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ABSTRACT

While data scaling laws of large language models (LLMs) have been widely
examined in the one-pass regime with massive corpora, their form under limited
data and repeated epochs remains largely unexplored. This paper presents a
theoretical analysis of how a common workaround, training for multiple epochs on
the same dataset, reshapes the data scaling laws in linear regression. Concretely,
we ask: to match the performance of training on a dataset of size N for K epochs,
how much larger must a dataset be if the model is trained for only one pass?
We quantify this using the effective reuse rate of the data, E(K, N), which we
define as the multiplicative factor by which the dataset must grow under one-pass
training to achieve the same test loss as K -epoch training. Our analysis precisely
characterizes the scaling behavior of E(K, N) for SGD in linear regression under
either strong convexity or Zipf-distributed data: (1) When K is small, we prove
that F(K, N) ~ K, indicating that every new epoch yields a linear gain; (2) As
K increases, E(K, N) plateaus at a problem-dependent value that grows with
N (O(log N) for the strongly-convex case), implying that larger datasets can be
repeated more times before the marginal benefit vanishes. These theoretical findings
point out a neglected factor in a recent empirical study by Muennighoff et al. (2023),
which claimed that training LLMs for up to 4 epochs results in negligible loss
differences compared to using fresh data at each step, i.e., E(K,N) ~ K for
K < 4 1in our notation. Supported by further empirical validation with LLMs, our
results reveal that the maximum K value for which F(K, N) ~ K in fact depends
on the data size and distribution, and underscore the need to explicitly model both
factors in future studies of scaling laws with data reuse.

1 INTRODUCTION

Scaling laws (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022) have emerged as a
central framework for characterizing the behavior of large language model (LLM) pre-training. The
Chinchilla scaling law (Hoffmann et al., 2022) established robust empirical trends in performance
as a joint function of model size and dataset size under the one-pass training paradigm, in which
each data point is used at most once. This assumption, however, is becoming increasingly untenable.
The quest for more capable models has driven an unprecedented escalation in data requirements:
from fewer than 10 billion tokens for GPT-2, to 300 billion for GPT-3 (Brown et al., 2020), 2 trillion
for Chinchilla and LLaMA 2 (Hoffmann et al., 2022; Touvron et al., 2023), and 36 trillion for
Qwen3 (Yang et al., 2025). Projections further suggest that the pool of publicly available data may be
exhausted as early as 2028 (Villalobos et al., 2024).

A common response to this emerging data scarcity is to train models for multiple epochs over the
same dataset. Recent empirical studies have begun to examine the consequences of such repetition:
for example, Muennighoff et al. (2023) and Xue et al. (2023) show that moderate reuse can still yield
competitive pre-training performance. Yet the fundamental scaling behavior of multi-epoch training
remains poorly understood—particularly from a theoretical standpoint.

In this paper, we study a fundamental question in understanding how multi-epoch training affects
the data scaling laws: To what extent does training for K epochs on N samples can be effectively
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seen as one-pass training with an increased number of data samples? Formally, let L(K, N') denote
the expected loss of K -epoch training on N samples. We define the effective dataset size N' (K, N)
as the minimal number of samples in one-pass training that achieves a comparable or lower loss
L(1,N") < L(K, N). In this paper, we concern about the ratio E(K, N) = N'(K, N)/N, which
we term as the effective reuse rate of the data, a key quantity that characterizes how many times larger
the dataset must grow to match the same performance as K -epoch training (see the detailed version
in Definition 3.1).

In a recent study of scaling laws for multi-epoch training, Muennighoff et al. (2023) encountered this
question and proposed an empirical approximation: N'(K, N) = (1 + R*(1 — e~ (K-D/E")) . N,
where R* is a fitted constant (R* ~ 15.39 in their experiments). This formula suggests that the
benefit of repetition grows with K but saturates exponentially at (1 + R*) - N as K increases. While
supported by some empirical evidence in their study, this approximation still leads to a noticeable
gap between scaling law predictions and empirical results (see Figure 3 in their paper). Moreover,
the formula implies that the ratio E(K, N) = N’(K, N)/N is independent of N, so the benefit of
repeating the dataset K times is equivalent to increasing its size by a factor that depends only on K,
regardless of how large NN is. It remains unclear to what extent this independence holds in general.

Our Contributions. In this paper, we approach the above question on the effective reuse rate of
data in the setting of linear regression, a setting that is simple enough to reveal the key mechanisms
of data reuse, while still tractable for precise analysis under stochastic gradient descent (SGD). We
provide a theoretical characterization of E(K, N) in various regimes, and point out a neglected factor
in the empirical study of Muennighoff et al. (2023): the effective reuse rate depends not only on the
number of epochs K, but also on the dataset size N. In fact, larger datasets can be repeated more.
Our main contributions are as follows:

1. In Section 4, we study the strongly convex case of linear regression, and show that when
K is small, E(K, N) = K, indicating that every new epoch leads to a linear gain. As K
increases, (K, N) saturates at a problem-dependent value of order ©(log N), suggesting
that larger datasets can be repeated for more epochs before the marginal benefit vanishes.

2. In Section 5, we go beyond the strongly convex case and study a class of Zipf-law distributed
data, and show that F(K, N) exhibits a similar scaling behavior to the strongly convex case,
except that the saturation point scales as a power of N instead of log V.

3. Technically, we derive the optimal learning rate (Lemma 4.4) for multi-epoch SGD in linear
regression and its corresponding approximation formula for the expected excess risk up to
an o(1) multiplicative error (Lemma G.1). These results may be of independent interest.

4. In Section 6, we conduct LLM pretraining experiments up to 200B repeated tokens, and
empirically validate our theoretical predictions. The results confirm that E(K, N) ~ K for
small K, and that for fixed K, the effective reuse rate increases monotonically with N. This
provides direct evidence for our main conclusion: larger datasets can be repeated more.

2 RELATED WORK

Data Reuse in LLM Pre-Training. Empirically, there is a long debate over the effect of data reuse
in LLM pre-training. Some works (Lee et al., 2021; Hoffmann et al., 2022; Hernandez et al., 2022;
Wang et al., 2023) suggested it may be harmful, while some work (Taylor et al., 2022) reported the
benefit of data reusing when the number of epochs is small (KX < 4). Xue et al. (2023) then discovered
a degradation phenomenon in multi-epoch training and investigated relevant factors and regularization
methods to tackle it. Muennighoff et al. (2023) trained LLMs under different configurations and also
found that reusing data is as good as using fresh data in the first few epochs. Yet, as the number of
epochs increases, the returns for repetitions diminish. In our work, from a theoretical perspective, we
rigorously analyzed the effect of data reuse using non-asymptotic techniques, and we defined and
calculated the effective reuse rate under two cases, shedding light on the theoretical understanding of
data reusing in LLM pre-training.

Comparison with Lin et al. (2025). A recent study on linear regression with data reusing (Lin
et al., 2025) is among the most relevant to our results. They showed that when the number of
epochs is relatively small (smaller than some power of the dataset size), the order of loss remains the
same as one pass SGD for the same iterations, which aligns with our results. However, their results
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only imply that E(K, N) = ©(K) for small K, while our analysis directly gives the explicit loss
characterization with o(1) relative error bound and a more exact description of the effective reuse
rate, which reflects the data reusing scaling behaviour. Our analysis is across various problem setups,
and further shows the general scaling trend of data reusing under different problem setups.

3 PRELIMINARIES

Notations. We use || - || to denote the ¢»-norm of vectors and the corresponding operator norm
of matrices. For two sequences (A,)52, and (B,)%2,, we write 4,, = O(B,,), or alternatively
A, < By, B, = Q(A,), Bn 2 Ay, if there exist constants C' > 0, N > 0 such that |4,,| < C|B,|
for all n > N. We write A, = ©(B,,), or alternatively A,, < B,, if both A, = O(B,,) and
A, = Q(By,) hold. Moreover, for some variable n, we write A,, = o, (B,,) if for every constant
¢ > 0, there exists ng > 0 such that |4,| < ¢|B,]| for all n > ng. In this paper, when n is
clear from the context, we write A,, = o(B,,) for short. Furthermore, we write A,, = w(B,,) if

B,, = 0(A,,). For matrices A, As, ..., A,, we use Hzn:1 A, to denote the product A1 A5 ... A,.
Let ||u|]|s = Vu T Su for a vector u and a positive semi-definite (psd) matrix S.

Linear Regression Problem. We focus on a linear regression setup, where data point (x,y) €
R? x R follows a joint distribution D and ||z|| < D for some constant D. W.L.O.G., we assume
that the covariance matrix of data input is diagonal, i.e., H := E[zz "] = diag (A1, A2, ..., A\a),
where A\; > Ay > --- > \4. A direct corollary is that \; < D?. For a given data input , the label
y is generated by y := (w*,x) + &, where w* € R? is the ground-truth weight and ¢ represents
the independent random label noise with E[¢] = 0 and E[¢?] = 02. We aim to train a linear model
f(z;w) = (w,x) to predict the data label, where w € R? is the trainable parameter. We use
MSE-loss /(w; x,y) := & (f(x;w) — y)? to measure the fitting error. Then, the population loss is

2
defined as £L(w) := E (4 ,)~p[l(w; x, y)]. Further we define the excess risk R(w) := L(w) — 102,

2
which is the expected population loss minus the irreducible loss %0’2.

Multi-Epoch SGD Training Algorithm. Consider a finite training dataset with N data points
{(x0,%0), (®1,y1),---,(®EN—_1,YN—1)}, where the data points (x;,y;) are i.i.d. sampled from the
distribution D. We use K -epoch stochastic gradient descent (SGD) with random shuffling to minimize
the loss function. And the initial parameter wy is set to 0. Formally, we denote K independent
random permutations of [N] by 7y, ...,7x. And we define j; := my, (i+), where i; := ¢ mod N,
ki := |t/N| + 1. Then we have the update rule for /K -epoch SGD with N data points

w1 = w, — Vwl(wi ), y;,) = (I —nej,@;, ) w + 18,25,

Next, given a K-epoch SGD over N data points, with learning rate 1, we define Wk n , to be the
distribution of wg . The randomness within w gy comes from the random draw of the dataset,
label noise &, and the shuffling in SGD. Based on this, we define the expected excess risk of a given
K-epoch SGD over N data points, with learning rate 1 as R(K, N; 1) := Ewwy v, [R(w)]. We
assume 1 < D2 for training stability.

Comparing Performance under Optimal Learning Rate Regime. To compare the performance
of one-pass and multi-epoch SGD, we consider the settings where the learning rates for both methods
are tuned to the optimal. Formally, we introduce the notion of the optimal expected excess risk of
K-epoch SGD for N samples as R*(K, N) := minne(o,ﬁ} {R(K, N;n)}. To calculate this value

in math, we will show in the next section that we can get a learning rate choice that can approximately
achieve the above optimal expected excess risk R* (K, N) both for one-pass and multi-epoch SGD.
Following our discussion in the introduction, we define the effective reuse rate as follows:
Definition 3.1 (Effective Reuse Rate). Given K-epoch SGD trained with N fresh data samples, the
effective reuse ratio is defined as: E(K,N) := + min{N’ > 0: R*(1, N') < R*(K, N)}.

That is, the effective reuse rate measures how many times larger the dataset must grow under one-pass
training to match the performance of K-epoch training, both under the optimal learning rate regime.

4 MULTI-EPOCH SCALING IN STRONGLY CONVEX LINEAR REGRESSION

In the study of linear regression problems, the strongly convex case is a classical and central theoretical
framework, serving as the standard entry point before many relaxing to weaker conditions (Hastie,
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2009; Ge et al., 2019). In Section 4.1, we first give the problem setups and the main results of the
effective reuse rate. In Section 4.2, we give a proof sketch for our theoretical results, and the detailed
proof of this section can be found in Appendix G.

4.1 MAIN RESULTS

As we focus on the strongly convex case, we make the following assumption on the minimum
eigenvalue of the Hessian matrix.

Assumption 4.1 (Strong Convexity). We assume that \gq > v for some constant p > 0.

For simplicity, we make the following prior for the ground-truth weight w*.
Assumption 4.2 (Parameter Prior). The ground truth w* satisfies w; # 0 for all i € [d].
As the number of samples IV can be very large in practice, training on the entire dataset for a large

amount of epochs can be computationally expensive. This motivates us to impose an upper bound on
the number of epochs K. Technically, this helps us to rule out cases with severe overfitting.

Assumption 4.3 (Computationally feasible number of epochs). We assume that the training dataset
size N and number of epochs K satisfy K = O(N%1).
Here, the exponent 0.1 is chosen for ease of calculation, though it may not be tight.

To compute E(K, N), we first precisely characterize the optimal expected excess risk. In particular,
we derive asymptotic expansions for R*(K, N) in the regimes K = o(log N) and K = w(log N),
each expressed as a leading term accompanied by an explicitly controlled higher-order remainder.

Theorem 4.1 (Multi-Epoch Data Scaling Law). Under Assumptions 4.1 to 4.3, for multi-epoch SGD
with the number of epochs K, dataset size of N, it holds that

R*(K,N) = z ;1;\(H)( on(1)) - log(KN) for K = o(log N),
) o d(1—|—ON(1)) % f()rK:(U(IOgN)

Theorem 4.1 describes how expected excess risk decays with number of epochs K and dataset size
N when choosing the optimal learning rate. When K < log N, then R* (K, N) = © (%) where

T = K N; by contrast, when K >> log N, then R*(K, N) = © (4 ) which does not depend on K,
showing that endless data reuse turns to be useless.
Next we propose the expression of E(K, N) by applying Theorem 4.1.

Theorem 4.2. Under Assumptions 4.1 to 4.3, for multi-epoch SGD with the number of epochs K,
dataset size of N, it holds that

[ ton) K for K = olog ),
B = { ngd)(l +on(1)-log N for K = w(log N).

Theorem 4.2 pinpoints two regimes for the effective reuse rate in the strongly convex case. The first
one is an effective-reuse regime: when K < log N, then E(K, N) = K (14 o(1)). This suggests
that each extra epoch is essentially as valuable as a fresh pass. The second one is a limited-reuse

regime: when K > log N, then E(K,N) = %(1 +on(1)), which means additional epochs
yield only logarithmic gains. This further implies that the model has effectively “seen” the dataset

enough times that additional repetition is redundant.

Together, these two asymptotic descriptions expose a phase transition when the quantity
limpy o0 ﬁ changes from 0 to co. For the former case (limy_, o0 ﬁ = 0), multi-epoch

training behaves like unlimited data augmentation; fo the latter (limx_, o ﬁ = 00), the benefits of
reusing data all but vanish, capping E(K, N) at O(log N). This insight provides a precise guideline
for practitioners: one should allocate epochs up to order log N to maximize effective data utilization,
but pushing K significantly beyond that yields rapidly diminishing returns.

Larger Datasets Can Be Repeated More. Our theorem provides the following insight. Fixing the
data distribution, as we collect more data, the largest possible epoch number K in the effective-reuse
regime also increases. This means that for larger datasets, multi-epoch training is able to reuse every
data point more effectively. Specifically, for the setup we study in this section, if we have collected [NV
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data points in total, then with multi-epoch training, we can get a performance comparable to one-pass
training on O (N log N) data points, which is superlinear in the number of data points we collected.

This finding points out a neglected factor in the data-constrained scaling laws proposed in Muennighoff
et al. (2023), which assumed a uniform effective number of epochs across different fresh data sizes.
In Section 6.3, we validate this insight by showing that the effective reuse rate indeed increases with
the dataset size in LLM pretraining.

4.2 PROOF SKETCH

We now provide a proof sketch of our main results. First, we need to compute the optimal expected
excess risk R* (K, N). This requires us to compute R (K, N; 1) and then select the optimal learning
rate n* that minimizes R (K, N; 7). However, due to the random shuffling and multi-pass processing
of the training data, directly analyzing R (K, N;n) is intractable. To overcome this, we seek an
analytic approximation of R(K, N;n), which is derived through the following steps.

Step 1: Bias-Variance Decomposition for Training Dynamics. Following the widely-applied
bias-variance decomposition approach to analyzing the dynamics of SGD training (Neu & Rosasco,
2018; Ge et al., 2019; Zou et al., 2021; Wu et al., 2022a), we define 6; = w; — w* and examine
the following two processes of bias and variance: Oi% = 075 — (67 x; Yx;,, 63 =
0y — n (07, x;,) T;, + n&j,xj,, where two processes are initialized as 65'* = wy — w* and
0y = 0. Tt follows that 8; = 6P'» + 0", with E[@}] = 0. We can then decompose the excess
risk R (w;) into two components: the bias term and the variance term, which we formalize as follows

2 i 2 2
R(w:) = 5110l = 5 10777 + 5 165 | -

Step 2: Analytic Risk Approximation by Matrix Concentration. A key challenge in tracking the
dynamics of multi-epoch SGD training arises from the non-commutative nature of the matrices in
the weight updates, which depend on randomly shuffled and multi-pass data. For example, the bias

weight evolves as 02138 = (Hszl (Hl]il (I - n:c,rk(l)w;‘(l)))) 0525 where we can see that one
data point appears more than once across different epochs. Thus, the above matrix multiplication
involves massive correlated data, which makes calculating the bias term E {HB'};;\? I H} intractable.

To resolve this issue, we borrow tools from concentration inequalities for matrix products Huang et al.
(2022). Specifically, we use the following result:

Lemma 4.1 (Corollary of Theorem 7.1 in Huang et al. (2022)). Given n data points such that
20, Zn—1 o N(0,H), and defining A = H;:Ol (I- nzjij), we have E||A — EA|! <

l N .
(\ / 5A772nl) , where 5 := C8eD*log d for some absolute constant C > 0.

However, several obstacles prevent us from directly applying Lemma 4.1 to our problem. For example,
we actually need to control error terms like E HHE& AW — (RA) H, where A(%) represents the
product of sequential updates through all samples in epoch ¢ (see the formal definition in Equation (1),
Appendix E). To address this, our main idea is to derive a tight upper bound for the original term, and
decompose this upper bound into the sum of a series of sub-terms for which we can apply Lemma 4.1.
(see the detailed derivation in Appendix G.2.1 and Appendix G.2.2)

Finally, we derive an error bound on matrix deviations based on our calculations, which is a higher-
order infinitesimal of the main term when 7 € [Q (T71) ,o(T_%)} and K = o (n‘lT_%), with

T := K N denoting the total number of training steps. This provides a theoretical guarantee for us to
approximate the risk function with a tractable expression. For the bias term, we have

K /N-1 2
E || (H (H (I - Umrrk(l)w;(l)>>) 00
k=1 0

ias 2
E[|l655]

= H
K N-1 2
~ H (H E H (I — nwﬂk(l)wzk(l)>‘|> 90
k=1 =0 H

= (@~ nH)*N) 6y |3, .
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where the approximation step follows from Lemma 4.1, and the last equation follows the facts that
E {wﬂk(l)w;(l)} = H and x; is uncorrelated with x; for 7 # j. For the variance term, the data

correlation issue is similar to what we met in the bias term case. Again, leveraging Lemma 4.1 and
following a similar analysis, we can get an approximation formula for the variance term as shown:

202 ( (I — (I —nH)XN) (I = nH)N — (I — nH)XN) )

var (|2 |
E[HHKN”H} NW” I+ (I—nH)N
+no® (H,(I - (I —nH)* )2 —nH)™ ).

Step 3: Narrowing the Range for Optimal Learning Rate. However, despite we have an analytic
approximation for risk, it is important to note that this approximation holds only for a specific range
of parameters. For a detailed discussion, refer to Lemma G.1. To mitigate this, we first determine
a reasonable range for the optimal learning rate in two steps: First, we choose 77 = ;\i i% as a
reference learning rate; Then, by comparing the losses for the reference learning rate and other
candidate learning rates, we can eliminate a large range of values. This analysis helps narrow down
the potential range of learning rates (Lemma G.5 for small K and Lemma G.6 for large K'). Within
this range, we further simplify the risk approximation to make it more tractable for optimization, as
shown in the following lemmas:

Lemma ~4.2 (Small K). Let H = PDPT" be the canonical form of H under similarity,
and let 0% = Z;i:d—nd+1(P90)l2' Under Assumption 4.1 and 4.3, for learning rate n €

[logKN DQtr(H)logKN}, K = o(log N), we have R(K,N;n) = M(K,N;n)(1 + o(1)) with

3XaKN’ Xgtr(H2)KN
~ .
M(K, N;n) i= 162\g exp(—22qnK N) + 2"

Lemma 4.3 (Large K). We define 93 as the same as Lemma 4.2. Under Assumption 4.1 and 4.3,

for learning rate ) € [%, 0(+)] and K = w(log N), we have R(K, N;n) = M(K,N;n)(1+
~ 2 -

o(1)) with M(K, N;n) = 202X exp(—2\ K N) 4 12D | o2d

Step 4: Deriving the Approximately Optimal Learning Rate. At this point, we have narrowed
down the range for the optimal learning rate and simplified the risk approximation. The next step is
to approximate the optimal expected excess risk. To achieve this, we differentiate the simplified risk
function M (K, N;n) in Lemma 4.2 and Lemma 4.3 with respect to the learning rate 7 and give the
critical point = n/ (K, N), which are presented as follows:

Lemma 4.4 (Approximately Optimal Learning Rate). Under Assumption 4.1 and 4.3, we consider K -

n2

epoch SGD with N fresh data and learning rate n = n/ (K, N) = l;f;’;gv\’, where p := t;l(ag)\j_z . Then
it holds for K = o(log N) or K = w(log N) that R(K, N;1'(K,N)) = R*(K, N) (1 + o(1)).

Using Lemma 4.4, we complete the proof as follows. By evaluating the risk at the approximately opti-
mal learning rate 7y (K, N) = l;’f L Ifg JIVV , we obtain an approximation of the optimal risk (Theorem 4.1),
based on which we derive the effective reuse rate (Theorem 4.2).

5 A SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

Natural data distributions often exhibit power law structures. To capture this phenomenon, we go
beyond the strongly convex case and analyze a stylized linear regression model with Zipf-distributed
data, where the excess risk admits a closed-form expression and the effective reuse rate can be
characterized explicitly.

Through this setup, we can see that the effective reuse rate exhibits a similar scaling behavior: as
the number of epochs K increases, E (K, N) initially grows linearly but eventually saturates at a
problem-dependent value that increases with V. In contrast to the strongly convex case, however, the
saturation point does not scale as ~ log N but instead scales as a power of V.

Problem Setup. We use the same notation for excess risk, one-pass and multi-epoch SGD, and
i.i.d. training data as in Section 3. We specify the data distribution as a Zipf distribution over d
one-hot data points, where the i-th data point is () = p;e; for some y; > 0 and the probability
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of sampling the i-th data point is p; = c¢ - ¢~“ for some constants ¢ > 0 and o > 1. The label
is generated by y = (w*,x) with no label noise. The ground-truth weight w* € R? follows an
isotropic prior distribution.

Assumption 5.1 (Parameter Prior). w* is sampled from a prior distribution with Elw*w* "] = I.

Interpretation. This setup can be interpreted as a simplified model of real-world data with heavy-
tailed feature distributions. Each coordinate represents an atomic feature that appears with Zipf-
distributed probability, mimicking the long-tailed statistics observed in domains such as text and
natural language. The scaling factors u; encode feature importance, which may reflect, for instance,
effects introduced by feature weighting or normalization.

5.1 RESULTS ON POWER-LAW SPECTRUM

Assumption 5.2 (Power-Law Spectrum). There exist two constants a,b > 0 with a — b > 1 such that

—1
the data input distribution satisfies that p; = ci~ (=% and A; = i, where ¢ = (ijl za%,,) .

Here we establish matching upper and lower bounds for R*(K, N) in the small-K and large-K
regimes, given the solvable model. Comparing with the strongly convex case, we observe a different
b

scaling behavior: when K < Na—b, R*(K, N) decays as a power law in KN, with exponent 4=

b
whereas when K > Nea—b R*(K, N) exhibits a power-law decay in N and is independent of K.

Theorem 5.1. Consider a K-epoch SGD over N fresh data. Under Assumptions 5.1-5.2, and given
the data dimension d = Q((KN)= ), it holds that

Tl § _b_
Re(,N) = § D, 7 Jor e ol )
N~ b for K =w(Na-s).

Then we derive the formula of E(K, N) by first solving the equation R*(1,7") = R*(K, N) based
on Theorem 5.1, and divide 7" by N.

Theorem 5.2 (Multi-Epoch Scaling Under Power-Law Spectrum). Consider a K-epoch SGD over N
fresh data. Under Assumptions 5.1-5.2, and given the data dimension d = Q((KN)#), it holds that

b
= a—b
B(K,N) {K(l +ol1) for K =o(N=5)
O(Nw-7) for K = w(Na-v).

Under the assumption of a logarithmic power-law spectrum, the trend of the effective reuse rate as a
function of K approximates the phenomena described in Theorem 4.2 in the strongly convex setting
and the trend described in Theorem 4.2 under the power-law spectrum assumption. We still observe
an effective-reuse regime (E(K, N) ~ K) when K is relatively small (K < N%(¢=%)) and as
K increases, the effective reuse rate undergoes a phase transition, converging to an upper bound
determined by N, entering the limited-reuse regime (E (K, N) = ©(N/(a=0))),

We can see that the exponent of this power of N is determined by the rate of eigenvalue decay of
the Hessian and the rate of norm decay of the parameter with respect to dimension. The proofs of
Theorem 5.1 and Theorem 5.2 are given in Appendix 1.2 and Appendix .3 respectively.

5.2 RESULTS ON LOGARITHMIC POWER-LAW SPECTRUM

Further, we aim to understand under the same Hessian matrix, how the data distribution correlated
with P and A affects the effective reusing rate. By changing the spectrum of A, we can also obtain
matching upper lower bounds for R*(K, N) and a characterization for E(K, N), which behave
differently from the power-spectrum case. Here we present only the latter; the former can be seen in
Appendix D.

Assumption 5.3 (Logarithmic Power-Law Spectrum). There exist two constants a > 1,b > 0 such
that the data input distribution satisfies that p; = c¢i~*log®(i + 1) and A; = 1/log"(i + 1), where

c= (Zle i~log (i + 1)) -
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E(K,N) vs N for Different K Power Spectrum: E(K, N) vs K Power Spectrum: E(K, N) vs log(N)
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(a) Strongly convex case: F (K, N) (b) The solvable case with Zipf-distributed data and power spectrum:
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Figure 1: Simulation experiments for strongly-convex linear regression and the solvable case with Zipf-
distributed data and power spectrum. Results show that F(K, N) is approximately proportional to some
function of N when N is relatively small, and E(K, N) ~ K when N is relatively large. For the solvable
case with Zipf-distributed data and power spectrum, we also fit the effective reuse rate using the formula
E(K,N) = ¢1N° suggested by Theorem 5.2, and the fitted exponent c; = 0.279 =~ ﬁ = % matches our
theory.

Theorem 5.3 (Multi-Epoch Scaling Under Logarithmic Power-Law Spectrum). Under Assump-

tions 5.1, Assumption 5.3, and given the data dimension d = Q((KN)«) for a one-pass SGD and a
K-epoch SGD over N fresh data, it holds that

b
B(K,N) = {g((ll +b0(1)) for K - o(log bN)
og’ N)  for K =w(log’ N).
The Saturation Point Varies across Different Problem Setups. The phase transition point where
the effectiveness of data reusing changes from effectively reused to limitedly reused varies across
different problem setups. In strongly convex linear regression problems, this phase transition happens
when the limit lim g, o, bgLN changes from 0 to co. And in the above power spectrum and log-power

spectrum case, the limit turns to be lim g, % and limg ;o0 log%N.

6 EXPERIMENTS

6.1 SIMULATIONS IN SECTION 4

First, we conduct our experiments on synthetic dataset with a strongly convex linear regression to
verify the characterization of effective reuse rate F(K, N) in Theorem 4.2.

Experiments Setup. We generate data pairs (x;,y;) where x; B (0, I;) with dimension
d = 100. For the label y;, we generate it as y; = (w*, x;) + &;, where w* is the ground truth
generate by standard Gaussin with unit variance. Also, &; i (0, o2 4)- Here in our simulation,

we set o to 0.1. To make our simulation aligned with the theoretical setup, we set the learning rate

7 o< loiIfVN , and we grid search the ratio ¢ := m for the ¢* which minimizes the final loss

given training steps 7' = K N.

Results. As shown in Figure 1a, we plot E(K, N) as a function of log N for various fixed values
of K. Each curve corresponds to a fixed number of epochs (e.g., K = 3,5,...,20) and illustrates
how the effective reuse rate E(K, N) grows with dataset size. For small data size (log N < K),
the effective reuse factor increases roughly linearly with log IV, indicating that adding more data
substantially boosts the one-pass equivalent performance. However, as N becomes large (log N >
K), each curve flattens out and approaches an asymptote at (K, N) ~ K. In other words, once the
dataset is sufficiently large relative to the number of epochs, additional passes through the same data
yield no further benefit beyond a factor of K. This behavior is exactly as predicted by Theorem 4.2:
when K is much smaller than log N, we have E(K, N) ~ K (nearly full K -fold data reuse), whereas
when K is large relative to log N, the effective reuse saturates and grows only on the order of log V.

6.2 SIMULATIONS IN SECTION 5.1

We now verify the predictions of Theorem 5.2 using synthetic data generated under the spectral
assumptions of Section 5 with a power-law decay Hessian spectrum (Assumption 5.2). In all sub-
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Figure 2: The effective reuse rate F(K, N) over K and training curves in language model experiments.
Figure 2a shows that E(K, N) ~ K when K is small, to be specific, K < 4. Figure 2b plots the points where
E(K,N) = 0.8K under different configurations, and we observe that F(K, N) increases as N increases,
indicating that larger datasets can be repeated more.

figures of Figure 1b, we set the data dimension d to 10° and tune all the learning rates to their optimal
values. Here we set a = 4.5 and 1.

Results. Figure 1b plots E(K, N) versus K and log N for the solvable model with Zipf-distributed
data. The curves depicting E(K, N) versus K show that E(K, N) = K when K is relatively small
and saturate to some value depending on N when K is large. In the right panel, which describes
the relationship between E(K, N) and log N, we observe that when K is small (namely K = 2),
E(K, N) increases and approaches K as log N increases, and the plots overlap when K is large.
Those phenomena provide empirical confirmation of the scaling behaviors predicted by Theorem 5.2.
We also fit E(K, N) in the large-K regime with a power-form function as stated in Theorem 5.2.
The fitted exponent is 0.279 ~ %b = %, aligning with our theory.

a

6.3 EMPIRICAL VERIFICATION IN LARGE LANGUAGE MODELS

Experiments Setup. We conduct experiments on a large language model to empirically validate
the hypothesis that larger datasets allow for more effective repetition. We perform pretraining runs
with fresh data sizes of 0.2B, 0.5B, 0.8B, 1.0B, and 2B tokens, each trained for 100 epochs. As a
control, we also include a run with 200B fresh tokens. For each fresh dataset size N and training
epoch K, we approximate the effective reuse rate E(K, N) by determining the effective fresh data

size Ny(K, N) required to achieve the same validation loss after one pass through the data. The
effective reuse rate is then computed as: E(K,N) = w

Our experiments utilize a 0.3B parameter model adapted from the Qwen2.5-0.5B architecture (Qwen
et al., 2025) and a subset of the DCLM dataset, totaling 200B tokens. A separate subset of the
DCLM dataset is reserved for validation. Crucially, we use a constant learning rate schedule across
all experiments to align with our theoretical analysis and mitigate the confounding effects of learning
rate schedules, as reported in prior work (Hoffmann et al., 2022; Luo et al., 2025). Figure 2a depicts
the relationship between E(K, N) and K. Figure 2b depicts the training curves for different data
sizes, and marks the points of different curves where E(K, N) = AK, where \ controls how strict
the criterion is for determining when multi-epoch training begins to underperform one-pass training.
Given such A, we denote the corresponding number of training epochs as K (A, V), which we refer to
as saturation points. In our experiments, we take A = 0.75. Further, in Figure 3, we show the precise
relationship between K (A, N) and N. More details regarding the experiment setup are available in
Appendix C.1.

Previous Work: When K < 4, E(K, N) ~ K. Our theoretical analysis indicates that F(K, N)
should be close to K when K is small (e.g., K < 4). In Figure 2a, when the epoch number is small
(approximately < 5), we observe that E(K, V) increases at a rate comparable to the epoch number,
as indicated by the black dashed line. Thus our predictions of E(K, N) when K is small aligns with
the data-constrained scaling laws (Muennighoff et al., 2023).
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Figure 3: The saturation points K (A, V) as a function of the dataset size N.

Larger Datasets Allow More Repetition. F (K, N) increases with the number of fresh data sizes
and eventually saturates for sufficiently large fresh datasets. Our results challenge the data-constrained
scaling laws proposed by Muennighoff et al. (2023), which assume a uniform effective number of
epochs across different fresh data sizes. In Figure 2b, we show that at the critical points where
one-pass training start to outperform multi-epoch training significantly, E(K, N) increases as N
increases. This suggests the continued potential for scaling pretraining through multi-epoch training
with larger datasets.

Fitting Experiments. In Figure 3, to provide real-world evidence that larger datasets can be
repeated more, we plot the saturation point values for different IV to illustrate how they vary with N.
Then we fit them as a function of N; see Appendix C.2 for details of the fitting procedure.

Surprisingly, though we do not claim that E(K, N) = O(log N) holds for general LLM trainings
when K is large, as we calculated in the strongly convex linear regression case, here we do observe
that K'(\, N) gradually increases when N increases, and it follows that K (A, N) =~ 0.80log N +5.21
with the correlation coefficient being » = 0.97. In this formula, the dataset N is measured in billions
of tokens (B).

Experiments with Learning Rate Decay. For further investigation of the scaling behaviour of
multi-epoch training, we conduct LLLM experiments with a non-constant learning rate schedule,
aligning with the common practice in reality. Specifically, we additionally repeat the above analysis
with a WSD learning rate schedule with linear decay. The experimental setup and results are described
in Appendix C.3.

7 CONCLUSION

In this paper, we characterize how multi-epoch training reshapes data scaling laws through the
notion of effective reuse rate F'(K, N), defined as the multiplicative factor by which the dataset must
grow under one-pass training to achieve the same test loss as K -epoch training on N samples. In
linear regression with SGD, we prove that when K is small, (K, N) ~ K; as K grows, E(K,N)
plateaus at a value of order ©(log N) under strong convexity and at a power of N under a data
distribution with power-law structure. Therefore, repeating data is not equivalent to scaling by a
constant independent of IV; larger datasets can be repeated more before returns diminish.

Several directions remain open for future study. (i) Our analysis is limited to the linear model, and it
would be interesting to extend the framework to more complex and realistic settings, such as neural
networks with feature learning. (ii) Our work focuses on reusing the whole dataset with multiple
epochs. However, to fully explore the potential of data reuse, one can consider a more efficient
and heuristic approach to repeating data, such as data mixing, curriculum learning, or reusing only
high-quality data. (iii) Technically, our main results rely on strong convexity. In the non-strongly
convex regime, we provide a solvable case with a Zipf-law data distribution. It would be interesting
to generalize these proof ideas to general non-strongly convex linear regression.

10
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we use LLMs (mainly GPT-5 series) to polish some of the sections in our paper, and to
check the grammatical issues. Besides that, we use LLMs to debug our code in LLM experiments
(Section 6.3) and simulation experiments for Section 4 and Section 5. Also, LLMs are used to help
improve the plotting scripts.

B ADDITIONAL RELATED WORKS

Data Reuse in Synthetic Setting. Besides the real-world LLM pre-training regime, many works
also reported the improvement of data reusing under synthetic settings empirically (Charton & Kempe,
2024; Kazdan et al., 2024) or theoretically (Zucchet et al., 2025; Dandi et al., 2024; Arnaboldi et al.,
2025).

Empirical Findings on Scaling Laws. Scaling laws reveal the relationships between large-scale
model training loss and various factors such as model size, data size, and compute budget. These
laws were initially observed by Hestness et al. (2017), but gained significant influence through the
work of Kaplan et al. (2020), and have since been further developed in a series of studies (Henighan
et al., 2020; Hoffmann et al., 2022; Zhai et al., 2022; Kadra et al., 2023; Aghajanyan et al., 2023;
Muennighoff et al., 2023; Bi et al., 2024; Shuai et al., 2024; Kumar et al., 2024; Tissue et al., 2024;
Luo et al., 2025). Notably, Muennighoff et al. (2023) further refined these models by incorporating
the number of training epochs into a more complex scaling law, which empirically describes the
effect of data reuse. In our work, we provide a theoretical analysis of how the effective reuse rate
E(K, N) relies on the epoch number K and fresh data size N, highlighting the role of N in the
scaling behavior of E(K, N), a factor that was overlooked in Muennighoff et al. (2023).

Theoretical Explanations for Scaling Laws. A series of studies (Sharma & Kaplan, 2020; Hutter,
2021; Maloney et al., 2022; Wei et al., 2022; Jain et al., 2024; Michaud et al., 2024; Nam et al., 2024,
Atanasov et al., 2024; Dohmatob et al., 2024; Bahri et al., 2024; Bordelon et al., 2024a; Lin et al.,
2024; Paquette et al., 2025; Bordelon et al., 2024b; Zhang et al., 2024; Ferbach et al., 2025; Li et al.,
2025a) have sought to theoretically explain scaling laws from various perspectives. Among these,
recent works (Bordelon et al., 2024a; Paquette et al., 2025; Lin et al., 2024; Bordelon et al., 2024b)
have analyzed scaling laws by tracking the training dynamics of SGD through linear regression setup.
Specifically, Bordelon et al. (2024a) investigated a full-batch gradient flow setup, while Paquette et al.
(2025) and Bordelon et al. (2024b) focused on online SGD with a sufficiently small constant learning
rate. Additionally, Lin et al. (2024) studied a geometric decaying learning rate schedule (LRS) (Ge
et al., 2019; Wu et al., 2022a). Recently, Li et al. (2025a) proposed a functional scaling law that
characterizes the loss dynamics for general LRSs. However, these scaling law studies did not account
for the impact of data reuse. In contrast, our work examines the scaling behavior of multi-epoch SGD
training within the context of a linear regression setup.

SGD Analysis in Linear Regression. The analysis of SGD in linear regression has been extensively
studied over the years, encompassing both one-pass and multi-epoch SGD. In the context of one-pass
SGD, Zou et al. (2021); Meterez et al. (2025) considered an SGD procedure with a constant step size
and averaged iterates, offering a sharp risk bound in terms of the eigenvalues of the covariance matrix.
Gurbuzbalaban et al. (2021) examined one-pass SGD with batch size and proved that the distribution
of the SGD iterates will converge to a heavy-tailed stationary distribution. Zou et al. (2022) compared
the performance of SGD in the absence of ridge regression. Wu et al. (2022a) and Wu et al. (2022b)
studied SGD in linear regression under covariate shift. Xia et al. (2024) considered SGD updates with
noisy gradient and analyzed the perfect deleted point problem. Li & Gu (2025) considered SGD with
exponential moving average in the linear regression setting. For multi-epoch SGD, Lin & Rosasco
(2019) examined a scenario in which gradients are sampled uniformly at random and mini-batches
are allowed. They analyzed the effects of mini-batch size, number of epochs, and learning rate,
carefully combining these parameters to achieve the optimal convergence rate. Pillaud-Vivien et al.
(2018) showed that while single-pass averaged SGD is optimal for a certain class of "easy" problems,
multiple passes are required to achieve optimal prediction performance on a different class of "hard"
problems, provided that an appropriate step size is chosen. In contrast to the matching upper and
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lower bounds derived by our theory, however, all the above works were only able to derive an upper
bound for the loss.

C ADDITIONAL EXPERIMENTAL DETAILS FOR LLLM TRAINING

C.1 PRETRAINING SETUP

In our pretraining experiments, we employ the AdamW optimizer with a weight decay of 0.1 and a
gradient clip of 1.0. We set the peak learning rate to 0.001, aligning with the approximate optimal
learning rate reported by Li et al. (2025b). Balancing the optimal batch size suggested by Li et al.
(2025b) with training efficiency, we utilize a sequence batch size of 128, which corresponds to
roughly 0.5M data points per batch. We adopt the vocabulary of Qwen2.5 (Qwen et al., 2025) models.
Our pretraining model consists of approximately 117 million non-embedding parameters, consistent
with the methodology of Kaplan et al. (2020), and a total of 331 million parameters following the
convention of Hoffmann et al. (2022). The detailed hyperparameter configurations are presented in
Table 2, and the model architecture specifications are provided in Table 1. To ensure a fair comparison
by eliminating the influence of batch order variations, we fix the random seed that governs the data
stream across all experiments.

Table 1: Model configurations and parameter counts. dp: hidden dimension; ds: feed-forward
dimension; n;: number of Transformer layers; nj,: number of attention heads; ny,: number of key-
value heads (for grouped-query attention); Vocab Size: size of tokenizer vocabulary; #NE params:
number of non-embedding parameters (in millions); #Params: total number of model parameters (in
millions).

Name d, df mn; np ng, VocabSize #NE params #Params
0.5B 896 4864 24 14 2 151936 355 491
03B 640 3328 16 10 2 151936 117 331

Table 2: LLM Experiment Settings

Parameter Value

Data
Sequence Batch Size 128
Sequence Length 4096

Learning Rate
Peak Learning Rate ~ 0.001

Schedule Constant
Warmup Steps 400
Optimizer

Optimizer AdamW
Weight Decay 0.1

51 0.9

Ba 0.95

€ le-8
Gradient Clip 1.0

C.2 FITTING EXPERIMENTS

To provide real-world evidence that larger datasets can be repeated more, we show how the saturation
points can be used to determine the appropriate number of training epochs. Recall that the saturation
points are the points at which multi-epoch training first starts to underperform the one-pass base-
line. We estimate these points from the pretraining loss curves presented in Section 6.3 and fit its
dependence on V.
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Figure 4: The saturation points K (A, N) as a function of the data size N under a WSD learning rate
schedule with linear decay.

To estimate this quantity from the training curves, we proceed as follows. First, to reduce the impact
of noise, we smooth the loss curves with exponential moving average (EMA) with decay coefficient
a = 0.9 and a window size of 3 checkpoints. Then for each dataset size N, we examine the ratio
E(K,N)/K. A larger ratio requires multi-epoch training to remain very close to the one-pass
baseline, whereas a smaller ratio allows more deviation. Next, given a threshold hyperparameter A,
we identify the closest epoch K at which this ratio first falls below A, which we denote as K (A, N).
Here we choose A = 0.75, and we define K (A, V) as the saturation point.

We fit those points and find that K (A, N) =~ 0.80log N + 5.21 with a correlation coefficient of
r = 0.97. The fitting results are shown in Figure 3.

C.3 EXPERIMENTS WITH WSD LEARNING RATE SCHEDULE

Next, to make our LLM experiments more consistent with real-world pretraining practices, we repeat
the LLM experiments under a warmup-stable-decay(WSD) learning rate schedule.

Concretely, we start from the checkpoints obtained in Section 6.3 for fresh data sizes N €
{0.2B,0.5B, 1B, 2B} after K € {2,4, 8,16} epochs of pretraining with a constant learning rate
of 10~3. From each checkpoint, we continue training for one additional epoch while linearly decay-
ing the learning rate from 1073 to 107", resulting in a WSD learning rate schedule followed by a
linear decay. For the one-pass baseline, we adopt the same schedule as in the N = 2B run.

For each dataset size IV, this process produces a set of four validation-loss values, each associated
with one of the four selected epoch numbers K. We model the dependence of the final loss on the
training steps x using the parametric form ¢(z) = A + x%, where A, B, a are fitted parameters. The
fitted curves are then used to predict the final validation loss under this WSD schedule for arbitrary
training budgets. Using these predictions, we compute the saturation points following the same
procedure as in Section 6.3. Here we still choose A = 0.75.

The resulting saturation points are summarized in Figure 4. We observe that, even under this different
learning rate schedule, the saturation points still satisfy the logarithmic scaling K' (A, N) = O(log N).
Specifically, we have K (A, N) =~ 2.35log N + 5.25 with a correlation coefficient of » = 0.96. This
confirms that our message that larger datasets can be repeated more also holds for real LLM training
setups.
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Figure 5: The solvable cases with logarithmic power-law spectrum. E(K, N) exhibits a simi-
lar behavior to that presented in Figure 1. We also fit the effective reuse rate using the formula
E(K,N) = ¢; (log N)* suggested by Theorem 5.2, and the fitted exponent co = 2 ~ b = 2
matches our theory.

D ADDITIONAL RESULTS AND SIMULATIONS FOR LOGARITHMIC
POWER-LAW SPECTRUM

D.1 SCALING LAW FOR LOGARITHMIC POWER-LAW SPECTRUM

We now present the scaling law for logarithmic power-law spectrum. Its proof can be seen in
Section 1.4.

Theorem D.1. Consider a K-epoch SGD over N fresh data. Under Assumptions 5.1, Assumption 5.3,
and given the data dimension d = Q((KN)#), it holds that

2 ) (KN)_(%1 for K = o(log® N)
R*(K,N) =< _a—l
(N log® N) " for K = w(log® N).

D.2 SIMULATIONS IN SECTION 5.2

Now we focus on validating the predictions of Theorem 5.3 using synthetic data generated under the
spectral assumptions of Section 5 and a log-power decay spectrum (Assumption 5.3).

Experiments Setup. Similar to Section 6.2, in all sub-figures of Figure 5, we set the data dimension
d to 10° and tune all the learning rates to their optimal values. Here we set @ = 1.5 and b = 2.

Simulations for the Solvable Model. Figure 5 plots E(K, N) versus K and log N for the solvable
model. The curves depicting F(K, N) versus K and E(K, N) versus log N show trends consistent
with those in Section 6.2, aligning with Theorem 5.3. Furthermore, in the large- K regime, we fit the
exponent according to Theorem 5.3 and obtain 2.036 ~ b = 2, which provides strong validation of
our theory.

E ADDITIONAL NOTATIONS

In this section, we provide some additional notations appeared in the following proof of our main
results.

Key Quantities. We define the following key quantities to analyze the sequential updates. For each

epoch k, let
0

AW = ] d=nzmiy2] ) (1
i=N-—1
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represent the product of sequential updates through all samples in epoch k. More generally, we define
the partial product operator:

b
k . k
z",: H(I - nxﬂk(i)w‘f—rrk(i))’ with A" = ZJ(V) 1—0°

a—b T —
i=a

We further define that Z](\]f)_l _,n = I. The cumulative effect across epochs is captured by:

k+1
7" = H AW and T =171,
i=K

Pseudo-expectation Notation E. Because matrix multiplication is non-commutative and the shuf-
fling in training introduces statistical dependence, the expectations of the random matrices defined
above cannot be written in a tractable closed form. To approximate the population excess risk, we
therefore introduce the auxiliary notation E. By construction, E computes the expectation of each
factor as if the variables were independent, deliberately neglecting the correlations. We then invoke
matrix-concentration inequalities to bound the gap between this “pseudo”-expectation and the true
expectation of the original dependent random variables. Specifically, for the above random matrices
used in our proof, here we further define that

EZY), = (I —nH)* ", )
EA®) .= (I —nH)V, 3)
ET® .= (I — nH)NE-R) “)
= a(id) . @l () T @l 7
ESZ T E|:ZN—1—>7r;1(l)+1:| ]E[wlwl } E{Zn;1(1)+1—>1v—1 ) S)

F PROOF OUTLINE IN STRONGLY CONVEX LINEAR REGRESSION

In this section, we give the outline of Lemma G.1, Lemma 4.4, and Theorem 4.2. The main technical
challenges and our proof insights are briefly stated in Section 4.2.

Section 4 centres on Theorem 4.2, which establishes a scaling law for the effective reuse rate E(K, N)
in terms of the relative magnitudes of number of epochs K and dataset size N. Its proof unfolds in
three stages.

1. An explicit approximation of the expected excess risk. Lemma G.1 derives a sufficiently accu-
rate asymptotic formula for the expected excess risk of multi-epoch SGD. The argument begins with
a bias—variance decomposition, splitting the expected excess risk into a variance term (Lemma G.2)
and a bias term (Lemma G.3).

* Variance term. The closed-form approximation relies on concentration properties of matrix
contractions together with a careful treatment of data shuffling.

 Bias term. The same contraction inequality is employed to obtain an analytic expression,
after which tight error bounds are proved for the full range of relative sizes of K and .
These bounds hold uniformly over a broad class of learning rates, necessitating detailed
case-by-case analysis.

2. Selection of a nearly optimal learning rate. Lemma 4.4 identifies a learning rate whose
resulting loss is asymptotically equivalent to the minimum excess risk attained with the optimal
learning rate as stated in Section 3. This “approximately optimal learning rate” will be fixed in
Appendix G .4.

3. Proof of the effective reuse rate scaling law. With the one-pass and multi-epoch SGD training
learning rate set to the near-optimal learning rate obtained above, the proof of Theorem 4.2 proceeds
to characterise the behaviour of E(K, N) as K and N vary, yielding the desired scaling relation.
Together, these three components establish Theorem 4.2 and provide a comprehensive description of
how reuse efficiency depends on the interplay between K and N.
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G PROOF OF MAIN RESULTS IN STRONGLY CONVEX LINEAR REGRESSION

G.1 STEPI: A CONCRETE VERSION OF BIAS-VARIANCE DECOMPOSITION

Before we begin our proof, we first present the following lemma, which provides the formal version

of the loss estimate for a specific range of learning rate parameters. We define a ﬁ(K ,N,n) as the
estimator of R(K, N;n)

R(E,N;n) = Ri(K,N;n)+ Ra(K,Nin) + Ry(K,N;n) ,

bias term var term across epochs  var term within epoch

where

~ 1
R1(K,N;n) := i(wo - w*)T(I - nH)QKNH(wO —w"),

~ 02 I— I_HKN I—HN—I_HKN
Rz(K,N;n):—NtT(( (I —nH) I)+(EI_:77H))N (I —nH) ))7

RaI, Nim) 1= 17 (H.(I = (1 = yH)™¥) (21 ).

G.2 STEP II: RISK APPROXIMATION AND ERROR BOUND ANALYSIS

In this section, we rigorously formulate the analytic risk approximation in Lemma G.1 and provide
its proof. Lemma G.1 indicates that the error bound is of higher order than the main term when the
parameters are restricted to a limited range of values.

Lemma G.1. Under Assumption 4.1 and 4.3, we further assume that for every x in the training
set, ||| < D for some constant D > 0. Consider a K-epoch SGD with learning rate n €

[Q (%) ,O(T*%)}, K=o (nflT’%> and data shuffling. Then, after T = KN steps, the estimator

of the expected excess risk satisfies:

— ~

R(K, N;n) = R(K,N;n) (1+0(1)).
Recall from Section 4.2 that the risk R(K, N;n) can be decomposed into the bias term
RPS(K,Nin) == HGfiaSHiI and variance term RV (K, N;n) := 3 ||0;’ar||il, which implies
that Lemma G.1 is a direct corollary of the following two lemmas:

Lemma G.2 (Variance Term). Suppose that Assumption 4.1 holds. Then for a K-epoch SGD with

dataset size N and learning rate 1) € [Q(7), o(T%)] and shuffling, when poly(T') 2 d, we have the
2

estimator of the variance term R¥ (K, N; 1) := Ewowie x., [R(w)"] after T := KN steps
o? < (I — (I —nH)"™) (I —nH)" — (I —nH)"N) )

RV (K, N;n) = —t

17 HL (1 (1 - nH)P)1 — gH) ),

where the expectation is taken on the training set and shuffle, and the estimate error is
R (K Vi) = R (K, Nim)| = 0T K2 /log ).
when K < log 2

n\/C8eDAT logd

Lemma G.3 (Bias Term). Under Assumption 4.1, for a K-epoch SGD with dataset size N, learning
rate 1) and shuffling, when poly(T) > d, we have the estimator of the bias term R”* (K, N;n) :=
Ewrwic n., |[R(w)" 2] after T := KN steps

o 1

RV (K, Nin) = 5(wo— w*) (I —nH)**" H(wy — w").

Then we have the following estimate errors:

22



Under review as a conference paper at ICLR 2026

1
1. When K >2and K = o (N)
(log N)5

(a) When n < 231:\%7? , the estimate distance is given by

‘r}ébiaS(K,N;n) _ ﬁbiaS(K, N; 77)‘ -0 ((1 _ n)\d)N(QK—l)K /,,72KN> .

(b) Whenn > 231;\)57? , the estimate distance is given by

[RYS(K, Nig) = R (K, Nin)| = O (Tl) .

3
2. When K = 1:
‘ﬁbias(l’ T; ,'7) _ ﬁbias(l, T: 77)‘ -0 (nZTe—Z)\dnT> )

G.2.1 VARIANCE TERM ANALYSIS: PROOF OF LEMMA G.2

We first recall some notations Appendix E that Z(k) = Hi’ o= na:,rk(-)mlk(i)), bk =

lNO1 Z(k) 1—)l+1€ﬂ'k DT (1) AK) = Z(k) 1—)07 7" = Hf—H A(Z » and T = I For simplic-
ity, and 1f it does not cause confusion, we omlt the superscrlpt ‘var” in all the training parameters
6V?* in the proof of Lemma G.2. Now we derive the recursion before and after the k-th epoch.

Oy = (I = N, (v 1)1, (N 1)) 06N 1 + T (N 1) Ty (N 1)
N—1 "
k
=7 E ZN71*>[+1§7rk(l)w7rk(l) + A(k)a(kfl)N

1=0
=nb™ + AMG )y

where 7 (7) is the i-th index after the permutation 7, in the K-th epoch. Further writing out the
above recursion gives the parameter after K epochs

fnZA(K) AR+ (k)
A natural move here is to replace 0 y with the expression above in the variance term

- 1 1
RY™(K,N;n) = E*OIT(NHHKN =E; (H,0kN0ky)

~ge{n sz > row (1) (1))

TK t,9=1
2 2
(e xS (X))
T TK ,]
o’ (@) R AN
:QE NIKZ ZTZ;SZ <T>
Ty TK iy T =l

i j 1 except ;7

R s ER)e) e

=1 Tl'1
Ptﬂ'7

where in the third equation, we take expectations with respect to the label noise(&)i\; 61, and in the
last equation, we decompose the variance term into two parts, according to whether the b(*) and /)
are from the same epoch or not.
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After explicitly writing the variance term, and to get a close-form formula for it, we then take pseudo
expectations of T'(), T'(7) Sl(”), and Sl(” ) separately to get the approximation of R (K, N;7),
given as follows:

2 2
D var no i ~ i
RY(K, Nin) = = < N'2§ ET® § > ESY ET<>>

L;é] =0 m;,m;
1,j=1
77202 1 i T (4) (21) (4)
+ -5 E H,M?ZIET ?0% ES! | BT

The intuition of the “pseudo expectation” and the related definitions are in Appendix E. Fix [, notice
that when ¢ £ j, by Equation (5),

= a(id) . T 7(5)
Z ES, Z E { B Rl ij1(1)+1—>1v—1}

T, T TiyTj

=3 A=) O H (1 - )V O

i,

For a fixed 4, for all m € [0, N — 1], there are (N — 1)! permutations 7; that satisfies 7;(m) = l. So
~ .. N-1
STES = (V-1 Y A —qE)N T T H I - g )V )

T, T 5 m,n=0

By applying a similar derivation to the ¢ = j case, we obtain that
- .. N—
S ES = Z — )N H (I —gH)N T ®)

Plugging Equation (7) and Equation (8) into the expression of Rvar (K, N;n), and we have

RV&I‘( )
”72 2 1 K N—-1 N-1
_ Yy )} 2N—2—m—n (2)
= IE<H,N2 Z]ET ( > (I-nH) H)]ET >
1#£] =0 m,n=0
i,j=1
9 9 K N-1N-1
n-o 1 n (1,) TI H 2N7272mH ET(Z)
+—5E H,NZET > Y (I-nH)
i=1 =0 m=0
o’ & N(K—i) N 1 N(K—j)
- SE(H N S (I -nH) (I (I —nH) ) HY(I —nH)
17&]
i,7=1
=Wy
no’ - (i) 2y (i)
+-E(H.Y (I-7H) (I (I —nH) )(21 nH)~ (I — nH)
=1
Wo
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where the second equation uses Equation (4). The quantity ¥; accounts for the variance term across
different epochs and ¥ Then we calculate ¥, and W5 separately. For ¥, we have

02 .
\P12E< NZI nH)N )(I(InH)N)zHl(InH)N(K”>

7,7=1

_ %Q]E <H’Jif Ij (I — nH)NE=D (I _(I- ’f]H)N)2H_1(I _ nH)N(K—i)>

= %tr ((I -I nH)KN) )

vt (1)) (1= =) (1= (1= a))
0.2

The last equation is obtained by direct algebraic calculation. For Wy, by direct matrix calculation, we
get

Uy = %‘2 <H, (2I — nH)™! (I —(I- nH)QKN)> :

Next we obtain the error bound for ‘7@"“ (K,N;n) — RV (K, N;n)

, which can be represented as

R (1, Nim) = RY™ (K, Nim)

. "”E<H, N.KZ ﬂz T<>Z<Nzl (m) (1) >

T3,
1 except m;,m; ’

N—
]E<H, 2 Z I—nH) N(K Z Z S(w) I_nH)N(K—j)> — 1,

Kol =0 7i,m;
3,j=1
N-1 T
i E<H’ N,KZ; >, T Z(; sf”)) (7)) >
‘ g&:eptﬂ'r[r( i =
_772 N(Kii) N-1 o ) v\
2 N'Z ZZESl (I —nH) =: I,
=0 m;

where the first inequality uses the triangle inequality. The term [; represents the error term between
epochs, and 5 represents the error term within one epoch. We will bound /; and I, separately in the
proof.

Upper bound for I;. To bound I7, a natural move here is to plug in a term that takes pseudo

expectation over (T(V))’ | but does not take pseudo expectation over (S l(ij ))M ;- and divide /; into
two terms.

I < 772202 < N' 1 Z AL (Ilvz_; s;”)) (T(j))'r>

T TK Ty
i.J ,1 except 7;,7;

—~

K
) Nl!)z Z (I—UH)N(K Z <Z S(” ) I_nH)N(K—j)>

i#£] iy T
1,7=1
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2 2 K N-1
no 1 s i .
T (s S a0 S (s ) )
: 1;&]1 i, T =0
1,3

2 2 K N-1
no 1 Z N(K—i) Z Z = q(id) N(K—7)
i#£] 1=0 7,7
1,0=1

= 111 + 112 .
Next we bound the terms /71 and /1, separately. Notice that

K
SN ST S OSE R I

i, 7?1 ex;l:relpt 771:I,(W7 i
K N-—1 B

_ (N!)K_2 Z(I_UH)N(K_Z) Z (Z S[(U)) (I_nH)N(K—j) )
z;ﬁ] T3, =0
1,j=1

because the summands do not depend on the permutations except 7;, 7;, plugging Equation (9) into
the expression of I; we have

mee(m ey ¥ om0y (S @0))

Ty
K 1 TK Ty,
7&] except T, T I

(e S5 ooy (K s

i#] Ty TK T4 T
J i
i,j=1 except m;,m;

Then we use Equation (4) to split /7 into three terms and by triangle inequality:

2 2 NoL
I < "2” < N' e Z 3 (Tu‘) ,fETu)) 3 (Z Sz(”)> ]ET<i)>
17&3 T TK i, T =0

1 except i, 7

+ 772202 < N' - Z Y ETO Y <Z S}”’) (T(j)—IET(-j))>

T TK T4 T =0
i, 75_31 except m;,7; 7

N-1
n 772202 < N| _ Z 3 (T(” _fET(i>> 3 (Z s}””) (T(j) —IET(j))> .
75] Ty TK i, 75 \ =0

1 except m;, T

Next, we use Lemma J.1 and the fact that S| (i) < I to bound the matrix inner products:

2 2 ~
< LEAPHD S 5 (e -

1 except 771 ST

— kTG

ZJ

+EHT(“ — ET® HTj _ETO H)
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Notice that Lemma J.2 and Lemma J.5 implies that

< (V/0an®NEK + |EA|)X — |[EA|®
< (VoA NK + 1)K —

<2K+\/6Am?NK when K <

E HT(“ —ET®

log 2
nv 5AT’

where 0, = C8eD*log d is the constant appeared in Lemma J .4, and C'is some absolute constant.

The second inequality uses the fact that (\/6an2NK + |[EA|))X — ||[EA|® motonously increases
with ||[EA]||. A similar approach combining Lemma J.2 and Lemma J.6 derives another concentration

inequality for T'("):

(2Kx/§A772NK)2 when Kgn%.

Applying Cauchy-Schwarz’s inequality and the concentration inequalities for (T(i))i, we get that

E HT(w B0 <

IE HTu) _ @Tm’

o’ND*w(H PO
IH—Wz Z (EHT()—ET()

i J 1 except 71'Z TG

2) : (E HTm _ ET(1>H2> )

202 ND2tr(H) & 2
< Mfr() ) <4K SAPNK + (2K\/26A772NK) )
i#]
1,7=1

+ <1E HT(“ —ET®

Our next step is to bound 715. We first make use of the fact that I — nH < I, and get that

2 2
15 < 7720 < N'QZZ<¥S(”) JES”>>

i£J Wi, T
1,j=1

Recall that for a fixed 4, for all m € [0, N — 1], there are (N — 1)! permutations m; that satisfies
i (m) =1. So

0? | K N-IN-1N-1 ‘
o< 8 (A g 3 XS S0 ()

_EZ](\;)flﬂm+1HEZ7(LJJZI~>N 1)>’
Notice that
ZJ(\ZT) 1%m+1HZT(LJJ1)>1*)N 1 EZJ(\ZT) 1%m+1HEZ’£Ljﬁ)’1*}N71

(ZJ(V) 1—-m+1 EZ](\Zf)flﬁwrkl) HEZT(LJ+)1~>N 1 +]EZ(1)71~>m+1H (Z7(l]+)1~>N 1 EZflJllﬁN 1)

+ (ZI(\})flﬂerl ]EZ(z) 1~>m+1) H (ZijllﬁN 1 EZT(l{i)»l*)N 1)
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Applying Lemma J.1 and using the fact that ]EZ](V) 1osma1 S I

2 .2
n2ote(H)||H||N : i
112 < IN2 E Z Z HZJ(V 1—-m+1 EZJ(\/') 1—>m+1H

i#£] m=0
i,j=1

N-2
+ Z HZT(L{EIHN*I _]EZr(szglﬁNle

N—2N-—
(1) ) (4)
ISP YL NNE N EU A e )1
m=0 n=0

Applying Cauchy-Schwarz inequality and Lemma J .4 gives

2.2
n-o u(H )HHHN i i
-[12 < IN2 Z E HZ](V 1—-m+41 EZ](V) 1~>m+1H
m=0

1#]
3,j=1

N-2
+ Z E Hzflj-‘y)-l—)N 1 Ezfrj-&)-qu 1”

N—-2N-2

1
2\ 2
Z Z ¢
+ (EHZ —1—-m+1 EZ() 1—>m+1H ) (EHZ'IL{‘,)-l—)N 1 ]Eznj-',)-l—>N 1H ) )

m=0 n=0

nPo’w(H)|H||N

< LGOI S (3 (om0 + 3 (Vi 1)

K
1,j=1

N—-2N-2

+ Z Z (\/25A772(N -1- m)) (\/25An2(N -1- n)))

m=0 n=0

1
<n3K?\/Nlogd+n*K*N?logd when 7= O(ﬁ

Upper bound for /5. We bound I, using a similar technique as what we did for ;. We first plug in

a term that takes pseudo expectation over (7)), but does not take pseudo expectation over Sl(“)
for every [ and ¢, and decompose I5 into two terms:

I < 7)220 < N' _ Z S TOy <N§:1 Slm)> (T(i>)T>

=1 T1""TK T =0
except m;
252
_ e <
n202 <
772572 <

=: Io1 + Ioo.
Next we bound the terms 51 and /5, separately. Notice that

Z Z (I —nH) N(K 02(2512)) I_nH)N(K—i)

i=1 M1 TK T
except 7;

).

2 \

N-1

T =0

Z
Z

el =0

N-1
(I — nEH)N (Z ZI’ESF“> (I~ nH)N(K“>|

=0 m;

2 \
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K

= (N)SEY (T = pH)NED Z (Z s(“>> (I — pH)NE=D)

i=1
because the summands do not depend on the permutations except m;, we have

1=1 T1""TK T
except ;

< S X a0 (X s ) gy

=1 T1""TK
except TG

Then we use the fact that ET() = (I — nH)N5~% to split I,; into three terms:

Iy < 77202 Z Z ET® - (i) _ N(K—i)
2S5 VK ( )Z ZSZ (I —nH)

i=1 71 "TK T =0
except 7;

+ 772‘7 E<H, (Nll)KZ Y @ —pH)NE Z(ZS”>(TU)_ETU))>

= et 7, i
U 1§ i i (i1)
T (Y 3 (a0 ar) ¥ (X8 (0 -r0) )|
except 7;

Next, we use Lemma J.1 and the fact that Sl(ij ) < I to bound the matrix inner products, and apply
the concentration inequalities we derived for ((T) (i))i:

2J\/'D2tr 0
=L ept 7

+E HT“) —ET®

2)
202 ND2tr(H) & 2
< PIES RS (4K SAPKN + (2K 25A772KN) ) .
i=1
Then we bound I55. Recall that I — nH < I, we get

g (o)

7,1‘11-7

I <

Recall that for a fixed ¢, for all m € [0, N — 1], there are (N — 1)! permutations 7; that satisfies
mi(m) =1. So

7120_2 1 N—-1N-1 (Z) ()
Iy < < Nl Z - 1! (Z 1—)m+1HZ7n+1—>N 1
i=1 1=0 m:O
_EZ](V) 1—>m+1HEanL+1—>N 1)>’
- 7720 < K N—1 N-2 " "
2 " NT Z 1! ((Z omt1 — B2y 1~>m+1> H
i=1 [=0 m=0
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(Z(L) 1—-m+1 EZ(L) 1—)m+1)>>‘ .

Using Lemma J.4, we have

9 9 K [N-2
note(H)||H|N i i 2
‘[22 < 2N E z : § : HZ](V)fl—Vm‘Fl - EZ](V)fl—)’n“rFlH
=1

i= m=0

-2

K
_ rPotu(H ||H||NZ (\/25A772(N_1_m))2

i=1 m=0

)
VT
Combining all the arguments above, we derive that

R (K, Nim) = R¥ (K, Nyn)|
< I+ Lo+ Iy + Ino

2 2 2 K 2
< C% 3 <4K SAPNK + (QK\/éAnQNK) )

2,j=1

<n*N?Klogd when 7= of

+ O(nPK?*\/Nlogd +n*K*N?logd) + O(n*N?K log d)
3 7 1
=O(m*N2Kz2+/logd) when 7 =o(—=).

VT
The above equation completes the proof.

G.2.2 BIAS TERM ANALYSIS: PROOF OF LEMMA G.3

For simplicity, and as we did in the proof of Lemma G.2, in this section we omit the superscript
"bias" for all the training paramters 8. Analogous to the proof of Lemma G.2, we can derive the
parameter recursion as

Oxn = (I — N, (N—1) T, (n_1))OkN—1

= (I =Ny (n—1)T1 (1)) (L = N ()1, (0))O(k—1)N

=AM 1N
For the parameter after K -epochs updates, we have

Oy = AT .. 1)90 H Al)go

We also have the approximation for the bias term

. 1
RS(K,Nin) = 3 (H,E67% )

1
= E§0}NH9KN
1 1 T 1
=E50; <H A<l>> H (H A<l>> 6o
1=K I=K

2
N = N =
Y
S
R
=
B
~
_'
T
R
=
B
~
<
(o)

=Rvar (K, Nim)
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The estimate error can be given as

[R5 (K, Vi)~ R(K, Vi)
1

1 T
E%@J (H A<l>> H (H
1=K l

=K

1
[T A" -|EA)”

=K

+2

1
E26 [EA|"H (

)o

<EglHlleol? (4% - @A) + 2iEAl< 4% - 24

1 T
A<l>> 0 — %og (H EA(”> H (H EA®
=K !

1

)o

=K

1 T 1
E56] (H AW - ||EA||K> H (H AW - ||EA|K> 8
1=K =K

(10)

where the last equation uses the fact that [|[EA|| < 1. Next, we discuss the approximation error bound
for the bias term in Equation (10), with different categorizations based on the range of K.

1
N5
i
(log N)5

1. Under Assumption 4.1 and K = o (

)

(@ n < 231/‘\357? . We now verify that K = o (U;E—;TH) under given conditions. We have
T r
IEA] = (1 —nXa)™ = (1 —=nA)® > (1—na)?
r
> (1 2198T\* _ Ziog(1-2sT)
- 3T
_ T ro(e ) _ o( 11 ).
T3
thus
[EA|| _ TS )
T logT”"
1
Also, given K = o ( N5 ) we obtain that
(log N)5
TS Ts

log N logT

(20)-(2)

The second equality uses logT = log N + log K = O(log N)

. Now we use the results in

Lemma J.5 and Lemma J.6, and then the estimated distance can be given as

RV (K, Nin) = RY(K, N )|

\/ 2(5A’I72NK

<
[EA|

1
5 [ 11160]* [EA|* <(

8K25AT}2NK 14K AV4 25A7]2NK
EA[ IEA]

=0 (|EAIPX 'K /i?’NE) ,

where the second inequality is by Lemma J.2.

1
< S HI[16o]*[EA|>* (

31
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(b) n > 231/‘\)57? . We have

[R5 0, N3 m) = RV (k, Ny)| < R (k, Nim) + RY (, Nin)

_2log T
=B34 T

< [RY=(k, Ny ) + RV (1, N )|

< [[RP=h, Nim) = RE(h, Ny | + 2RP (e, Ns)]|
L :3/\057"
[ 1

< |0 (IEAIPX K V/iPEN) +2 x 2||H||evo||2ﬂ<:A||2K]
- N=3x,T

2log T\ 2V
2K _ _
O (IEAI™) | ,—geer = © ((1 3T )

1 N3
=O(—) when K=o —" |,
Ts (log N)

oo

. _ (IEA] —
where the first equality uses the fact that K = o (n—ﬁ) when n =

2. For the K = 1 case, which is equivalent to one-pass (OP) SGD, we derive a different upper bound
for bias term error. In this scenario, we have the update rule as

0t = (I — nwtw:)ﬂt,l.

2logT
3AqT

We can denote the covariance as By, which is
B, :=T0,0]
=E(I — nzix/ )0;10, (I — na,x )
=By 1—nHB; 1 —nB;_ 1H + anwthGt_10l1wtw;
= —nH)B;_(I —nH) + n*E(x;z;] — H)0; 10, |(xx, — H). (11)

Since the bias term in the excess risk can be represented as
D bias 1
R (11T7n):§<HvBT>

We then get the lower and upper bounds for By, and derive the corresponding lower and upper
bounds for the bias term in the excess risk.

Lower bound. By Equation (11), we get a lower bound of B,
Br = (I —nH)Br-1(I —nH)
== (I=nH)"By(I —nH)"

and
R¥(1,T;) = 5 (H, Br)
> o (B (I~ yH) Bo(T —nH)")
= %OJ (I —nH)")H (I —nH)") .

Upper bound. By the recursion of By, we have

B, < (I -nH)B; (I —nH) +7°Eay_, .xyBor (xi2] — H)0, 10, (wx] — H)
= (I —nH)B;—1(I —nH) +1*Epy . .. |Ear (272107107 272 ] — HO7_10]_ H]
< (I -nH)Bi_(I —nH) + n°Eay_, .xoBar [Tr2107-10]_ 2721 .
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Then, combining Assumption 4.1 and Lemma J.9 gives
Br =< (I —nH)Br_1(I —nH) +n*aEgy , ..qott(HO7_10]_)H
(I =nH)Br(I-nH)+n*a(H,Br.)H

j .
T—-1

< (I —nH)"Bo(I —nH)" +n°a ) (B, H)(I—nH)*"~""VH,
=0

and
T-1

(H,Br) < (H,(I -nH)"Bo(I - qH)")+1°2 Y (H,B;) <(I —pH?T-i"D H> .
=0

We also have
(H,B;) < (H,(I —nH)B;_1(I — nH)) +n’ate(H*) (H, B;_)

(1 —nXg)? (H,B;_1) + n*atr(H?) (H, B;_,)

VAN VAN VAR VAN

(A2 + atr(H?))n? — 2\qn + 1)' (H, Bo)
eTlog[(/\§+octr(H2))n272>\d77+1] (H, By)

IN

— 6—2)\d77i+o(772’i) <H,B0>
< Cre”*M" (H, By)

and
<(I — nH)Q(T—i—l)H7H> = <(I _ nH)Z(T—¢_1)7H2>
<tr (H?)(1- n)\d)2(T*17i)
< tr (H?) 2(T-1=Dlog(1=nAa)
= tr (H2) o 2T 1=\ +O(n*(T—1-i))
< Cye2(T=1=)mAa
So
T-1
(H,B;) < (H,(I -nH)"Bo(I —nH)") + n’a Z Cre™am (H, By) CoenT 1=ty (H?)
i=0
= <Hv (I —nH)"By(I - nH)T> + Cyn?Te=PanT
And finally we get

L 1
RYS(1LT30) — § (HL(T = H) T Bo(T = nH)| = O(PTe 7

G.3 STEP III: NARROWING THE RANGE FOR OPTIMAL LEARNING RATE

We recap that our goal to get the scaling law formula for strongly convex linear regression with multi
epoch SGD, and the formula of the effective reuse rate. Before we start our proof, we first give a
technical lemma below.

Lemma G.4. Givenn € [w (%) ,0 (i) ], and define nq to be the number of the minimal eigenvalue

VT
Mg in H, then it holds that
d
D (PO A1 —nAi)*T = 03ha exp(=2X\anT) (1 + o(1)),
i=1
d

D X1 = nA0)*T = ngAgexp(—22anT) (1 + o(1)).
i=1
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Proof of Lemma G.4. For the first equation, for any A\; > A4, we define p; = :\\7 > 1, then we have
(1- nAi)QT = exp (2T log(1 — nX;)) = exp (QT(—n)\i + O(n2)\§)))

= exp(—2XnT) exp(O(n?)) = exp(—2XqpinT) (1 4 o(1))
(exp(=2XgnT))"" (1 + o(1)) = o(exp(—=2A4nT)). (12)

Since \; < D2, we have

d—nd

S (POO)2A(1 — nhi)*T = ofexp(—2AanT)),

i=1
From Equation (12), we can also directly get the second equation, which completes the proof of
Lemma G .4. O

G.3.1 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, SMALL-K CASE

Lemma G.5. Under the conditions in Lemma 4.4, and when K = o (log N), we have n* €
D?tr(H)
)\dtl‘(HQ)'

[logT alogT

T T |, where the constant o :=

Proof. We first prove the upper bound. Given a learning rate 7, Equation (6) gives
R(K,N;n) > R™(K,N;n) =

77202 o N-1 ) . .
Fo(ma s, 3y (%) @)
7'5]1 except 75 mimj \ =0

=1

gt 5 o (Ee) )

=1 T1"""TK T
except m;

=12

For 1)1, using the fact that (I — nxzx ") = (I — nD?I), we replace all the terms (I — nxz ) with
(I —nD?I) thus we have a lower bound for 1

77202 N 2 (2K i—j)N Rl 2\2N —-2—m—n T
Y2 = (H, Z > (1-nD? > (1—nD?) Elzz ']
175]1 {\71'{1 7TK}} m,n=0
2,7 i, TG
i 2
2ND4 <H > (=D EIN (@ D) E=IN (1 — (1 - D)) H>
1#£]
7,7=1

o? 2 o2 1_ 2KN
2ND4tr (H2 (1— (1 =nD*)"") ) “onpi” <H2 ( ((1 —:771)2)) ") )
o? _ (1 _nD2\KN
= ND4tr <H2 11 Jr((11 7777DD2))N ((1 — 77D2)N —(1- nDQ)KN)) .

For 1), we use a similar argument to get its lower bound
1— (1 —nD?)2N
H D2 2N(K—1) H
EaEH e

w0 < o —nDz)zKNl—(l—nD2)2NH>

Yo >

2D? 1—(1—nD?)2N 1 —(1—nD?)?
2 2
no<tr(H
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Notice that from the above lower bound, when K = o(log V), we have

R(KaN;n) > 1211 +¢2
1 no*tr(H?)

> 0() + 7 (14 o))
2 2
_ nottr(H?)
=—pr (14 0(1)). (13)
Taking n > al‘;lgT, and o = ﬁzzglz)) gives
_ o%tr(H)logT
K, N;n>———(1 1)).
RUK. Nin) > TEEDLEL (14 of1)
Now we recall that
R*(K,N) < R(K,N;n') = M(K,N;1') (1+o(1))
o%tr(H)log T o%tr(H)logT
=—F—F7"—7 (1 1 ——(1 1
SR (1 o(1)) < ZEUDEEL (14 o)

Thus we have that n* < “k’TgT. Next, we give the lower bound of n*.

When 7 < gj\i L, we have that
1 logT - , -
exp(—2AgT) = T2 = w(T) =w(R(K,N;n")) = w(R*(K,N)).
The above equation shows n* > ;&i ? , which completes the proof. O

G.3.2 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, LARGE-K CASE

Lemma G.6. Under the conditions in Lemma 4.4, and when K = w (log N), we have n* €

370 (%))

Proof. The proof comprises of three parts. First, we prove that n* > é&i ; when 7' is large. Second,

we verify that n* < + for sufficiently large V. Finally, we refine the proof in the second step and
justify that n* = o (%) All proofs are carried out by contradiction. The method proceeds as follows:

we take a specific 7 = 7 and compute its loss, then prove that R* (K, N) > R(K, N;n') when N is
sufficiently large if n* does not fall into some interval.

First, by Equation (15), we have

R(K,N;n') = ;—]\?(1 + 0(1)).

Then we begin our main part of the proof.

Proof Step I: n* > écj\gdg.

We assume that n* < s T Observe that RY8s (K N;n) decreases with 7. So

A T*
D * P bias * P bias IOg T
R*(K,N) > R"™(K,N;n*) > R"*(K,N;n = )
3T
= —(wp — 'w*)T(I — nH)QTH(wO —w")(1+0(1))
=37

%é‘pd exp(—2AdnT)> (1+0(1))
(#)-(%)

35

_logT
N=3x,T
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where the first equality is due to Lemma G.3, the second equality is due to Lemma G.4, and the last
equality is due to Assumption 4.1.

Proof Step II: n* < % We assume that n* > W By Equation (13), we have

no?tr(H?) o%d o?d

1D (14+0(1)) > W(l +o(1)) > —(1 +0o(1)),

R(K,N:n) >
(K,N;n) > 9N

which is a contradiction.
A direct corollary is that
R*(K,N) = R(K,N;:n*)(1+ o(1))
1
§(w0 —w*) (I —n*H)* H(w, — w*)
O.Ztr ((I_ (I—?’]*H)KN) ((I_n*H)N _ (I_n*H>KN)>

R(K,N;n*) =

TN T+ H)P

77*02 w 2T * -1
+ (H,(I-(I-n"H)?*")@2I-n"H)™")

d d
1 _ 2T 4 o? 1*"*)\)
,2;(1300) 21— n*\) g (ETTwE
77*02 * d 2T
+ Z =" X)* 0 ((1)?)

o2 e NntA 77*0'2
. Hd)\dexp( 220 T) +ZN1+6—NM + = tr(H) | (14 0(1).

Proof Step 1II: n* = o (%)

We assume that there ex1sts a constant € > 0 and a sequence (V;)$2, that satisfies V; — oo when
i — oo and n*(N;) > &~ for all i. As we only conduct our analysis on the sequence (NV;)§2,,
without loss of generahty, we take (N;)2, =NN.

We define f(6) = Z?,l 02% + 222 tr(H). Then we have

zAfzz e e hend >0
Lemh)2 4 £ 1+e—<SA '

So
o2d
£ > 10) = 27,
and
_ 1 1 2d _
RE(K,N) 2 0 fOr N+ 0(1)) 2 0 F(01+0(1)) > S0+ 0(1)) = R(K, Niw),
which is a contradiction. O

G.3.3 AN APPROXIMATION OF THE EXCESS RISK, SMALL-K CASE

Lemma G.7. Let 6% = Zf':d_nd_i_l (P6y)?, H = PDP to be the canonical form under similarity

of H. Under the conditions in Lemma 4.4, for learning rate ) € [;‘;\gd g%, e 1%‘51{,{ N\ for constant

_ D?*tr(H)
O = Xu(H?)

and K = o(log N), then we have the approximation of R(K, N;n) as
7?’(]:{7‘]\7777) - M(KaNan)(]- + 0(1))7
ntr(H)o?

1~
M(K,N;n) = 593Ad exp(—=2AanT) + ————,

where steps T = K N.
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Proof. From Lemma G.1, we have that R(K, N;n) = R(K, N;n)(1 + o(1)), where R(K, N; )
can be written as

R, Nin) = (w0 —w) (1 =) H(wy — w)
L, <<I — (I —nH)*N) (I —nH)N — (I - nH)KN))
N I+(I—-nH)N
L (1 = (1 = nH)?T) (2 g H) )
1 d ) ) d 02 _ )\7 N
1702 7702 d 2T 2
+ T (H) = = > N1 = mA)*T 40 (n?)

= <;é§)\d exp(—2AanT) + nZtr(H)) (1+0(1)) + O(%)

M(K,N;m)
15, no?
= §9d)\d exp(—2AgnT) + Ttr(H) (1+0(1)), (14)
M(K,N;m)
where the second to last equation uses Lemma G.4 and the fact that n(1—n\g)?7 = o (M (K, N, ;7))
forn € | é‘f\i I, 210871 and the last equation uses the fact that when K = o(logN), O (&) =
log(N
o (SE5) = o (M(T;m)). O
G.3.4 AN APPROXIMATION OF THE EXCESS RISK, LARGE-K CASE
Lemma G.8. Under the conditions in Lemma 4.4, for n € [g;i? ,0(%)], and K = w (log N), we

have

E[R(K, N;n)] = M(K,N;n)(1+ o(1)),
ntr(H)o? n o%d

1.
M(K,N;n) = §9§>\d exp(—2XgnT') + 1 N

where 62 := Zld:d—nd—&-l (P60)?, and PDP is the canonical form under similarity of H.

Proof. Given K = O(N1), one can verify that

7 3

Jim K = i S =0

So condition K = o < 73 ) is satisfied, thus by invoking Lemma G.1, we have R(K, N;7) =
R(K, Nin)(1+o(1)).

Note that when 7 = o (%), for any i € [1, d], we have

(1= AN = e MmNHON) — 1 4 o(1),
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Combining this with Lemma G.4, we have

~

R(K,N;n) = 1(wo —w*) (I —nH)*" H(w, — w*)

2
T <<I_ (I —nH)™™) (I —nH)™ — (I—nH)KN)>

N I+(I—-nH)N
W (H,(I - (I-nH)) @21 -H)™")

_|_

2

; d
1 2 2T o (1—n\)V
5 Z(Peo)z Ai(1=nAi)™ + ; N 14 (1 —=ni)N

2 2 d

+ 77%tr(H) - 77% ;)\i(l —nx)*T 4+ 0 ()
= (193)\,1 exp(—2AanT) + Wtr(H)) + U—Qd (I14+0(1)), (15)
2 4 2N
M(K,N;n)
which concludes the proof. O

G.4 STEPIV: DERIVING THE APPROXIMATELY OPTIMAL LEARNING RATE, PROOF OF
LEMMA 4.4

The proof of Lemma 4.4 for the small-K case and large- K case follows a similar pattern. First, we
minimize the aproximate excess risk obtained in Section G.3.3 and Section G.3.4. Then we conduct
an error bound analysis and complete the proof.

G.4.1 PROOF OF LEMMA 4.4, SMALL K

Part I: Minimizing the Approximation of the Excess Risk
Lemma G.9. Under Assumption 4.1 and 4.3, we consider K-epoch SGD with N fresh data and

learning rate n satisfying 1 € [%, %] where steps T := KN and « is some constant

independent of T, but can depend on D and \1, \a, . .., \g. Then when K = o (log N), the chosen
. log pT . .

learning rate 1) = %L = arg min, c[leeT aloet) M(K,N;n).

Proof. Given Lemma G.7, we take the derivative of M (K, N;n) with respect to 7

oM tr(H)o?

o = —02)\2T exp(—2X\anT) + 1

40204

Define p := w0 and we let %

i 0, then we get
0=—pTexp(—2AnT)+1

pT" = exp(2AanT)

_ log pT

oo\ T

The above equation completes the proof. O

Part II: Error Bound Analysis

Lemma G.10. Consider K -epoch SGD with N fresh data and learning rate n). Given a set of learning
rate values I', and an excess risk estimate that satisfies R(K, N;n) = M (K, N;n)(1 + o(1)) when
1 € I. Assume that ' = arg minp M (K, N;n) and n* € T. Then we have R(K,N;n'(K,N)) =
R*(K,N) (14 o(1)).
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Proof. According to the optimality of n*, it holds that
R*(K,N) < R(K,N;1') = M(K, N;n)(1+ o(1)).
Also, according to the optimality of 7/, it holds that
M(K,N;i')(1+0(1)) < M(K,N;n")(1 +0(1)) = R*(K, N)
Combining the above two equations gives

R(K,N;n') = R* (K, N)(1 +o(1)).

Combine the above two lemmas and we finish the whole proof.

G.4.2 PROOF OF LEMMA 4.4, LARGE K

Part I: Minimizing the Approximation of the Excess Risk

Lemma G.11. Under Assumption 4.1 and 4.3, we consider K-epoch SGD with N fresh data and

learning rate 1) satisfying n € [‘lﬁ\gﬁw ,0(%)]. Then when K = w (log N), the chosen learning rate

; __ logpT __ . .
W= ST = Argmilesr 4y, M(K,N;n).

Proof. Given Lemma G.8, we compute the global minima of M (K, N;n), we have f/ = ;&gi +
d
O (%) = argmin,cg M (K, N;7), which lies in the regime [é‘j\ig ,0(3)] when N is sufficiently

large. O

Part II: Error Bound Analysis The proof of Lemma 4.4 concludes directly by applying Lem-
mas G.6, G.8, G.10 and G.11.

Combine the above two parts and we finish the whole proof.

G.5 PROOF OF THEOREM 4.1

Proof. Notice from Lemma G.1 and Lemma G.4, we have that

_ 1~
RK, N3m) = 50axa(1 = nAa)*™ ¥ (14 o(1))

R1(K,N,n)
=)V
+Z N1+ (1 —ng\)V
R2(K,N,n)
7702 ndn02 QKN 1 1
—|—Ttr(H)— 1 Aa(l —nAq) (I14+0(1)) whenn € |w 7 )0 )|

R (K,N,n)

Next, we carefully analyze the magnitude of R, (K, N,n), Ro(K, N,n), and R3(K, N,n), and
using these results, we can simplify the excess risk expression.

Now, We take ) = 1§§ fg = ;‘j\gdf{% + O (%) in Lemma 4.4, then

2KN log KN 1
(1=Xam) = exp <2KN10g (1 SN O(T)))

=exp(—log KN + O(1))

o(3)
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Thus
Ru(K, Nyn) = 5030 (1= Aan)
oft)
and
ol Vo) = TGO P 1A (1ol
2
(o}
_ 02tréI)\{d);ogT(1 +o(1))

= w(R1(K, N, 7).
Next, we discuss two scenarios where K is relatively small and K is relatively large, to be specific,
K =o(log N) and K = w(log N).

When K = o(log N), We have

log KN 1 N
1—xanN=(1- y
(= x) = (1- B+ 0 () )
log KN 1
= N1 11— —==—p —

K pi(1+ 0(1))>

Il
>
2
=
=

Il

S
=

i
=

Asa consequence,

Meanwhile,
~ _ log KN\ 1y ~
RalK, Non) = O ( us ) —0 (N) — o (Ra(. N.m)
So
R 2
R (K, N) = RUK, Non)(1+ (1)) = DT g 4 oy,
d

When K = w (log N), we have

log KN 1 \\Y
— . N: . . -
= xa = (1- 2585+ 0 (7))
log KN 1
Nlog(1- : —

— exp (—k’i?vpi 10 (;()) — exp (o(1))
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So

EN log KN 1 ~
R?)(KaNan):O( 8 )ZO(>:O(R2(KaNan)>
As a result, we have

— ~

R*(K,N) = R(E,N;n)(1 + o(1)) = Z2(1 + oy (1))

G.6 PROOF OF THEOREM 4.2

Now we establish the formulation of E(K, N) by solving the equation R*(1,7") = R*(K, N).

When K = o(log N), solving R*(1,7") = R*(K, N), we get

o*tr(H)log T’ _ o?tr(H)log T
W(l +or:(1)) = W(l +or(1))
log T" logT
OgT(l +op(l) = O? (1 + or(1)). (16)

According to the definition of the small o notation, there exists a constant To such that when 1" > Tg,
the right hand side is smaller than maxgve1 23 b%—,T (1+ or+(1)). So W.L.O.G, we could assume
that 77 > 3 in the following and use the fact that the function k’% is monotonously decreasing when
T > 3.

Lemma G.12. Given T' and N satisfying Equation (16), it holds that T' = T when T > Ty for
some constant Ty

Proof. Notice that there exists 73 such that [or(1)| < 1 when T' > T, and o7-(1) is bounded.

Furthermore, o7/ (1) > —1, because the left hand side is strictly greater than zero due to the fact that
n < pz. So when T’ > T, we have
log T' < 3logT
T —2 T
logT" _ 1logT
Cs > -
T’ 2 T

for two constants ¢4 < 1 < ¢5. We claim that 77 > %4T =: aT when T > -L; otherwise,

Cq

7)

(13)

a2’

AT =TT
3logaT
T
3logT 1
2 57 when TZ@,

which contradicts Equation (17). We also have 77 < 3¢sT =: ST when T > 62 by a similar

argument; otherwise,

log T" log BT
<cs

T’ BT

_ log T
3T
< logT
- 2T

Cs

when T > /32,
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which contradicts Equation (18). So 7" =~ T when T > min(77, %, B2, TO) =Ty.
Next, we prove the first part in Theorem 4.2, which is E(K, N) = K (14 o(1)) when K = o(log V).

We define F(T) = 2L §(T) = |or(1)], and e(T") = |oz~(1)], so

F(T")(1 = e(T")) < F(T)(1 + 6(T))
F(T')(1+€(T")) = F(T)(1 - 6(T))

Consequently, we have

—F(T)8(T) — F(T")e(T') < F(T") = F(T) < F(T)3(T) + F(T")e(T"). (19)
So due to the convexity of F(T),
logT — 1 logT
= =T s (DT =T) < F(I") = F(T) < F(T)3(T) + F(T)e(T") = ——lo(1)].
Thus we have
T >T(1—o0(1)).
The above equation completes the proof. O
Combining Equation (16) and Lemma G.12 gets
log7T —1 logT' — 1
_T(T_T/):_W(T_T/)' (20)
Further using Equation (19),
F(T'(T -T) < F(T) - F(T') < F(T)§(T) + F(T")e(T") 2D
Combining Equation (20) and Equation (21) gives
T < T(1+ o(1)).
Substituding the definition of E(K, N) and we get the first part in Theorem 4.2.
When K = w(log N), solving R*(1,7’) = R*(K, N), we get
o*tr(H)log T’ o%d
—(1 (1)) = —=(1 1)). 22
i (Lo (1) = T2+ on(1) @2

There exists a constant Ny such that when N > Ny, the right hand side is smaller than the minimal

value of R*(1,T") when T” is finite, that is, ming/¢1 2.3 %(1 + or/(1)). So WL.O.G,

we could assume that 7" > 3 in the following and use the fact that the function
decreasing when x > 3.

logz
T

is monotonously

Now we provide a lemma to give a loose bound of 7" fisrt, and then we apply the lemma to get the
formula of E(K, N).

Lemma G.13. Given T' and N satisfying Equation (22). It holds that N <T' < N 3 when N > N,
for some constant N.

Proof. Notice that there exists Ny such that [on(1)| < 3 when N > Ny, and o/ (1) is bounded.
Furthermore, o7+ (1) > —1, because the left hand side is strictly greater than zero due to the fact that
n < %. So when NV > Ny, for the left side in Equation (22), we have

log T”
T

log 7" < o%tr(H)logT’

G = g A tor()) e
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where cg < c7 are two positive constants. And for the right side,

o2
Cg d Cg
— < 1 1) < =
N = 2N( ton() <
where cg < cg are two positive constants. Then we prove that 77 > N when N > max (e%z , 3)

Otherwise, we have

o*tr(H)log T’ log T’ log N cog _ o2d
e Ator(M) za—g— 2 ey 2 5 = 51+ on(1),
4

which is a contradiction. Then we prove that 7/ < N 3 when N >

/N

%) for some constant cqg.

Otherwise, we have

otr(H)log T’
AT’

log T’ log N3 _ 3crlo N c o2d
(14 0r(1) < er—ore < 72 o8 10

=2|s

T - N3 2 N3 Nz— ~ 2N

which is another contradiction. The third inequality uses

c 4
Ny = max (Nl, e%, (%) 7NO) and we prove the claim. O

Combining Equation (22) and Lemma G.13 gives
T'=0©(NlogT') =O(NlogN). (23)

Again, combining Equation (23) and Equation (22), and we get

tr(H)N log T” tr(H)N log N

T = 1 1) = 1 1
and
T  tr(H)log N
E(K,N)= —=——F"7"—(1 1
as a direct corollary.
The above equation immediately finish the proof. O

H PROOF OUTLINE FOR THE SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

In this section, we give the proof sketch of Lemma 1.1 and Theorem 5.2-5.3. Lemma 1.1 gives a
general expression of the excess risk, Theorem 5.2 and Theorem 5.3 characterise the behavior of
E(K, N) respectively under power spectrum and logarithm power spectrum assumption. Their proof
outlines are given separately as follows.

1. Proof sketch of Lemma I.1. We exploit the properties that the sequantial updates are commuta-
tive and all finite-order moments of data are computable, and we obtain the result through a direct
calculation.

2. Proof sketch of Theorem 5.2 and Theorem 5.3. For Theorem 5.2, we consider two cases
when K is relatively small and K is relatively large. As a special case, one-pass senario belongs to
the small-K case. We first derive matching upper bounds and lower bounds for high-dimensional
cases for both the two regimes. The core of the proof lies in determining E (K, N) by solving
ER(wr/) = ER(wg,n), which requires an asymptotic analysis. We tackle this issue with two
steps. First we prove a loose bound for 7" for N beyond a threshold, then we refine the obtained
results and utilize the convexity of loss approximation to derive more precise estimates. The proof of
Theorem 5.3 is similar to that of Theorem 5.2.
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I PROOF OF MAIN RESULTS FOR THE SOLVABLE CASE WITH
ZIPF-DISTRIBUTED DATA

Similar to the proof insights in Section 4, the first move to get the formula of the effective reuse rate
is to get an accurate proxy of the excess risk. Here, leveraging the simplicity of the setting, we can
derive a general closed formula for the excess risk.

Lemma L.1. Under Assumption 5.1, the excesss risk for K-epoch training over N fresh data , with
learning rate 1) can be given by

R(K,N;n) = % <PA, (I —P+P(I- nA)2K>N> ,

where the expectation is over the randomness of w* and training datasets {x;, yl} 1

The above lemma states that we can explicitly write out the exact expression for the excess risk.
From the above expression for the excess risk, we can observe that, in the absence of label noise
interference, and under the condition that the absolute values of all elements of the diagonal matrix
I — nA are less than 1, the optimal learning rate can be of the constant order. Therefore, in the
subsequent study of the effective reuse rate, we consider using the same learning rate 7 = ©(1) for
both multi-epoch and one-pass SGD.

It is worth noting that here we are actually describing a more general problem setting than the Zipf
law, as we only impose constraints on the power spectrum of the Hessian matrix H. In contrast, the
probability matrix P can follow Zipf’s law or any other law. In the remainder of this section, we
first consider the classic Zipf’s law setting, where P follows a power law, and the data matrix A also
follows a power law, which is consistent with the previous power law analysis. In Section 5.2, we
explore the case where P follows a log-power spectrum (Lin et al., 2024), and investigate the impact
of changing the spectrum’s properties on the resulting effective reuse rate formula.

I.1 A CLOSED FORMULA FOR THE EXCESS RISK: PROOF OF LEMMA 1.1

We first write out the update of parameter after KX epochs
1

Oy = AF) ... AL, — H ADg,
I=K

= (I — an_la:J—\r,_l)K . (I — nmoma—)K 0.

Then we get the excess risk expression as
_ 1
R(K, N;n) = E50x nHOk N

1 2K 2K
:]E§00TPA (I—T].’BN_NC;_l) --'(I—UwomoT) 6o.
Assumption 5.1 gives

R(K,N;n) = <00907PA (I NEN 1T 1)2K~--(I—7733033(—)F)QK>

o)

1 N

=3 <I PA I — nme)gK) > .
Direct calculation gives

Zlﬁj *piptee] = PN,

and

2K
1K o .
E {(I - an)”{} =1+ § ( , >(1)WPAJ =I-P+P(I-nN*K
X J
Jj=1
Then we can write out the excess risk as

R(K,N;n) = % <PA, (I-P+P(I- nA)ZK)N> .

The above equation completes the proof.
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1.2 SCALING LAWS FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.1

Before we begin our main part of the proof, note that for all n = ©(1) and n < 2, there exists
dy = ©(1) > O such that 1 — zf > 0 when i > d;. Then we divide the expected excess risk into two

parts:
d N
_ 1 c c 7\ 2K
R<K’N5”>‘zzza(1‘w<l‘(1‘zb) ))
i=1
_1 S ‘(1 € (1 (1 AN "
2 — ia ja—b 10
S1(K,N;n)
d N
1 c 0\ 2K
52 (-5 0-0-0"))
i1=d1+1
Sa(K,N;n)

The intuition behind our proof here is quite similar to what we do in Appendix G.5. We first separately

simplify the expression of the excess risk when K = o(N ﬁ) and K = w(N = ). The proofs for
both the small- K and large- K regimes proceed in parallel. We first control So (K, N;7) over a broad
range of learning rates and identify a near-optimal n’ for which S, is negligible compared to So. This
allows us to approximate R*(K, N) via R(K, N;7') and So(K, N;n*).

1.2.1 PROOF OF THEOREM 5.1: SMALL-K CASE

The Expected Excess Risk Approximation.

Lemma L2. Suppose the assumptions in Theorem 5.2 hold. When K = o(IN ﬁ) andn = O(1), we
define the estimator of So(K, N;n) as

d
- 1 C —2KNcn
SQ(K,N,T]) ::i E Ie i@ .
i=di1+1

Then we have Sy (K, N;n) = Sy(K, N;n)(1+ o(1)), and Sy (K, N;n) ~ ﬁ
KN)“a

Proof. By the fact that K = o(N ﬁ), there exists a constant N such that when N > N,, K <
N

N+7. And we define F(z) := < (1 -5 (1 -(1- %)M()) . Direct observation gives us

that under Assumption 5.2, R(K, N;7) o Zle F(4). Next we take the derivative of F' and analyze

its maximizer.
N
;o\ ac c c n\ 2K
Fo)=-2m <1ma—b+ma—b(lxb)
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where we define

6le) = -a (w0 =ere(1- 5)")

+N ((a—b)c— (a —b)c (1 . ;71,>2K n 2c¢Kbn (1 _ 77)2K1> 7

b b

and

O(x) := ((a—b)c ~ (a—D)c (1_Q)2K+M <1_77)2K1>.

xafb%»l xa7b+1 IL'b l.aJrl l‘b

We denote the maximizer of F'(x) by zg, so G(x¢) = 0. We claim that:

1
when N > Ny, g > min ((KN(ga_b)c") ‘ ,6i(KN)<1l) =: 7.

Proof of the claim. Notice that when N > No,
o 1 1
x 6(KN)= — 6

We assume that the claim is wrong, then

G(zo) = N ((a —bjc—(a—b)c (1 — ;717)2[() — ax?

KN(a—b)en — az®
b

< KN(a—"b)en

- 228

>0,

which is a contradiction. The third inequality comes from Lemma J.3.

Soxg =0 ((KN)%) Further pluging this into G (o) = 0 that

G(zo) = —axg_b(l +o(1))+ N <2K(a;b)cn(1 +o(1)) + ————(1+ 0(1))) =0.

gives

Then we have

0.5 1
K a+0.55 (K N) a+0.50

1 c c c 7\ 2K N
sucx=y Y (s 0-8)”)

i1=d1+1

d N
1 c c c n\ 2K
3 2. i (1 T T (1 a ?b) )
K%(KN)W+1
= J1 + Jo.

Furthermore, we have

K a0 (K N) a0

< Katos (K N) a0 | <
D S Kt (KN) s F(ng) £ T
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and
d N
1 c c c 7\ 2K
h=3 2 f s n)”)
i:K%(KN)mH
d

1 c 2Kcn K? N
3 X f(-E2eo(im))

0.5 1
i=K a+0.50 (K N)a+0.5b 4]

d
) 2Kc 2
_L oy e (o ()
ya
2 0.5 1 v
K a+0.50 (K N)a+0.50 +1
d
—2KNc K2N
:1 E £€ @ 77J’»()(ia«i»b>
2 1@

0.5 1
i=K a+0.50 (K N)a+0.5b 4]
d

=3 > e T o),

7

DN =

0.5 1
i=K a+0.50 (K N)a+0.56 41

—2K Necn

We define Ki(r) = -Ge™ == . We can derive that argmax Ki(z) = © ((KN)%), and
max K1 (z) = © (&5 ). So when d > 3(KN)=, we have

BEN)E e
Z = (14 0(1))

1
i=(KN)a

Jo >

N | =

—2cn

ce >(KN)5
KN ~ KN

We can verify that J; = o(J3) as a direct consequence. We define

> (KN)= x

d
~ 1 C —2KNecq
SQ(KaN;n):i E qe o
i=d1+1
0.5 1
K @+0.55 () N) a¥0.55 d
1 Z C —2KNen . 1 C —2KNen
= — —e i@ - E —e i
2 o 1@ 2 o5 | 1@
i=dy+ i=K a+0.55 ()¢ N)@F0.56 41
=Ji + Jo.

We have Jo = Jo(1 4 o(1)), and

0.5 1
- 5 . K %058 (N ) aFo56 .
Ji1 < K a0 (KN)a+05 x max K1 (z) < i %N )7 = o(J2).

So Sy(K, Nin) = S2(K, N;n)(1+ o(1)).

The matching upper and lower bounds for S, (K, N;n) comes directly from Lemma J.7. O

By combining the expression of Sy (K, N;n) with Lemma J.7, we get another lemma:

Lemma 1.3. Suppose the assumptions in Theorem 5.2 hold, and the expression of 52(K ,N;n)is
given in Lemma 1.2. Then we have %Sg (K,N;n) ~— 1

a—1 -

(KN) a
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Proof.
94 (K, N; KN Z e
an 2 77
i=dq +1
B 1
(KN) a—1 "
where the second line comes from Lemma J.7. O

Lemma L.4. Suppose the assumptions in Theorem 5.2 hold, and the expression of SQ(K SN is
given in Lemma 1.2. Consider two learning rate options n, ' = ©(1)that satisfy n — ' = o(1). Then
we have So (K, N;n) = So(K, N;n')(1 + o(1)).

Proof.

- - J -~ -
oK, Nim) — SalK, N = ]ansgm,fvm)\ =10

1

W\(ﬁ 77)|

= Sy(K, N;n')o(1),

where 7 € [min(n,n’), max(n,n’)] = ©(1), and the first line comes from Lagrange’s Mean Value
Theorem. The secome line comes from Lemma 1.3, and the last line comes from Lemma 1.2. O

(a—1)d? ™" log KN

The Range of Optimal Learning Rate. First, take p’ = 2 — and we have

ac KN >~
d (a—1)d? b log KN 2\
SUK Ny <81 4 ¢ ([ le= )% 108 .
1( ) 777)— 2 d(ffb_kda b ac KN

By a Taylor expansion argument, we have

N
o a—b
Su(K. Vi) = 0 (1 _2Ke (a—1)d] 1ogKN(1+O(1))>

92 dtlz—b ac KN
e 2(a—1)log KN N
1- == 7= " (1 1
e ( — B2 (1+ 0(1))
_ @eNlog(l—wlog#(l"ro(l)))
2
1 ’
~ ﬁ - O(SZ(K7N777 ))7
(KN)

where the last inequality comes from Lemma [.2. Then we have

R(K,N;n') = Si(K ’)+Sz(K,N;77’)
52( 7)1 +0(1))
= 52(K, N;2)(1+o(1))
1 C 4KNc
( — > (14 0(1)).
1= d1+1
Then we prove that n* € [2 — o(1), 2]. We prove by contradiction, and assume that there exist a

constant € > 0 and a sequence (Nz)l 1 — oo such that n*(N;) < 2 — e forall i > 1. As we only
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analyze with respect to the sequence (IN;)52,, without loss of generality, we take (IV;)5°, = IN. By
Lemma 1.2, we have

> [ég(K,N;2>+e§752(K,N;2> (1+0(1)) > R(K, N; )
when N is sufficiently large, which is a contradiction. So
= S1(E, Nip*) + S2(K, Ny (1 + o(1))
= S1(K N;p") + S2(K, N3 2)(1+ o(1)) < R(K, Ni').
Thus, S1 (K, N;75*) = o (SQ(K, N; 2)), and R* (K, N) = S(K, N;2)(1 + o(1)).

By Lemma [.2 and Lemma J.7, there exist two constants C; and C5 such that R* (K,N) < — &

a—1

" (KN) a
and R*(K,N) > (Cﬁ when the condition d = Q(T'# ) holds. For one-pass case, by Lemma 1.2
KN)%a
and Lemma J.7, we have
7?’*(]-7T/) = ﬁ(lvT/; 77*(17 Tl)|d:d)
<RI (LT)] 4o
= R*(1, T LS e 0y < G 24
- (7 ”d:ooiéz Z'Tle ‘ (+O())_T/aT—1 (24)
i=d;+1
and
1 d c KN C
D * —4KNc 4 1
RI(LT) =5 ;1 e T o(1) > 2t when d =0 (T’a) . (25)
i=d

1.2.2 PROOF OF THEOREM 5.1: LARGE-K CASE

The Expected Excess Risk Approximation.

Lemma L5. Suppose the assumptions in Theorem 5.2 hold. When K = w(Nﬁ) andn = 6(1),
we have So(K,N;n) =~ —a=.
N

Proof. There exists N3 such that when N > N3, we have K > Nﬁ. Then when d > 3(KN) a >
3N ﬁ, we give the lower bound of the loss:

1 c c \N
SN2y 3 g (1-5m)
z:N“ib
1
1 2Na—b c
27 1 (17N)N

2(3Na7b)a
L1
~ szb

Then we derive the upper bound of the loss:

SN <13 L - S (1m0 "
2 ’ il 721‘:1 ja ia_b ia_b ib
1

N a=b N oo
c c c 7\ 2K 1 c
ifl(l_i‘ll’+ifll7(1_il’) ) 3L W

i=1

[N
N =
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When K = w(Na#) and i < Na,

2K 2K 2K lo (1— u )
(17.2) S(l iU ) =e T

Zb Na—b
oK1
<e na=t = o(1)
Then there exists Ny such that (1 — %)QK < 1 when N > Nj. So when N > max(Ns, Ny), we
have
N’lib [eS)
1 c c N c
So(K, Nimp) < = < (1 ) e °
2( S 2 — 2¢a—b + 2 Zl: 19
= i=Na=b 41
One can derive that max < (1 — Q%b)N =0 ( L ) So
1 1 Nafb
_ 1 1
RY(K,N) S —0= + —=
Na—b N a—b
1
< 1
~ Nz:b
And we complete the proof. O

The Range of Optimal Learning Rate. First, take ’ = 1.5, and we have

K\ NV
Sy (K, N; ')<—lc 1- -+ (max (05 1——1' i
1 ) )= 9 ltll b l(f b Yy ﬂl)

- dlc

S8 -e)”
= 0(S2(K, N37')),
where the last inequality comes from Lemma [.5. Then we have
R(K,N;n') = S1(K,N;n) + S2(K, Ns1p')
= S2(K, N;n')(1+o(1))
It is obvious that * € [1, 2]. We know that
RY(K,N) = S1(K,N;i*) + S2(K,N;n") < R(K,N;1') = S2(K,N,n')(1 + o(1)).

By Lemma 1.5, we have

—1

S2(K,Niy) =O(N"5F) and Sy, Nyaf) = ©(N"5F),

which directly implies that

a—1

S1(K,N;p*) = O(N*Zii) . RYK,N)= @(N*m) .

1.3 E(K,N) FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.2

1.3.1 PROOF OF THEOREM 5.2, SMALL-K CASE

Let T” be defined implicitly by equating the averaged risks at their optimal step sizes:
R*(1,T") = R*(K, N). (26)

We claim that

a
1

04 a—1 y 03 a—
— T < T < = T. 2
(Cl) - - (02) &7
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Proof. We argue by contradiction, considering two exclusive violations of Equation (27).

1. Case1: T" > (£2) “TT. By the risk bounds encoded by (Cs, Cs) for one-pass training

2

with T” fresh data and by (C1, Cy) for K-epoch training with N fresh data, this inequality
forces ~ ~
R*(1,T') < R*(K,N),

which contradicts the defining equality Equation (26).

2. Case2: T' < (&) “TT. given d = Q(T'+ ) we still have d = Q((77)"/*). The same risk

comparisons then yield - -
R*(1,T") > R*(K,N),
again contradicting Equation (26).
Both contradictions rule out violations; hence Equation (27) holds. ]

Therefore, the desired characterization of E(K, N) follows directly from Lemma J.8.

1.3.2 PROOF OF THEOREM 5.2, LARGE-K CASE

By Theorem 5.1, there exist constants Cy, Cg > 0 such that, given d = Q(T 0 )s

C _ C
= < RY(K,N) < —=. (28)
Na—b Na—b
Let T” be defined by equating the averaged risks at their optimal step sizes:
R*(K,N) = R*(1,T). (29)
Combining Equation (28), Equation (29) with Equation (24), Equation (25), we claim that
04 # a 03 a;:l a
~4 Nas < T < = Na-5, 30
( Cs ) - - <C6 ) G0

Proof of the claim. We argue by contradiction.

1. Upper violation. If 7" > (C—z) a1 N=75, then by Equation (24) and Equation (28) (lower
bound),

S C\13 CG
R (17T/) S a—1 < a—1

< R*(K,N),
(T/) a Nafb

which contradicts Equation (29).

2. Lower violation. If T’ < (&) #T N'a*%, then the condition d = Q(T'+) gives

d= Q(Nf) - Q((T’)%) :
Using Equation (25) and Equation (28) (upper bound),
Cy Cs _

> —— = R'(K,N),

R*(:l’T/) > a—1 —
@)=~ NS

again contradicting Equation (29).
Both contradictions are impossible; hence Equation (30) holds. [

The characterization of E(K, N) follows directly by the claim.
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1.4 SCALING LAWS FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM D.1

Similar to the proof of Theorem 5.1, the proof of Theorem 5.3 consists of two parts: First part is the
case when K = o(log” N), and the second part is the case when K = w(log” N).

Before we begin our main part of the proof, note that for all = ©(1) and n < 2, there exists

d> = (1) > 0 such that 1 - m > 0 when ¢ > dy. Then we divide the loss into two parts:
N
R(K,N;n) = ;zd:; < B clog:(ai + 1) N clog:(ai +1) (1 - (1 - lmgb(?Jrl)YK))
i=1
2 P ie ja ja logb(i Y
Vi (K,Nin)
Bl s e )
dat1 ! ” a log"(i + 1)
V2(K,Nsn)

1.4.1 PROOF OF THEOREM D.1: SMALL-K CASE

The Expected Excess Risk Approximization.
Lemma 1.6. Suppose the assumptions in Theorem 5.3 hold. When K = o(logb N), we define the
estimate of V(K, N;n) as

Va(K

d
c —2KN(‘7]
=52 5°

i=1

Then we have Va(K,N;1) = V(K, N;n)(1 4+ 0(1)), and Vo (K, N;1) ~ —L—

N)M—\
<.

Proof of Lemma 1.6. We first define a function

, 2K N

Direct observation gives us that under Assumption 5.3, R(K, N;n) Zle W (#). Simliarly we
take the derivative of WW.

log’(z +1)  clog’(z + 1) 2\ ¥
W,(x):_ac (1_cogx 4 clog'(x (1_1 (77 )) )
og

xa+1 e e b xz + 1

(1) e (or )T
x® xo o log®(x + 1)
aclog®(z + 1) B belog’ !z + 1) 1 (1 B U)QK
zotl zo(z +1) log”(z +1)
2cK log®(z + 1) n 2 by
+ p 1-— b b+1
x log”(z + 1) (z+1)log”" (z +1)
N-1
N P clogh(z +1) N clog’(z + 1) 1 7 2
= p2atl 2a x® log"(z + 1)

2K
<a (:z:a —clog’(z +1) + clogb(z + 1) (1 - WZH_U) )

52
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4N <<aclog"(x +1) = belog” ™ (z + 1)xil> (1 - <1 - 1mg”(Z+1)>2K>

N 2c¢Kbn (1 7 )2K1 x
We define

n 2K

N <<aclogb(x +1) —belog”(z + 1)xil> (1 - (1 - 1mg”(2+1)>2K>

N 2c¢Kbn (1 B n >2K1 x
log(z + 1) log®(z + 1) r4+1)’

and xg is defined to be the maximum of W (x), so G(z¢) = 0.

be T n n
> N1 b 1 - 1—(1- - ¢
G(z) > Nlog’(z+ 1) (ac log(z 4+ 1)  + 1) < ( 10gb$> > “

> N(a —b)clog®(z + 1) (1 - (1 77)>2K> —azx®

- log”(z + 1

2K -1 i
= N(a—b)elogh(z +1) x — 1 (1”) —az®
( Jelog’( ) logb(x+l)<iz_; log®(z 4 1)
> N(a —b)en — az®.

Soxg = (N%> is an direct conclusion by G(xg) = 0. Also , by solving G(z() = 0, we can get
the approximation of x as
G(z9) = —azi(1+ o(1))
2Kn K
+ N [ aclog®(zo + 1)(1 + 0(1)) x —————(1 +o(1 +0< >)
(108 o+ )1+ 00 21 00) 40 (o
= —azi(1+0(1)) + 2K Naen(1 + o(1)) = 0,

thus we have

2o =0 ((KN)%) . W(z) =0 <K1N) .

There exists a constant N5 such that K < long when N > N5. Sowhen N > N5 and d >
1
3(KN)+ > 3(KN)& ( K ) we have

log® N
1 L
(KN)E(logIEN) o by- 2K N
R D D FEE e ()
2 M ( { log”(i + 1)
N
1 d c clog®(i 4 1) n 2K
Py i (o
2 1 L i log”(i + 1)
(KN)a (Tﬁw) Za
=1 + .

Furthermore,

1 1 K 2a
1 K 2a (KN)= log? N
U1 S (KN)= (b ) x W (o) S ( - )
log” N
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and

N
" 1 zd: <y clog(i +1) n clog®(i +1) 1 n 2K
279 ia i@ i@ log”(i + 1)

1+ 1
2K K? N
(1 ?Mo(b ))
N 1@ i%log’(i + 1)

O S e )

Il

DO =
)=
<o

Zd: c o (55 )40 (i)

i=(KN) e ()™

d
- 3 LT (1 4 0(1)).

; 1 g \oa
i=(KN)@ (% N) a

M| —

DN =

—2KNcn

We recall Ki(x) = Se” =7 . We can verify that argmax K;(z) = @((KN)%) and

max Ki(z) =0 (ﬁ) through a direct calculation. So for 1), we have

i
a

| 3ENE
—2KNecn
1/’225 Z A (1+40(1))
i=(KN)®
1
>(KN)a
~ KN

We can verify that 1)1 = o(t)2) as a direct consequence. We define

- 1 C —2KNen
V2(K7N§77):§ Z =€
i=da+1
1
1 (KN)% (log}f’N) o 1 d
€ —2KNen ¢ —2KNen
R N TP SR L
i= 1 1
? i=(KN)@ (logfg N) 2a
127/;1 +¢~2~

We have by = 1h5(1 4 0(1)), and

So Va(K, N;n) = Va(K, N;n)(1 + o(1)).
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Finally, we derive a matching upper and lower bound for Va (K, N;n) and conclude the proof:

~ ~ 1
Va(K,Nin) > J2 2 2 2 z
2( n) =J2 2 J2 BN
1 () c 1 d c
—2KNecn —2KNcn
Vo(K,N;n) == — = —
R P e
i=ds+1 —(KN)% +1
1 (KN)e C —2KN 1 d c
“axNen 1 <
3w Tt 2w
= (KN)a+1
(KN)w 1 1
~ KN - (KN) (KN)
Then we complete the proof. O

Notice that V5 (K, N;7) and Va(K, N;n) are identical to each other, so we can directly apply
Lemma [.3 and Lemma [.4 in the remainding proof of Theorem 5.3.

(a—1)d3 log KN

The Range of Optimal Learning Rate. First, take 7/ = 21og”(2) — ¢, where € := = N

and we have

Vi, Ny < 26 (1 - clog(2) , clog'(2) (1 - €>2K N
LU N < = ds dy log”(2)
d 2K clog”(2) N
_®efy Cc;g x ——(1+0(1))
2 ds log”(2)
dae 2a—1)log KN N
1—-="_"7 1 1
e ( — B2 1+ o(1))
_ @2C Niog(1-2eD ot KN (1 4 5(1)))
2
1
~ ﬁ - O(VZ(KvN;n/))7
(KN)

where the last inequality comes from Lemma [.6. Then we have

R(K,N;n') = Vi(K,N;n') + Va(K,N;n')
=Va(K,N;n')(1+o(1))
= Va(K,N;2)(1 + o(1))
- (1 E —Hos “"”‘”“) (1+ o(1)).
i= d1+1

Then we prove that n* € [2log®(2) — o(1), 21og”(2)]. We prove by contradiction, and assume that
there exist a constant € > 0 and a sequence (N;)32, — oo such that n*(N;) < 2log”(2) — € for all

i > 1. As we only analyze with respect to the sequence (V;)2,, without loss of generality, we take
(N;)22, = N. By Lemma I.2, we have

R (K, N) 2> Va(K, N; ") = Va (K, Nyn*) (1 + o(1))

Va(K, N;2) + 68%172 (K, N; 210gb(2))] (1+0(1)) > R(K,N:n')
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when N is sufficiently large, which is a contradiction. So

R*(K’ N) = Vl(K7N§77*) + ‘/Q(KaN;n*)
= Vi(K, N;n*) + Va(K, N;7*)(1 + o(1))
= VA(K, Nin") + Va (K, Ni210g"(2)) (1 + 0(1) < R(K, Ni7/).

So Vi(K, N;7j*) = o (v2 (K, N; 21ogb(2))>, and R* (K, N) = Vo (K, N; 210g"(2))(1 + o(1)) =

(KN)

1.4.2 PROOF OF THEOREM D.1, LARGE-K CASE

The Expected Excess Risk Approximation.

Lemma L7. Suppose the assumptions Theorem 5.3 hold. When K = w(log’ N), we have
‘/Q(K) N’ 77) ~ L a—1 -
(NlogbN) @

Proof of Lemma 1.7. By K = w(logb N), there exists a constant Ng > 0 such that K > log® N
1
when N > Ng. We notice that when i = O ((Nlogb N) a), log(i + 1) = ©(log N). Then, when

1
N > Ngand d > S(KN)% >3 (Nlong> “ we have

| o 1) log’ i+ 1)\
c clog”(i
Vo(K,N;n) > = ==/
R o (e
i=(Nlog? N)e
1
b a
>12(Nlog N) s
T2 3eNlogb N N
Z;a—l'
(Nlong) ‘

For the upper bound, we have

_ 1= ¢ clog’(i4+1)  clog’(i +1) n 2\ ¥
RIK N <Y —(1- , + , <1—b, >
2 — 79 29 79 log (z + 1)

Nlog’ N)@ N
( gz ) <, clog®(i + 1) +clogb(i+1) <1_n)2K
i=1 i J . logb( )

i i i+1
1 Zoo c

i=(N log? N)%+1

<

DN | =

Q=

)

K . K s
(1 B n ) < <1 Y ) _ Klo(1-
log®(i 4 1) log® N

_ €12

<e TRl =o(1).

When K = w(log® N) and i < (N log” N)
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K
So there exists N such that when N > N, (1 < %, and when N > max(Ng, N7),

__n
log?(i+1)

1

(Nlog® N)a

N
_ . 1 c clogh(i +1) 1 = c
R(K,N,n)§§ Z z’a<12i“ t3 Z a

i=1

i=(N log? N)%Jrl
N
One can derive that max, -% (1 — %) =0 (Nlogb N).
So finally, we have
_ 1 1
%(KaN;n)SR(KaN”ﬂS a1 T a—1
(N logb N) ‘ (N logb N) ‘
< 1
~ a—1"
(N logb N) ‘
and we get the result. O

The Range of Optimal Learning Rate. First, take 7/ = 1.5log’(2), and we have

b b b ak\ N
Vl(KvN;n/) < @ 1-— CIOga(2) C].Oga(2) max 05’ 1— “;loig@)
2 d2 d2 log (d2 + 1)
dlc
=206

= o(Va(K,N;1)),
where the last inequality comes from Lemma [.5. Then we have
R(E,N;1') = Vi(K, Nyn') + Va(K, N3
= Va(K, N;n')(1 4 o(1))

It is obvious that n* € {logb(Q), 2 logb(Q)] . We know that

R*(K,N) = Vi(K,N;n") + Va(K,N;1*) < R(K, Ny1y') = Va (K, N,n')(1 + o(1))
1
~ S
(Nlogb N) ‘
1.5 E(K,N)FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM 5.3

1.5.1 PROOF OF THEOREM 5.3, SMALL-K CASE

The proof here is almost a reproduction of the proof in Appendix [.2.1.

1.5.2 PROOF OF THEOREM 5.3, LARGE-K CASE

Consider the multi-epoch training setting with d = ) ((K N) #b) By Lemmas 1.7 and J.7, there
exist constants C7, Cs > 0 such that

Cs = C’?
——— < R*(K,N) < ————. 31
N(log N)b — RUKN) < N(log N)? D
Let T” be defined by matching the expected risks:
R*(K,N)=R*(1,T). (32)
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In the one-pass case, we use the constants C'3, Cy > 0 (as defined in the proof of Theorem 5.2) to
control R*(1,7").
We claim that

a

GV NogNY < 1 < ()T N(og N, (33)
07 C8

Proof of the claim. We argue by contradiction.

1. Upper bound violation. If 7" > (&) “T N(log N)?, then the one-pass upper bound
together with Equation (31) (multi-epoch lower bound) imply

R*(K,N) < R*(1,T"),
which contradicts the defining equality Equation (32).

1

2. Lower bound violation. If 7" < (&#) =T N(log N)?, then d = Q ((KN) a+b) yields

d = Q((N(log N)")"/*) = Q((T")"/*),
so the one-pass lower bound together with Equation (31) (multi-epoch upper bound) give
R*(K,N) > R*(1,T"),

again contradicting Equation (32).
Both violations are impossible; hence Equation (33) holds. [

Thus, in the large-K multi-epoch regime, the matched one-epoch training time satisfies 77 =
O(N(log N)®) up to fixed constants. Therefore, the desired characterization of E(K, N) follows
directly.

J ADDITIONAL TECHNICAL LEMMAS

Lemma J.1. For any PSD matrix A, it holds that
(H,A) <wr(H)|A.

Proof. We denote the PSD decomposition of H by
d
H=> X\aiq|
i=1

where \; and ¢; are the eigenvalues and corresponding eigenvectors of H. So we get

d
i=1
d
= Z)\inTAQi
=1

d
< Z AillAfl
i=1
= u(H)|A[,
which completes the proof. O
Lemma J.2. When !l > 1, we have

log 2

(1+x) <142z, xe|0, ; ]
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Proof. We define f(z) := (1 + x)! — (1 + 2lx). Calculating the derivative and notice the fact that
2% — 1 > (log 2)z, we obtain

The above equation completes the proof. O

Lemma J.3. Whenl > 1, we have
1
1-—2)2<1—1Iz, 2€[0,=]
6l
Proof. We define g(z) := (1 — x)? — (1 — Ix). Calculating the derivative, we obtain
g (z) =21 —2)*"1+1<0 when z€0,1— 27ﬁ].
Notice that h(z) = 2% is convex, so for z € [0, 1], we have

h(—z+0 x (1— 1)) < zh(=1) + (1 — 2)h(0),

that is
97 <1 —g when z € [0, 1].
So
1 1
1-2771>1—(1— ———
()
1 1
=————>— when [>1,
2(21—-1) — 6l
which concludes the proof. O

Lemma J.4. Given N data points such that xg,-- - Tp_1 il N(0,H), and define A = (I —
neN-_1xy_1) - (I —nxoxg ). Then we have

!
E||A — EA|' < (\/5An2Nl) ,
where 85 := C8eD*log d for some absolute constant C > 0.
Proof. We define QQ := A — EA for convenience. We can obtain a concentration inequality for || Q||

due to the boundedness of  according to Theorem 7.1 in Huang et al. (2022).

We define
-

i

Y, =1—nx;x
For any 1 < ¢ < N, we can choose m; = 1, and we have
IY; —EYi| = [n(H — x| < 2Dy :=0;

So we know that M4 = 1,v4 = 4D*°N, and

2 2
P{|Q| >t} < de TvA = de” DTEN when t2 > 8eD*n’N.
Furthermore, we have

+2
P{||Q| >t} < e 16T~ when t* > 16eD*n* N log d.

So there exists a non-negative sub-Gaussian random variable Z, s.t

+2

P{|Q| >t} <P{Z >t} < e 16:DT>N when t* > 16eD*n? N log d.
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Then for all [ > 1, we can get

l _ l
ElQI"=EIQI' (L g <\ /icepmviozay T Lijqi>y/ecmNioga)
l
l
= (V 166D4”2N1°gd) +EIQIT g yiecnmenos )

l
/16eD"2 N log d / P{|Q| > £}t dt
v/ 16eD4n2N logd

l
/ P{Z > t}it'~tdt

)
)
y
)+

IN

+EZ

IN

16eD*n%N log d
!

<(
( 16eD*n2N log d
(
<(

v 16eD4n2 N logd
<\/C8€D4 2Nllogd) )

where C and C are absolute constants, the fifth inequality is due to Proposition 2.5.2 in (Vershynin,
2018). O

+ (v/C16eD*n2Nllog d)*

Lemma J.5. Foranyl < K, we have

H AR _(EA)

< (VonrPNI + |EA]) ~ [EA],

where 0 o is the same positive constant appearing in Lemma J.4.

Proof. Leta = ||[EA| and ¢; = \/58@D4n2Nl log d. Define the perturbation Q) = A%) —EA.
Expanding the product as

li[ =]i[(Q(’“)+EA) Z 3 P,

m=0 s¢(l1)

where Ps is the matrix product with Q¥ at positions k € S and EA elsewhere, preserving order.

The difference is
l l
[[A%- €1 =Y ¥ P
k=1 m= 186(%)

By the triangle inequality and linearity of expectation:

l

H Ak _

k=1

l

Z E[ Ps|.
m=tse(r)

For each S, decompose into ¢ maximal consecutive blocks By, . . ., B; with sizes s1,...,5 O s; =
m). By Folland’s Holder inequality and Lemma J.4:

Bipsl <o e ] T @) <o T] IT (2 [ev

i=1j€EB; i=1jEB;

SiN — ¢
Th s l—m Si
<a I | Cql

i=1

S
Since ¢ = (\/086D4n2Ns log d) is increasing in s and s; < [:
cii<¢g' = E|Ps| < al=men.
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Summing over all S with |S| = m
> E||Ps| < ( ) al=men,
se(in)

Thus the total bound is:

3 (D) = v

m=1

completing the proof. O
Lemma J.6. For anyl < K, it holds that

l 2 . 2
5| [T am - <[ (vaweni+ jear) - ear]
k=1

where 0 a is the same positive constant appearing in Lemma J.4.

Proof. Seta = |[EA|2and ¢; = \/516€D4772Nl log d. Define the perturbation Q%) = A¥) _EA.
Expand the matrix product as:

l l
[TA® =TI (@™ +E4) = Z 3 P,
k=1 k=1

m=0 s¢ (Il

m

where Ps denotes the ordered matrix product with Q(*) at positions k € S and EA elsewhere. The

target difference is:
l

HA(k) Z Z Ps.

m= 186( )

For the squared spectral norm, we have:

! 2
> 2 Ps
m=1 S

25sz||>2

Y _EllIPs,l[IPs, 11,

Il
M-
M-

2]

where S, and S,, range over all subsets of [I] with sizes m and n, respectively. For each pair
(S, Sn), decompose the union U = S,;, U S,, into ¢ maximal consecutive blocks By, ..., B; with

sizes 5; = |B;| (X.'_, si = [U| = m + n). By Folland’s Holder inequality and Lemma J.4:

t
E[|lPs, |[1Ps,I] < a® " "E]T IT IQll

iﬂjeB-

2l m— nH H E H |m+n) m+n

i=1jeB;

— m—+n
< g?lmmen (\/C86D4n2]\7(m + n)log d>

S a21—m—nc;n+n.

S5 () )
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Combining all terms:

l l l
kl;];A(k) — 4 < Z E (;) (’i) a2l—m—nc;n+n _ [(a + Cl)l o a[]Q’

where the last equality follows from the binomial theorem applied to (a + ¢;)?..

2
E

Lemma J.7. Consider a function of training time T given by

d
1 C _ZT;TI
E(T) = 5 E 7:76 g 5
i=di+1

where c,l are some absolute constants, di = ©(1), and | > 1. Then we have:

1 L(T) $ —i=r+
gy

~
a

1

2. Givend = © ((KN) :

),,C(T)Z e

2T¢c

Proof. Computing the derivative of f(z) = Se™ =7 , we have

argmzaxf(x) =0 ((KN)%) ;

1
mgxf(x) =0 ((KN)<L1> .

Then

1. For the upper bound, we have

< 1 < ¢ 2Ten 1(KN)% ¢ _2ren 1 > c
LT)<5 3 56 S5 2 3¢ T4y X @
i=dy+1 1=d1+1 7:(KN)%+1
1 1 1
S (KN)« x ; = S =
(KN)a  (KN)= — (KN)=
2. For the lower bound, when d > BT%, we have
1 3(KN)« ) )
C _2Ten c 1
L(T) = 5 —e T > ————— ¢ 2 x 2(KN)= > —
21_(%;\7)31 7 231(KN)s (KN)=

The above equation comletes the proof.

Lemma J.8. Given an estimator of the excess risk for ME and OP cases

d
~ 1 C 72KNcn
SQ(KaN;n):§‘Z A
i=d1+1
and
1 4 c =21’
5 /. _ _17(1“77
52(17T777)*§Z Z-Tle
i=di1+1

for some di = ©(1). If the ME excess risk and OP excess risk satisfy that
R(K, N5n) = S2(K, N;n)(1+ o(1))
R(L,T'5m) = S2(1, T m)(1 + o(1)),
then give d = QT ) and when T' = T, it holds that
E(K,N)e[K(1—-0(1)),K(1+0(1))].
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Proof. We define H(T) = Sy(K,N;n) and a = TT, By definition of E(K, N), we have T" =
E(K,N)N. Our goal is to prove that « € [1 — o(1),1 + o(1)].
Solving R(K, N;n) = R(1,T’;n), we can get H(T)(1+on(1)) = H(T")(1+ o7+ (1)). We define

R(K,N; -5, K,N; R(1,T; — S 1,7';
§(K,N) = X Sﬁgw;g}) 1 — o(1), and 6(1,T")) = = 52’7()17“;) 1) — o(1). Then we

can derive that

which indicates that

—§(1,T)H(T') — §(K,N)H(T) < H(T') — H(T) < §(1,T")H(T") + §(K, N)H(T).

Notice that H(T) is strongly convex, and we have H(T) ~ —2L;— and H'(T) =

(KN)“a
%Z?Zl 7,2%1(572Ii{@]\7w ~ ﬁ by Lemma J.7. We are now ready to prove that o € [l —
) KN) a
o(1),1+ o(1)].
1 1
=S (T"=T) S H(T)(T"-=T) < H(T') - H(T) < H'(T')(T" - T) £ D (T"=T)
5(1,T")  6(K,N) o(1)
/ / < ) I <
So
!
T-T < o(1)
Tl=%) ~ pl-1)
o(1) 1
_ < "
ra-5 ~ pa-n & 1)
Direct calculation yields the result. O

Lemma J.9 (Hyper-Contractivity). Given d-dimension random vector x ~ D satisfying that ||| <
D for some constant D, and the covariance matrix H := Eg..p [:cww = diag(A1, A2, ..., Ad),
where \y > Ay > -+ - > \g > cfor some constant ¢ > 0, then the following holds:

E[zz' Pzx'] < atr(HP)H

for some constant o« > 0 independent of P.

Proof. By Dieuleveut et al. (2017), the above lemma holds for data distributions with a bounded
kurtosis along every direction, i.e., there exists a constant x > 0 such that

for every v € R, E [(v, w>4} <k (v, Hv)?.
So that it suffices to verify the above inequality. Since Ay > ¢, we have
<D,H’U>2 > v
For the left side, by the triangle inequality and that ||| is bounded
(v,2)" < o|*|=|* < D*|o|*.
Combining the above two inequalities gives

E {(v,m}ﬂ < 12—24 (v, Hv)? .

. 4
Now setting kK = ’3—2 completes the proof. O
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