAL EXPERIMENTAL DETAILS FOR LLM TRAINING

922 C.1 PRETRAINING SETUP

923 In our pretraining experiments, we employ the AdamW optimizer with a weight decay of 0.1 and a
 924 gradient clip of 1.0. We set the peak learning rate to 0.001, aligning with the approximate optimal
 925 learning rate reported by [Li et al. \(2025b\)](#). Balancing the optimal batch size suggested by [Li et al.](#)
 926 (2025b) with training efficiency, we utilize a sequence batch size of 128, which corresponds to
 927 roughly 0.5M data points per batch. We adopt the vocabulary of Qwen2.5 ([Qwen et al., 2025](#)) models.
 928 Our pretraining model consists of approximately 117 million non-embedding parameters, consistent
 929 with the methodology of [Kaplan et al. \(2020\)](#), and a total of 331 million parameters following the
 930 convention of [Hoffmann et al. \(2022\)](#). The detailed hyperparameter configurations are presented in
 931 Table 2, and the model architecture specifications are provided in Table 1. To ensure a fair comparison
 932 by eliminating the influence of batch order variations, we fix the random seed that governs the data
 933 stream across all experiments.
 934

935 Table 1: Model configurations and parameter counts. d_h : hidden dimension; d_f : feed-forward
 936 dimension; n_l : number of Transformer layers; n_h : number of attention heads; n_{kv} : number of key-
 937 value heads (for grouped-query attention); Vocab Size: size of tokenizer vocabulary; #NE params:
 938 number of non-embedding parameters (in millions); #Params: total number of model parameters (in
 939 millions).
 940

Name	d_h	d_f	n_l	n_h	n_{kv}	Vocab Size	#NE params	#Params
0.5B	896	4864	24	14	2	151936	355	491
0.3B	640	3328	16	10	2	151936	117	331

941
 942 Table 2: LLM Experiment Settings
 943
 944

Parameter	Value
Data	
Sequence Batch Size	128
Sequence Length	4096
Learning Rate	
Peak Learning Rate	0.001
Schedule	Constant
Warmup Steps	400
Optimizer	
Optimizer	AdamW
Weight Decay	0.1
β_1	0.9
β_2	0.95
ϵ	1e-8
Gradient Clip	1.0

966 C.2 FITTING EXPERIMENTS

967 To provide real-world evidence that larger datasets can be repeated more, we show how the saturation
 968 points can be used to determine the appropriate number of training epochs. Recall that the saturation
 969 points are the points at which multi-epoch training first starts to underperform the one-pass base-
 970 line. We estimate these points from the pretraining loss curves presented in Section 6.3 and fit its
 971 dependence on N .
 972

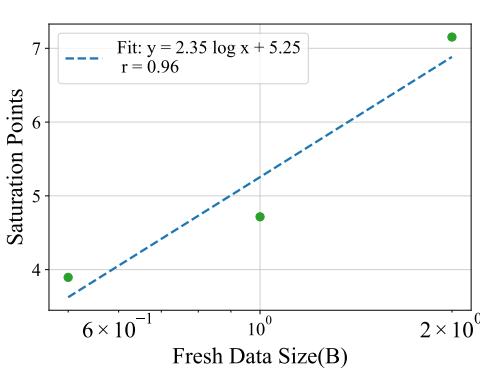


Figure 4: The saturation points $K(\lambda, N)$ as a function of the data size N under a WSD learning rate schedule with linear decay.

To estimate this quantity from the training curves, we proceed as follows. First, to reduce the impact of noise, we smooth the loss curves with exponential moving average (EMA) with decay coefficient $\alpha = 0.9$ and a window size of 3 checkpoints. Then for each dataset size N , we examine the ratio $E(K, N)/K$. A larger ratio requires multi-epoch training to remain very close to the one-pass baseline, whereas a smaller ratio allows more deviation. Next, given a threshold hyperparameter λ , we identify the closest epoch K at which this ratio first falls below λ , which we denote as $K(\lambda, N)$. Here we choose $\lambda = 0.75$, and we define $K(\lambda, N)$ as the saturation point.

We fit those points and find that $K(\lambda, N) \approx 0.80 \log N + 5.21$ with a correlation coefficient of $r = 0.97$. The fitting results are shown in Figure 3.

C.3 EXPERIMENTS WITH WSD LEARNING RATE SCHEDULE

Next, to make our LLM experiments more consistent with real-world pretraining practices, we repeat the LLM experiments under a warmup-stable-decay(WSD) learning rate schedule.

Concretely, we start from the checkpoints obtained in Section 6.3 for fresh data sizes $N \in \{0.2B, 0.5B, 1B, 2B\}$ after $K \in \{2, 4, 8, 16\}$ epochs of pretraining with a constant learning rate of 10^{-3} . From each checkpoint, we continue training for one additional epoch while linearly decaying the learning rate from 10^{-3} to 10^{-5} , resulting in a WSD learning rate schedule followed by a linear decay. For the one-pass baseline, we adopt the same schedule as in the $N = 2B$ run.

For each dataset size N , this process produces a set of four validation-loss values, each associated with one of the four selected epoch numbers K . We model the dependence of the final loss on the training steps x using the parametric form $\ell(x) = A + \frac{B}{x^a}$, where A, B, a are fitted parameters. The fitted curves are then used to predict the final validation loss under this WSD schedule for arbitrary training budgets. Using these predictions, we compute the saturation points following the same procedure as in Section 6.3. Here we still choose $\lambda = 0.75$.

The resulting saturation points are summarized in Figure 4. We observe that, even under this different learning rate schedule, the saturation points still satisfy the logarithmic scaling $K(\lambda, N) = \Theta(\log N)$. Specifically, we have $K(\lambda, N) \approx 2.35 \log N + 5.25$ with a correlation coefficient of $r = 0.96$. This confirms that our message that larger datasets can be repeated more also holds for real LLM training setups.

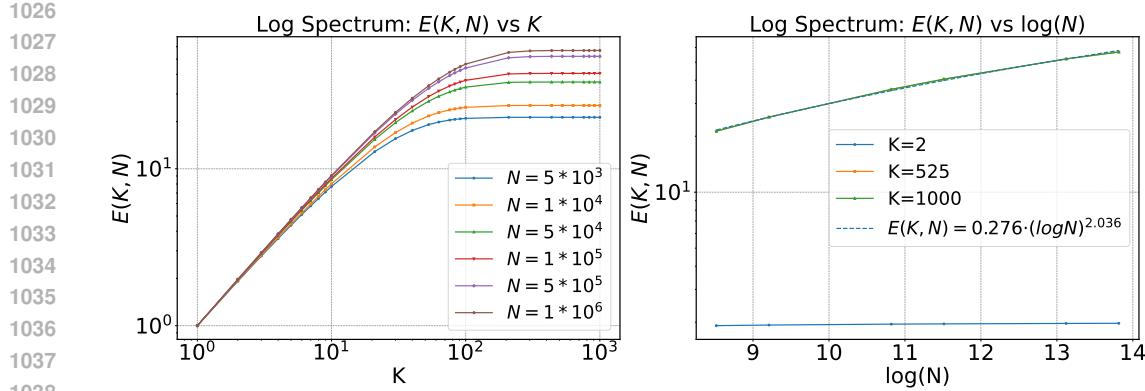


Figure 5: The solvable cases with logarithmic power-law spectrum. $E(K, N)$ exhibits a similar behavior to that presented in Figure 1. We also fit the effective reuse rate using the formula $E(K, N) = c_1 (\log N)^{c_2}$ suggested by Theorem 5.2, and the fitted exponent $c_2 = 2 \approx b = 2$ matches our theory.

D ADDITIONAL RESULTS AND SIMULATIONS FOR LOGARITHMIC POWER-LAW SPECTRUM

D.1 SCALING LAW FOR LOGARITHMIC POWER-LAW SPECTRUM

We now present the scaling law for logarithmic power-law spectrum. Its proof can be seen in Section I.4.

Theorem D.1. *Consider a K -epoch SGD over N fresh data. Under Assumptions 5.1, Assumption 5.3, and given the data dimension $d = \Omega((KN)^{\frac{1}{a}})$, it holds that*

$$\bar{\mathcal{R}}^*(K, N) \asymp \begin{cases} (KN)^{-\frac{a-1}{a}} & \text{for } K = o(\log^b N) \\ (N \log^b N)^{-\frac{a-1}{a}} & \text{for } K = \omega(\log^b N). \end{cases}$$

D.2 SIMULATIONS IN SECTION 5.2

Now we focus on validating the predictions of Theorem 5.3 using synthetic data generated under the spectral assumptions of Section 5 and a log-power decay spectrum (Assumption 5.3).

Experiments Setup. Similar to Section 6.2, in all sub-figures of Figure 5, we set the data dimension d to 10^5 and tune all the learning rates to their optimal values. Here we set $a = 1.5$ and $b = 2$.

Simulations for the Solvable Model. Figure 5 plots $E(K, N)$ versus K and $\log N$ for the solvable model. The curves depicting $E(K, N)$ versus K and $E(K, N)$ versus $\log N$ show trends consistent with those in Section 6.2, aligning with Theorem 5.3. Furthermore, in the large- K regime, we fit the exponent according to Theorem 5.3 and obtain $2.036 \approx b = 2$, which provides strong validation of our theory.

E ADDITIONAL NOTATIONS

In this section, we provide some additional notations appeared in the following proof of our main results.

Key Quantities. We define the following key quantities to analyze the sequential updates. For each epoch k , let

$$\mathbf{A}^{(k)} := \prod_{i=N-1}^0 (\mathbf{I} - \eta \mathbf{x}_{\pi_k(i)} \mathbf{x}_{\pi_k(i)}^\top) \quad (1)$$

1080 represent the product of sequential updates through all samples in epoch k . More generally, we define
 1081 the partial product operator:
 1082

$$1083 \mathbf{Z}_{a \rightarrow b}^{(k)} := \prod_{i=a}^b (\mathbf{I} - \eta \mathbf{x}_{\pi_k(i)} \mathbf{x}_{\pi_k(i)}^\top), \quad \text{with } \mathbf{A}^{(k)} = \mathbf{Z}_{N-1 \rightarrow 0}^{(k)}.$$

1085 We further define that $\mathbf{Z}_{N-1 \rightarrow N}^{(k)} = \mathbf{I}$. The cumulative effect across epochs is captured by:
 1086

$$1087 \mathbf{T}^{(k)} := \prod_{i=K}^{k+1} \mathbf{A}^{(i)}, \quad \text{and } \mathbf{T}^{(K)} = \mathbf{I}.$$

1090 **Pseudo-expectation Notation $\tilde{\mathbb{E}}$.** Because matrix multiplication is non-commutative and the shuffling
 1091 in training introduces statistical dependence, the expectations of the random matrices defined
 1092 above cannot be written in a tractable closed form. To approximate the population excess risk, we
 1093 therefore introduce the auxiliary notation $\tilde{\mathbb{E}}$. By construction, $\tilde{\mathbb{E}}$ computes the expectation of each
 1094 factor as if the variables were independent, deliberately neglecting the correlations. We then invoke
 1095 matrix-concentration inequalities to bound the gap between this “pseudo”-expectation and the true
 1096 expectation of the original dependent random variables. Specifically, for the above random matrices
 1097 used in our proof, here we further define that
 1098

$$1099 \tilde{\mathbb{E}} \mathbf{Z}_{a \rightarrow b}^{(k)} := (\mathbf{I} - \eta \mathbf{H})^{a-b+1}, \quad (2)$$

$$1100 \tilde{\mathbb{E}} \mathbf{A}^{(k)} := (\mathbf{I} - \eta \mathbf{H})^N, \quad (3)$$

$$1101 \tilde{\mathbb{E}} \mathbf{T}^{(k)} := (\mathbf{I} - \eta \mathbf{H})^{N(K-k)}, \quad (4)$$

$$1103 \tilde{\mathbb{E}} \mathbf{S}_l^{(ij)} := \tilde{\mathbb{E}} \left[\mathbf{Z}_{N-1 \rightarrow \pi_i^{-1}(l)+1}^{(i)} \right] \mathbb{E} [\mathbf{x}_l \mathbf{x}_l^\top] \tilde{\mathbb{E}} \left[\mathbf{Z}_{\pi_j^{-1}(l)+1 \rightarrow N-1}^{(j)} \right]. \quad (5)$$

1105 F PROOF OUTLINE IN STRONGLY CONVEX LINEAR REGRESSION

1106 In this section, we give the outline of Lemma G.1, Lemma 4.4, and Theorem 4.2. The main technical
 1107 challenges and our proof insights are briefly stated in Section 4.2.

1108 Section 4 centres on Theorem 4.2, which establishes a scaling law for the effective reuse rate $E(K, N)$
 1109 in terms of the relative magnitudes of number of epochs K and dataset size N . Its proof unfolds in
 1110 three stages.

1111 **1. An explicit approximation of the expected excess risk.** Lemma G.1 derives a sufficiently accurate
 1112 asymptotic formula for the expected excess risk of multi-epoch SGD. The argument begins with
 1113 a bias–variance decomposition, splitting the expected excess risk into a variance term (Lemma G.2)
 1114 and a bias term (Lemma G.3).

- 1115 • **Variance term.** The closed-form approximation relies on concentration properties of matrix
 1116 contractions together with a careful treatment of data shuffling.
- 1117 • **Bias term.** The same contraction inequality is employed to obtain an analytic expression,
 1118 after which tight error bounds are proved for the full range of relative sizes of K and N .
 1119 These bounds hold uniformly over a broad class of learning rates, necessitating detailed
 1120 case-by-case analysis.

1121 **2. Selection of a nearly optimal learning rate.** Lemma 4.4 identifies a learning rate whose
 1122 resulting loss is asymptotically equivalent to the minimum excess risk attained with the optimal
 1123 learning rate as stated in Section 3. This “approximately optimal learning rate” will be fixed in
 1124 Appendix G.4.

1125 **3. Proof of the effective reuse rate scaling law.** With the one-pass and multi-epoch SGD training
 1126 learning rate set to the near-optimal learning rate obtained above, the proof of Theorem 4.2 proceeds
 1127 to characterise the behaviour of $E(K, N)$ as K and N vary, yielding the desired scaling relation.
 1128 Together, these three components establish Theorem 4.2 and provide a comprehensive description of
 1129 how reuse efficiency depends on the interplay between K and N .

1134 **G PROOF OF MAIN RESULTS IN STRONGLY CONVEX LINEAR REGRESSION**
 1135

1136 **G.1 STEP I: A CONCRETE VERSION OF BIAS-VARIANCE DECOMPOSITION**
 1137

1138 Before we begin our proof, we first present the following lemma, which provides the formal version
 1139 of the loss estimate for a specific range of learning rate parameters. We define a $\widehat{\mathcal{R}}(K, N, \eta)$ as the
 1140 estimator of $\mathcal{R}(K, N; \eta)$

$$1141 \quad \widehat{\mathcal{R}}(K, N; \eta) := \underbrace{\widehat{\mathcal{R}}_1(K, N; \eta)}_{\text{bias term}} + \underbrace{\widehat{\mathcal{R}}_2(K, N; \eta)}_{\text{var term across epochs}} + \underbrace{\widehat{\mathcal{R}}_3(K, N; \eta)}_{\text{var term within epoch}},$$

1144 where

$$1145 \quad \widehat{\mathcal{R}}_1(K, N; \eta) := \frac{1}{2}(\mathbf{w}_0 - \mathbf{w}^*)^\top (\mathbf{I} - \eta \mathbf{H})^{2KN} \mathbf{H}(\mathbf{w}_0 - \mathbf{w}^*),$$

$$1146 \quad \widehat{\mathcal{R}}_2(K, N; \eta) := \frac{\sigma^2}{N} \text{tr} \left(\frac{(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{KN}) ((\mathbf{I} - \eta \mathbf{H})^N - (\mathbf{I} - \eta \mathbf{H})^{KN})}{\mathbf{I} + (\mathbf{I} - \eta \mathbf{H})^N} \right),$$

$$1151 \quad \widehat{\mathcal{R}}_3(K, N; \eta) := \frac{\eta \sigma^2}{2} \langle \mathbf{H}, (\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2KN}) (2\mathbf{I} - \eta \mathbf{H})^{-1} \rangle.$$

1154 **G.2 STEP II: RISK APPROXIMATION AND ERROR BOUND ANALYSIS**
 1155

1156 In this section, we rigorously formulate the analytic risk approximation in Lemma G.1 and provide
 1157 its proof. Lemma G.1 indicates that the error bound is of higher order than the main term when the
 1158 parameters are restricted to a limited range of values.

1159 **Lemma G.1.** *Under Assumption 4.1 and 4.3, we further assume that for every \mathbf{x} in the training
 1160 set, $\|\mathbf{x}\| \leq D$ for some constant $D > 0$. Consider a K -epoch SGD with learning rate $\eta \in$
 1161 $[\Omega(\frac{1}{T}), o(T^{-\frac{3}{4}})]$, $K = o(\eta^{-1}T^{-\frac{3}{4}})$ and data shuffling. Then, after $T = KN$ steps, the estimator
 1162 of the expected excess risk satisfies:*

$$1163 \quad \bar{\mathcal{R}}(K, N; \eta) = \widehat{\mathcal{R}}(K, N; \eta) (1 + o(1)).$$

1165 Recall from Section 4.2 that the risk $\bar{\mathcal{R}}(K, N; \eta)$ can be decomposed into the *bias term*
 1166 $\bar{\mathcal{R}}^{\text{bias}}(K, N; \eta) := \frac{1}{2} \|\boldsymbol{\theta}_t^{\text{bias}}\|_{\mathbf{H}}^2$ and *variance term* $\bar{\mathcal{R}}^{\text{var}}(K, N; \eta) := \frac{1}{2} \|\boldsymbol{\theta}_t^{\text{var}}\|_{\mathbf{H}}^2$, which implies
 1167 that Lemma G.1 is a direct corollary of the following two lemmas:

1169 **Lemma G.2** (Variance Term). *Suppose that Assumption 4.1 holds. Then for a K -epoch SGD with
 1170 dataset size N and learning rate $\eta \in [\Omega(\frac{1}{T}), o(\frac{1}{T^{\frac{1}{2}}})]$ and shuffling, when $\text{poly}(T) \gtrsim d$, we have the
 1171 estimator of the variance term $\bar{\mathcal{R}}^{\text{var}}(K, N; \eta) := \mathbb{E}_{\mathbf{w} \sim \mathcal{W}_{K, N, \eta}} [\mathcal{R}(\mathbf{w})^{\text{var}}]$ after $T := KN$ steps*

$$1173 \quad \bar{\mathcal{R}}^{\text{var}}(K, N; \eta) := \frac{\sigma^2}{N} \text{tr} \left(\frac{(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{KN}) ((\mathbf{I} - \eta \mathbf{H})^N - (\mathbf{I} - \eta \mathbf{H})^{KN})}{\mathbf{I} + (\mathbf{I} - \eta \mathbf{H})^N} \right)$$

$$1175 \quad + \frac{\eta \sigma^2}{2} \langle \mathbf{H}, (\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2KN}) (2\mathbf{I} - \eta \mathbf{H})^{-1} \rangle,$$

1177 where the expectation is taken on the training set and shuffle, and the estimate error is

$$1179 \quad \left| \tilde{\mathcal{R}}^{\text{var}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{var}}(K, N; \eta) \right| = O(\eta^3 T^{\frac{3}{2}} K^2 \sqrt{\log d}).$$

1180 when $K \leq \frac{\log 2}{\eta \sqrt{\tilde{C} 8e D^4 T \log d}}$.

1182 **Lemma G.3** (Bias Term). *Under Assumption 4.1, for a K -epoch SGD with dataset size N , learning
 1183 rate η and shuffling, when $\text{poly}(T) \gtrsim d$, we have the estimator of the bias term $\bar{\mathcal{R}}^{\text{bias}}(K, N; \eta) :=$
 1184 $\mathbb{E}_{\mathbf{w} \sim \mathcal{W}_{K, N, \eta}} [\mathcal{R}(\mathbf{w})^{\text{bias}}]$ after $T := KN$ steps*

$$1186 \quad \tilde{\mathcal{R}}^{\text{bias}}(K, N; \eta) := \frac{1}{2}(\mathbf{w}_0 - \mathbf{w}^*)^\top (\mathbf{I} - \eta \mathbf{H})^{2KN} \mathbf{H}(\mathbf{w}_0 - \mathbf{w}^*).$$

1187 Then we have the following estimate errors:

1188
1189 1. When $K \geq 2$ and $K = o\left(\frac{N^{\frac{1}{5}}}{(\log N)^{\frac{6}{5}}}\right)$:

1190
1191 (a) When $\eta \leq \frac{2 \log T}{3 \lambda_d T}$, the estimate distance is given by

1192
1193
$$\left| \tilde{\mathcal{R}}^{\text{bias}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{bias}}(K, N; \eta) \right| = O\left((1 - \eta \lambda_d)^{N(2K-1)} K \sqrt{\eta^2 K N}\right).$$

1194
1195 (b) When $\eta \geq \frac{2 \log T}{3 \lambda_d T}$, the estimate distance is given by

1196
1197
$$\left| \tilde{\mathcal{R}}^{\text{bias}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{bias}}(K, N; \eta) \right| = O\left(\frac{1}{T^{\frac{4}{3}}}\right).$$

1198
1199 2. When $K = 1$:

1200
1201
$$\left| \tilde{\mathcal{R}}^{\text{bias}}(1, T; \eta) - \bar{\mathcal{R}}^{\text{bias}}(1, T; \eta) \right| = O\left(\eta^2 T e^{-2\lambda_d \eta T}\right).$$

1202 G.2.1 VARIANCE TERM ANALYSIS: PROOF OF LEMMA G.2

1203
1204 We first recall some notations Appendix E that $\mathbf{Z}_{a \rightarrow b}^{(k)} = \prod_{i=a}^b (\mathbf{I} - \eta \mathbf{x}_{\pi_k(i)} \mathbf{x}_{\pi_k(i)}^\top)$, $\mathbf{b}^{(k)} = \sum_{l=0}^{N-1} \mathbf{Z}_{N-1 \rightarrow l+1}^{(k)} \xi_{\pi_k(l)} \mathbf{x}_{\pi_k(l)}$, $\mathbf{A}^{(k)} = \mathbf{Z}_{N-1 \rightarrow 0}^{(k)}$, $\mathbf{T}^{(k)} = \prod_{i=K}^{k+1} \mathbf{A}^{(i)}$, and $\mathbf{T}^{(K)} = \mathbf{I}$. For simplicity, and if it does not cause confusion, we omit the superscript ‘‘var’’ in all the training parameters θ^{var} in the proof of Lemma G.2. Now we derive the recursion before and after the k -th epoch.

1205
1206
$$\begin{aligned} \theta_{kN} &= (\mathbf{I} - \eta \mathbf{x}_{\pi_k(N-1)} \mathbf{x}_{\pi_k(N-1)}^\top) \theta_{kN-1} + \eta \xi_{\pi_k(N-1)} \mathbf{x}_{\pi_k(N-1)} \\ 1207 &= \eta \sum_{l=0}^{N-1} \mathbf{Z}_{N-1 \rightarrow l+1}^{(k)} \xi_{\pi_k(l)} \mathbf{x}_{\pi_k(l)} + \mathbf{A}^{(k)} \theta_{(k-1)N} \\ 1208 &= \eta \mathbf{b}^{(k)} + \mathbf{A}^{(k)} \theta_{(k-1)N}, \end{aligned}$$

1209
1210 where $\pi_k(i)$ is the i -th index after the permutation π_k in the K -th epoch. Further writing out the
1211 above recursion gives the parameter after K epochs

1212
1213
$$\theta_{KN} = \eta \sum_{k=1}^K \mathbf{A}^{(K)} \dots \mathbf{A}^{(k+1)} \mathbf{b}^{(k)}.$$

1214
1215 A natural move here is to replace θ_{KN} with the expression above in the variance term

1216
1217
$$\begin{aligned} \bar{\mathcal{R}}^{\text{var}}(K, N; \eta) &= \mathbb{E} \frac{1}{2} \theta_{KN}^\top \mathbf{H} \theta_{KN} = \mathbb{E} \frac{1}{2} \langle \mathbf{H}, \theta_{KN} \theta_{KN}^\top \rangle \\ 1218 &= \frac{\eta^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\pi_1 \dots \pi_K} \sum_{i,j=1}^K \mathbf{T}^{(i)} \mathbf{b}^{(i)} \left(\mathbf{b}^{(j)} \right)^\top \left(\mathbf{T}^{(j)} \right)^\top \right\rangle \\ 1219 &= \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\pi_1 \dots \pi_K} \sum_{i,j=1}^K \mathbf{T}^{(i)} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \left(\mathbf{T}^{(j)} \right)^\top \right\rangle \\ 1220 &= \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \mathbf{T}^{(i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \left(\mathbf{T}^{(j)} \right)^\top \right\rangle \\ 1221 &+ \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} \mathbf{T}^{(i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) \left(\mathbf{T}^{(i)} \right)^\top \right\rangle. \end{aligned} \tag{6}$$

1222
1223 where in the third equation, we take expectations with respect to the label noise $(\xi_l)_{l=0}^{N-1}$, and in the
1224 last equation, we decompose the variance term into two parts, according to whether the $\mathbf{b}^{(i)}$ and $\mathbf{b}^{(j)}$
1225 are from the same epoch or not.

After explicitly writing the variance term, and to get a close-form formula for it, we then take pseudo expectations of $\mathbf{T}^{(i)}$, $\mathbf{T}^{(j)}$, $\mathbf{S}_l^{(ii)}$, and $\mathbf{S}_l^{(ij)}$ separately to get the approximation of $\tilde{\mathcal{R}}^{\text{var}}(K, N; \eta)$, given as follows:

$$\begin{aligned}\tilde{\mathcal{R}}^{\text{var}}(K, N; \eta) &:= \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^2} \sum_{\substack{i \neq j \\ i, j=1}}^K \tilde{\mathbb{E}} \mathbf{T}^{(i)} \left(\sum_{l=0}^{N-1} \sum_{\pi_i, \pi_j} \tilde{\mathbb{E}} \mathbf{S}_l^{(ij)} \right) \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\rangle \\ &+ \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K \tilde{\mathbb{E}} \mathbf{T}^{(i)} \left(\sum_{l=0}^{N-1} \sum_{\pi_i} \tilde{\mathbb{E}} \mathbf{S}_l^{(ii)} \right) \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\rangle.\end{aligned}$$

The intuition of the “pseudo expectation” and the related definitions are in Appendix E. Fix l , notice that when $i \neq j$, by Equation (5),

$$\begin{aligned}\sum_{\pi_i, \pi_j} \tilde{\mathbb{E}} \mathbf{S}_l^{(ij)} &:= \sum_{\pi_i, \pi_j} \tilde{\mathbb{E}} \left[\mathbf{Z}_{N-1 \rightarrow \pi_i^{-1}(l)+1}^{(i)} \mathbf{x}_l \mathbf{x}_l^\top \mathbf{Z}_{\pi_j^{-1}(l)+1 \rightarrow N-1}^{(j)} \right] \\ &:= \sum_{\pi_i, \pi_j} (\mathbf{I} - \eta \mathbf{H})^{N-1-\pi_i^{-1}(l)} \mathbf{H} (\mathbf{I} - \eta \mathbf{H})^{N-1-\pi_j^{-1}(l)}.\end{aligned}$$

For a fixed i , for all $m \in [0, N-1]$, there are $(N-1)!$ permutations π_i that satisfies $\pi_i(m) = l$. So

$$\sum_{\pi_i, \pi_j} \tilde{\mathbb{E}} \mathbf{S}_l^{(ij)} = ((N-1)!)^2 \sum_{m, n=0}^{N-1} (\mathbf{I} - \eta \mathbf{H})^{N-1-m} \mathbf{H} (\mathbf{I} - \eta \mathbf{H})^{N-1-n}. \quad (7)$$

By applying a similar derivation to the $i = j$ case, we obtain that

$$\sum_{\pi_i} \tilde{\mathbb{E}} \mathbf{S}_l^{(ii)} = (N-1)! \sum_{m=0}^{N-1} (\mathbf{I} - \eta \mathbf{H})^{N-1-m} \mathbf{H} (\mathbf{I} - \eta \mathbf{H})^{N-1-m}. \quad (8)$$

Plugging Equation (7) and Equation (8) into the expression of $\tilde{\mathcal{R}}^{\text{var}}(K, N; \eta)$, and we have

$$\begin{aligned}\tilde{\mathcal{R}}^{\text{var}}(K, N; \eta) &= \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N^2} \sum_{\substack{i \neq j \\ i, j=1}}^K \tilde{\mathbb{E}} \mathbf{T}^{(i)} \left(\sum_{l=0}^{N-1} \sum_{m, n=0}^{N-1} (\mathbf{I} - \eta \mathbf{H})^{2N-2-m-n} \mathbf{H} \right) \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\rangle \\ &+ \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N} \sum_{i=1}^K \tilde{\mathbb{E}} \mathbf{T}^{(i)} \left(\sum_{l=0}^{N-1} \sum_{m=0}^{N-1} (\mathbf{I} - \eta \mathbf{H})^{2N-2-2m} \mathbf{H} \right) \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\rangle \\ &= \underbrace{\frac{\sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N} \sum_{\substack{i \neq j \\ i, j=1}}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^N \right)^2 \mathbf{H}^{-1} (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \right\rangle}_{:= \Psi_1} \\ &+ \underbrace{\frac{\eta \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \sum_{i=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2N} \right) (2\mathbf{I} - \eta \mathbf{H})^{-1} (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle}_{\Psi_2}.\end{aligned}$$

1296 where the second equation uses Equation (4). The quantity Ψ_1 accounts for the variance term across
 1297 different epochs and Ψ . Then we calculate Ψ_1 and Ψ_2 separately. For Ψ_1 , we have
 1298

$$\begin{aligned}
 1299 \Psi_1 &= \frac{\sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N} \sum_{i,j=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^N \right)^2 \mathbf{H}^{-1} (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \right\rangle \\
 1300 &\quad - \frac{\sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N} \sum_{i=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^N \right)^2 \mathbf{H}^{-1} (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle \\
 1301 &\quad = \frac{\sigma^2}{2N} \text{tr} \left(\left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{KN} \right)^2 \right) \\
 1302 &\quad - \frac{\sigma^2}{2N} \text{tr} \left(\left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^N \right)^2 \left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2N} \right)^{-1} \left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2KN} \right) \right) \\
 1303 &\quad = \frac{\sigma^2}{N} \text{tr} \left(\left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{KN} \right) \left(\mathbf{I} + (\mathbf{I} - \eta \mathbf{H})^N \right)^{-1} \left((\mathbf{I} - \eta \mathbf{H})^N - (\mathbf{I} - \eta \mathbf{H})^{KN} \right) \right). \\
 1304 & \\
 1305 & \\
 1306 & \\
 1307 & \\
 1308 & \\
 1309 & \\
 1310 & \\
 1311 & \\
 1312 & \\
 1313 & \\
 \end{aligned}$$

The last equation is obtained by direct algebraic calculation. For Ψ_2 , by direct matrix calculation, we
 get

$$\begin{aligned}
 1314 \Psi_2 &= \frac{\eta \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, (2\mathbf{I} - \eta \mathbf{H})^{-1} \left(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2KN} \right) \right\rangle. \\
 1315 & \\
 \end{aligned}$$

1316 Next we obtain the error bound for $|\tilde{\mathcal{R}}^{\text{var}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{var}}(K, N; \eta)|$, which can be represented as
 1317

$$\begin{aligned}
 1318 & \left| \tilde{\mathcal{R}}^{\text{var}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{var}}(K, N; \eta) \right| \\
 1319 & \leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \mathbf{T}^{(i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \left(\mathbf{T}^{(j)} \right)^\top \right\rangle \right. \\
 1320 & \quad \left. - \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^2} \sum_{\substack{i \neq j \\ i,j=1}}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\sum_{l=0}^{N-1} \sum_{\pi_i, \pi_j} \tilde{\mathbb{E}} \mathbf{S}_l^{(ij)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \right\rangle \right| =: I_1 \\
 1321 & \quad + \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} \mathbf{T}^{(i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) \left(\mathbf{T}^{(i)} \right)^\top \right\rangle \right. \\
 1322 & \quad \left. - \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\sum_{l=0}^{N-1} \sum_{\pi_i} \tilde{\mathbb{E}} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle \right| =: I_2, \\
 1323 & \\
 1324 & \\
 1325 & \\
 1326 & \\
 1327 & \\
 1328 & \\
 1329 & \\
 1330 & \\
 1331 & \\
 1332 & \\
 1333 & \\
 1334 & \\
 1335 & \\
 1336 & \\
 1337 & \\
 1338 & \\
 \end{aligned}$$

where the first inequality uses the triangle inequality. The term I_1 represents the error term between
 epochs, and I_2 represents the error term within one epoch. We will bound I_1 and I_2 separately in the
 proof.

1339 **Upper bound for I_1 .** To bound I_1 , a natural move here is to plug in a term that takes pseudo
 1340 expectation over $(\mathbf{T}^{(i)})_{i=1}^K$ but does not take pseudo expectation over $(\mathbf{S}_l^{(ij)})_{l,i,j}$, and divide I_1 into
 1341 two terms.
 1342

$$\begin{aligned}
 1343 I_1 &\leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \mathbf{T}^{(i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \left(\mathbf{T}^{(j)} \right)^\top \right\rangle \right. \\
 1344 & \quad \left. - \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^2} \sum_{\substack{i \neq j \\ i,j=1}}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \right\rangle \right| \\
 1345 & \\
 1346 & \\
 1347 & \\
 1348 & \\
 1349 & \\
 \end{aligned}$$

$$\begin{aligned}
& + \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^2} \sum_{\substack{i \neq j \\ i,j=1}}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \right\rangle \right. \\
& \quad \left. - \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^2} \sum_{\substack{i \neq j \\ i,j=1}}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\sum_{l=0}^{N-1} \sum_{\pi_i, \pi_j} \tilde{\mathbb{E}} \mathbf{S}_l^{(ij)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \right\rangle \right| \\
& =: I_{11} + I_{12}.
\end{aligned}$$

Next we bound the terms I_{11} and I_{12} separately. Notice that

$$\begin{aligned}
& \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \\
& = (N!)^{K-2} \sum_{\substack{i \neq j \\ i,j=1}}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \tag{9}
\end{aligned}$$

because the summands do not depend on the permutations except π_i, π_j , plugging Equation (9) into the expression of I_1 we have

$$\begin{aligned}
I_{11} & \leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \mathbf{T}^{(i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) (\mathbf{T}^{(j)})^\top \right\rangle \right. \\
& \quad \left. - \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-j)} \right\rangle \right|.
\end{aligned}$$

Then we use Equation (4) to split I_{11} into three terms and by triangle inequality:

$$\begin{aligned}
I_{11} & \leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \left(\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right) \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\rangle \right| \\
& \quad + \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \tilde{\mathbb{E}} \mathbf{T}^{(i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \left(\mathbf{T}^{(j)} - \tilde{\mathbb{E}} \mathbf{T}^{(j)} \right) \right\rangle \right| \\
& \quad + \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \left(\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right) \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \left(\mathbf{T}^{(j)} - \tilde{\mathbb{E}} \mathbf{T}^{(j)} \right) \right\rangle \right|.
\end{aligned}$$

Next, we use Lemma J.1 and the fact that $\mathbf{S}_l^{(ij)} \lesssim \mathbf{I}$ to bound the matrix inner products:

$$\begin{aligned}
I_{11} & \leq \frac{\eta^2 \sigma^2 N D^2 \text{tr}(\mathbf{H})}{2(N!)^{K-2}} \sum_{\substack{i \neq j \\ i,j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \left(\mathbb{E} \left\| \mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\| + \mathbb{E} \left\| \mathbf{T}^{(j)} - \tilde{\mathbb{E}} \mathbf{T}^{(j)} \right\| \right. \\
& \quad \left. + \mathbb{E} \left\| \mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\| \left\| \mathbf{T}^{(j)} - \tilde{\mathbb{E}} \mathbf{T}^{(j)} \right\| \right).
\end{aligned}$$

1404 Notice that Lemma J.2 and Lemma J.5 implies that
1405

$$\begin{aligned} \mathbb{E} \left\| \mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\| &\leq (\sqrt{\delta_A \eta^2 N K} + \|\mathbb{E} \mathbf{A}\|)^K - \|\mathbb{E} \mathbf{A}\|^K \\ &\leq (\sqrt{\delta_A \eta^2 N K} + 1)^K - 1 \\ &\leq 2K \sqrt{\delta_A \eta^2 N K} \quad \text{when } K \leq \frac{\log 2}{\eta \sqrt{\delta_A T}}, \end{aligned}$$

1412 where $\delta_A = \tilde{C}8eD^4 \log d$ is the constant appeared in Lemma J.4, and \tilde{C} is some absolute constant.
1413 The second inequality uses the fact that $(\sqrt{\delta_A \eta^2 N K} + \|\mathbb{E} \mathbf{A}\|)^K - \|\mathbb{E} \mathbf{A}\|^K$ motonously increases
1414 with $\|\mathbb{E} \mathbf{A}\|$. A similar approach combining Lemma J.2 and Lemma J.6 derives another concentration
1415 inequality for $\mathbf{T}^{(i)}$:
1416

$$\mathbb{E} \left\| \mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\|^2 \leq \left(2K \sqrt{\delta_A \eta^2 N K} \right)^2 \quad \text{when } K \leq \frac{\log 2}{\eta \sqrt{\delta_A T}}.$$

1420 Applying Cauchy-Schwarz's inequality and the concentration inequalities for $(\mathbf{T}^{(i)})_i$, we get that
1421

$$\begin{aligned} I_{11} &\leq \frac{\eta^2 \sigma^2 N D^2 \text{tr}(\mathbf{H})}{2(N!)^{K-2}} \sum_{\substack{i \neq j \\ i, j = 1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \left(\mathbb{E} \left\| \mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\| + \mathbb{E} \left\| \mathbf{T}^{(j)} - \tilde{\mathbb{E}} \mathbf{T}^{(j)} \right\| \right. \\ &\quad \left. + \left(\mathbb{E} \left\| \mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)} \right\|^2 \right)^{\frac{1}{2}} \left(\mathbb{E} \left\| \mathbf{T}^{(j)} - \tilde{\mathbb{E}} \mathbf{T}^{(j)} \right\|^2 \right)^{\frac{1}{2}} \right) \\ &\leq \frac{\eta^2 \sigma^2 N D^2 \text{tr}(\mathbf{H})}{2} \sum_{\substack{i \neq j \\ i, j = 1}}^K \left(4K \sqrt{\delta_A \eta^2 N K} + \left(2K \sqrt{2\delta_A \eta^2 N K} \right)^2 \right). \end{aligned}$$

1433 Our next step is to bound I_{12} . We first make use of the fact that $\mathbf{I} - \eta \mathbf{H} \lesssim \mathbf{I}$, and get that
1434

$$I_{12} \leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^2} \sum_{\substack{i \neq j \\ i, j = 1}}^K \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} - \tilde{\mathbb{E}} \mathbf{S}_l^{(ij)} \right) \right\rangle \right|.$$

1441 Recall that for a fixed i , for all $m \in [0, N-1]$, there are $(N-1)!$ permutations π_i that satisfies
1442 $\pi_i(m) = l$. So
1443

$$\begin{aligned} I_{12} &\leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^2} \sum_{\substack{i \neq j \\ i, j = 1}}^K \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} ((N-1)!)^2 \left(\mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right. \right. \right. \\ &\quad \left. \left. \left. - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right) \right\rangle \right|. \end{aligned}$$

1451 Notice that
1452

$$\begin{aligned} &\mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \\ &= \left(\mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right) \mathbf{H} \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} + \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \left(\mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} - \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right) \\ &\quad + \left(\mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right) \mathbf{H} \left(\mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} - \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right). \end{aligned}$$

1458 Applying Lemma J.1 and using the fact that $\mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \lesssim \mathbf{I}$,
 1459

$$\begin{aligned}
 1460 \quad I_{12} &\leq \frac{\eta^2 \sigma^2 \text{tr}(\mathbf{H}) \|\mathbf{H}\| N}{2N^2} \mathbb{E} \sum_{\substack{i \neq j \\ i,j=1}}^K \left(\sum_{m=0}^{N-2} \left\| \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right\| \right. \\
 1461 \\
 1462 \\
 1463 \\
 1464 \quad &+ \sum_{n=0}^{N-2} \left\| \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} - \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right\| \\
 1465 \\
 1466 \\
 1467 \quad &+ \sum_{m=0}^{N-2} \sum_{n=0}^{N-2} \left\| \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right\| \left\| \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} - \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right\| \left. \right).
 \end{aligned}$$

1469

1470 Applying Cauchy-Schwarz inequality and Lemma J.4 gives
 1471

$$\begin{aligned}
 1472 \quad I_{12} &\leq \frac{\eta^2 \sigma^2 \text{tr}(\mathbf{H}) \|\mathbf{H}\| N}{2N^2} \sum_{\substack{i \neq j \\ i,j=1}}^K \left(\sum_{m=0}^{N-2} \mathbb{E} \left\| \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right\| \right. \\
 1473 \\
 1474 \\
 1475 \\
 1476 \quad &+ \sum_{n=0}^{N-2} \mathbb{E} \left\| \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} - \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right\| \\
 1477 \\
 1478 \\
 1479 \quad &+ \sum_{m=0}^{N-2} \sum_{n=0}^{N-2} \left(\mathbb{E} \left\| \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right\|^2 \right)^{\frac{1}{2}} \left(\mathbb{E} \left\| \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} - \mathbb{E} \mathbf{Z}_{n+1 \rightarrow N-1}^{(j)} \right\|^2 \right)^{\frac{1}{2}} \left. \right) \\
 1480 \\
 1481 \\
 1482 \quad &\leq \frac{\eta^2 \sigma^2 \text{tr}(\mathbf{H}) \|\mathbf{H}\| N}{2N^2} \sum_{\substack{i \neq j \\ i,j=1}}^K \left(\sum_{m=0}^{N-2} \left(\sqrt{\delta_A \eta^2 (N-1-m)} \right) + \sum_{n=0}^{N-2} \left(\sqrt{\delta_A \eta^2 (N-1-n)} \right) \right. \\
 1483 \\
 1484 \\
 1485 \quad &+ \sum_{m=0}^{N-2} \sum_{n=0}^{N-2} \left(\sqrt{2\delta_A \eta^2 (N-1-m)} \right) \left(\sqrt{2\delta_A \eta^2 (N-1-n)} \right) \left. \right) \\
 1486 \\
 1487 \\
 1488 \quad &\lesssim \eta^3 K^2 \sqrt{N \log d} + \eta^4 K^2 N^2 \log d \quad \text{when } \eta = o\left(\frac{1}{\sqrt{T}}\right). \\
 1489 \\
 1490
 \end{aligned}$$

1491 **Upper bound for I_2 .** We bound I_2 using a similar technique as what we did for I_1 . We first plug in
 1492 a term that takes pseudo expectation over $(\mathbf{T}^{(i)})_{i=1}^K$ but does not take pseudo expectation over $\mathbf{S}_l^{(ii)}$
 1493 for every l and i , and decompose I_2 into two terms:

$$\begin{aligned}
 1494 \quad I_2 &\leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \cdots \pi_K \\ \text{except } \pi_i}} \mathbf{T}^{(i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{T}^{(i)})^\top \right\rangle \right. \\
 1495 \\
 1496 \\
 1497 \\
 1498 \quad &- \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle \left. \right| \\
 1499 \\
 1500 \\
 1501 \quad &+ \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle \right. \\
 1502 \\
 1503 \\
 1504 \quad &- \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \left(\sum_{l=0}^{N-1} \sum_{\pi_i} \tilde{\mathbb{E}} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle \left. \right| \\
 1505 \\
 1506 \\
 1507 \quad &=: I_{21} + I_{22}.
 \end{aligned}$$

1508 Next we bound the terms I_{21} and I_{22} separately. Notice that
 1509

$$\sum_{i=1}^K \sum_{\substack{\pi_1 \cdots \pi_K \\ \text{except } \pi_i}} (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)}$$

$$= (N!)^{K-1} \sum_{i=1}^K (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)}$$

because the summands do not depend on the permutations except π_i , we have

$$I_{21} = \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} \mathbf{T}^{(i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{T}^{(i)})^\top \right\rangle \right. \\ \left. - \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle \right|.$$

Then we use the fact that $\tilde{\mathbb{E}} \mathbf{T}^{(i)} = (\mathbf{I} - \eta \mathbf{H})^{N(K-i)}$ to split I_{21} into three terms:

$$I_{21} \leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} (\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)}) \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \right\rangle \right| \\ + \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} (\mathbf{I} - \eta \mathbf{H})^{N(K-i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)}) \right\rangle \right| \\ + \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} (\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)}) \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) (\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)}) \right\rangle \right|.$$

Next, we use Lemma J.1 and the fact that $\mathbf{S}_l^{(ij)} \lesssim \mathbf{I}$ to bound the matrix inner products, and apply the concentration inequalities we derived for $((\mathbf{T}^{(i)})_i)$:

$$I_{21} \leq \frac{\eta^2 \sigma^2 N D^2 \text{tr}(\mathbf{H})}{2(N!)^{K-1}} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} \left(\mathbb{E} \|\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)}\| + \mathbb{E} \|\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)}\|^2 \right. \\ \left. + \mathbb{E} \|\mathbf{T}^{(i)} - \tilde{\mathbb{E}} \mathbf{T}^{(i)}\|^2 \right) \\ \leq \frac{\eta^2 \sigma^2 N D^2 \text{tr}(\mathbf{H})}{2} \sum_{i=1}^K \left(4K \sqrt{\delta_A \eta^2 K N} + (2K \sqrt{2\delta_A \eta^2 K N})^2 \right).$$

Then we bound I_{22} . Recall that $\mathbf{I} - \eta \mathbf{H} \lesssim \mathbf{I}$, we get

$$I_{22} \leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} - \tilde{\mathbb{E}} \mathbf{S}_l^{(ii)} \right) \right\rangle \right|.$$

Recall that for a fixed i , for all $m \in [0, N-1]$, there are $(N-1)!$ permutations π_i that satisfies $\pi_i(m) = l$. So

$$I_{22} \leq \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} (N-1)! \left(\mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \mathbf{Z}_{m+1 \rightarrow N-1}^{(i)} \right. \right. \right. \\ \left. \left. \left. - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \mathbb{E} \mathbf{Z}_{m+1 \rightarrow N-1}^{(i)} \right) \right\rangle \right| \\ = \left| \frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{N!} \sum_{i=1}^K \sum_{l=0}^{N-1} (N-1)! \sum_{m=0}^{N-2} \left(\left(\mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right) \mathbf{H} \right. \right. \right. \\ \left. \left. \left. - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \mathbf{H} \mathbb{E} \mathbf{Z}_{m+1 \rightarrow N-1}^{(i)} \right) \right\rangle \right|$$

$$1566 \quad \left(\mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right) \right) \right) \Big|.$$

1568

1569

1570 Using Lemma J.4, we have

$$1571 \quad I_{22} \leq \frac{\eta^2 \sigma^2 \text{tr}(\mathbf{H}) \|\mathbf{H}\| N}{2N} \mathbb{E} \sum_{i=1}^K \left(\sum_{m=0}^{N-2} \left\| \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} - \mathbb{E} \mathbf{Z}_{N-1 \rightarrow m+1}^{(i)} \right\|^2 \right)$$

$$1574 \quad \leq \frac{\eta^2 \sigma^2 \text{tr}(\mathbf{H}) \|\mathbf{H}\| N}{2N} \sum_{i=1}^K \sum_{m=0}^{N-2} \left(\sqrt{2\delta_A \eta^2 (N-1-m)} \right)^2$$

$$1577 \quad \lesssim \eta^4 N^2 K \log d \quad \text{when } \eta = o\left(\frac{1}{\sqrt{T}}\right).$$

1578 Combining all the arguments above, we derive that

$$1580 \quad \left| \tilde{\mathcal{R}}^{\text{var}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{var}}(K, N; \eta) \right|$$

$$1582 \quad \leq I_{11} + I_{12} + I_{21} + I_{22}$$

$$1583 \quad \leq C \frac{\eta^2 \sigma^2 N D^2 \text{tr}(\mathbf{H})}{2} \sum_{i,j=1}^K \left(4K \sqrt{\delta_A \eta^2 N K} + \left(2K \sqrt{\delta_A \eta^2 N K} \right)^2 \right)$$

$$1586 \quad + O(\eta^3 K^2 \sqrt{N \log d} + \eta^4 K^2 N^2 \log d) + O(\eta^4 N^2 K \log d)$$

$$1588 \quad = O(\eta^3 N^{\frac{3}{2}} K^{\frac{7}{2}} \sqrt{\log d}) \quad \text{when } \eta = o\left(\frac{1}{\sqrt{T}}\right).$$

1589 The above equation completes the proof.

1590

1591 G.2.2 BIAS TERM ANALYSIS: PROOF OF LEMMA G.3

1593 For simplicity, and as we did in the proof of Lemma G.2, in this section we omit the superscript
1594 "bias" for all the training parameters θ^{bias} . Analogous to the proof of Lemma G.2, we can derive the
1595 parameter recursion as

$$1596 \quad \theta_{kN} = (\mathbf{I} - \eta \mathbf{x}_{\pi_k(N-1)} \mathbf{x}_{\pi_k(N-1)}^\top) \theta_{kN-1}$$

$$1597 \quad = \dots$$

$$1599 \quad = (\mathbf{I} - \eta \mathbf{x}_{\pi_k(N-1)} \mathbf{x}_{\pi_k(N-1)}^\top) \dots (\mathbf{I} - \eta \mathbf{x}_{\pi_k(0)} \mathbf{x}_{\pi_k(0)}^\top) \theta_{(k-1)N}$$

$$1600 \quad = \mathbf{A}^{(k)} \theta_{(k-1)N}.$$

1602 For the parameter after K -epochs updates, we have

$$1603 \quad \theta_{KN} = \mathbf{A}^{(K)} \dots \mathbf{A}^{(1)} \theta_0 = \prod_{l=K}^1 \mathbf{A}^{(l)} \theta_0.$$

1606 We also have the approximation for the bias term

$$1607 \quad \bar{\mathcal{R}}^{\text{bias}}(K, N; \eta) = \frac{1}{2} \langle \mathbf{H}, \mathbb{E} \theta_{KN}^2 \rangle$$

$$1608 \quad = \mathbb{E} \frac{1}{2} \theta_{KN}^\top \mathbf{H} \theta_{KN}$$

$$1611 \quad = \mathbb{E} \frac{1}{2} \theta_0^\top \left(\prod_{l=K}^1 \mathbf{A}^{(l)} \right)^\top \mathbf{H} \left(\prod_{l=K}^1 \mathbf{A}^{(l)} \right) \theta_0$$

$$1614 \quad \approx \frac{1}{2} \theta_0^\top \left(\prod_{l=K}^1 \mathbb{E} \mathbf{A}^{(l)} \right)^\top \mathbf{H} \left(\prod_{l=K}^1 \mathbb{E} \mathbf{A}^{(l)} \right) \theta_0$$

$$1617 \quad = \underbrace{\frac{1}{2} \theta_0^\top ((\mathbf{I} - \eta \mathbf{H})^{KN}) \mathbf{H} ((\mathbf{I} - \eta \mathbf{H})^{KN}) \theta_0}_{=: \tilde{\mathcal{R}}^{\text{var}}(K, N; \eta)}.$$

1620 The estimate error can be given as
 1621

$$\begin{aligned}
 1622 & \left| \tilde{\mathcal{R}}^{\text{bias}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{bias}}(K, N; \eta) \right| \\
 1623 &= \left| \mathbb{E} \frac{1}{2} \boldsymbol{\theta}_0^\top \left(\prod_{l=K}^1 \mathbf{A}^{(l)} \right)^\top \mathbf{H} \left(\prod_{l=K}^1 \mathbf{A}^{(l)} \right) \boldsymbol{\theta}_0 - \frac{1}{2} \boldsymbol{\theta}_0^\top \left(\prod_{l=K}^1 \mathbb{E} \mathbf{A}^{(l)} \right)^\top \mathbf{H} \left(\prod_{l=K}^1 \mathbb{E} \mathbf{A}^{(l)} \right) \boldsymbol{\theta}_0 \right| \\
 1624 &= \left| \mathbb{E} \frac{1}{2} \boldsymbol{\theta}_0^\top \left(\prod_{l=K}^1 \mathbf{A}^{(l)} - \|\mathbb{E} \mathbf{A}\|^K \right)^\top \mathbf{H} \left(\prod_{l=K}^1 \mathbf{A}^{(l)} - \|\mathbb{E} \mathbf{A}\|^K \right) \boldsymbol{\theta}_0 \right| \\
 1625 &+ 2 \left| \mathbb{E} \frac{1}{2} \boldsymbol{\theta}_0^\top \|\mathbb{E} \mathbf{A}\|^K \mathbf{H} \left(\prod_{l=K}^1 \mathbf{A}^{(l)} - \|\mathbb{E} \mathbf{A}\|^K \right) \boldsymbol{\theta}_0 \right| \\
 1626 &\leq \mathbb{E} \frac{1}{2} \|\mathbf{H}\| \|\boldsymbol{\theta}_0\|^2 \left(\left\| \mathbf{A}^K - (\mathbb{E} \mathbf{A})^K \right\|^2 + 2 \|\mathbb{E} \mathbf{A}\|^K \left\| \mathbf{A}^K - (\mathbb{E} \mathbf{A})^K \right\| \right). \tag{10}
 \end{aligned}$$

1636 where the last equation uses the fact that $\|\mathbb{E} \mathbf{A}\| \leq 1$. Next, we discuss the approximation error bound
 1637 for the bias term in Equation (10), with different categorizations based on the range of K .
 1638

1639 1. Under Assumption 4.1 and $K = o\left(\frac{N^{\frac{1}{5}}}{(\log N)^{\frac{6}{5}}}\right)$:

1640 (a) $\eta \leq \frac{2 \log T}{3 \lambda_d T}$. We now verify that $K = o\left(\frac{\|\mathbb{E} \mathbf{A}\|}{\eta \sqrt{T}}\right)$ under given conditions. We have

$$\begin{aligned}
 1644 \|\mathbb{E} \mathbf{A}\| &= (1 - \eta \lambda_d)^N = (1 - \eta \lambda_d)^{\frac{T}{K}} \geq (1 - \eta \lambda_d)^{\frac{T}{2}} \\
 1645 &\geq \left(1 - \frac{2 \log T}{3T}\right)^{\frac{T}{2}} = e^{\frac{T}{2} \log(1 - \frac{2 \log T}{3T})} \\
 1646 &= e^{-\frac{\log T}{3} + O(\frac{2 \log^2 T}{9T})} = \Theta\left(\frac{1}{T^{\frac{1}{3}}}\right).
 \end{aligned}$$

1648 thus
 1649

$$\frac{\|\mathbb{E} \mathbf{A}\|}{\eta \sqrt{T}} = \Omega\left(\frac{T^{\frac{1}{6}}}{\log T}\right).$$

1655 Also, given $K = o\left(\frac{N^{\frac{1}{5}}}{(\log N)^{\frac{6}{5}}}\right)$, we obtain that

$$K = o\left(\frac{T^{\frac{1}{6}}}{\log N}\right) = o\left(\frac{T^{\frac{1}{6}}}{\log T}\right).$$

1661 The second equality uses $\log T = \log N + \log K = \Theta(\log N)$. Now we use the results in
 1662 Lemma J.5 and Lemma J.6, and then the estimated distance can be given as
 1663

$$\begin{aligned}
 1664 & \left| \tilde{\mathcal{R}}^{\text{bias}}(K, N; \eta) - \bar{\mathcal{R}}^{\text{bias}}(K, N; \eta) \right| \\
 1665 &\leq \frac{1}{2} \|\mathbf{H}\| \|\boldsymbol{\theta}_0\|^2 \|\mathbb{E} \mathbf{A}\|^{2K} \left(\left(\frac{\sqrt{2\delta_A \eta^2 NK}}{\|\mathbb{E} \mathbf{A}\|} + 1 \right)^K - 1 \right)^2 + 2 \left(\left(\frac{\sqrt{2\delta_A \eta^2 NK}}{\|\mathbb{E} \mathbf{A}\|} + 1 \right)^K - 1 \right) \\
 1666 &\leq \frac{1}{2} \|\mathbf{H}\| \|\boldsymbol{\theta}_0\|^2 \|\mathbb{E} \mathbf{A}\|^{2K} \left(\frac{8K^2 \delta_A \eta^2 NK}{\|\mathbb{E} \mathbf{A}\|^2} + 4K \frac{\sqrt{2\delta_A \eta^2 NK}}{\|\mathbb{E} \mathbf{A}\|} \right) \\
 1667 &= O\left(\|\mathbb{E} \mathbf{A}\|^{2K-1} K \sqrt{\eta^2 NK}\right),
 \end{aligned}$$

1671 where the second inequality is by Lemma J.2.
 1672

1674 (b) $\eta \geq \frac{2 \log T}{3 \lambda_d T}$. We have
 1675

$$\begin{aligned}
 & \left| \tilde{\mathcal{R}}^{\text{bias}}(k, N; \eta) - \bar{\mathcal{R}}^{\text{bias}}(k, N; \eta) \right| \leq \tilde{\mathcal{R}}^{\text{bias}}(k, N; \eta) + \bar{\mathcal{R}}^{\text{bias}}(k, N; \eta) \\
 & \leq \left[\tilde{\mathcal{R}}^{\text{bias}}(k, N; \eta) + \bar{\mathcal{R}}^{\text{bias}}(k, N; \eta) \right] \Big|_{\eta=\frac{2 \log T}{3 \lambda_d T}} \\
 & \leq \left[\left| \tilde{\mathcal{R}}^{\text{bias}}(k, N; \eta) - \tilde{\mathcal{R}}^{\text{bias}}(k, N; \eta) \right| + 2 \tilde{\mathcal{R}}^{\text{bias}}(k, N; \eta) \right] \Big|_{\eta=\frac{2 \log T}{3 \lambda_d T}} \\
 & \leq \left[O \left(\|\mathbb{E} \mathbf{A}\|^{2K-1} K \sqrt{\eta^2 K N} \right) + 2 \times \frac{1}{2} \|\mathbf{H}\| \|\boldsymbol{\theta}_0\|^2 \|\mathbb{E} \mathbf{A}\|^{2K} \right] \Big|_{\eta=\frac{2 \log T}{3 \lambda_d T}} \\
 & = O \left(\|\mathbb{E} \mathbf{A}\|^{2K} \right) \Big|_{\eta=\frac{2 \log T}{3 \lambda_d T}} = O \left(\left(1 - \frac{2 \log T}{3T} \right)^{2KN} \right) \\
 & = O \left(\frac{1}{T^{\frac{4}{3}}} \right) \text{ when } K = o \left(\frac{N^{\frac{1}{5}}}{(\log N)^{\frac{6}{5}}} \right),
 \end{aligned}$$

1691

1692 where the first equality uses the fact that $K = o \left(\frac{\|\mathbb{E} \mathbf{A}\|}{\eta \sqrt{T}} \right)$ when $\eta = \frac{2 \log T}{3 \lambda_d T}$.
 1693

1694 2. For the $K = 1$ case, which is equivalent to one-pass (OP) SGD, we derive a different upper bound
 1695 for bias term error. In this scenario, we have the update rule as

$$\boldsymbol{\theta}_t = (\mathbf{I} - \eta \mathbf{x}_t \mathbf{x}_t^\top) \boldsymbol{\theta}_{t-1}.$$

1698

We can denote the covariance as \mathbf{B}_t , which is

$$\begin{aligned}
 \mathbf{B}_t &:= \mathbb{E} \boldsymbol{\theta}_t \boldsymbol{\theta}_t^\top \\
 &= \mathbb{E} (\mathbf{I} - \eta \mathbf{x}_t \mathbf{x}_t^\top) \boldsymbol{\theta}_{t-1} \boldsymbol{\theta}_{t-1}^\top (\mathbf{I} - \eta \mathbf{x}_t \mathbf{x}_t^\top) \\
 &= \mathbf{B}_{t-1} - \eta \mathbf{H} \mathbf{B}_{t-1} - \eta \mathbf{B}_{t-1} \mathbf{H} + \eta^2 \mathbb{E} \mathbf{x}_t \mathbf{x}_t^\top \boldsymbol{\theta}_{t-1} \boldsymbol{\theta}_{t-1}^\top \mathbf{x}_t \mathbf{x}_t^\top \\
 &= (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{t-1} (\mathbf{I} - \eta \mathbf{H}) + \eta^2 \mathbb{E} (\mathbf{x}_t \mathbf{x}_t^\top - \mathbf{H}) \boldsymbol{\theta}_{t-1} \boldsymbol{\theta}_{t-1}^\top (\mathbf{x}_t \mathbf{x}_t^\top - \mathbf{H}).
 \end{aligned} \tag{11}$$

1705

Since the bias term in the excess risk can be represented as

$$\bar{\mathcal{R}}^{\text{bias}}(1, T; \eta) = \frac{1}{2} \langle \mathbf{H}, \mathbf{B}_T \rangle.$$

1706
1707
1708

We then get the lower and upper bounds for \mathbf{B}_t , and derive the corresponding lower and upper bounds for the bias term in the excess risk.

1711

Lower bound. By Equation (11), we get a lower bound of \mathbf{B}_t

$$\begin{aligned}
 \mathbf{B}_T &\succeq (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{T-1} (\mathbf{I} - \eta \mathbf{H}) \\
 &\succeq \cdots \succeq (\mathbf{I} - \eta \mathbf{H})^T \mathbf{B}_0 (\mathbf{I} - \eta \mathbf{H})^T
 \end{aligned}$$

1712
1713
1714
1715
1716

and

$$\begin{aligned}
 \bar{\mathcal{R}}^{\text{bias}}(1, T; \eta) &= \frac{1}{2} \langle \mathbf{H}, \mathbf{B}_T \rangle \\
 &\geq \frac{1}{2} \langle \mathbf{H}, (\mathbf{I} - \eta \mathbf{H})^T \mathbf{B}_0 (\mathbf{I} - \eta \mathbf{H})^T \rangle \\
 &= \frac{1}{2} \boldsymbol{\theta}_0^\top ((\mathbf{I} - \eta \mathbf{H})^T) \mathbf{H} ((\mathbf{I} - \eta \mathbf{H})^T) \boldsymbol{\theta}_0.
 \end{aligned}$$

1723
1724

Upper bound. By the recursion of \mathbf{B}_t , we have

$$\begin{aligned}
 \mathbf{B}_t &\preceq (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{t-1} (\mathbf{I} - \eta \mathbf{H}) + \eta^2 \mathbb{E}_{\mathbf{x}_{T-1}, \dots, \mathbf{x}_0} \mathbb{E}_{\mathbf{x}_T} (\mathbf{x}_t \mathbf{x}_t^\top - \mathbf{H}) \boldsymbol{\theta}_{t-1} \boldsymbol{\theta}_{t-1}^\top (\mathbf{x}_t \mathbf{x}_t^\top - \mathbf{H}) \\
 &= (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{t-1} (\mathbf{I} - \eta \mathbf{H}) + \eta^2 \mathbb{E}_{\mathbf{x}_{T-1}, \dots, \mathbf{x}_0} [\mathbb{E}_{\mathbf{x}_T} [\mathbf{x}_T \mathbf{x}_T^\top \boldsymbol{\theta}_{T-1} \boldsymbol{\theta}_{T-1}^\top \mathbf{x}_T \mathbf{x}_T^\top] - \mathbf{H} \boldsymbol{\theta}_{T-1} \boldsymbol{\theta}_{T-1}^\top \mathbf{H}] \\
 &\preceq (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{t-1} (\mathbf{I} - \eta \mathbf{H}) + \eta^2 \mathbb{E}_{\mathbf{x}_{T-1}, \dots, \mathbf{x}_0} \mathbb{E}_{\mathbf{x}_T} [\mathbf{x}_T \mathbf{x}_T^\top \boldsymbol{\theta}_{T-1} \boldsymbol{\theta}_{T-1}^\top \mathbf{x}_T \mathbf{x}_T^\top].
 \end{aligned}$$

1728 Then, combining Assumption 4.1 and Lemma J.9 gives
 1729

$$\begin{aligned}
 1730 \quad \mathbf{B}_T &\preceq (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{T-1} (\mathbf{I} - \eta \mathbf{H}) + \eta^2 \alpha \mathbb{E}_{\mathbf{x}_{T-1}, \dots, \mathbf{x}_0} \text{tr}(\mathbf{H} \boldsymbol{\theta}_{T-1}^\top \boldsymbol{\theta}_{T-1}) \mathbf{H} \\
 1731 &= (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{T-1} (\mathbf{I} - \eta \mathbf{H}) + \eta^2 \alpha \langle \mathbf{H}, \mathbf{B}_{T-1} \rangle \mathbf{H} \\
 1732 &\preceq \dots \\
 1733 &\preceq (\mathbf{I} - \eta \mathbf{H})^T \mathbf{B}_0 (\mathbf{I} - \eta \mathbf{H})^T + \eta^2 \alpha \sum_{i=0}^{T-1} \langle \mathbf{B}_i, \mathbf{H} \rangle (\mathbf{I} - \eta \mathbf{H})^{2(T-i-1)} \mathbf{H},
 \end{aligned}$$

1736 and

$$\langle \mathbf{H}, \mathbf{B}_T \rangle \leq \langle \mathbf{H}, (\mathbf{I} - \eta \mathbf{H})^T \mathbf{B}_0 (\mathbf{I} - \eta \mathbf{H})^T \rangle + \eta^2 \alpha \sum_{i=0}^{T-1} \langle \mathbf{H}, \mathbf{B}_i \rangle \langle (\mathbf{I} - \eta \mathbf{H})^{2(T-i-1)} \mathbf{H}, \mathbf{H} \rangle.$$

1740 We also have

$$\begin{aligned}
 1742 \quad \langle \mathbf{H}, \mathbf{B}_i \rangle &\leq \langle \mathbf{H}, (\mathbf{I} - \eta \mathbf{H}) \mathbf{B}_{i-1} (\mathbf{I} - \eta \mathbf{H}) \rangle + \eta^2 \alpha \text{tr}(\mathbf{H}^2) \langle \mathbf{H}, \mathbf{B}_{i-1} \rangle \\
 1743 &\leq (1 - \eta \lambda_d)^2 \langle \mathbf{H}, \mathbf{B}_{i-1} \rangle + \eta^2 \alpha \text{tr}(\mathbf{H}^2) \langle \mathbf{H}, \mathbf{B}_{i-1} \rangle \\
 1744 &\leq \dots \\
 1745 &\leq [(\lambda_d^2 + \alpha \text{tr}(\mathbf{H}^2)) \eta^2 - 2\lambda_d \eta + 1]^i \langle \mathbf{H}, \mathbf{B}_0 \rangle \\
 1746 &\leq e^{T \log[(\lambda_d^2 + \alpha \text{tr}(\mathbf{H}^2)) \eta^2 - 2\lambda_d \eta + 1]} \langle \mathbf{H}, \mathbf{B}_0 \rangle \\
 1747 &= e^{-2\lambda_d \eta i + O(\eta^2 i)} \langle \mathbf{H}, \mathbf{B}_0 \rangle \\
 1748 &\leq C_1 e^{-2\lambda_d \eta i} \langle \mathbf{H}, \mathbf{B}_0 \rangle
 \end{aligned}$$

1751 and

$$\begin{aligned}
 1753 \quad \langle (\mathbf{I} - \eta \mathbf{H})^{2(T-i-1)} \mathbf{H}, \mathbf{H} \rangle &= \langle (\mathbf{I} - \eta \mathbf{H})^{2(T-i-1)}, \mathbf{H}^2 \rangle \\
 1754 &\leq \text{tr}(\mathbf{H}^2) (1 - \eta \lambda_d)^{2(T-1-i)} \\
 1755 &\leq \text{tr}(\mathbf{H}^2) e^{2(T-1-i) \log(1 - \eta \lambda_d)} \\
 1756 &= \text{tr}(\mathbf{H}^2) e^{-2(T-1-i) \eta \lambda_d + O(\eta^2 (T-1-i))} \\
 1757 &\leq C_2 e^{-2(T-1-i) \eta \lambda_d}
 \end{aligned}$$

1760 So

$$\begin{aligned}
 1762 \quad \langle \mathbf{H}, \mathbf{B}_i \rangle &\leq \langle \mathbf{H}, (\mathbf{I} - \eta \mathbf{H})^T \mathbf{B}_0 (\mathbf{I} - \eta \mathbf{H})^T \rangle + \eta^2 \alpha \sum_{i=0}^{T-1} C_1 e^{-2\lambda_d \eta i} \langle \mathbf{H}, \mathbf{B}_0 \rangle C_2 e^{-2\lambda_d \eta (T-1-i)} \text{tr}(\mathbf{H}^2) \\
 1763 &= \langle \mathbf{H}, (\mathbf{I} - \eta \mathbf{H})^T \mathbf{B}_0 (\mathbf{I} - \eta \mathbf{H})^T \rangle + C_3 \eta^2 T e^{-2\lambda_d \eta T}
 \end{aligned}$$

1765 And finally we get

$$\left| \bar{\mathcal{R}}^{\text{bias}}(1, T; \eta) - \frac{1}{2} \langle \mathbf{H}, (\mathbf{I} - \eta \mathbf{H})^\top \mathbf{B}_0 (\mathbf{I} - \eta \mathbf{H}) \rangle \right| = O(\eta^2 T e^{-2\lambda_d \eta T}).$$

1770 G.3 STEP III: NARROWING THE RANGE FOR OPTIMAL LEARNING RATE

1771 We recap that our goal to get the scaling law formula for strongly convex linear regression with multi
 1772 epoch SGD, and the formula of the effective reuse rate. Before we start our proof, we first give a
 1773 technical lemma below.

1774 **Lemma G.4.** Given $\eta \in \left[\omega\left(\frac{1}{T}\right), o\left(\frac{1}{\sqrt{T}}\right) \right]$, and define n_d to be the number of the minimal eigenvalue
 1775 λ_d in \mathbf{H} , then it holds that

$$\sum_{i=1}^d (\mathbf{P} \boldsymbol{\theta}_0)_i^2 \lambda_i (1 - \eta \lambda_i)^{2T} = \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta T) (1 + o(1)),$$

$$\sum_{i=1}^d \lambda_i (1 - \eta \lambda_i)^{2T} = n_d \lambda_d \exp(-2\lambda_d \eta T) (1 + o(1)).$$

1782 *Proof of Lemma G.4.* For the first equation, for any $\lambda_i > \lambda_d$, we define $\rho_i = \frac{\lambda_i}{\lambda_d} > 1$, then we have
 1783

$$\begin{aligned} 1784 \quad (1 - \eta\lambda_i)^{2T} &= \exp(2T \log(1 - \eta\lambda_i)) = \exp(2T(-\eta\lambda_i + O(\eta^2\lambda_i^2))) \\ 1785 \quad &= \exp(-2\lambda_i\eta T) \exp(O(\eta^2)) = \exp(-2\lambda_d\rho_i\eta T)(1 + o(1)) \\ 1786 \quad &= (\exp(-2\lambda_d\eta T))^{\rho_i} (1 + o(1)) = o(\exp(-2\lambda_d\eta T)). \end{aligned} \quad (12)$$

1788 Since $\lambda_i \leq D^2$, we have
 1789

$$1790 \quad \sum_{i=1}^{d-n_d} (\mathbf{P}\boldsymbol{\theta}_0)_i^2 \lambda_i (1 - \eta\lambda_i)^{2T} = o(\exp(-2\lambda_d\eta T)),$$

1792 From Equation (12), we can also directly get the second equation, which completes the proof of
 1793 Lemma G.4. \square
 1794

1795 G.3.1 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, SMALL- K CASE

1797 **Lemma G.5.** *Under the conditions in Lemma 4.4, and when $K = o(\log N)$, we have $\eta^* \in$
 1798 $[\frac{\log T}{3\lambda_d T}, \frac{\alpha \log T}{T}]$, where the constant $\alpha := \frac{D^2 \text{tr}(\mathbf{H})}{\lambda_d \text{tr}(\mathbf{H}^2)}$.*

1800 *Proof.* We first prove the upper bound. Given a learning rate η , Equation (6) gives
 1801

$$1802 \quad \bar{\mathcal{R}}(K, N; \eta) \geq \bar{\mathcal{R}}^{\text{var}}(K, N; \eta) =$$

$$\begin{aligned} 1803 \quad &\underbrace{\frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{\substack{i \neq j \\ i, j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i, \pi_j}} \mathbf{T}^{(i)} \sum_{\pi_i, \pi_j} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ij)} \right) \left(\mathbf{T}^{(j)} \right)^\top \right\rangle}_{=: \psi_1} \\ 1804 \quad &+ \underbrace{\frac{\eta^2 \sigma^2}{2} \mathbb{E} \left\langle \mathbf{H}, \frac{1}{(N!)^K} \sum_{i=1}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \text{except } \pi_i}} \mathbf{T}^{(i)} \sum_{\pi_i} \left(\sum_{l=0}^{N-1} \mathbf{S}_l^{(ii)} \right) \left(\mathbf{T}^{(i)} \right)^\top \right\rangle}_{=: \psi_2}. \end{aligned}$$

1813 For ψ_1 , using the fact that $(\mathbf{I} - \eta \mathbf{x} \mathbf{x}^\top) \succeq (\mathbf{I} - \eta D^2 \mathbf{I})$, we replace all the terms $(\mathbf{I} - \eta \mathbf{x} \mathbf{x}^\top)$ with
 1814 $(\mathbf{I} - \eta D^2 \mathbf{I})$ thus we have a lower bound for ψ_1

$$\begin{aligned} 1815 \quad \psi_1 &\geq \frac{\eta^2 \sigma^2}{2} \left\langle \mathbf{H}, \frac{N((N-1)!)^2}{(N!)^K} \sum_{\substack{i \neq j \\ i, j=1}}^K \sum_{\substack{\pi_1 \dots \pi_K \\ \setminus \{\pi_i, \pi_j\}}} (1 - \eta D^2)^{(2K-i-j)N} \left(\sum_{m, n=0}^{N-1} (1 - \eta D^2)^{2N-2-m-n} \mathbb{E}[\mathbf{x} \mathbf{x}^\top] \right) \right\rangle \\ 1816 \quad &= \frac{\eta^2 \sigma^2}{2ND^4} \left\langle \mathbf{H}, \sum_{\substack{i \neq j \\ i, j=1}} (1 - \eta D^2)^{(K-i)N} (1 - \eta D^2)^{(K-j)N} (1 - (1 - \eta D^2)^N)^2 \mathbf{H} \right\rangle \\ 1817 \quad &= \frac{\sigma^2}{2ND^4} \text{tr} \left(\mathbf{H}^2 (1 - (1 - \eta D^2)^{KN})^2 \right) - \frac{\sigma^2}{2ND^4} \text{tr} \left(\mathbf{H}^2 \frac{1 - (1 - (1 - \eta D^2)^N)^{2KN}}{1 - (1 - \eta D^2)^{2N}} \right) \\ 1818 \quad &= \frac{\sigma^2}{ND^4} \text{tr} \left(\mathbf{H}^2 \frac{1 - (1 - \eta D^2)^{KN}}{1 + (1 - \eta D^2)^N} ((1 - \eta D^2)^N - (1 - \eta D^2)^{KN}) \right). \end{aligned}$$

1828 For ψ , we use a similar argument to get its lower bound

$$\begin{aligned} 1829 \quad \psi_2 &\geq \frac{\eta^2 \sigma^2}{2} \left\langle \mathbf{H}, \sum_{i=1}^K (1 - \eta D^2)^{2N(K-i)} \frac{1 - (1 - \eta D^2)^{2N}}{1 - (1 - \eta D^2)^2} \mathbf{H} \right\rangle \\ 1830 \quad &= \frac{\eta \sigma^2}{2D^2} \left\langle \mathbf{H}, \frac{1 - (1 - \eta D^2)^{2KN}}{1 - (1 - \eta D^2)^{2N}} \frac{1 - (1 - \eta D^2)^{2N}}{1 - (1 - \eta D^2)^2} \mathbf{H} \right\rangle \\ 1831 \quad &= \frac{\eta \sigma^2 \text{tr}(\mathbf{H}^2)}{4D^2} (1 + o(1)). \end{aligned}$$

1836 Notice that from the above lower bound, when $K = o(\log N)$, we have
 1837

$$\begin{aligned} 1838 \quad \bar{\mathcal{R}}(K, N; \eta) &\geq \psi_1 + \psi_2 \\ 1839 \quad &\geq O\left(\frac{1}{N}\right) + \frac{\eta\sigma^2\text{tr}(\mathbf{H}^2)}{4D^2} (1 + o(1)) \\ 1840 \quad &= \frac{\eta\sigma^2\text{tr}(\mathbf{H}^2)}{4D^2} (1 + o(1)). \end{aligned} \quad (13)$$

1841 Taking $\eta > \frac{\alpha \log T}{T}$, and $\alpha = \frac{D^2\text{tr}(\mathbf{H})}{\lambda_d\text{tr}(\mathbf{H}^2)}$ gives
 1842

$$1843 \quad \bar{\mathcal{R}}(K, N; \eta) \geq \frac{\sigma^2\text{tr}(\mathbf{H}) \log T}{4\lambda_d T} (1 + o(1)).$$

1844 Now we recall that
 1845

$$\begin{aligned} 1846 \quad \bar{\mathcal{R}}^*(K, N) &\leq \bar{\mathcal{R}}(K, N; \eta') = M(K, N; \eta') (1 + o(1)) \\ 1847 \quad &= \frac{\sigma^2\text{tr}(\mathbf{H}) \log T}{8\lambda_d T} (1 + o(1)) < \frac{\sigma^2\text{tr}(\mathbf{H}) \log T}{4\lambda_d T} (1 + o(1)) \end{aligned}$$

1848 Thus we have that $\eta^* \leq \frac{\alpha \log T}{T}$. Next, we give the lower bound of η^* .
 1849

1850 When $\eta < \frac{\log T}{3\lambda_d T}$, we have that
 1851

$$1852 \quad \exp(-2\lambda_d T) = \frac{1}{T^{2/3}} = \omega\left(\frac{\log T}{T}\right) = \omega(\bar{\mathcal{R}}(K, N; \eta')) = \omega(\bar{\mathcal{R}}^*(K, N)).$$

1853 The above equation shows $\eta^* > \frac{\log T}{3\lambda_d T}$, which completes the proof. \square
 1854

1855 G.3.2 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, LARGE- K CASE

1856 **Lemma G.6.** *Under the conditions in Lemma 4.4, and when $K = \omega(\log N)$, we have $\eta^* \in$*
 $1857 \quad [\frac{\log T}{3\lambda_d T}, o(\frac{1}{N})]$.
 1858

1859 *Proof.* The proof comprises of three parts. First, we prove that $\eta^* \geq \frac{\log T}{3\lambda_d T}$ when T is large. Second,
 1860 we verify that $\eta^* \leq \frac{c}{N}$ for sufficiently large N . Finally, we refine the proof in the second step and
 1861 justify that $\eta^* = o(\frac{1}{N})$. All proofs are carried out by contradiction. The method proceeds as follows:
 1862 we take a specific $\eta = \eta'$ and compute its loss, then prove that $\bar{\mathcal{R}}^*(K, N) > \bar{\mathcal{R}}(K, N; \eta')$ when N is
 1863 sufficiently large if η^* does not fall into some interval.
 1864

1865 First, by Equation (15), we have
 1866

$$1867 \quad \bar{\mathcal{R}}(K, N; \eta') = \frac{\sigma^2 d}{2N} (1 + o(1)).$$

1868 Then we begin our main part of the proof.
 1869

1870 *Proof Step I:* $\eta^* \geq \frac{\log T}{3\lambda_d T}$.
 1871

1872 We assume that $\eta^* < \frac{\log T}{3\lambda_d T}$. Observe that $\bar{\mathcal{R}}^{\text{bias}}(K, N; \eta)$ decreases with η . So
 1873

$$\begin{aligned} 1874 \quad \bar{\mathcal{R}}^*(K, N) &\geq \bar{\mathcal{R}}^{\text{bias}}(K, N; \eta^*) \geq \bar{\mathcal{R}}^{\text{bias}}(K, N; \eta = \frac{\log T}{3\lambda_d T}) \\ 1875 \quad &= \frac{1}{2}(\mathbf{w}_0 - \mathbf{w}^*)^\top (\mathbf{I} - \eta \mathbf{H})^{2T} \mathbf{H} (\mathbf{w}_0 - \mathbf{w}^*) (1 + o(1)) \Big|_{\eta = \frac{\log T}{3\lambda_d T}} \\ 1876 \quad &= \left(\frac{1}{2} \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta T) \right) (1 + o(1)) \Big|_{\eta = \frac{\log T}{3\lambda_d T}} \\ 1877 \quad &= \Theta\left(\frac{1}{T^{\frac{2}{3}}}\right) = \omega\left(\frac{1}{N}\right), \end{aligned}$$

1890 where the first equality is due to Lemma G.3, the second equality is due to Lemma G.4, and the last
1891 equality is due to Assumption 4.1.

1892 *Proof Step II:* $\eta^* \leq \frac{4D^2d}{\sigma^2 \text{tr}(\mathbf{H}^2)N}$. We assume that $\eta^* > \frac{4D^2d}{\sigma^2 \text{tr}(\mathbf{H}^2)N}$ By Equation (13), we have

$$1894 \quad \widehat{\mathcal{R}}(K, N; \eta) \geq \frac{\eta \sigma^2 \text{tr}(\mathbf{H}^2)}{4D^2} (1 + o(1)) > \frac{\sigma^2 d}{N} (1 + o(1)) > \frac{\sigma^2 d}{2N} (1 + o(1)),$$

1895 which is a contradiction.

1896 A direct corollary is that

$$1897 \quad \bar{\mathcal{R}}^*(K, N) = \widehat{\mathcal{R}}(K, N; \eta^*)(1 + o(1))$$

$$1898 \quad \widehat{\mathcal{R}}(K, N; \eta^*) = \frac{1}{2}(\mathbf{w}_0 - \mathbf{w}^*)^\top (\mathbf{I} - \eta^* \mathbf{H})^{2T} \mathbf{H} (\mathbf{w}_0 - \mathbf{w}^*)$$

$$1899 \quad + \frac{\sigma^2}{N} \text{tr} \left(\frac{(\mathbf{I} - (\mathbf{I} - \eta^* \mathbf{H})^{KN}) ((\mathbf{I} - \eta^* \mathbf{H})^N - (\mathbf{I} - \eta^* \mathbf{H})^{KN})}{\mathbf{I} + (\mathbf{I} - \eta^* \mathbf{H})^N} \right)$$

$$1900 \quad + \frac{\eta^* \sigma^2}{2} \langle \mathbf{H}, (\mathbf{I} - (\mathbf{I} - \eta^* \mathbf{H})^{2T}) (2\mathbf{I} - \eta^* \mathbf{H})^{-1} \rangle$$

$$1901 \quad = \frac{1}{2} \sum_{i=1}^d (\mathbf{P}\boldsymbol{\theta}_0)_i^2 \lambda_i (1 - \eta^* \lambda_i)^{2T} + \sum_{i=1}^d \frac{\sigma^2}{N} \frac{(1 - \eta^* \lambda_i)^N}{1 + (1 - \eta^* \lambda_i)^N}$$

$$1902 \quad + \frac{\eta^* \sigma^2}{4} \text{tr}(\mathbf{H}) - \frac{\eta^* \sigma^2}{4} \sum_{i=1}^d \lambda_i (1 - \eta^* \lambda_i)^{2T} + O((\eta^*)^2)$$

$$1903 \quad = \left(\frac{1}{2} \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta^* T) + \sum_{i=1}^d \frac{\sigma^2}{N} \frac{e^{-N\eta^* \lambda_i}}{1 + e^{-N\eta^* \lambda_i}} + \frac{\eta^* \sigma^2}{4} \text{tr}(\mathbf{H}) \right) (1 + o(1)).$$

1904 *Proof Step III:* $\eta^* = o\left(\frac{1}{N}\right)$.

1905 We assume that there exists a constant $\epsilon > 0$ and a sequence $(N_i)_{i=1}^\infty$ that satisfies $N_i \rightarrow \infty$ when
1906 $i \rightarrow \infty$ and $\eta^*(N_i) \geq \frac{\epsilon}{N_i}$ for all i . As we only conduct our analysis on the sequence $(N_i)_{i=1}^\infty$,
1907 without loss of generality, we take $(N_i)_{i=1}^\infty = \mathbb{N}$.

1908 We define $f(\delta) = \sum_{i=1}^d \sigma^2 \frac{e^{-\delta \lambda_i}}{1 + e^{-\delta \lambda_i}} + \frac{\delta \sigma^2}{4} \text{tr}(\mathbf{H})$. Then we have

$$1909 \quad f'(\delta) = \frac{\sigma^2}{4} \sum_{i=1}^d \lambda_i - \sum_{i=1}^d \sigma^2 \frac{\lambda_i e^{-\delta \lambda_i}}{(1 + e^{-\delta \lambda_i})^2} = \frac{\sigma^2}{4} \sum_{i=1}^d \lambda_i \frac{(1 - e^{-\delta \lambda_i})^2}{(1 + e^{-\delta \lambda_i})^2} > 0 \text{ when } \delta > 0.$$

1910 So

$$1911 \quad f(\epsilon) > f(0) = \frac{\sigma^2 d}{2N},$$

1912 and

$$1913 \quad \bar{\mathcal{R}}^*(K, N) \geq \frac{1}{N} f(\eta^* N) (1 + o(1)) \geq \frac{1}{N} f(\epsilon) (1 + o(1)) > \frac{\sigma^2 d}{2N} (1 + o(1)) = \bar{\mathcal{R}}(K, N; \eta'),$$

1914 which is a contradiction. \square

1915 G.3.3 AN APPROXIMATION OF THE EXCESS RISK, SMALL- K CASE

1916 **Lemma G.7.** Let $\tilde{\theta}_d^2 = \sum_{l=d-n_d+1}^d (\mathbf{P}\boldsymbol{\theta}_0)_l^2$, $\mathbf{H} = \mathbf{P}\mathbf{D}\mathbf{P}^\top$ to be the canonical form under similarity
1917 of \mathbf{H} . Under the conditions in Lemma 4.4, for learning rate $\eta \in \left[\frac{\log KN}{3\lambda_d KN}, \frac{\alpha \log KN}{KN} \right]$ for constant
1918 $\alpha = \frac{D^2 \text{tr}(\mathbf{H})}{\lambda_d \text{tr}(\mathbf{H}^2)}$ and $K = o(\log N)$, then we have the approximation of $\bar{\mathcal{R}}(K, N; \eta)$ as

$$1919 \quad \bar{\mathcal{R}}(K, N; \eta) = M(K, N; \eta) (1 + o(1)),$$

$$1920 \quad M(K, N; \eta) := \frac{1}{2} \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta T) + \frac{\eta \text{tr}(\mathbf{H}) \sigma^2}{4},$$

1921 where steps $T = KN$.

1944
 1945 *Proof.* From Lemma G.1, we have that $\bar{\mathcal{R}}(K, N; \eta) = \widehat{\mathcal{R}}(K, N; \eta)(1 + o(1))$, where $\widehat{\mathcal{R}}(K, N; \eta)$
 1946 can be written as

$$\begin{aligned}
 1947 \quad \widehat{\mathcal{R}}(K, N; \eta) &= \frac{1}{2}(\mathbf{w}_0 - \mathbf{w}^*)^\top (\mathbf{I} - \eta \mathbf{H})^{2T} \mathbf{H} (\mathbf{w}_0 - \mathbf{w}^*) \\
 1948 \quad &+ \frac{\sigma^2}{N} \text{tr} \left(\frac{(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{KN}) ((\mathbf{I} - \eta \mathbf{H})^N - (\mathbf{I} - \eta \mathbf{H})^{KN})}{\mathbf{I} + (\mathbf{I} - \eta \mathbf{H})^N} \right) \\
 1949 \quad &+ \frac{\eta \sigma^2}{2} \langle \mathbf{H}, (\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2T}) (2\mathbf{I} - \eta \mathbf{H})^{-1} \rangle \\
 1950 \quad &= \frac{1}{2} \sum_{i=1}^d (\mathbf{P} \boldsymbol{\theta}_0)_l^2 \lambda_i (1 - \eta \lambda_i)^{2T} + \sum_{i=1}^d \frac{\sigma^2}{N} \frac{(1 - \eta \lambda_i)^N}{1 + (1 - \eta \lambda_i)^N} \\
 1951 \quad &+ \frac{\eta \sigma^2}{4} \text{tr}(\mathbf{H}) - \frac{\eta \sigma^2}{4} \sum_{i=1}^d \lambda_i (1 - \eta \lambda_i)^{2T} + O(\eta^2) \\
 1952 \quad &= \underbrace{\left(\frac{1}{2} \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta T) + \frac{\eta \sigma^2}{4} \text{tr}(\mathbf{H}) \right)}_{M(K, N; \eta)} (1 + o(1)) + O\left(\frac{1}{N}\right) \\
 1953 \quad &= \underbrace{\left(\frac{1}{2} \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta T) + \frac{\eta \sigma^2}{4} \text{tr}(\mathbf{H}) \right)}_{M(K, N; \eta)} (1 + o(1)), \tag{14}
 1954 \\
 1955 \quad &1956 \\
 1956 \quad &1957 \\
 1957 \quad &1958 \\
 1958 \quad &1959 \\
 1959 \quad &1960 \\
 1960 \quad &1961 \\
 1961 \quad &1962 \\
 1962 \quad &1963 \\
 1963 \quad &1964 \\
 1964 \quad &1965 \\
 1965 \quad &1966 \\
 1966 \quad &1967 \\
 1967 \quad &1968 \\
 1968 \quad &1969 \\
 1969 \quad &1970 \\
 1970 \quad &1971 \\
 1971 \quad &1972 \\
 1972 \quad &1973 \\
 1973 \quad &1974 \\
 1974 \quad &1975 \\
 1975 \quad &1976 \\
 1976 \quad &1977 \\
 1977 \quad &1978 \\
 1978 \quad &1979 \\
 1979 \quad &1980 \\
 1980 \quad &1981 \\
 1981 \quad &1982 \\
 1982 \quad &1983 \\
 1983 \quad &1984 \\
 1984 \quad &1985 \\
 1985 \quad &1986 \\
 1986 \quad &1987 \\
 1987 \quad &1988 \\
 1988 \quad &1989 \\
 1989 \quad &1990 \\
 1990 \quad &1991 \\
 1991 \quad &1992 \\
 1992 \quad &1993 \\
 1993 \quad &1994 \\
 1994 \quad &1995 \\
 1995 \quad &1996 \\
 1996 \quad &1997 \\
 1997 \quad &1998
 \end{aligned}$$

1968 where the second to last equation uses Lemma G.4 and the fact that $\eta(1 - \eta \lambda_d)^{2T} = o(M(K, N; \eta))$
 1969 for $\eta \in [\frac{\log T}{3\lambda_d T}, \frac{\alpha \log T}{T}]$, and the last equation uses the fact that when $K = o(\log N)$, $O\left(\frac{1}{N}\right) =$
 1970 $o\left(\frac{\log(N)}{K, N}\right) = o(M(T; \eta))$. \square

1974 G.3.4 AN APPROXIMATION OF THE EXCESS RISK, LARGE- K CASE

1975 **Lemma G.8.** *Under the conditions in Lemma 4.4, for $\eta \in [\frac{\log T}{3\lambda_d T}, o(\frac{1}{N})]$, and $K = \omega(\log N)$, we
 1976 have*

$$\begin{aligned}
 1977 \quad \mathbb{E}[\bar{\mathcal{R}}(K, N; \eta)] &= M(K, N; \eta)(1 + o(1)), \\
 1978 \quad M(K, N; \eta) &= \frac{1}{2} \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta T) + \frac{\eta \text{tr}(\mathbf{H}) \sigma^2}{4} + \frac{\sigma^2 d}{2N},
 1979
 \end{aligned}$$

1980 where $\tilde{\theta}_d^2 := \sum_{l=d-n_d+1}^d (\mathbf{P} \boldsymbol{\theta}_0)_l^2$, and $\mathbf{P} \mathbf{D} \mathbf{P}^\top$ is the canonical form under similarity of \mathbf{H} .

1981 *Proof.* Given $K = O(N^{0.1})$, one can verify that

$$\lim_{N \rightarrow \infty} K \eta T^{\frac{3}{4}} = \lim_{N \rightarrow \infty} \frac{K^{\frac{7}{4}} N^{\frac{3}{4}}}{N} \eta N = 0.$$

1982 So condition $K = o\left(\eta^{-1} T^{-\frac{3}{4}}\right)$ is satisfied, thus by invoking Lemma G.1, we have $\bar{\mathcal{R}}(K, N; \eta) =$
 1983 $\widehat{\mathcal{R}}(K, N; \eta)(1 + o(1))$.

1984 Note that when $\eta = o\left(\frac{1}{N}\right)$, for any $i \in [1, d]$, we have

$$(1 - \lambda_i \eta)^N = e^{-\lambda_i \eta N + O(\eta^2 N)} = 1 + o(1).$$

1998 Combining this with Lemma G.4, we have
 1999

$$\begin{aligned}
 2000 \quad \widehat{\mathcal{R}}(K, N; \eta) &= \frac{1}{2}(\mathbf{w}_0 - \mathbf{w}^*)^\top (\mathbf{I} - \eta \mathbf{H})^{2T} \mathbf{H} (\mathbf{w}_0 - \mathbf{w}^*) \\
 2001 \quad &+ \frac{\sigma^2}{N} \text{tr} \left(\frac{(\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{KN}) ((\mathbf{I} - \eta \mathbf{H})^N - (\mathbf{I} - \eta \mathbf{H})^{KN})}{\mathbf{I} + (\mathbf{I} - \eta \mathbf{H})^N} \right) \\
 2002 \quad &+ \frac{\eta \sigma^2}{2} \langle \mathbf{H}, (\mathbf{I} - (\mathbf{I} - \eta \mathbf{H})^{2T}) (2\mathbf{I} - \eta \mathbf{H})^{-1} \rangle \\
 2003 \quad &= \frac{1}{2} \sum_{i=1}^d (\mathbf{P} \boldsymbol{\theta}_0)_i^2 \lambda_i (1 - \eta \lambda_i)^{2T} + \sum_{i=1}^d \frac{\sigma^2}{N} \frac{(1 - \eta \lambda_i)^N}{1 + (1 - \eta \lambda_i)^N} \\
 2004 \quad &+ \frac{\eta \sigma^2}{4} \text{tr}(\mathbf{H}) - \frac{\eta \sigma^2}{4} \sum_{i=1}^d \lambda_i (1 - \eta \lambda_i)^{2T} + O(\eta^2) \\
 2005 \quad &= \underbrace{\left(\frac{1}{2} \tilde{\theta}_d^2 \lambda_d \exp(-2\lambda_d \eta T) + \frac{\eta \sigma^2}{4} \text{tr}(\mathbf{H}) \right)}_{M(K, N; \eta)} + \frac{\sigma^2 d}{2N} (1 + o(1)), \tag{15}
 2006 \quad &
 \end{aligned}$$

2007 which concludes the proof. \square
 2008

2009 G.4 STEP IV: DERIVING THE APPROXIMATELY OPTIMAL LEARNING RATE, PROOF OF 2010 LEMMA 4.4

2011 The proof of Lemma 4.4 for the small- K case and large- K case follows a similar pattern. First, we
 2012 minimize the approximate excess risk obtained in Section G.3.3 and Section G.3.4. Then we conduct
 2013 an error bound analysis and complete the proof.
 2014

2015 G.4.1 PROOF OF LEMMA 4.4, SMALL K

2016 Part I: Minimizing the Approximation of the Excess Risk

2017 **Lemma G.9.** *Under Assumption 4.1 and 4.3, we consider K -epoch SGD with N fresh data and
 2018 learning rate η satisfying $\eta \in [\frac{\log T}{3\lambda_d T}, \frac{\alpha \log T}{T}]$, where steps $T := KN$ and α is some constant
 2019 independent of T , but can depend on D and $\lambda_1, \lambda_2, \dots, \lambda_d$. Then when $K = o(\log N)$, the chosen
 2020 learning rate $\eta' = \frac{\log \rho T}{2\lambda_d T} = \arg \min_{\eta \in [\frac{\log T}{3\lambda_d T}, \frac{\alpha \log T}{T}]} M(K, N; \eta)$.*

2021 *Proof.* Given Lemma G.7, we take the derivative of $M(K, N; \eta)$ with respect to η
 2022

$$\frac{\partial M}{\partial \eta} = -\tilde{\theta}_d^2 \lambda_d^2 T \exp(-2\lambda_d \eta T) + \frac{\text{tr}(\mathbf{H}) \sigma^2}{4}.$$

2023 Define $\rho := \frac{4\tilde{\theta}_d^2 \lambda_d}{\text{tr}(\mathbf{H}) \sigma^2}$, and we let $\frac{\partial M}{\partial \eta} = 0$, then we get
 2024

$$\begin{aligned}
 2025 \quad 0 &= -\rho T \exp(-2\lambda_d \eta T) + 1 \\
 2026 \quad \rho T &= \exp(2\lambda_d \eta T) \\
 2027 \quad \eta &= \frac{\log \rho T}{2\lambda_d T}.
 \end{aligned}$$

2028 The above equation completes the proof. \square
 2029

2030 Part II: Error Bound Analysis

2031 **Lemma G.10.** *Consider K -epoch SGD with N fresh data and learning rate η . Given a set of learning
 2032 rate values Γ , and an excess risk estimate that satisfies $\widehat{\mathcal{R}}(K, N; \eta) = M(K, N; \eta)(1 + o(1))$ when
 2033 $\eta \in \Gamma$. Assume that $\eta' = \arg \min_{\Gamma} M(K, N; \eta)$ and $\eta^* \in \Gamma$. Then we have $\widehat{\mathcal{R}}(K, N; \eta'(K, N)) =$
 2034 $\mathcal{R}^*(K, N)(1 + o(1))$.*

2052 *Proof.* According to the optimality of η^* , it holds that
 2053

$$2054 \quad \bar{\mathcal{R}}^*(K, N) \leq \bar{\mathcal{R}}(K, N; \eta') = M(K, N; \eta)(1 + o(1)).$$

2055 Also, according to the optimality of η' , it holds that
 2056

$$2057 \quad M(K, N; \eta')(1 + o(1)) \leq M(K, N; \eta^*)(1 + o(1)) = \bar{\mathcal{R}}^*(K, N)$$

2058 Combining the above two equations gives
 2059

$$2060 \quad \bar{\mathcal{R}}(K, N; \eta') = \bar{\mathcal{R}}^*(K, N)(1 + o(1)).$$

2061 \square

2062 Combine the above two lemmas and we finish the whole proof.
 2063

2064 G.4.2 PROOF OF LEMMA 4.4, LARGE K

2065 **Part I: Minimizing the Approximation of the Excess Risk**

2066 **Lemma G.11.** *Under Assumption 4.1 and 4.3, we consider K -epoch SGD with N fresh data and
 2067 learning rate η satisfying $\eta \in [\frac{\log T}{3\lambda_d T}, o(\frac{1}{N})]$. Then when $K = \omega(\log N)$, the chosen learning rate
 2068 $\eta' = \frac{\log \rho T}{2\lambda_d T} = \arg \min_{[\frac{\log T}{3\lambda_d T}, o(\frac{1}{N})]} M(K, N; \eta)$.*

2069 *Proof.* Given Lemma G.8, we compute the global minima of $M(K, N; \eta)$, we have $\eta' = \frac{\log T}{2\lambda_d T} +$
 2070 $O(\frac{1}{T}) = \arg \min_{\eta \in \mathbb{R}} M(K, N; \eta)$, which lies in the regime $[\frac{\log T}{3\lambda_d T}, o(\frac{1}{N})]$ when N is sufficiently
 2071 large. \square

2072 **Part II: Error Bound Analysis** The proof of Lemma 4.4 concludes directly by applying Lemmas
 2073 G.6, G.8, G.10 and G.11.

2074 Combine the above two parts and we finish the whole proof.
 2075

2076 G.5 PROOF OF THEOREM 4.1

2077 *Proof.* Notice from Lemma G.1 and Lemma G.4, we have that
 2078

$$2079 \quad \bar{\mathcal{R}}(K, N; \eta) = \underbrace{\frac{1}{2} \tilde{\theta}_d^2 \lambda_d (1 - \eta \lambda_d)^{2KN} (1 + o(1))}_{\widehat{\mathcal{R}}_1(K, N, \eta)} + \underbrace{\sum_{i=1}^d \frac{\sigma^2}{N} \frac{(1 - \eta \lambda_i)^N}{1 + (1 - \eta \lambda_i)^N}}_{\widehat{\mathcal{R}}_2(K, N, \eta)} + \underbrace{\frac{\eta \sigma^2}{4} \text{tr}(\mathbf{H}) - \frac{n_d \eta \sigma^2}{4} \lambda_d (1 - \eta \lambda_d)^{2KN} (1 + o(1))}_{\widehat{\mathcal{R}}_3(K, N, \eta)} \text{ when } \eta \in \left[\omega\left(\frac{1}{T}\right), o\left(\frac{1}{T^{\frac{3}{4}}}\right) \right].$$

2080 Next, we carefully analyze the magnitude of $\widehat{\mathcal{R}}_1(K, N, \eta)$, $\widehat{\mathcal{R}}_2(K, N, \eta)$, and $\widehat{\mathcal{R}}_3(K, N, \eta)$, and
 2081 using these results, we can simplify the excess risk expression.

2082 Now, We take $\eta = \frac{\log \rho T}{2\lambda_d T} = \frac{\log KN}{2\lambda_d KN} + O\left(\frac{1}{T}\right)$ in Lemma 4.4, then
 2083

$$2084 \quad (1 - \lambda_d \eta)^{2KN} = \exp\left(2KN \log\left(1 - \frac{\log KN}{2KN} - O\left(\frac{1}{T}\right)\right)\right) \\ 2085 \quad = \exp(-\log KN + O(1)) \\ 2086 \quad = O\left(\frac{1}{T}\right).$$

2106 Thus

$$\begin{aligned}
2108 \quad \widehat{\mathcal{R}}_1(K, N, \eta) &= \frac{1}{2} \tilde{\theta}_d^2 \lambda_d (1 - \lambda_d \eta)^{2KN} \\
2109 \\
2110 &= O\left(\frac{1}{T}\right),
2111
\end{aligned}$$

2112 and

$$\begin{aligned}
2114 \quad \widehat{\mathcal{R}}_3(K, N, \eta) &= \frac{\sigma^2 \text{tr}(\mathbf{H}) \log T}{8\lambda_d T} - \frac{n_d \sigma^2 \log T}{8\lambda_d T} \lambda_d (1 - \lambda_d \eta)^{2KN} (1 + o(1)) \\
2115 \\
2116 &= \frac{\sigma^2 \text{tr}(\mathbf{H}) \log T}{8\lambda_d T} \left(1 + O\left(\frac{1}{T}\right)\right) \\
2117 \\
2118 &= \frac{\sigma^2 \text{tr}(\mathbf{H}) \log T}{8\lambda_d T} (1 + o(1)) \\
2119 \\
2120 &= \omega(\widehat{\mathcal{R}}_1(K, N, \eta)).
2121
\end{aligned}$$

2123 Next, we discuss two scenarios where K is relatively small and K is relatively large, to be specific,
2124 $K = o(\log N)$ and $K = \omega(\log N)$.2126 **When $K = o(\log N)$,** We have

$$\begin{aligned}
2127 \quad (1 - \lambda_i \eta)^N &= \left(1 - \frac{\log KN}{2KN} \rho_i + O\left(\frac{1}{KN}\right)\right)^N \\
2128 \\
2129 &= \exp\left(N \log\left(1 - \frac{\log KN}{2KN} \rho_i + O\left(\frac{1}{KN}\right)\right)\right) \\
2130 \\
2131 &= \exp\left(-\frac{\log KN}{2K} \rho_i (1 + o(1))\right) \\
2132 \\
2133 &= o(1).
2134
\end{aligned}$$

2136 As a consequence,

$$\begin{aligned}
2137 \quad \widehat{\mathcal{R}}_2(K, N, \eta) &= \sum_{i=1}^d \frac{\sigma^2}{N} \frac{o(1)}{1 + o(1)} \\
2138 \\
2139 &= o\left(\frac{1}{N}\right).
2140
\end{aligned}$$

2142 Meanwhile,

$$\widehat{\mathcal{R}}_3(K, N, \eta) = O\left(\frac{\log KN}{KN}\right) = O\left(\frac{1}{N}\right) = \omega\left(\widehat{\mathcal{R}}_2(K, N, \eta)\right).$$

2146 So

$$\bar{\mathcal{R}}^*(K, N) = \widehat{\mathcal{R}}(K, N; \eta)(1 + o(1)) = \frac{\sigma^2 \text{tr}(\mathbf{H}) \log T}{8\lambda_d T} (1 + o(1)).$$

2151 **When $K = \omega(\log N)$,** we have

$$\begin{aligned}
2152 \quad (1 - \lambda_i \eta)^N &= \left(1 - \frac{\log KN}{2KN} \rho_i + O\left(\frac{1}{KN}\right)\right)^N \\
2153 \\
2154 &= \exp\left(N \log\left(1 - \frac{\log KN}{2KN} \rho_i + O\left(\frac{1}{KN}\right)\right)\right) \\
2155 \\
2156 &= \exp\left(-\frac{\log KN}{2K} \rho_i + O\left(\frac{1}{K}\right)\right) = \exp(o(1)) \\
2157 \\
2158 &= 1 + o(1).
2159
\end{aligned}$$

2160 So

$$\begin{aligned}
\widehat{\mathcal{R}}_2(K, N, \eta) &= \sum_{i=1}^d \frac{\sigma^2}{N} \frac{1+o(1)}{2+o(1)} = \frac{\sigma^2 d}{2N} (1+o(1)) \\
&= O\left(\frac{1}{N}\right). \\
\widehat{\mathcal{R}}_3(K, N, \eta) &= O\left(\frac{\log KN}{KN}\right) = o\left(\frac{1}{N}\right) = o\left(\widehat{\mathcal{R}}_2(K, N, \eta)\right).
\end{aligned}$$

2169 As a result, we have

2170
$$\bar{\mathcal{R}}^*(K, N) = \widehat{\mathcal{R}}(K, N; \eta)(1+o(1)) = \frac{\sigma^2 d}{2N} (1+o_N(1)).$$
 2172

2173 G.6 PROOF OF THEOREM 4.2

2175 Now we establish the formulation of $E(K, N)$ by solving the equation $\bar{\mathcal{R}}^*(1, T') = \bar{\mathcal{R}}^*(K, N).$ 21762177 When $K = o(\log N)$, solving $\bar{\mathcal{R}}^*(1, T') = \bar{\mathcal{R}}^*(K, N)$, we get

$$\begin{aligned}
\frac{\sigma^2 \text{tr}(\mathbf{H}) \log T'}{8\lambda_d T'} (1+o_{T'}(1)) &= \frac{\sigma^2 \text{tr}(\mathbf{H}) \log T}{8\lambda_d T} (1+o_T(1)) \\
\frac{\log T'}{T'} (1+o_{T'}(1)) &= \frac{\log T}{T} (1+o_T(1)). \tag{16}
\end{aligned}$$

2183 According to the definition of the small o notation, there exists a constant \tilde{T}_0 such that when $T > \tilde{T}_0$,
2184 the right hand side is smaller than $\max_{T' \in 1, 2, 3} \frac{\log T'}{T'} (1+o_{T'}(1)).$ So W.L.O.G, we could assume
2185 that $T' \geq 3$ in the following and use the fact that the function $\frac{\log x}{x}$ is monotonously decreasing when
2186 $x > 3.$ 2187 **Lemma G.12.** *Given T' and N satisfying Equation (16), it holds that $T' \asymp T$ when $T > T_0$ for
2188 some constant $T_0.$* 2189 *Proof.* Notice that there exists T_1 such that $|o_T(1)| < \frac{1}{2}$ when $T > T_1$, and $o_{T'}(1)$ is bounded.
2190 Furthermore, $o_{T'}(1) > -1$, because the left hand side is strictly greater than zero due to the fact that
2191 $\eta < \frac{1}{D^2}.$ So when $T > T_1$, we have

2194
$$c_4 \frac{\log T'}{T'} \leq \frac{3}{2} \frac{\log T}{T} \tag{17}$$

2196
$$c_5 \frac{\log T'}{T'} \geq \frac{1}{2} \frac{\log T}{T} \tag{18}$$

2198 for two constants $c_4 \leq 1 \leq c_5.$ We claim that $T' \geq \frac{c_4}{3} T =: \alpha T$ when $T \geq \frac{1}{\alpha^2};$ otherwise,

$$\begin{aligned}
c_4 \frac{\log T'}{T'} &\geq c_4 \frac{\log \alpha T}{\alpha T} \\
&= \frac{3 \log \alpha T}{T} \\
&\geq \frac{3 \log T}{2T} \quad \text{when } T \geq \frac{1}{\alpha^2},
\end{aligned}$$

2206 which contradicts Equation (17). We also have $T' \leq 3c_5 T =: \beta T$ when $T \geq \beta^2$ by a similar
2207 argument; otherwise,

$$\begin{aligned}
c_5 \frac{\log T'}{T'} &\leq c_5 \frac{\log \beta T}{\beta T} \\
&= \frac{\log \beta T}{3T} \\
&\leq \frac{\log T}{2T} \quad \text{when } T \geq \beta^2,
\end{aligned}$$

which contradicts Equation (18). So $T' \succsim T$ when $T \geq \min(T_1, \frac{1}{\alpha^2}, \beta^2, \tilde{T}_0) = T_0$.

Next, we prove the first part in Theorem 4.2, which is $\mathbb{E}(K, N) = K(1 + o(1))$ when $K = o(\log N)$.

We define $F(T) = \frac{\log T}{T}$, $\delta(T) = |o_T(1)|$, and $\epsilon(T') = |o_{T'}(1)|$, so

$$F(T')(1 - \epsilon(T')) \leq F(T)(1 + \delta(T))$$

$$F(T')(1 + \epsilon(T')) \geq F(T)(1 - \delta(T))$$

Consequently, we have

$$-F(T)\delta(T) - F(T')\epsilon(T') \leq F(T') - F(T) \leq F(T)\delta(T) + F(T')\epsilon(T'). \quad (19)$$

So due to the convexity of $F(T)$,

$$-\frac{\log T - 1}{T^2}(T' - T) \leq F'(T)(T' - T) \leq F(T') - F(T) \leq F(T)\delta(T) + F(T')\epsilon(T') = \frac{\log T}{T}|o(1)|.$$

Thus we have

$$T' \geq T(1 - o(1)).$$

The above equation completes the proof. \square

Combining Equation (16) and Lemma G.12 gets

$$-\frac{\log T - 1}{T^2}(T - T') \asymp -\frac{\log T' - 1}{T'^2}(T - T'). \quad (20)$$

Further using Equation (19),

$$F'(T')(T - T') \leq F(T) - F(T') \leq F(T)\delta(T) + F(T')\epsilon(T') \quad (21)$$

Combining Equation (20) and Equation (21) gives

$$T' \leq T(1 + o(1)).$$

Substituting the definition of $E(K, N)$ and we get the first part in Theorem 4.2.

When $K = \omega(\log N)$, solving $\bar{\mathcal{R}}^*(1, T') = \bar{\mathcal{R}}^*(K, N)$, we get

$$\frac{\sigma^2 \text{tr}(\mathbf{H}) \log T'}{8\lambda_d T'}(1 + o_{T'}(1)) = \frac{\sigma^2 d}{2N}(1 + o_N(1)). \quad (22)$$

There exists a constant \tilde{N}_0 such that when $N > \tilde{N}_0$, the right hand side is smaller than the minimal value of $\bar{\mathcal{R}}^*(1, T')$ when T' is finite, that is, $\min_{T' \in 1, 2, 3} \frac{\sigma^2 \text{tr}(\mathbf{H}) \log T'}{8\lambda_d T'}(1 + o_{T'}(1))$. So W.L.O.G, we could assume that $T' \geq 3$ in the following and use the fact that the function $\frac{\log x}{x}$ is monotonously decreasing when $x > 3$.

Now we provide a lemma to give a loose bound of T' fisrt, and then we apply the lemma to get the formula of $E(K, N)$.

Lemma G.13. *Given T' and N satisfying Equation (22). It holds that $N \leq T' \leq N^{\frac{3}{2}}$ when $N \geq N_0$ for some constant N_0 .*

Proof. Notice that there exists N_1 such that $|o_N(1)| < \frac{1}{2}$ when $N > N_1$, and $o_{T'}(1)$ is bounded. Furthermore, $o_{T'}(1) > -1$, because the left hand side is strictly greater than zero due to the fact that $\eta < \frac{1}{D^2}$. So when $N > N_1$, for the left side in Equation (22), we have

$$c_6 \frac{\log T'}{T'} \leq \frac{\sigma^2 \text{tr}(\mathbf{H}) \log T'}{8\lambda_d T'}(1 + o_{T'}(1)) \leq c_7 \frac{\log T'}{T'},$$

2268 where $c_6 < c_7$ are two positive constants. And for the right side,

$$\frac{c_8}{N} \leq \frac{\sigma^2 d}{2N} (1 + o_N(1)) \leq \frac{c_9}{N},$$

2273 where $c_8 < c_9$ are two positive constants. Then we prove that $T' \geq N$ when $N \geq \max(e^{\frac{c_9}{c_6}}, 3)$.

2274 Otherwise, we have

$$\frac{\sigma^2 \text{tr}(\mathbf{H}) \log T'}{8\lambda_d T'} (1 + o_{T'}(1)) \geq c_6 \frac{\log T'}{T'} \geq c_6 \frac{\log N}{N} \geq \frac{c_9}{N} \geq \frac{\sigma^2 d}{2N} (1 + o_N(1)),$$

2278 which is a contradiction. Then we prove that $T' \leq N^{\frac{3}{2}}$ when $N \geq \left(\frac{c_{10}}{c_8}\right)^4$ for some constant c_{10} .

2280 Otherwise, we have

$$\frac{\sigma^2 \text{tr}(\mathbf{H}) \log T'}{8\lambda_d T'} (1 + o_{T'}(1)) \leq c_7 \frac{\log T'}{T'} \leq c_7 \frac{\log N^{\frac{3}{2}}}{N^{\frac{3}{2}}} = \frac{3c_7}{2} \frac{\log N}{N^{\frac{3}{2}}} \leq \frac{c_{10}}{N^{\frac{5}{4}}} \leq \frac{c_8}{N} \leq \frac{\sigma^2 d}{2N} (1 + o_N(1)),$$

2284 which is another contradiction. The third inequality uses the fact that $\frac{\log N}{N^{\frac{1}{4}}}$ is bounded. We take

$$N_0 = \max\left(N_1, e^{\frac{c_9}{c_6}}, \left(\frac{c_{10}}{c_8}\right)^4, \tilde{N}_0\right) \text{ and we prove the claim.} \quad \square$$

2289 Combining Equation (22) and Lemma G.13 gives

$$T' = \Theta(N \log T') = \Theta(N \log N). \quad (23)$$

2292 Again, combining Equation (23) and Equation (22), and we get

$$T' = \frac{\text{tr}(\mathbf{H}) N \log T'}{4\lambda_d d} (1 + o_N(1)) = \frac{\text{tr}(\mathbf{H}) N \log N}{4\lambda_d d} (1 + o_N(1)),$$

2296 and

$$E(K, N) = \frac{T'}{N} = \frac{\text{tr}(\mathbf{H}) \log N}{4\lambda_d d} (1 + o_N(1))$$

2300 as a direct corollary.

2302 The above equation immediately finish the proof. \square

2304 H PROOF OUTLINE FOR THE SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

2306 In this section, we give the proof sketch of Lemma I.1 and Theorem 5.2-5.3. Lemma I.1 gives a
2307 general expression of the excess risk, Theorem 5.2 and Theorem 5.3 characterise the behavior of
2308 $E(K, N)$ respectively under power spectrum and logarithm power spectrum assumption. Their proof
2309 outlines are given separately as follows.

2311 **1. Proof sketch of Lemma I.1.** We exploit the properties that the sequential updates are commuta-
2312 tive and all finite-order moments of data are computable, and we obtain the result through a direct
2313 calculation.

2315 **2. Proof sketch of Theorem 5.2 and Theorem 5.3.** For Theorem 5.2, we consider two cases
2316 when K is relatively small and K is relatively large. As a special case, one-pass scenario belongs to
2317 the small- K case. We first derive matching upper bounds and lower bounds for high-dimensional
2318 cases for both the two regimes. The core of the proof lies in determining $E(K, N)$ by solving
2319 $\mathbb{E}\mathcal{R}(\mathbf{w}_{T'}) = \mathbb{E}\mathcal{R}(\mathbf{w}_{K,N})$, which requires an asymptotic analysis. We tackle this issue with two
2320 steps. First we prove a loose bound for T' for N beyond a threshold, then we refine the obtained
2321 results and utilize the convexity of loss approximation to derive more precise estimates. The proof of
2322 Theorem 5.3 is similar to that of Theorem 5.2.

2322 **I PROOF OF MAIN RESULTS FOR THE SOLVABLE CASE WITH**
 2323 **ZIPF-DISTRIBUTED DATA**
 2324

2325 Similar to the proof insights in Section 4, the first move to get the formula of the effective reuse rate
 2326 is to get an accurate proxy of the excess risk. Here, leveraging the simplicity of the setting, we can
 2327 derive a general closed formula for the excess risk.

2328 **Lemma I.1.** *Under Assumption 5.1, the excess risk for K-epoch training over N fresh data, with
 2329 learning rate η can be given by*

$$2330 \quad \bar{\mathcal{R}}(K, N; \eta) = \frac{1}{2} \left\langle \mathbf{P} \Lambda, \left(\mathbf{I} - \mathbf{P} + \mathbf{P} (\mathbf{I} - \eta \Lambda)^{2K} \right)^N \right\rangle,$$

2333 where the expectation is over the randomness of \mathbf{w}^* and training datasets $\{\mathbf{x}_i, y_i\}_{i=0}^{N-1}$.

2334 The above lemma states that we can explicitly write out the exact expression for the excess risk.
 2335 From the above expression for the excess risk, we can observe that, in the absence of label noise
 2336 interference, and under the condition that the absolute values of all elements of the diagonal matrix
 2337 $\mathbf{I} - \eta \Lambda$ are less than 1, the optimal learning rate can be of the constant order. Therefore, in the
 2338 subsequent study of the effective reuse rate, we consider using the same learning rate $\eta = \Theta(1)$ for
 2339 both multi-epoch and one-pass SGD.

2340 It is worth noting that here we are actually describing a more general problem setting than the Zipf
 2341 law, as we only impose constraints on the power spectrum of the Hessian matrix \mathbf{H} . In contrast, the
 2342 probability matrix \mathbf{P} can follow Zipf's law or any other law. In the remainder of this section, we
 2343 first consider the classic Zipf's law setting, where \mathbf{P} follows a power law, and the data matrix Λ also
 2344 follows a power law, which is consistent with the previous power law analysis. In Section 5.2, we
 2345 explore the case where \mathbf{P} follows a log-power spectrum (Lin et al., 2024), and investigate the impact
 2346 of changing the spectrum's properties on the resulting effective reuse rate formula.

2347 **I.1 A CLOSED FORMULA FOR THE EXCESS RISK: PROOF OF LEMMA I.1**

2348 We first write out the update of parameter after K epochs

$$2349 \quad \theta_{KN} = \mathbf{A}^{(K)} \cdots \mathbf{A}^{(1)} \theta_0 = \prod_{l=K}^1 \mathbf{A}^{(l)} \theta_0 \\ 2350 \quad = (\mathbf{I} - \eta \mathbf{x}_{N-1} \mathbf{x}_{N-1}^\top)^K \cdots (\mathbf{I} - \eta \mathbf{x}_0 \mathbf{x}_0^\top)^K \theta_0.$$

2355 Then we get the excess risk expression as

$$2356 \quad \bar{\mathcal{R}}(K, N; \eta) = \mathbb{E} \frac{1}{2} \theta_{KN}^\top \mathbf{H} \theta_{KN} \\ 2357 \quad = \mathbb{E} \frac{1}{2} \theta_0^\top \mathbf{P} \Lambda (\mathbf{I} - \eta \mathbf{x}_{N-1} \mathbf{x}_{N-1}^\top)^{2K} \cdots (\mathbf{I} - \eta \mathbf{x}_0 \mathbf{x}_0^\top)^{2K} \theta_0.$$

2360 Assumption 5.1 gives

$$2361 \quad \bar{\mathcal{R}}(K, N; \eta) = \mathbb{E} \frac{1}{2} \left\langle \theta_0 \theta_0^\top, \mathbf{P} \Lambda (\mathbf{I} - \eta \mathbf{x}_{N-1} \mathbf{x}_{N-1}^\top)^{2K} \cdots (\mathbf{I} - \eta \mathbf{x}_0 \mathbf{x}_0^\top)^{2K} \right\rangle \\ 2362 \quad = \frac{1}{2} \left\langle \mathbf{I}, \mathbf{P} \Lambda \left(\mathbb{E} (\mathbf{I} - \eta \mathbf{x} \mathbf{x}^\top)^{2K} \right)^N \right\rangle.$$

2365 Direct calculation gives

$$2366 \quad \mathbb{E} (\mathbf{x} \mathbf{x}^\top)^j = \sum_{i=1}^d \mu_i^{2j-2} p_i \mu_i^2 e_i e_i^\top = \mathbf{P} \Lambda^j,$$

2369 and

$$2370 \quad \mathbb{E} [(\mathbf{I} - \eta \mathbf{x} \mathbf{x}^\top)^{2K}] = \mathbf{I} + \sum_{j=1}^{2K} \binom{2K}{j} (-1)^j \eta^j \mathbf{P} \Lambda^j = \mathbf{I} - \mathbf{P} + \mathbf{P} (\mathbf{I} - \eta \Lambda)^{2K}.$$

2373 Then we can write out the excess risk as

$$2374 \quad \bar{\mathcal{R}}(K, N; \eta) = \frac{1}{2} \left\langle \mathbf{P} \Lambda, (\mathbf{I} - \mathbf{P} + \mathbf{P} (\mathbf{I} - \eta \Lambda)^{2K})^N \right\rangle.$$

2375 The above equation completes the proof.

2376 I.2 SCALING LAWS FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.1
2377

2378 Before we begin our main part of the proof, note that for all $\eta = \Theta(1)$ and $\eta \leq 2$, there exists
2379 $d_1 = \Theta(1) > 0$ such that $1 - \frac{\eta}{i^b} > 0$ when $i > d_1$. Then we divide the expected excess risk into two
2380 parts:

$$\begin{aligned} \bar{\mathcal{R}}(K, N; \eta) &= \frac{1}{2} \sum_{i=1}^d \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} \left(1 - \left(1 - \frac{\eta}{i^b} \right)^{2K} \right) \right)^N \\ &= \underbrace{\frac{1}{2} \sum_{i=1}^{d_1} \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} \left(1 - \left(1 - \frac{\eta}{i^b} \right)^{2K} \right) \right)^N}_{S_1(K, N; \eta)} \\ &\quad + \underbrace{\frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} \left(1 - \left(1 - \frac{\eta}{i^b} \right)^{2K} \right) \right)^N}_{S_2(K, N; \eta)}. \end{aligned}$$

2394 The intuition behind our proof here is quite similar to what we do in Appendix G.5. We first separately
2395 simplify the expression of the excess risk when $K = o(N^{\frac{b}{a-b}})$ and $K = \omega(N^{\frac{b}{a-b}})$. The proofs for
2396 both the small- K and large- K regimes proceed in parallel. We first control $S_2(K, N; \eta)$ over a broad
2397 range of learning rates and identify a near-optimal η' for which S_1 is negligible compared to S_2 . This
2398 allows us to approximate $\bar{\mathcal{R}}^*(K, N)$ via $\bar{\mathcal{R}}(K, N; \eta')$ and $S_2(K, N; \eta^*)$.
2399

2400 I.2.1 PROOF OF THEOREM 5.1: SMALL- K CASE
2401

2402 The Expected Excess Risk Approximation.

2403 Lemma I.2. Suppose the assumptions in Theorem 5.2 hold. When $K = o(N^{\frac{b}{a-b}})$ and $\eta = \Theta(1)$, we
2404 define the estimator of $S_2(K, N; \eta)$ as
2405

$$\tilde{S}_2(K, N; \eta) := \frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}}.$$

2406 Then we have $S_2(K, N; \eta) = \tilde{S}_2(K, N; \eta)(1 + o(1))$, and $\tilde{S}_2(K, N; \eta) \approx \frac{1}{(KN)^{\frac{a-1}{a}}}$.
2407
2408

2409 *Proof.* By the fact that $K = o(N^{\frac{b}{a-b}})$, there exists a constant N_2 such that when $N \geq N_2$, $K \leq$
2410 $N^{\frac{b}{a-b}}$. And we define $F(x) := \frac{c}{x^a} \left(1 - \frac{c}{x^{a-b}} \left(1 - \left(1 - \frac{\eta}{x^b} \right)^{2K} \right) \right)^N$. Direct observation gives us
2411 that under Assumption 5.2, $\bar{\mathcal{R}}(K, N; \eta) \propto \sum_{i=1}^d F(i)$. Next we take the derivative of F and analyze
2412 its maximizer.

$$\begin{aligned} F'(x) &= -\frac{ac}{x^{a+1}} \left(1 - \frac{c}{x^{a-b}} + \frac{c}{x^{a-b}} \left(1 - \frac{\eta}{x^b} \right)^{2K} \right)^N \\ &\quad + \frac{cN}{x^a} \left(1 - \frac{c}{x^{a-b}} + \frac{c}{x^{a-b}} \left(1 - \frac{\eta}{x^b} \right)^{2K} \right)^{N-1} \cdot \Phi(x) \\ &= \frac{c}{x^a} \left(1 - \frac{c}{x^{a-b}} + \frac{c}{x^{a-b}} \left(1 - \frac{\eta}{x^b} \right)^{2K} \right)^{N-1} \\ &\quad \left(-\frac{a}{x} \left(1 - \frac{c}{x^{a-b}} + \frac{c}{x^{a-b}} \left(1 - \frac{\eta}{x^b} \right)^{2K} \right) + N\Phi(x) \right) \\ &= \frac{c}{x^{2a-b+1}} \left(1 - \frac{c}{x^{a-b}} + \frac{c}{x^{a-b}} \left(1 - \frac{\eta}{x^b} \right)^{2K} \right)^{N-1} \cdot G(x). \end{aligned}$$

2430 where we define

$$2432 \quad G(x) := -a \left(x^{a-b} - c + c \left(1 - \frac{\eta}{x^b} \right)^{2K} \right) \\ 2433 \quad + N \left((a-b)c - (a-b)c \left(1 - \frac{\eta}{x^b} \right)^{2K} + \frac{2cKb\eta}{x^b} \left(1 - \frac{\eta}{x^b} \right)^{2K-1} \right), \\ 2434 \\ 2435 \\ 2436$$

and

$$2438 \quad \Phi(x) := \left(\frac{(a-b)c}{x^{a-b+1}} - \frac{(a-b)c}{x^{a-b+1}} \left(1 - \frac{\eta}{x^b} \right)^{2K} + \frac{2cKb\eta}{x^{a+1}} \left(1 - \frac{\eta}{x^b} \right)^{2K-1} \right). \\ 2439 \\ 2440$$

2441 We denote the maximizer of $F(x)$ by x_0 , so $G(x_0) = 0$. We claim that:

$$2443 \quad \text{when } N \geq N_2, x_0 \geq \min \left(\left(\frac{KN(a-b)c\eta}{2a} \right)^{\frac{1}{a}}, 6^{\frac{1}{b}}(KN)^{\frac{1}{a}} \right) =: x_1. \\ 2444 \\ 2445$$

2446 *Proof of the claim.* Notice that when $N \geq N_2$,

$$2447 \quad \frac{\eta}{x^b} \leq \frac{1}{6(KN)^{\frac{b}{a}}} \leq \frac{1}{6K}. \\ 2448 \\ 2449$$

2450 We assume that the claim is wrong, then

$$2452 \quad G(x_0) \geq N \left((a-b)c - (a-b)c \left(1 - \frac{\eta}{x^b} \right)^{2K} \right) - ax^{a-b} \\ 2453 \\ 2454 \geq \frac{KN(a-b)c\eta - ax^a}{x^b} \\ 2455 \\ 2456 \geq \frac{KN(a-b)c\eta}{2x_1^b} \\ 2457 \\ 2458 > 0, \\ 2459$$

2460 which is a contradiction. The third inequality comes from Lemma J.3. \square

2461

2462 So $x_0 = \Omega \left((KN)^{\frac{1}{a}} \right)$. Further plugging this into $G(x_0) = 0$ that

$$2464 \quad G(x_0) = -ax_0^{a-b}(1 + o(1)) + N \left(\frac{2K(a-b)c\eta}{x_0^b}(1 + o(1)) + \frac{2K(a-b)c\eta}{x_0^b}(1 + o(1)) \right) = 0. \\ 2465 \\ 2466$$

2467 gives

$$2468 \quad x_0 = \Theta \left((KN)^{\frac{1}{a}} \right), \quad F(x_0) = \Theta \left(\frac{1}{KN} \right). \\ 2469 \\ 2470$$

2471 Then we have

$$2473 \quad S_2(K, N; \eta) = \frac{1}{2} \sum_{i=d_1+1}^{K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}} \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} + \frac{c}{i^{a-b}} \left(1 - \frac{\eta}{i^b} \right)^{2K} \right)^N \\ 2474 \\ 2475 \\ 2476 \\ 2477 \quad + \frac{1}{2} \sum_{K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}+1}^d \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} + \frac{c}{i^{a-b}} \left(1 - \frac{\eta}{i^b} \right)^{2K} \right)^N \\ 2478 \\ 2479 \\ 2480 := J_1 + J_2.$$

2481 Furthermore, we have

$$2482 \quad J_1 \lesssim K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}} F(x_0) \lesssim \frac{K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}}{KN}, \\ 2483$$

2484 and

$$\begin{aligned}
 J_2 &= \frac{1}{2} \sum_{i=K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}+1}^d \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} + \frac{c}{i^{a-b}} \left(1 - \frac{\eta}{i^b} \right)^{2K} \right)^N \\
 &= \frac{1}{2} \sum_{i=K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}+1}^d \frac{c}{i^a} \left(1 - \frac{2Kc\eta}{i^a} + O\left(\frac{K^2}{i^{a+b}}\right) \right)^N \\
 &= \frac{1}{2} \sum_{K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}+1}^d \frac{c}{i^a} e^{N \log\left(1 - \frac{2Kc\eta}{i^a} + O\left(\frac{K^2}{i^{a+b}}\right)\right)} \\
 &= \frac{1}{2} \sum_{i=K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}+1}^d \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a} + O\left(\frac{K^2}{i^{a+b}}\right)} \\
 &= \frac{1}{2} \sum_{i=K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}+1}^d \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} (1 + o(1)).
 \end{aligned}$$

2503
2504
2505 We define $K_1(x) = \frac{c}{x^a} e^{\frac{-2KNc\eta}{x^a}}$. We can derive that $\arg \max K_1(x) = \Theta\left((KN)^{\frac{1}{a}}\right)$, and
2506 $\max K_1(x) = \Theta\left(\frac{1}{KN}\right)$. So when $d \geq 3(KN)^{\frac{1}{a}}$, we have
2507

$$\begin{aligned}
 J_2 &\geq \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}}}^{3(KN)^{\frac{1}{a}}} \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} (1 + o(1)) \\
 &\gtrsim (KN)^{\frac{1}{a}} \times \frac{ce^{-2c\eta}}{KN} \gtrsim \frac{(KN)^{\frac{1}{a}}}{KN}.
 \end{aligned}$$

2512 We can verify that $J_1 = o(J_2)$ as a direct consequence. We define
2513

$$\begin{aligned}
 \tilde{S}_2(K, N; \eta) &= \frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} \\
 &= \frac{1}{2} \sum_{i=d_1+1}^{K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}} \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} + \frac{1}{2} \sum_{i=K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}+1}^d \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} \\
 &:= \tilde{J}_1 + \tilde{J}_2.
 \end{aligned}$$

2525 We have $J_2 = \tilde{J}_2(1 + o(1))$, and
2526

$$\tilde{J}_1 \leq K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}} \times \max K_1(x) \lesssim \frac{K^{\frac{0.5}{a+0.5b}}(KN)^{\frac{1}{a+0.5b}}}{KN} = o(\tilde{J}_2).$$

2529
2530
2531 So $S_2(K, N; \eta) = \tilde{S}_2(K, N; \eta)(1 + o(1))$.

2532 The matching upper and lower bounds for $\tilde{S}_2(K, N; \eta)$ comes directly from Lemma J.7. \square
2533

2534 By combining the expression of $\tilde{S}_2(K, N; \eta)$ with Lemma J.7, we get another lemma:
2535

2536 **Lemma I.3.** Suppose the assumptions in Theorem 5.2 hold, and the expression of $\tilde{S}_2(K, N; \eta)$ is
2537 given in Lemma I.2. Then we have $\frac{\partial}{\partial \eta} \tilde{S}_2(K, N; \eta) \asymp -\frac{1}{(KN)^{\frac{a-1}{a}}}$.

2538 *Proof.*

$$\begin{aligned}
 2540 \quad & \frac{\partial}{\partial \eta} \tilde{S}_2(K, N; \eta) = -KN \sum_{i=d_1+1}^d \frac{c}{i^{2a}} e^{\frac{-2KNc\eta}{i^a}} \\
 2541 \quad & \approx -\frac{1}{(KN)^{\frac{a-1}{a}}}, \\
 2542 \quad & \\
 2543 \quad & \\
 2544 \quad & \\
 2545 \quad & \\
 2546 \quad & \text{where the second line comes from Lemma J.7.} \quad \square
 \end{aligned}$$

2547 **Lemma I.4.** *Suppose the assumptions in Theorem 5.2 hold, and the expression of $\tilde{S}_2(K, N; \eta)$ is*
 2548 *given in Lemma I.2. Consider two learning rate options $\eta, \eta' = \Theta(1)$ that satisfy $\eta - \eta' = o(1)$. Then*
 2549 *we have $\tilde{S}_2(K, N; \eta) = \tilde{S}_2(K, N; \eta')(1 + o(1))$.*

2551 *Proof.*

$$\begin{aligned}
 2553 \quad & \left| \tilde{S}_2(K, N; \eta) - \tilde{S}_2(K, N; \eta') \right| = \left| \frac{\partial}{\partial \eta} \tilde{S}_2(K, N; \tilde{\eta}) \right| |(\eta - \eta')| \\
 2554 \quad & \approx \frac{1}{(KN)^{\frac{a-1}{a}}} |(\eta - \eta')| \\
 2555 \quad & \\
 2556 \quad & \\
 2557 \quad & \\
 2558 \quad & = \tilde{S}_2(K, N; \eta') o(1),
 \end{aligned}$$

2559 where $\tilde{\eta} \in [\min(\eta, \eta'), \max(\eta, \eta')] = \Theta(1)$, and the first line comes from Lagrange's Mean Value
 2560 Theorem. The second line comes from Lemma I.3, and the last line comes from Lemma I.2. \square

2562 **The Range of Optimal Learning Rate.** First, take $\eta' = 2 - \frac{(a-1)d_1^{a-b} \log KN}{ac}$, and we have

$$\begin{aligned}
 2565 \quad & S_1(K, N; \eta') \leq \frac{d_1 c}{2} \left(1 - \frac{c}{d_1^{a-b}} + \frac{c}{d_1^{a-b}} \left(1 - \frac{(a-1)d_1^{a-b} \log KN}{ac} \frac{1}{KN} \right)^{2K} \right)^N.
 \end{aligned}$$

2569 By a Taylor expansion argument, we have

$$\begin{aligned}
 2572 \quad & S_1(K, N; \eta') = \frac{d_1 c}{2} \left(1 - \frac{2Kc}{d_1^{a-b}} \times \frac{(a-1)d_1^{a-b} \log KN}{ac} \frac{1}{KN} (1 + o(1)) \right)^N \\
 2573 \quad & = \frac{d_1 c}{2} \left(1 - \frac{2(a-1)}{a} \frac{\log KN}{N} (1 + o(1)) \right)^N \\
 2574 \quad & = \frac{d_1 c}{2} e^{N \log \left(1 - \frac{2(a-1)}{a} \frac{\log KN}{N} (1 + o(1)) \right)} \\
 2575 \quad & \approx \frac{1}{(KN)^{\frac{2(a-1)}{a}}} = o(S_2(K, N; \eta')),
 \end{aligned}$$

2582 where the last inequality comes from Lemma I.2. Then we have

$$\begin{aligned}
 2583 \quad & \bar{\mathcal{R}}(K, N; \eta') = S_1(K, N; \eta') + S_2(K, N; \eta') \\
 2584 \quad & = \tilde{S}_2(K, N; \eta') (1 + o(1)) \\
 2585 \quad & = \tilde{S}_2(K, N; 2) (1 + o(1)) \\
 2586 \quad & = \left(\frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} e^{\frac{-4KNc}{i^a}} \right) (1 + o(1)).
 \end{aligned}$$

2591 Then we prove that $\eta^* \in [2 - o(1), 2]$. We prove by contradiction, and assume that there exist a
 2592 constant $\epsilon > 0$ and a sequence $(N_i)_{i=1}^\infty \rightarrow \infty$ such that $\eta^*(N_i) \leq 2 - \epsilon$ for all $i \geq 1$. As we only

analyze with respect to the sequence $(N_i)_{i=1}^\infty$, without loss of generality, we take $(N_i)_{i=1}^\infty = \mathbb{N}$. By Lemma I.2, we have

$$\begin{aligned}\bar{\mathcal{R}}^*(K, N) &\geq S_2(K, N; \eta^*) = \tilde{S}_2(K, N; \eta^*)(1 + o(1)) \\ &\geq \left[\tilde{S}_2(K, N; 2) + \epsilon \frac{\partial}{\partial \eta} \tilde{S}_2(K, N; 2) \right] (1 + o(1)) > \bar{\mathcal{R}}(K, N; \eta')\end{aligned}$$

when N is sufficiently large, which is a contradiction. So

$$\begin{aligned}\bar{\mathcal{R}}^*(K, N) &= S_1(K, N; \eta^*) + S_2(K, N; \eta^*) \\ &= S_1(K, N; \eta^*) + \tilde{S}_2(K, N; \eta^*)(1 + o(1)) \\ &= S_1(K, N; \eta^*) + \tilde{S}_2(K, N; 2)(1 + o(1)) \leq \bar{\mathcal{R}}(K, N; \eta').\end{aligned}$$

Thus, $S_1(K, N; \eta^*) = o(\tilde{S}_2(K, N; 2))$, and $\bar{\mathcal{R}}^*(K, N) = \tilde{S}_2(K, N; 2)(1 + o(1))$.

By Lemma I.2 and Lemma J.7, there exist two constants C_1 and C_2 such that $\bar{\mathcal{R}}^*(K, N) \leq \frac{C_1}{(KN)^{\frac{a-1}{a}}}$ and $\bar{\mathcal{R}}^*(K, N) \geq \frac{C_2}{(KN)^{\frac{a-1}{a}}}$ when the condition $d = \Omega(T^{\frac{1}{a}})$ holds. For one-pass case, by Lemma I.2 and Lemma J.7, we have

$$\begin{aligned}\bar{\mathcal{R}}^*(1, T') &= \bar{\mathcal{R}}(1, T'; \eta^*(1, T')|_{d=d}) \\ &\leq \bar{\mathcal{R}}(1, T'; \eta^*(1, T')|_{d=\infty}) \\ &= \bar{\mathcal{R}}^*(1, T')|_{d=\infty} = \frac{1}{2} \sum_{i=d_1+1}^{\infty} \frac{c}{i^a} e^{-\frac{4KNc}{i^a}} (1 + o(1)) \leq \frac{C_3}{T'^{\frac{a-1}{a}}}\end{aligned}\quad (24)$$

and

$$\bar{\mathcal{R}}^*(1, T') = \frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} e^{-\frac{4KNc}{i^a}} (1 + o(1)) \geq \frac{C_4}{T'^{\frac{a-1}{a}}} \text{ when } d = \Omega\left(T'^{\frac{1}{a}}\right). \quad (25)$$

I.2.2 PROOF OF THEOREM 5.1: LARGE- K CASE

The Expected Excess Risk Approximation.

Lemma I.5. Suppose the assumptions in Theorem 5.2 hold. When $K = \omega(N^{\frac{b}{a-b}})$ and $\eta = \Theta(1)$, we have $S_2(K, N; \eta) \sim \frac{1}{N^{\frac{a-1}{a-b}}}$.

Proof. There exists N_3 such that when $N \geq N_3$, we have $K \geq N^{\frac{b}{a-b}}$. Then when $d \geq 3(KN)^{\frac{1}{a}} \geq 3N^{\frac{1}{a-b}}$, we give the lower bound of the loss:

$$\begin{aligned}S_2(K, N; \eta) &\geq \frac{1}{2} \sum_{i=N^{\frac{1}{a-b}}}^{3N^{\frac{1}{a-b}}} \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}}\right)^N \\ &\geq \frac{1}{2} \frac{2N^{\frac{1}{a-b}}}{(3N^{\frac{1}{a-b}})^a} \left(1 - \frac{c}{N}\right)^N \\ &\gtrsim \frac{1}{N^{\frac{a-1}{a-b}}}.\end{aligned}$$

Then we derive the upper bound of the loss:

$$\begin{aligned}S_2(K, N; \eta) &\leq \frac{1}{2} \sum_{i=1}^{\infty} \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} + \frac{c}{i^{a-b}} \left(1 - \frac{\eta}{i^b}\right)^{2K}\right)^N \\ &\leq \frac{1}{2} \sum_{i=1}^{N^{\frac{1}{a-b}}} \frac{c}{i^a} \left(1 - \frac{c}{i^{a-b}} + \frac{c}{i^{a-b}} \left(1 - \frac{\eta}{i^b}\right)^{2K}\right)^N + \frac{1}{2} \sum_{i=N^{\frac{1}{a-b}}+1}^{\infty} \frac{c}{i^a}.\end{aligned}$$

2646 When $K = \omega(N^{\frac{b}{a-b}})$ and $i \leq N^{\frac{1}{a-b}}$,

$$\begin{aligned} 2648 \quad & \left(1 - \frac{\eta}{i^b}\right)^{2K} \leq \left(1 - \frac{\eta}{N^{\frac{b}{a-b}}}\right)^{2K} = e^{2K \log\left(1 - \frac{\eta}{N^{\frac{b}{a-b}}}\right)} \\ 2649 \quad & \leq e^{-2K \frac{\eta}{N^{\frac{b}{a-b}}}} = o(1). \\ 2650 \quad & \\ 2651 \quad & \\ 2652 \quad & \end{aligned}$$

2653 Then there exists N_4 such that $\left(1 - \frac{\eta}{i^b}\right)^{2K} \leq \frac{1}{2}$ when $N \geq N_4$. So when $N \geq \max(N_3, N_4)$, we
2654 have

$$\begin{aligned} 2655 \quad & S_2(K, N; \eta) \leq \frac{1}{2} \sum_{i=1}^{N^{\frac{1}{a-b}}} \frac{c}{i^a} \left(1 - \frac{c}{2i^{a-b}}\right)^N + \frac{1}{2} \sum_{i=N^{\frac{1}{a-b}}+1}^{\infty} \frac{c}{i^a}. \\ 2656 \quad & \\ 2657 \quad & \\ 2658 \quad & \end{aligned}$$

2659
2660 One can derive that $\max \frac{c}{i^a} \left(1 - \frac{c}{2i^{a-b}}\right)^N = \Theta\left(\frac{1}{N^{\frac{a-1}{a-b}}}\right)$. So
2661

$$\begin{aligned} 2662 \quad & \bar{\mathcal{R}}^*(K, N) \lesssim \frac{1}{N^{\frac{a-1}{a-b}}} + \frac{1}{N^{\frac{a-1}{a-b}}} \\ 2663 \quad & \lesssim \frac{1}{N^{\frac{a-1}{a-b}}}. \\ 2664 \quad & \\ 2665 \quad & \\ 2666 \quad & \end{aligned}$$

2667 And we complete the proof. \square

2668
2669 **The Range of Optimal Learning Rate.** First, take $\eta' = 1.5$, and we have

$$\begin{aligned} 2670 \quad & S_1(K, N; \eta') \leq \frac{d_1 c}{2} \left(1 - \frac{c}{d_1^{a-b}} + \frac{c}{d_1^{a-b}} \left(\max\left(0.5, 1 - \frac{1.5}{d_1^b}\right)\right)^{2K}\right)^N \\ 2671 \quad & = \frac{d_1 c}{2} (1 - \Theta(1))^N \\ 2672 \quad & = o(S_2(K, N; \eta')), \\ 2673 \quad & \\ 2674 \quad & \\ 2675 \quad & \\ 2676 \quad & \end{aligned}$$

2677 where the last inequality comes from Lemma I.5. Then we have

$$\begin{aligned} 2678 \quad & \bar{\mathcal{R}}(K, N; \eta') = S_1(K, N; \eta') + S_2(K, N; \eta') \\ 2679 \quad & = S_2(K, N; \eta')(1 + o(1)) \\ 2680 \quad & \end{aligned}$$

2681 It is obvious that $\eta^* \in [1, 2]$. We know that

$$2682 \quad \bar{\mathcal{R}}^*(K, N) = S_1(K, N; \eta^*) + S_2(K, N; \eta^*) \leq \bar{\mathcal{R}}(K, N; \eta') = S_2(K, N; \eta')(1 + o(1)).$$

2683

2684 By Lemma I.5, we have

$$2685 \quad S_2(K, N; \eta^*) = \Theta\left(N^{-\frac{a-1}{a-b}}\right) \quad \text{and} \quad S_2(K, N; \eta') = \Theta\left(N^{-\frac{a-1}{a-b}}\right),$$

2686 which directly implies that

$$2687 \quad S_1(K, N; \eta^*) = O\left(N^{-\frac{a-1}{a-b}}\right), \quad \bar{\mathcal{R}}^*(K, N) = \Theta\left(N^{-\frac{a-1}{a-b}}\right).$$

2688 I.3 $E(K, N)$ FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.2

2689 I.3.1 PROOF OF THEOREM 5.2, SMALL- K CASE

2690 Let T' be defined implicitly by equating the averaged risks at their optimal step sizes:
2691

$$2692 \quad \bar{\mathcal{R}}^*(1, T') = \bar{\mathcal{R}}^*(K, N). \tag{26}$$

2693 We claim that

$$2694 \quad \left(\frac{C_4}{C_1}\right)^{\frac{a}{a-1}} T \leq T' \leq \left(\frac{C_3}{C_2}\right)^{\frac{a}{a-1}} T. \tag{27}$$

2700 *Proof.* We argue by contradiction, considering two exclusive violations of Equation (27).
 2701

2702 1. **Case 1:** $T' > \left(\frac{C_3}{C_2}\right)^{\frac{a}{a-1}} T$. By the risk bounds encoded by (C_2, C_3) for one-pass training
 2703 with T' fresh data and by (C_1, C_4) for K-epoch training with N fresh data, this inequality
 2704 forces

$$\bar{\mathcal{R}}^*(1, T') < \bar{\mathcal{R}}^*(K, N),$$

2705 which contradicts the defining equality Equation (26).
 2706

2707 2. **Case 2:** $T' < \left(\frac{C_4}{C_1}\right)^{\frac{a}{a-1}} T$. given $d = \Omega(T^{\frac{1}{a}})$ we still have $d = \Omega((T')^{1/a})$. The same risk
 2708 comparisons then yield

$$\bar{\mathcal{R}}^*(1, T') > \bar{\mathcal{R}}^*(K, N),$$

2709 again contradicting Equation (26).
 2710

2711 Both contradictions rule out violations; hence Equation (27) holds. \square
 2712

2713 Therefore, the desired characterization of $E(K, N)$ follows directly from Lemma J.8.
 2714

2715 I.3.2 PROOF OF THEOREM 5.2, LARGE- K CASE

2716 By Theorem 5.1, there exist constants $C_5, C_6 > 0$ such that, given $d = \Omega(T^{\frac{1}{a}})$,
 2717

$$\frac{C_6}{N^{\frac{a-1}{a-b}}} \leq \bar{\mathcal{R}}^*(K, N) \leq \frac{C_5}{N^{\frac{a-1}{a-b}}}. \quad (28)$$

2718 Let T' be defined by equating the averaged risks at their optimal step sizes:
 2719

$$\bar{\mathcal{R}}^*(K, N) = \bar{\mathcal{R}}^*(1, T'). \quad (29)$$

2720 Combining Equation (28), Equation (29) with Equation (24), Equation (25), we claim that
 2721

$$\left(\frac{C_4}{C_5}\right)^{\frac{a}{a-1}} N^{\frac{a}{a-b}} \leq T' \leq \left(\frac{C_3}{C_6}\right)^{\frac{a}{a-1}} N^{\frac{a}{a-b}}. \quad (30)$$

2722 *Proof of the claim.* We argue by contradiction.
 2723

2724 1. **Upper violation.** If $T' > \left(\frac{C_3}{C_6}\right)^{\frac{a}{a-1}} N^{\frac{a}{a-b}}$, then by Equation (24) and Equation (28) (lower
 2725 bound),

$$\bar{\mathcal{R}}^*(1, T') \leq \frac{C_3}{(T')^{\frac{a-1}{a}}} < \frac{C_6}{N^{\frac{a-1}{a-b}}} \leq \bar{\mathcal{R}}^*(K, N),$$

2726 which contradicts Equation (29).
 2727

2728 2. **Lower violation.** If $T' < \left(\frac{C_4}{C_5}\right)^{\frac{a}{a-1}} N^{\frac{a}{a-b}}$, then the condition $d = \Omega(T^{\frac{1}{a}})$ gives
 2729

$$d = \Omega\left(N^{\frac{1}{a-b}}\right) = \Omega\left((T')^{\frac{1}{a}}\right).$$

2730 Using Equation (25) and Equation (28) (upper bound),
 2731

$$\bar{\mathcal{R}}^*(1, T') \geq \frac{C_4}{(T')^{\frac{a-1}{a}}} > \frac{C_5}{N^{\frac{a-1}{a-b}}} \geq \bar{\mathcal{R}}^*(K, N),$$

2732 again contradicting Equation (29).
 2733

2734 Both contradictions are impossible; hence Equation (30) holds. \square
 2735

2736 The characterization of $E(K, N)$ follows directly by the claim.
 2737

2754 I.4 SCALING LAWS FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM D.1
2755

2756 Similar to the proof of Theorem 5.1, the proof of Theorem 5.3 consists of two parts: First part is the
2757 case when $K = o(\log^b N)$, and the second part is the case when $K = \omega(\log^b N)$.

2758 Before we begin our main part of the proof, note that for all $\eta = \Theta(1)$ and $\eta \leq 2$, there exists
2759 $d_2 = \Theta(1) > 0$ such that $1 - \frac{\eta}{\log^b(i+1)} > 0$ when $i > d_2$. Then we divide the loss into two parts:
2760

$$\begin{aligned} \bar{\mathcal{R}}(K, N; \eta) &= \frac{1}{2} \sum_{i=1}^d \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} + \frac{c \log^b(i+1)}{i^a} \left(1 - \left(1 - \frac{\eta}{\log^b(i+1)} \right)^{2K} \right) \right)^N \\ &= \underbrace{\frac{1}{2} \sum_{i=1}^{d_2} \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} + \frac{c \log^b(i+1)}{i^a} \left(1 - \left(1 - \frac{\eta}{\log^b(i+1)} \right)^{2K} \right) \right)^N}_{V_1(K, N; \eta)} \\ &\quad + \underbrace{\sum_{d_2+1}^d \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} + \frac{c \log^b(i+1)}{i^a} \left(1 - \left(1 - \frac{\eta}{\log^b(i+1)} \right)^{2K} \right) \right)^N}_{V_2(K, N; \eta)}. \end{aligned}$$

2773 I.4.1 PROOF OF THEOREM D.1: SMALL- K CASE
27742775 The Expected Excess Risk Approximation.
2776

2777 Lemma I.6. Suppose the assumptions in Theorem 5.3 hold. When $K = o(\log^b N)$, we define the
2778 estimate of $V(K, N; \eta)$ as

$$2779 \tilde{V}_2(K, N; \eta) := \frac{1}{2} \sum_{i=1}^d \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}}.$$

2782 Then we have $V_2(K, N; \eta) = \tilde{V}_2(K, N; \eta)(1 + o(1))$, and $\tilde{V}_2(K, N; \eta) \asymp \frac{1}{(KN)^{\frac{a-1}{a}}}$.
2783

2784 Proof of Lemma I.6. We first define a function
2785

$$2786 W(x) := \frac{c}{x^a} \left(1 - \frac{c \log^b(x+1)}{x^a} \left(1 - \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right) \right)^N.$$

2789 Direct observation gives us that under Assumption 5.3, $\bar{\mathcal{R}}(K, N; \eta) \propto \sum_{i=1}^d W(i)$. Simliarly we
2790 take the derivative of W .
2791

$$\begin{aligned} 2792 W'(x) &= -\frac{ac}{x^{a+1}} \left(1 - \frac{c \log^b(x+1)}{x^a} + \frac{c \log^b(x+1)}{x^a} \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right)^N \\ 2793 &\quad + \frac{cN}{x^a} \left(1 - \frac{c \log^b(x+1)}{x^a} + \frac{c \log^b(x+1)}{x^a} \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right)^{N-1} \\ 2794 &\quad \left(\left(\frac{ac \log^b(x+1)}{x^{a+1}} - \frac{bc \log^{b-1}(x+1)}{x^a(x+1)} \right) \left(1 - \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right) \right. \\ 2795 &\quad \left. + \frac{2cK \log^b(x+1)}{x^a} \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K-1} \frac{b\eta}{(x+1) \log^{b+1}(x+1)} \right) \\ 2796 &= \frac{c}{x^{2a+1}} \left(1 - \frac{c \log^b(x+1)}{x^a} + \frac{c \log^b(x+1)}{x^a} \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right)^{N-1} \\ 2797 &\quad \left(-a \left(x^a - c \log^b(x+1) + c \log^b(x+1) \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right) \right) \end{aligned}$$

$$\begin{aligned}
 & + N \left(\left(ac \log^b(x+1) - bc \log^{b-1}(x+1) \frac{x}{x+1} \right) \left(1 - \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right) \right. \\
 & \left. + \frac{2cKb\eta}{\log(x+1)} \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K-1} \frac{x}{x+1} \right) .
 \end{aligned}$$

We define

$$\begin{aligned}
 G(x) = & -a \left(x^a - c \log^b(x+1) + c \log^b(x+1) \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right) \\
 & + N \left(\left(ac \log^b(x+1) - bc \log^{b-1}(x+1) \frac{x}{x+1} \right) \left(1 - \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right) \right. \\
 & \left. + \frac{2cKb\eta}{\log(x+1)} \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K-1} \frac{x}{x+1} \right) ,
 \end{aligned}$$

and x_0 is defined to be the maximum of $W(x)$, so $G(x_0) = 0$.

$$\begin{aligned}
 G(x) \geq & N \log^b(x+1) \left(ac - \frac{bc}{\log(x+1)} \frac{x}{x+1} \right) \left(1 - \left(1 - \frac{\eta}{\log^b x} \right)^{2K} \right) - ax^a \\
 \geq & N(a-b)c \log^b(x+1) \left(1 - \left(1 - \frac{\eta}{\log^b(x+1)} \right)^{2K} \right) - ax^a \\
 = & N(a-b)c \log^b(x+1) \times \frac{\eta}{\log^b(x+1)} \left(\sum_{i=0}^{2K-1} \left(1 - \frac{\eta}{\log^b(x+1)} \right)^i \right) - ax^a \\
 \geq & N(a-b)c\eta - ax^a .
 \end{aligned}$$

So $x_0 = \Omega\left(N^{\frac{1}{a}}\right)$ is a direct conclusion by $G(x_0) = 0$. Also, by solving $G(x_0) = 0$, we can get the approximation of x_0 as

$$\begin{aligned}
 G(x_0) = & -ax_0^a(1+o(1)) \\
 & + N \left(ac \log^b(x_0+1)(1+o(1)) \times \frac{2K\eta}{\log^b(x_0+1)}(1+o(1)) + O\left(\frac{K}{\log N}\right) \right) \\
 = & -ax_0^a(1+o(1)) + 2KNac\eta(1+o(1)) = 0 ,
 \end{aligned}$$

thus we have

$$x_0 = \Theta\left((KN)^{\frac{1}{a}}\right), \quad W(x_0) = \Theta\left(\frac{1}{KN}\right).$$

There exists a constant N_5 such that $K \leq \log^b N$ when $N \geq N_5$. So when $N \geq N_5$ and $d \geq 3(KN)^{\frac{1}{a}} \geq 3(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}$, we have

$$\begin{aligned}
 V_2(K, N; \eta) = & \frac{1}{2} \sum_{i=d_2+1}^{(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}} \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} \left(1 - \left(1 - \frac{\eta}{\log^b(i+1)} \right)^{2K} \right) \right)^N \\
 & + \frac{1}{2} \sum_{(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}^d \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} \left(1 - \left(1 - \frac{\eta}{\log^b(i+1)} \right)^{2K} \right) \right)^N \\
 := & \psi_1 + \psi_2 .
 \end{aligned}$$

Furthermore,

$$\psi_1 \lesssim (KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}} \times W(x_0) \lesssim \frac{(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}{KN},$$

2862

and

2863

$$\begin{aligned}
 \psi_2 &= \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}^d \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} + \frac{c \log^b(i+1)}{i^a} \left(1 - \frac{\eta}{\log^b(i+1)}\right)^{2K}\right)^N \\
 &= \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}^d \frac{c}{i^a} \left(1 - \frac{2Kc\eta}{i^a} + O\left(\frac{K^2}{i^a \log^b(i+1)}\right)\right)^N \\
 &= \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}^d \frac{c}{i^a} e^{N \log\left(1 - \frac{2Kc\eta}{i^a} + O\left(\frac{K^2}{i^a \log^b(i+1)}\right)\right)} \\
 &= \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}^d \frac{c}{i^a} e^{\frac{-2Kc\eta}{i^a} + O\left(\frac{K^2}{i^a}\right) + O\left(\frac{K^2 N}{i^a \log^b(i+1)}\right)} \\
 &= \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}^d \frac{c}{i^a} e^{\frac{-2Kc\eta}{i^a}} (1 + o(1)).
 \end{aligned}$$

2884

2885 We recall $K_1(x) = \frac{c}{x^a} e^{\frac{-2KNc\eta}{x^a}}$. We can verify that $\arg \max K_1(x) = \Theta\left((KN)^{\frac{1}{a}}\right)$ and
 2886 $\max K_1(x) = \Theta\left(\frac{1}{KN}\right)$ through a direct calculation. So for ψ_2 we have
 2887

2888

$$\begin{aligned}
 \psi_2 &\geq \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}}}^{3(KN)^{\frac{1}{a}}} \frac{c}{i^a} e^{\frac{-2Kc\eta}{i^a}} (1 + o(1)) \\
 &\gtrsim \frac{(KN)^{\frac{1}{a}}}{KN}.
 \end{aligned}$$

2895

2896 We can verify that $\psi_1 = o(\psi_2)$ as a direct consequence. We define
 2897

2898

$$\begin{aligned}
 \tilde{V}_2(K, N; \eta) &= \frac{1}{2} \sum_{i=d_2+1}^d \frac{c}{i^a} e^{\frac{-2Kc\eta}{i^a}} \\
 &= \frac{1}{2} \sum_{i=d_2+1}^{(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}} \frac{c}{i^a} e^{\frac{-2Kc\eta}{i^a}} + \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}^d \frac{c}{i^a} e^{\frac{-2Kc\eta}{i^a}} \\
 &:= \tilde{\psi}_1 + \tilde{\psi}_2.
 \end{aligned}$$

2907

2908 We have $\psi_2 = \tilde{\psi}_2(1 + o(1))$, and
 2909

2910

$$\tilde{\psi}_1 \lesssim \frac{(KN)^{\frac{1}{a}} \left(\frac{K}{\log^b N}\right)^{\frac{1}{2a}}}{KN} = o(\tilde{\psi}_2).$$

2913

2914

2915

So $V_2(K, N; \eta) = \tilde{V}_2(K, N; \eta)(1 + o(1))$.

Finally, we derive a matching upper and lower bound for $\tilde{V}_2(K, N; \eta)$ and conclude the proof:

$$\begin{aligned} \tilde{V}_2(K, N; \eta) &\geq \tilde{J}_2 \gtrsim J_2 \gtrsim \frac{1}{(KN)^{\frac{a-1}{a}}}. \\ \tilde{V}_2(K, N; \eta) &= \frac{1}{2} \sum_{i=d_2+1}^{(KN)^{\frac{1}{a}}} \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} + \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}}+1}^d \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} \\ &\leq \frac{1}{2} \sum_{i=1}^{(KN)^{\frac{1}{a}}} \frac{c}{i^a} e^{\frac{-2KNc\eta}{i^a}} + \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}}+1}^d \frac{c}{i^a} \\ &\lesssim \frac{(KN)^{\frac{1}{a}}}{KN} + \frac{1}{(KN)^{\frac{a-1}{a}}} \lesssim \frac{1}{(KN)^{\frac{a-1}{a}}}. \end{aligned}$$

Then we complete the proof. \square

Notice that $\tilde{V}_2(K, N; \eta)$ and $V_2(K, N; \eta)$ are identical to each other, so we can directly apply Lemma I.3 and Lemma I.4 in the remaining proof of Theorem 5.3.

The Range of Optimal Learning Rate. First, take $\eta' = 2 \log^b(2) - \epsilon$, where $\epsilon := \frac{(a-1)d_2^a}{ac} \frac{\log KN}{KN}$, and we have

$$\begin{aligned} V_1(K, N; \eta') &\leq \frac{d_2 c}{2} \left(1 - \frac{c \log^b(2)}{d_2^a} + \frac{c \log^b(2)}{d_2^a} \left(1 - \frac{\epsilon}{\log^b(2)} \right)^{2K} \right)^N \\ &= \frac{d_2 c}{2} \left(1 - \frac{2Kc \log^b(2)}{d_2^a} \times \frac{\epsilon}{\log^b(2)} (1 + o(1)) \right)^N \\ &= \frac{d_2 c}{2} \left(1 - \frac{2(a-1)}{a} \frac{\log KN}{N} (1 + o(1)) \right)^N \\ &= \frac{d_2 c}{2} e^{N \log \left(1 - \frac{2(a-1)}{a} \frac{\log KN}{N} (1 + o(1)) \right)} \\ &\approx \frac{1}{(KN)^{\frac{2(a-1)}{a}}} = o(V_2(K, N; \eta')), \end{aligned}$$

where the last inequality comes from Lemma I.6. Then we have

$$\begin{aligned} \bar{\mathcal{R}}(K, N; \eta') &= V_1(K, N; \eta') + V_2(K, N; \eta') \\ &= \tilde{V}_2(K, N; \eta') (1 + o(1)) \\ &= \tilde{V}_2(K, N; 2) (1 + o(1)) \\ &= \left(\frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} e^{\frac{-4 \log^b(2) KN c}{i^a}} \right) (1 + o(1)). \end{aligned}$$

Then we prove that $\eta^* \in [2 \log^b(2) - o(1), 2 \log^b(2)]$. We prove by contradiction, and assume that there exist a constant $\epsilon > 0$ and a sequence $(N_i)_{i=1}^\infty \rightarrow \infty$ such that $\eta^*(N_i) \leq 2 \log^b(2) - \epsilon$ for all $i \geq 1$. As we only analyze with respect to the sequence $(N_i)_{i=1}^\infty$, without loss of generality, we take $(N_i)_{i=1}^\infty = \mathbb{N}$. By Lemma I.2, we have

$$\begin{aligned} \bar{\mathcal{R}}^*(K, N) &\geq V_2(K, N; \eta^*) = \tilde{V}_2(K, N; \eta^*) (1 + o(1)) \\ &\geq \left[\tilde{V}_2(K, N; 2) + \epsilon \frac{\partial}{\partial \eta} \tilde{V}_2(K, N; 2) \right] (1 + o(1)) > \bar{\mathcal{R}}(K, N; \eta') \end{aligned}$$

2970 when N is sufficiently large, which is a contradiction. So
 2971

$$\begin{aligned} 2972 \bar{\mathcal{R}}^*(K, N) &= V_1(K, N; \eta^*) + V_2(K, N; \eta^*) \\ 2973 &= V_1(K, N; \eta^*) + \tilde{V}_2(K, N; \eta^*)(1 + o(1)) \\ 2974 &= V_1(K, N; \eta^*) + \tilde{V}_2\left(K, N; 2\log^b(2)\right)(1 + o(1)) \leq \bar{\mathcal{R}}(K, N; \eta'). \\ 2975 \\ 2976 \end{aligned}$$

2977 So $V_1(K, N; \eta^*) = o\left(\tilde{V}_2\left(K, N; 2\log^b(2)\right)\right)$, and $\bar{\mathcal{R}}^*(K, N) = \tilde{V}_2(K, N; 2\log^b(2))(1 + o(1)) \approx$
 2978 $\frac{1}{(KN)^{\frac{a-1}{a}}}$.
 2980

2981 I.4.2 PROOF OF THEOREM D.1, LARGE- K CASE 2982

2983 The Expected Excess Risk Approximation.

2984 **Lemma I.7.** Suppose the assumptions Theorem 5.3 hold. When $K = \omega(\log^b N)$, we have
 2985 $V_2(K, N; \eta) \approx \frac{1}{(N \log^b N)^{\frac{a-1}{a}}}$.
 2986

2987 *Proof of Lemma I.7.* By $K = \omega(\log^b N)$, there exists a constant $N_6 > 0$ such that $K > \log^b N$
 2988 when $N \geq N_6$. We notice that when $i = \Theta\left(\left(N \log^b N\right)^{\frac{1}{a}}\right)$, $\log(i+1) = \Theta(\log N)$. Then, when
 2989 $N \geq N_6$ and $d \geq 3(KN)^{\frac{1}{a}} \geq 3\left(N \log^b N\right)^{\frac{1}{a}}$, we have
 2990

$$\begin{aligned} 2991 V_2(K, N; \eta) &\geq \frac{1}{2} \sum_{i=\left(N \log^b N\right)^{\frac{1}{a}}}^{3\left(N \log^b N\right)^{\frac{1}{a}}} \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a}\right)^N \\ 2992 &\geq \frac{1}{2} \frac{2\left(N \log^b N\right)^{\frac{1}{a}}}{3^a N \log^b N} \left(1 - \frac{c_{11}}{N}\right)^N \\ 2993 &\gtrsim \frac{1}{\left(N \log^b N\right)^{\frac{a-1}{a}}}. \\ 2994 \\ 2995 \end{aligned}$$

3006 For the upper bound, we have
 3007

$$\begin{aligned} 3008 \bar{\mathcal{R}}(K, N; \eta) &\leq \frac{1}{2} \sum_{i=1}^{\infty} \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} + \frac{c \log^b(i+1)}{i^a} \left(1 - \frac{\eta}{\log^b(i+1)}\right)^{2K}\right)^N \\ 3009 &\leq \frac{1}{2} \sum_{i=1}^{\left(N \log^b N\right)^{\frac{1}{a}}} \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{i^a} + \frac{c \log^b(i+1)}{i^a} \left(1 - \frac{\eta}{\log^b(i+1)}\right)^{2K}\right)^N \\ 3010 &\quad + \frac{1}{2} \sum_{i=\left(N \log^b N\right)^{\frac{1}{a}}+1}^{\infty} \frac{c}{i^a}. \\ 3011 \\ 3012 \end{aligned}$$

3013 When $K = \omega(\log^b N)$ and $i \leq \left(N \log^b N\right)^{\frac{1}{a}}$,
 3014

$$\begin{aligned} 3015 \left(1 - \frac{\eta}{\log^b(i+1)}\right)^K &\leq \left(1 - \frac{c_{12}}{\log^b N}\right)^K = e^{K \log\left(1 - \frac{c_{12}}{\log^b N}\right)} \\ 3016 &\leq e^{-K \frac{c_{12}}{\log^b N}} = o(1). \\ 3017 \\ 3018 \end{aligned}$$

3024 So there exists N_7 such that when $N \geq N_7$, $\left(1 - \frac{\eta}{\log^b(i+1)}\right)^K \leq \frac{1}{2}$, and when $N \geq \max(N_6, N_7)$,
 3025

$$3026 \quad \bar{\mathcal{R}}(K, N; \eta) \leq \frac{1}{2} \sum_{i=1}^{\left(N \log^b N\right)^{\frac{1}{a}}} \frac{c}{i^a} \left(1 - \frac{c \log^b(i+1)}{2i^a}\right)^N + \frac{1}{2} \sum_{i=\left(N \log^b N\right)^{\frac{1}{a}}+1}^{\infty} \frac{c}{i^a}.$$

3027 One can derive that $\max_x \frac{c}{x^a} \left(1 - \frac{c \log^b(x+1)}{2x^a}\right)^N = \Theta\left(\frac{1}{N \log^b N}\right)$.
 3028

3029 So finally, we have
 3030

$$3031 \quad V_2(K, N; \eta) \leq \bar{\mathcal{R}}(K, N; \eta) \lesssim \frac{1}{\left(N \log^b N\right)^{\frac{a-1}{a}}} + \frac{1}{\left(N \log^b N\right)^{\frac{a-1}{a}}}$$

$$3032 \quad \lesssim \frac{1}{\left(N \log^b N\right)^{\frac{a-1}{a}}},$$

3033 and we get the result. \square
 3034

3035 **The Range of Optimal Learning Rate.** First, take $\eta' = 1.5 \log^b(2)$, and we have
 3036

$$3037 \quad V_1(K, N; \eta') \leq \frac{d_2 c}{2} \left(1 - \frac{c \log^b(2)}{d_2^a} + \frac{c \log^b(2)}{d_2^a} \max\left(0.5, 1 - \frac{1.5 \log^b(2)}{\log^b(d_2 + 1)}\right)^{2K}\right)^N$$

$$3038 \quad = \frac{d_1 c}{2} (1 - \Theta(1))^N$$

$$3039 \quad = o(V_2(K, N; \eta')),$$

3040 where the last inequality comes from Lemma I.5. Then we have
 3041

$$3042 \quad \bar{\mathcal{R}}(K, N; \eta') = V_1(K, N; \eta') + V_2(K, N; \eta')$$

$$3043 \quad = \tilde{V}_2(K, N; \eta')(1 + o(1))$$

3044 It is obvious that $\eta^* \in [\log^b(2), 2 \log^b(2)]$. We know that
 3045

$$3046 \quad \bar{\mathcal{R}}^*(K, N) = V_1(K, N; \eta^*) + V_2(K, N; \eta^*) \leq \bar{\mathcal{R}}(K, N; \eta') = V_2(K, N; \eta')(1 + o(1))$$

$$3047 \quad \approx \frac{1}{\left(N \log^b N\right)^{\frac{a-1}{a}}}.$$

3048 I.5 $E(K, N)$ FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM 5.3

3049 I.5.1 PROOF OF THEOREM 5.3, SMALL- K CASE

3050 The proof here is almost a reproduction of the proof in Appendix I.2.1.
 3051

3052 I.5.2 PROOF OF THEOREM 5.3, LARGE- K CASE

3053 Consider the multi-epoch training setting with $d = \Omega\left((KN)^{\frac{1}{a+b}}\right)$. By Lemmas I.7 and J.7, there
 3054 exist constants $C_7, C_8 > 0$ such that
 3055

$$3056 \quad \frac{C_8}{N(\log N)^b} \leq \bar{\mathcal{R}}^*(K, N) \leq \frac{C_7}{N(\log N)^b}. \quad (31)$$

3057 Let T' be defined by matching the expected risks:
 3058

$$3059 \quad \bar{\mathcal{R}}^*(K, N) = \bar{\mathcal{R}}^*(1, T'). \quad (32)$$

3078 In the one-pass case, we use the constants $C_3, C_4 > 0$ (as defined in the proof of Theorem 5.2) to
 3079 control $\bar{\mathcal{R}}^*(1, T')$.
 3080

3081 We claim that

$$3082 \left(\frac{C_4}{C_7} \right)^{\frac{a}{a-1}} N(\log N)^b \leq T' \leq \left(\frac{C_3}{C_8} \right)^{\frac{a}{a-1}} N(\log N)^b. \quad (33)$$

3084 *Proof of the claim.* We argue by contradiction.
 3085

3086 1. **Upper bound violation.** If $T' > \left(\frac{C_3}{C_8} \right)^{\frac{a}{a-1}} N(\log N)^b$, then the one-pass upper bound
 3087 together with Equation (31) (multi-epoch lower bound) imply

$$3088 \bar{\mathcal{R}}^*(K, N) < \bar{\mathcal{R}}^*(1, T'),$$

3091 which contradicts the defining equality Equation (32).

3092 2. **Lower bound violation.** If $T' < \left(\frac{C_4}{C_7} \right)^{\frac{a}{a-1}} N(\log N)^b$, then $d = \Omega\left((KN)^{\frac{1}{a+b}}\right)$ yields

$$3094 d = \Omega((N(\log N)^b)^{1/a}) = \Omega((T')^{1/a}),$$

3096 so the one-pass lower bound together with Equation (31) (multi-epoch upper bound) give

$$3098 \bar{\mathcal{R}}^*(K, N) > \bar{\mathcal{R}}^*(1, T'),$$

3099 again contradicting Equation (32).

3100 Both violations are impossible; hence Equation (33) holds. \square
 3101

3102 Thus, in the large- K multi-epoch regime, the matched one-epoch training time satisfies $T' =$
 3103 $\Theta(N(\log N)^b)$ up to fixed constants. Therefore, the desired characterization of $E(K, N)$ follows
 3104 directly.
 3105

3106 J ADDITIONAL TECHNICAL LEMMAS

3107 **Lemma J.1.** *For any PSD matrix \mathbf{A} , it holds that*

$$3108 \langle \mathbf{H}, \mathbf{A} \rangle \leq \text{tr}(\mathbf{H})\|\mathbf{A}\|.$$

3112 *Proof.* We denote the PSD decomposition of \mathbf{H} by

$$3114 \mathbf{H} = \sum_{i=1}^d \lambda_i q_i q_i^\top$$

3116 where λ_i and q_i are the eigenvalues and corresponding eigenvectors of \mathbf{H} . So we get
 3117

$$3118 \langle \mathbf{H}, \mathbf{A} \rangle = \left\langle \sum_{i=1}^d \lambda_i q_i q_i^\top, \mathbf{A} \right\rangle$$

$$3119 = \sum_{i=1}^d \lambda_i q_i^\top \mathbf{A} q_i$$

$$3120 \leq \sum_{i=1}^d \lambda_i \|\mathbf{A}\|$$

$$3121 = \text{tr}(\mathbf{H})\|\mathbf{A}\|,$$

3128 which completes the proof. \square
 3129

3130 **Lemma J.2.** *When $l \geq 1$, we have*

$$3131 (1+x)^l \leq 1 + 2lx, \quad x \in [0, \frac{\log 2}{l}]$$

3132 *Proof.* We define $f(x) := (1+x)^l - (1+2lx)$. Calculating the derivative and notice the fact that
 3133 $2^x - 1 \geq (\log 2)x$, we obtain

$$\begin{aligned} 3135 \quad f'(x) &= l(1+x)^{l-1} - 2l \\ 3136 \quad &\leq l(1+2^{\frac{1}{l}} - 1)^{l-1} - 2l \\ 3137 \quad &\leq l \times 2^{\frac{l-1}{l}} - 2l \leq 0. \end{aligned}$$

3139 The above equation completes the proof. \square

3140 **Lemma J.3.** When $l \geq 1$, we have

$$3142 \quad (1-x)^{2l} \leq 1 - lx, \quad x \in [0, \frac{1}{6l}]$$

3146 *Proof.* We define $g(x) := (1-x)^{2l} - (1-lx)$. Calculating the derivative, we obtain

$$3147 \quad g'(x) = -2l(1-x)^{2l-1} + l \leq 0 \quad \text{when } x \in [0, 1 - 2^{-\frac{1}{2l-1}}].$$

3149 Notice that $h(x) = 2^x$ is convex, so for $x \in [0, 1]$, we have

$$3150 \quad h(-x + 0 \times (1-x)) \leq xh(-1) + (1-x)h(0),$$

3152 that is

$$3153 \quad 2^{-x} \leq 1 - \frac{x}{2} \quad \text{when } x \in [0, 1].$$

3155 So

$$\begin{aligned} 3156 \quad 1 - 2^{-\frac{1}{2l-1}} &\geq 1 - \left(1 - \frac{1}{2(2l-1)}\right) \\ 3157 \quad &= \frac{1}{2(2l-1)} \geq \frac{1}{6l} \quad \text{when } l \geq 1, \end{aligned}$$

3161 which concludes the proof. \square

3163 **Lemma J.4.** Given N data points such that $\mathbf{x}_0, \dots, \mathbf{x}_{n-1} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{H})$, and define $\mathbf{A} = (\mathbf{I} -$
 3164 $\eta \mathbf{x}_{N-1} \mathbf{x}_{N-1}^\top) \cdots (\mathbf{I} - \eta \mathbf{x}_0 \mathbf{x}_0^\top)$. Then we have

$$3165 \quad \mathbb{E} \|\mathbf{A} - \mathbb{E} \mathbf{A}\|^l \leq \left(\sqrt{\delta_{\mathbf{A}} \eta^2 N l} \right)^l,$$

3168 where $\delta_{\mathbf{A}} := \tilde{C} 8eD^4 \log d$ for some absolute constant $\tilde{C} > 0$.

3170 *Proof.* We define $\mathbf{Q} := \mathbf{A} - \mathbb{E} \mathbf{A}$ for convenience. We can obtain a concentration inequality for $\|\mathbf{Q}\|$
 3171 due to the boundedness of \mathbf{x} according to Theorem 7.1 in [Huang et al. \(2022\)](#).

3172 We define

$$3173 \quad \mathbf{Y}_i := \mathbf{I} - \eta \mathbf{x}_i \mathbf{x}_i^\top$$

3174 For any $1 \leq i \leq N$, we can choose $m_i = 1$, and we have

$$3176 \quad \|\mathbf{Y}_i - \mathbb{E} \mathbf{Y}_i\| = \|\eta(\mathbf{H} - \mathbf{x}_i \mathbf{x}_i^\top)\| \leq 2D^2 \eta := \sigma_i$$

3177 So we know that $M_{\mathbf{A}} = 1$, $v_{\mathbf{A}} = 4D^4 \eta^2 N$, and

$$3179 \quad \mathbb{P}\{\|\mathbf{Q}\| \geq t\} \leq de^{-\frac{t^2}{2e v_{\mathbf{A}}}} = de^{-\frac{t^2}{8eD^4 \eta^2 N}} \text{ when } t^2 \geq 8eD^4 \eta^2 N.$$

3180 Furthermore, we have

$$3182 \quad \mathbb{P}\{\|\mathbf{Q}\| \geq t\} \leq e^{-\frac{t^2}{16eD^4 \eta^2 N}} \text{ when } t^2 \geq 16eD^4 \eta^2 N \log d.$$

3184 So there exists a non-negative sub-Gaussian random variable Z , s.t

$$3185 \quad \mathbb{P}\{\|\mathbf{Q}\| \geq t\} \leq \mathbb{P}\{Z \geq t\} \leq e^{-\frac{t^2}{16eD^4 \eta^2 N}} \text{ when } t^2 \geq 16eD^4 \eta^2 N \log d.$$

3186 Then for all $l \geq 1$, we can get
 3187

$$\begin{aligned}
 3188 \mathbb{E}\|\mathbf{Q}\|^l &= \mathbb{E}\|\mathbf{Q}\|^l(\mathbb{1}_{\{\|\mathbf{Q}\| \leq \sqrt{16eD^4\eta^2N\log d}\}} + \mathbb{1}_{\{\|\mathbf{Q}\| > \sqrt{16eD^4\eta^2N\log d}\}}) \\
 3189 &\leq \left(\sqrt{16eD^4\eta^2N\log d}\right)^l + \mathbb{E}\|\mathbf{Q}\|^l\mathbb{1}_{\{\|\mathbf{Q}\| > \sqrt{16eD^4\eta^2N\log d}\}} \\
 3190 &\leq \left(\sqrt{16eD^4\eta^2N\log d}\right)^l + \int_{\sqrt{16eD^4\eta^2N\log d}}^{+\infty} \mathbb{P}\{\|\mathbf{Q}\| \geq t\}lt^{l-1} dt \\
 3191 &\leq \left(\sqrt{16eD^4\eta^2N\log d}\right)^l + \int_0^{+\infty} \mathbb{P}\{Z \geq t\}lt^{l-1} dt \\
 3192 &\leq \left(\sqrt{16eD^4\eta^2N\log d}\right)^l + \mathbb{E}Z^l \\
 3193 &\leq \left(\sqrt{16eD^4\eta^2N\log d}\right)^l + (\sqrt{C16eD^4\eta^2Nl\log d})^l \\
 3194 &\leq \left(\sqrt{\tilde{C}8eD^4\eta^2Nl\log d}\right)^l.
 \end{aligned}$$

3203 where C and \tilde{C} are absolute constants, the fifth inequality is due to Proposition 2.5.2 in (Vershynin, 3204 2018). \square
 3205

3206 **Lemma J.5.** For any $l \leq K$, we have
 3207

$$\mathbb{E} \left\| \prod_{k=1}^l \mathbf{A}^{(k)} - (\mathbb{E}\mathbf{A})^l \right\| \leq \left(\sqrt{\delta_A \eta^2 N l} + \|\mathbb{E}\mathbf{A}\| \right)^l - \|\mathbb{E}\mathbf{A}\|^l,$$

3211 where δ_A is the same positive constant appearing in Lemma J.4.
 3212

3213 *Proof.* Let $a = \|\mathbb{E}\mathbf{A}\|$ and $c_l = \sqrt{\tilde{C}8eD^4\eta^2Nl\log d}$. Define the perturbation $\mathbf{Q}^{(k)} = \mathbf{A}^{(k)} - \mathbb{E}\mathbf{A}$.
 3214 Expanding the product as
 3215

$$\prod_{k=1}^l \mathbf{A}^{(k)} = \prod_{k=1}^l (\mathbf{Q}^{(k)} + \mathbb{E}\mathbf{A}) = \sum_{m=0}^l \sum_{\mathcal{S} \in \binom{[l]}{m}} \mathbf{P}_{\mathcal{S}},$$

3220 where $\mathbf{P}_{\mathcal{S}}$ is the matrix product with $\mathbf{Q}^{(k)}$ at positions $k \in \mathcal{S}$ and $\mathbb{E}\mathbf{A}$ elsewhere, preserving order.
 3221 The difference is

$$\prod_{k=1}^l \mathbf{A}^{(k)} - (\mathbb{E}\mathbf{A})^l = \sum_{m=1}^l \sum_{\mathcal{S} \in \binom{[l]}{m}} \mathbf{P}_{\mathcal{S}}.$$

3225 By the triangle inequality and linearity of expectation:
 3226

$$\mathbb{E} \left\| \prod_{k=1}^l \mathbf{A}^{(k)} - (\mathbb{E}\mathbf{A})^l \right\| \leq \sum_{m=1}^l \sum_{\mathcal{S} \in \binom{[l]}{m}} \mathbb{E}\|\mathbf{P}_{\mathcal{S}}\|.$$

3231 For each \mathcal{S} , decompose into t maximal consecutive blocks $\mathcal{B}_1, \dots, \mathcal{B}_t$ with sizes s_1, \dots, s_t ($\sum s_i = m$). By Folland's Hölder inequality and Lemma J.4:

$$\mathbb{E}\|\mathbf{P}_{\mathcal{S}}\| \leq a^{l-m} \mathbb{E} \prod_{i=1}^t \prod_{j \in \mathcal{B}_i} \|\mathbf{Q}^{(j)}\| \leq a^{l-m} \prod_{i=1}^t \prod_{j \in \mathcal{B}_i} \left(\mathbb{E} \|\mathbf{Q}^{(j)}\|^{s_i} \right)^{\frac{1}{s_i}} \leq a^{l-m} \prod_{i=1}^t c_{s_i}^{s_i}.$$

3236 Since $c_s^s = \left(\sqrt{\tilde{C}8eD^4\eta^2Ns\log d}\right)^s$ is increasing in s and $s_i \leq l$:
 3237

$$c_{s_i}^{s_i} \leq c_l^{s_i} \Rightarrow \mathbb{E}\|\mathbf{P}_{\mathcal{S}}\| \leq a^{l-m} c_l^m.$$

3240 Summing over all \mathcal{S} with $|\mathcal{S}| = m$:

$$\sum_{\mathcal{S} \in \binom{[l]}{m}} \mathbb{E} \|\mathbf{P}_{\mathcal{S}}\| \leq \binom{l}{m} a^{l-m} c_l^m.$$

3245 Thus the total bound is:

$$\sum_{m=1}^l \binom{l}{m} a^{l-m} c_l^m = (a + c_l)^l - a^l,$$

3248 completing the proof. \square

3250 **Lemma J.6.** *For any $l \leq K$, it holds that*

$$\mathbb{E} \left\| \prod_{k=1}^l \mathbf{A}^{(k)} - (\mathbb{E} \mathbf{A})^l \right\|^2 \leq \left[\left(\sqrt{2\delta_A \eta^2 N l} + \|\mathbb{E} \mathbf{A}\| \right)^l - \|\mathbb{E} \mathbf{A}\|^l \right]^2,$$

3255 where δ_A is the same positive constant appearing in Lemma J.4.

3257 *Proof.* Set $a = \|\mathbb{E} \mathbf{A}\|_2$ and $c_l = \sqrt{\tilde{C} 16e D^4 \eta^2 N l \log d}$. Define the perturbation $\mathbf{Q}^{(k)} = \mathbf{A}^{(k)} - \mathbb{E} \mathbf{A}$.
3258 Expand the matrix product as:

$$\prod_{k=1}^l \mathbf{A}^{(k)} = \prod_{k=1}^l (\mathbf{Q}^{(k)} + \mathbb{E} \mathbf{A}) = \sum_{m=0}^l \sum_{\mathcal{S} \in \binom{[l]}{m}} \mathbf{P}_{\mathcal{S}},$$

3263 where $\mathbf{P}_{\mathcal{S}}$ denotes the ordered matrix product with $\mathbf{Q}^{(k)}$ at positions $k \in \mathcal{S}$ and $\mathbb{E} \mathbf{A}$ elsewhere. The
3264 target difference is:

$$\prod_{k=1}^l \mathbf{A}^{(k)} - (\mathbb{E} \mathbf{A})^l = \sum_{m=1}^l \sum_{\mathcal{S} \in \binom{[l]}{m}} \mathbf{P}_{\mathcal{S}}.$$

3268 For the squared spectral norm, we have:

$$\begin{aligned} \mathbb{E} \left\| \sum_{m=1}^l \sum_{\mathcal{S}} \mathbf{P}_{\mathcal{S}} \right\|^2 &\leq \mathbb{E} \left(\sum_{m=1}^l \sum_{\mathcal{S}} \|\mathbf{P}_{\mathcal{S}}\| \right)^2 \\ &= \sum_{m=1}^l \sum_{n=1}^l \sum_{\mathcal{S}_m} \sum_{\mathcal{S}_n} \mathbb{E} [\|\mathbf{P}_{\mathcal{S}_m}\| \|\mathbf{P}_{\mathcal{S}_n}\|], \end{aligned}$$

3276 where \mathcal{S}_m and \mathcal{S}_n range over all subsets of $[l]$ with sizes m and n , respectively. For each pair
3277 $(\mathcal{S}_m, \mathcal{S}_n)$, decompose the union $\mathcal{U} = \mathcal{S}_m \cup \mathcal{S}_n$ into t maximal consecutive blocks $\mathcal{B}_1, \dots, \mathcal{B}_t$ with
3278 sizes $s_i = |\mathcal{B}_i|$ ($\sum_{i=1}^t s_i = |\mathcal{U}| = m + n$). By Folland's Hölder inequality and Lemma J.4:
3279

$$\begin{aligned} \mathbb{E} [\|\mathbf{P}_{\mathcal{S}_m}\| \|\mathbf{P}_{\mathcal{S}_n}\|] &\leq a^{2l-m-n} \mathbb{E} \prod_{i=1}^t \prod_{j \in \mathcal{B}_i} \|\mathbf{Q}_j\| \\ &\leq a^{2l-m-n} \prod_{i=1}^t \prod_{j \in \mathcal{B}_i} \mathbb{E} (\|\mathbf{Q}_j\|^{m+n})^{\frac{1}{m+n}} \\ &\leq a^{2l-m-n} \left(\sqrt{\tilde{C} 8e D^4 \eta^2 N (m+n) \log d} \right)^{m+n} \\ &\leq a^{2l-m-n} c_l^{m+n}. \end{aligned}$$

3291 The combinatorial count satisfies:

$$\sum_{\mathcal{S}_m} \sum_{\mathcal{S}_n} 1 = \binom{l}{m} \binom{l}{n}.$$

3294 Combining all terms:

3295

$$\mathbb{E} \left\| \prod_{k=1}^l \mathbf{A}^{(k)} - a^l \right\|^2 \leq \sum_{m=1}^l \sum_{n=1}^l \binom{l}{m} \binom{l}{n} a^{2l-m-n} c_l^{m+n} = [(a + c_l)^l - a^l]^2,$$

3296

3297 where the last equality follows from the binomial theorem applied to $(a + c_l)^{2l}$. \square

3298

3299

3300 **Lemma J.7.** Consider a function of training time T given by

3301

$$\mathcal{L}(T) = \frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^l} e^{-\frac{2Tc\eta}{i^a}},$$

3302

3303 where c, l are some absolute constants, $d_1 = \Theta(1)$, and $l > 1$. Then we have:

3304

3305

- 3306 1. $\mathcal{L}(T) \lesssim \frac{1}{T^{\frac{l-1}{a}}}$;

3307

- 3308 2. Given $d = \Theta((KN)^{\frac{1}{a}})$, $\mathcal{L}(T) \gtrsim \frac{1}{T^{\frac{l-1}{a}}}$.

3309

3310

3311 *Proof.* Computing the derivative of $f(x) = \frac{c}{x^l} e^{-\frac{2Tc\eta}{x^a}}$, we have

3312

3313

$$\arg \max_x f(x) = \Theta((KN)^{\frac{1}{a}}),$$

3314

$$\max_x f(x) = \Theta\left(\frac{1}{(KN)^{\frac{l}{a}}}\right).$$

3315

3316

3317 Then

3318

3319 1. For the upper bound, we have

3320

3321

$$\mathcal{L}(T) \leq \frac{1}{2} \sum_{i=d_1+1}^{\infty} \frac{c}{i^l} e^{-\frac{2Tc\eta}{i^a}} \leq \frac{1}{2} \sum_{i=d_1+1}^{(KN)^{\frac{1}{a}}} \frac{c}{i^l} e^{-\frac{2Tc\eta}{i^a}} + \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}}+1}^{\infty} \frac{c}{i^l}$$

3322

3323

$$\lesssim (KN)^{\frac{1}{a}} \times \frac{1}{(KN)^{\frac{l}{a}}} + \frac{1}{(KN)^{\frac{l-1}{a}}} \lesssim \frac{1}{(KN)^{\frac{l-1}{a}}}.$$

3324

3325

3326

3327 2. For the lower bound, when $d \geq 3T^{\frac{1}{a}}$, we have

3328

3329

$$\mathcal{L}(T) \geq \frac{1}{2} \sum_{i=(KN)^{\frac{1}{a}}}^{3(KN)^{\frac{1}{a}}} \frac{c}{i^l} e^{-\frac{2Tc\eta}{i^a}} \geq \frac{1}{2} \frac{c}{3^l (KN)^{\frac{l}{a}}} e^{-2c\eta} \times 2(KN)^{\frac{1}{a}} \gtrsim \frac{1}{(KN)^{\frac{l-1}{a}}}.$$

3330

3331

3332 The above equation completes the proof. \square

3333

3334 **Lemma J.8.** Given an estimator of the excess risk for ME and OP cases

3335

3336

$$\tilde{S}_2(K, N; \eta) = \frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} e^{-\frac{2KNc\eta}{i^a}},$$

3337

3338 and

3339

3340

$$\tilde{S}_2(1, T'; \eta) = \frac{1}{2} \sum_{i=d_1+1}^d \frac{c}{i^a} e^{-\frac{2T'c\eta}{i^a}}$$

3341

3342 for some $d_1 = \Theta(1)$. If the ME excess risk and OP excess risk satisfy that

3343

3344

$$\bar{\mathcal{R}}(K, N; \eta) = \tilde{S}_2(K, N; \eta)(1 + o(1))$$

3345

3346

$$\bar{\mathcal{R}}(1, T'; \eta) = \tilde{S}_2(1, T'; \eta)(1 + o(1)),

3347$$

then give $d = \Omega(T^{\frac{1}{a}})$ and when $T' \approx T$, it holds that

$$E(K, N) \in [K(1 - o(1)), K(1 + o(1))].$$

3348 *Proof.* We define $H(T) = \tilde{S}_2(K, N; \eta)$ and $\alpha = \frac{T'}{T}$. By definition of $E(K, N)$, we have $T' =$
 3349 $E(K, N)N$. Our goal is to prove that $\alpha \in [1 - o(1), 1 + o(1)]$.
 3350

3351 Solving $\bar{\mathcal{R}}(K, N; \eta) = \bar{\mathcal{R}}(1, T'; \eta)$, we can get $H(T)(1 + o_N(1)) = H(T')(1 + o_{T'}(1))$. We define
 3352 $\delta(K, N) = \frac{\bar{\mathcal{R}}(K, N; \eta) - \tilde{S}_2(K, N; \eta)}{\tilde{S}_2(K, N; \eta)} = o(1)$, and $\delta(1, T') = \frac{\bar{\mathcal{R}}(1, T'; \eta) - \tilde{S}_2(1, T'; \eta)}{\tilde{S}_2(1, T'; \eta)} = o(1)$. Then we
 3353 can derive that

$$3354 \quad H(T')(1 - \delta(1, T')) \leq H(T)(1 + \delta(K, N)) \\ 3355 \quad H(T')(1 + \delta(1, T')) \geq H(T)(1 - \delta(K, N)) \\ 3356$$

3358 which indicates that
 3359

$$3360 \quad -\delta(1, T')H(T') - \delta(K, N)H(T) \leq H(T') - H(T) \leq \delta(1, T')H(T') + \delta(K, N)H(T). \\ 3361$$

3362 Notice that $H(T)$ is strongly convex, and we have $H(T) \asymp \frac{1}{(KN)^{\frac{a-1}{a}}}$ and $H'(T) =$
 3363 $\frac{1}{2} \sum_{i=1}^d \frac{c}{i^{2a}} e^{-\frac{2KNc\eta}{i^a}} \asymp \frac{1}{(KN)^{\frac{2a-1}{a}}}$ by Lemma J.7. We are now ready to prove that $\alpha \in [1 -$
 3364 $o(1), 1 + o(1)]$.
 3365

$$3366 \quad -\frac{1}{T^{(2-\frac{1}{a})}}(T' - T) \lesssim H'(T)(T' - T) \leq H(T') - H(T) \leq H'(T')(T' - T) \lesssim -\frac{1}{T'^{(2-\frac{1}{a})}}(T' - T) \\ 3367 \\ 3368 \quad \delta(1, T')H(T') + \delta(K, N)H(T) \lesssim \frac{\delta(1, T')}{T'^{(1-\frac{1}{a})}} + \frac{\delta(K, N)}{T^{(1-\frac{1}{a})}} \lesssim \frac{o(1)}{T^{(1-\frac{1}{a})}}. \\ 3369 \\ 3370$$

3371 So
 3372

$$3373 \quad \frac{T - T'}{T^{(1-\frac{1}{a})}} \lesssim \frac{o(1)}{T^{(1-\frac{1}{a})}} \\ 3374 \\ 3375 \quad -\frac{o(1)}{T^{(1-\frac{1}{a})}} \lesssim -\frac{1}{T'^{(1-\frac{1}{a})}}(T' - T). \\ 3376$$

3377 Direct calculation yields the result. \square
 3378

3379 **Lemma J.9** (Hyper-Contractivity). *Given d -dimension random vector $\mathbf{x} \sim \mathcal{D}$ satisfying that $\|\mathbf{x}\| \leq$
 3380 D for some constant D , and the covariance matrix $\mathbf{H} := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\mathbf{x}\mathbf{x}^\top] = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$,
 3381 where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d \geq c$ for some constant $c > 0$, then the following holds:*

$$3382 \quad \mathbb{E} [\mathbf{x}\mathbf{x}^\top \mathbf{P}\mathbf{x}\mathbf{x}^\top] \leq \alpha \text{tr}(\mathbf{H}\mathbf{P})\mathbf{H} \\ 3383$$

3384 for some constant $\alpha > 0$ independent of \mathbf{P} .
 3385

3386 *Proof.* By Dieuleveut et al. (2017), the above lemma holds for data distributions with a bounded
 3387 kurtosis along every direction, i.e., there exists a constant $\kappa > 0$ such that

$$3388 \quad \text{for every } \mathbf{v} \in \mathbb{R}^d, \mathbb{E} [\langle \mathbf{v}, \mathbf{x} \rangle^4] \leq \kappa \langle \mathbf{v}, \mathbf{H}\mathbf{v} \rangle^2. \\ 3389$$

3390 So that it suffices to verify the above inequality. Since $\lambda_d \geq c$, we have
 3391

$$3392 \quad \langle \mathbf{v}, \mathbf{H}\mathbf{v} \rangle^2 \geq c^2 \|\mathbf{v}\|^4. \\ 3393$$

3394 For the left side, by the triangle inequality and that $\|\mathbf{x}\|$ is bounded
 3395

$$3396 \quad \langle \mathbf{v}, \mathbf{x} \rangle^4 \leq \|\mathbf{v}\|^4 \|\mathbf{x}\|^4 \leq D^4 \|\mathbf{v}\|^4. \\ 3397$$

3398 Combining the above two inequalities gives
 3399

$$3400 \quad \mathbb{E} [\langle \mathbf{v}, \mathbf{x} \rangle^4] \leq \frac{D^4}{c^2} \langle \mathbf{v}, \mathbf{H}\mathbf{v} \rangle^2. \\ 3401$$

Now setting $\kappa = \frac{D^4}{c^2}$ completes the proof. \square