
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LARGER DATASETS CAN BE REPEATED MORE:
A THEORETICAL ANALYSIS OF MULTI-EPOCH
SCALING IN LINEAR REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

While data scaling laws of large language models (LLMs) have been widely
examined in the one-pass regime with massive corpora, their form under limited
data and repeated epochs remains largely unexplored. This paper presents a
theoretical analysis of how a common workaround, training for multiple epochs on
the same dataset, reshapes the data scaling laws in linear regression. Concretely,
we ask: to match the performance of training on a dataset of size N for K epochs,
how much larger must a dataset be if the model is trained for only one pass?
We quantify this using the effective reuse rate of the data, E(K,N), which we
define as the multiplicative factor by which the dataset must grow under one-pass
training to achieve the same test loss as K-epoch training. Our analysis precisely
characterizes the scaling behavior of E(K,N) for SGD in linear regression under
either strong convexity or Zipf-distributed data: (1) When K is small, we prove
that E(K,N) ≈ K, indicating that every new epoch yields a linear gain; (2) As
K increases, E(K,N) plateaus at a problem-dependent value that grows with
N (Θ(logN) for the strongly-convex case), implying that larger datasets can be
repeated more times before the marginal benefit vanishes. These theoretical findings
point out a neglected factor in a recent empirical study by Muennighoff et al. (2023),
which claimed that training LLMs for up to 4 epochs results in negligible loss
differences compared to using fresh data at each step, i.e., E(K,N) ≈ K for
K ≤ 4 in our notation. Supported by further empirical validation with LLMs, our
results reveal that the maximum K value for which E(K,N) ≈ K in fact depends
on the data size and distribution, and underscore the need to explicitly model both
factors in future studies of scaling laws with data reuse.

1 INTRODUCTION

Scaling laws (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022) have emerged as a
central framework for characterizing the behavior of large language model (LLM) pre-training. The
Chinchilla scaling law (Hoffmann et al., 2022) established robust empirical trends in performance
as a joint function of model size and dataset size under the one-pass training paradigm, in which
each data point is used at most once. This assumption, however, is becoming increasingly untenable.
The quest for more capable models has driven an unprecedented escalation in data requirements:
from fewer than 10 billion tokens for GPT-2, to 300 billion for GPT-3 (Brown et al., 2020), 2 trillion
for Chinchilla and LLaMA 2 (Hoffmann et al., 2022; Touvron et al., 2023), and 36 trillion for
Qwen3 (Yang et al., 2025). Projections further suggest that the pool of publicly available data may be
exhausted as early as 2028 (Villalobos et al., 2024).

A common response to this emerging data scarcity is to train models for multiple epochs over the
same dataset. Recent empirical studies have begun to examine the consequences of such repetition:
for example, Muennighoff et al. (2023) and Xue et al. (2023) show that moderate reuse can still yield
competitive pre-training performance. Yet the fundamental scaling behavior of multi-epoch training
remains poorly understood—particularly from a theoretical standpoint.

In this paper, we study a fundamental question in understanding how multi-epoch training affects
the data scaling laws: To what extent does training for K epochs on N samples can be effectively
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seen as one-pass training with an increased number of data samples? Formally, let L(K,N) denote
the expected loss of K-epoch training on N samples. We define the effective dataset size N ′(K,N)
as the minimal number of samples in one-pass training that achieves a comparable or lower loss
L(1, N ′) ≤ L(K,N). In this paper, we concern about the ratio E(K,N) = N ′(K,N)/N , which
we term as the effective reuse rate of the data, a key quantity that characterizes how many times larger
the dataset must grow to match the same performance as K-epoch training (see the detailed version
in Definition 3.1).

In a recent study of scaling laws for multi-epoch training, Muennighoff et al. (2023) encountered this
question and proposed an empirical approximation: N ′(K,N) =

(
1 +R∗(1− e−(K−1)/R∗

)
)
·N ,

where R∗ is a fitted constant (R∗ ≈ 15.39 in their experiments). This formula suggests that the
benefit of repetition grows with K but saturates exponentially at (1 +R∗) ·N as K increases. While
supported by some empirical evidence in their study, this approximation still leads to a noticeable
gap between scaling law predictions and empirical results (see Figure 3 in their paper). Moreover,
the formula implies that the ratio E(K,N) = N ′(K,N)/N is independent of N , so the benefit of
repeating the dataset K times is equivalent to increasing its size by a factor that depends only on K,
regardless of how large N is. It remains unclear to what extent this independence holds in general.

Our Contributions. In this paper, we approach the above question on the effective reuse rate of
data in the setting of linear regression, a setting that is simple enough to reveal the key mechanisms
of data reuse, while still tractable for precise analysis under stochastic gradient descent (SGD). We
provide a theoretical characterization of E(K,N) in various regimes, and point out a neglected factor
in the empirical study of Muennighoff et al. (2023): the effective reuse rate depends not only on the
number of epochs K, but also on the dataset size N . In fact, larger datasets can be repeated more.
Our main contributions are as follows:

1. In Section 4, we study the strongly convex case of linear regression, and show that when
K is small, E(K,N) ≈ K, indicating that every new epoch leads to a linear gain. As K
increases, E(K,N) saturates at a problem-dependent value of order Θ(logN), suggesting
that larger datasets can be repeated for more epochs before the marginal benefit vanishes.

2. In Section 5, we go beyond the strongly convex case and study a class of Zipf-law distributed
data, and show that E(K,N) exhibits a similar scaling behavior to the strongly convex case,
except that the saturation point scales as a power of N instead of logN .

3. Technically, we derive the optimal learning rate (Lemma 4.4) for multi-epoch SGD in linear
regression and its corresponding approximation formula for the expected excess risk up to
an o(1) multiplicative error (Lemma G.1). These results may be of independent interest.

4. In Section 6, we conduct LLM pretraining experiments up to 200B repeated tokens, and
empirically validate our theoretical predictions. The results confirm that E(K,N) ≈ K for
small K, and that for fixed K, the effective reuse rate increases monotonically with N . This
provides direct evidence for our main conclusion: larger datasets can be repeated more.

2 RELATED WORK

Data Reuse in LLM Pre-Training. Empirically, there is a long debate over the effect of data reuse
in LLM pre-training. Some works (Lee et al., 2021; Hoffmann et al., 2022; Hernandez et al., 2022;
Wang et al., 2023) suggested it may be harmful, while some work (Taylor et al., 2022) reported the
benefit of data reusing when the number of epochs is small (K ≤ 4). Xue et al. (2023) then discovered
a degradation phenomenon in multi-epoch training and investigated relevant factors and regularization
methods to tackle it. Muennighoff et al. (2023) trained LLMs under different configurations and also
found that reusing data is as good as using fresh data in the first few epochs. Yet, as the number of
epochs increases, the returns for repetitions diminish. In our work, from a theoretical perspective, we
rigorously analyzed the effect of data reuse using non-asymptotic techniques, and we defined and
calculated the effective reuse rate under two cases, shedding light on the theoretical understanding of
data reusing in LLM pre-training.

Comparison with Lin et al. (2025). A recent study on linear regression with data reusing (Lin
et al., 2025) is among the most relevant to our results. They showed that when the number of
epochs is relatively small (smaller than some power of the dataset size), the order of loss remains the
same as one pass SGD for the same iterations, which aligns with our results. However, their results
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only imply that E(K,N) = Θ(K) for small K, while our analysis directly gives the explicit loss
characterization with o(1) relative error bound and a more exact description of the effective reuse
rate, which reflects the data reusing scaling behaviour. Our analysis is across various problem setups,
and further shows the general scaling trend of data reusing under different problem setups.

3 PRELIMINARIES

Notations. We use ∥ · ∥ to denote the ℓ2-norm of vectors and the corresponding operator norm
of matrices. For two sequences (An)

∞
n=0 and (Bn)

∞
n=0, we write An = O(Bn), or alternatively

An ≲ Bn, Bn = Ω(An), Bn ≳ An, if there exist constants C > 0, N > 0 such that |An| ≤ C|Bn|
for all n ≥ N . We write An = Θ(Bn), or alternatively An ≍ Bn, if both An = O(Bn) and
An = Ω(Bn) hold. Moreover, for some variable n, we write An = on(Bn) if for every constant
c > 0, there exists n0 > 0 such that |An| < c|Bn| for all n ≥ n0. In this paper, when n is
clear from the context, we write An = o(Bn) for short. Furthermore, we write An = ω(Bn) if
Bn = o(An). For matrices A1,A2, . . . ,An, we use

∏n
l=1 Al to denote the product A1A2 . . .An.

Let ∥u∥S =
√
u⊤Su for a vector u and a positive semi-definite (psd) matrix S.

Linear Regression Problem. We focus on a linear regression setup, where data point (x, y) ∈
Rd × R follows a joint distribution D and ∥x∥ ≤ D for some constant D. W.L.O.G., we assume
that the covariance matrix of data input is diagonal, i.e., H := E[xx⊤] = diag (λ1, λ2, . . . , λd),
where λ1 ≥ λ2 ≥ · · · ≥ λd. A direct corollary is that λ1 ≤ D2. For a given data input x, the label
y is generated by y := ⟨w∗,x⟩ + ξ, where w∗ ∈ Rd is the ground-truth weight and ξ represents
the independent random label noise with E[ξ] = 0 and E[ξ2] = σ2. We aim to train a linear model
f(x;w) := ⟨w,x⟩ to predict the data label, where w ∈ Rd is the trainable parameter. We use
MSE-loss ℓ(w;x, y) := 1

2 (f(x;w)− y)2 to measure the fitting error. Then, the population loss is
defined as L(w) := E(x,y)∼D[ℓ(w;x, y)]. Further we define the excess risk R(w) := L(w)− 1

2σ
2,

which is the expected population loss minus the irreducible loss 1
2σ

2.

Multi-Epoch SGD Training Algorithm. Consider a finite training dataset with N data points
{(x0, y0), (x1, y1), . . . , (xN−1, yN−1)}, where the data points (xi, yi) are i.i.d. sampled from the
distribution D. We useK-epoch stochastic gradient descent (SGD) with random shuffling to minimize
the loss function. And the initial parameter w0 is set to 0. Formally, we denote K independent
random permutations of [N ] by π1, . . . , πK . And we define jt := πkt(it), where it := t mod N ,
kt := ⌊t/N⌋+ 1. Then we have the update rule for K-epoch SGD with N data points

wt+1 = wt − η∇wℓ(wt;xjt , yjt) =
(
I − ηxjtx

⊤
jt

)
wt + ηξjtxjt .

Next, given a K-epoch SGD over N data points, with learning rate η, we define WK,N,η to be the
distribution of wKN . The randomness within wKN comes from the random draw of the dataset,
label noise ξ, and the shuffling in SGD. Based on this, we define the expected excess risk of a given
K-epoch SGD over N data points, with learning rate η as R̄(K,N ; η) := Ew∼WK,N,η

[R(w)]. We
assume η ≤ D−2 for training stability.

Comparing Performance under Optimal Learning Rate Regime. To compare the performance
of one-pass and multi-epoch SGD, we consider the settings where the learning rates for both methods
are tuned to the optimal. Formally, we introduce the notion of the optimal expected excess risk of
K-epoch SGD for N samples as R̄∗(K,N) := minη∈(0, 1

D2 ]{R̄(K,N ; η)}. To calculate this value
in math, we will show in the next section that we can get a learning rate choice that can approximately
achieve the above optimal expected excess risk R̄∗(K,N) both for one-pass and multi-epoch SGD.
Following our discussion in the introduction, we define the effective reuse rate as follows:
Definition 3.1 (Effective Reuse Rate). Given K-epoch SGD trained with N fresh data samples, the
effective reuse ratio is defined as: E(K,N) := 1

N min{N ′ ≥ 0 : R̄∗(1, N ′) ≤ R̄∗(K,N)}.
That is, the effective reuse rate measures how many times larger the dataset must grow under one-pass
training to match the performance of K-epoch training, both under the optimal learning rate regime.

4 MULTI-EPOCH SCALING IN STRONGLY CONVEX LINEAR REGRESSION

In the study of linear regression problems, the strongly convex case is a classical and central theoretical
framework, serving as the standard entry point before many relaxing to weaker conditions (Hastie,
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2009; Ge et al., 2019). In Section 4.1, we first give the problem setups and the main results of the
effective reuse rate. In Section 4.2, we give a proof sketch for our theoretical results, and the detailed
proof of this section can be found in Appendix G.

4.1 MAIN RESULTS

As we focus on the strongly convex case, we make the following assumption on the minimum
eigenvalue of the Hessian matrix.
Assumption 4.1 (Strong Convexity). We assume that λd ≥ µ for some constant µ > 0.

For simplicity, we make the following prior for the ground-truth weight w∗.
Assumption 4.2 (Parameter Prior). The ground truth w∗ satisfies w∗

i ̸= 0 for all i ∈ [d].

As the number of samples N can be very large in practice, training on the entire dataset for a large
amount of epochs can be computationally expensive. This motivates us to impose an upper bound on
the number of epochs K. Technically, this helps us to rule out cases with severe overfitting.
Assumption 4.3 (Computationally feasible number of epochs). We assume that the training dataset
size N and number of epochs K satisfy K = O(N0.1).

Here, the exponent 0.1 is chosen for ease of calculation, though it may not be tight.

To compute E(K,N), we first precisely characterize the optimal expected excess risk. In particular,
we derive asymptotic expansions for R̄∗(K,N) in the regimes K = o(logN) and K = ω(logN),
each expressed as a leading term accompanied by an explicitly controlled higher-order remainder.
Theorem 4.1 (Multi-Epoch Data Scaling Law). Under Assumptions 4.1 to 4.3, for multi-epoch SGD
with the number of epochs K, dataset size of N , it holds that

R̄∗(K,N) =

{
σ2tr(H)

8λd
(1 + oN (1)) · log(KN)

KN for K = o(logN),
σ2d
2 (1 + oN (1)) · 1

N for K = ω(logN).

Theorem 4.1 describes how expected excess risk decays with number of epochs K and dataset size
N when choosing the optimal learning rate. When K ≪ logN , then R̄∗(K,N) = Θ

(
log T
T

)
where

T = KN ; by contrast, when K ≫ logN , then R̄∗(K,N) = Θ
(

1
N

)
which does not depend on K,

showing that endless data reuse turns to be useless.

Next we propose the expression of E(K,N) by applying Theorem 4.1.
Theorem 4.2. Under Assumptions 4.1 to 4.3, for multi-epoch SGD with the number of epochs K,
dataset size of N , it holds that

E(K,N) =

{
(1 + oN (1)) ·K for K = o(logN),
tr(H)
4λdd

(1 + oN (1)) · logN for K = ω(logN).

Theorem 4.2 pinpoints two regimes for the effective reuse rate in the strongly convex case. The first
one is an effective-reuse regime: when K ≪ logN , then E(K,N) = K (1 + o(1)). This suggests
that each extra epoch is essentially as valuable as a fresh pass. The second one is a limited-reuse
regime: whenK ≫ logN , then E(K,N) = tr(H) logN

4λdd
(1+oN (1)), which means additional epochs

yield only logarithmic gains. This further implies that the model has effectively “seen” the dataset
enough times that additional repetition is redundant.

Together, these two asymptotic descriptions expose a phase transition when the quantity
limN→∞

K
logN changes from 0 to ∞. For the former case (limN→∞

K
logN = 0), multi-epoch

training behaves like unlimited data augmentation; fo the latter (limN→∞
K

logN = ∞), the benefits of
reusing data all but vanish, capping E(K,N) at Θ(logN). This insight provides a precise guideline
for practitioners: one should allocate epochs up to order logN to maximize effective data utilization,
but pushing K significantly beyond that yields rapidly diminishing returns.

Larger Datasets Can Be Repeated More. Our theorem provides the following insight. Fixing the
data distribution, as we collect more data, the largest possible epoch number K in the effective-reuse
regime also increases. This means that for larger datasets, multi-epoch training is able to reuse every
data point more effectively. Specifically, for the setup we study in this section, if we have collected N

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

data points in total, then with multi-epoch training, we can get a performance comparable to one-pass
training on Θ(N logN) data points, which is superlinear in the number of data points we collected.

This finding points out a neglected factor in the data-constrained scaling laws proposed in Muennighoff
et al. (2023), which assumed a uniform effective number of epochs across different fresh data sizes.
In Section 6.3, we validate this insight by showing that the effective reuse rate indeed increases with
the dataset size in LLM pretraining.

4.2 PROOF SKETCH

We now provide a proof sketch of our main results. First, we need to compute the optimal expected
excess risk R̄∗(K,N). This requires us to compute R̄(K,N ; η) and then select the optimal learning
rate η∗ that minimizes R̄(K,N ; η). However, due to the random shuffling and multi-pass processing
of the training data, directly analyzing R̄(K,N ; η) is intractable. To overcome this, we seek an
analytic approximation of R̄(K,N ; η), which is derived through the following steps.

Step 1: Bias-Variance Decomposition for Training Dynamics. Following the widely-applied
bias-variance decomposition approach to analyzing the dynamics of SGD training (Neu & Rosasco,
2018; Ge et al., 2019; Zou et al., 2021; Wu et al., 2022a), we define θt = wt −w∗ and examine
the following two processes of bias and variance: θbias

t+1 = θbias
t − η

〈
θbias
t ,xjt

〉
xjt , θvar

t+1 =

θvar
t − η ⟨θvar

t ,xjt⟩xjt + ηξjtxjt , where two processes are initialized as θbias
0 = w0 − w∗ and

θvar
0 = 0. It follows that θt = θbias

t + θvar
t , with E[θvar

t ] = 0. We can then decompose the excess
risk R(wt) into two components: the bias term and the variance term, which we formalize as follows
R(wt) =

1
2 ∥θt∥

2
H = 1

2

∥∥θbias
t

∥∥2
H

+ 1
2 ∥θ

var
t ∥2H .

Step 2: Analytic Risk Approximation by Matrix Concentration. A key challenge in tracking the
dynamics of multi-epoch SGD training arises from the non-commutative nature of the matrices in
the weight updates, which depend on randomly shuffled and multi-pass data. For example, the bias
weight evolves as θbias

KN =
(∏K

k=1

(∏N
l=1

(
I − ηxπk(l)x

⊤
πk(l)

)))
θbias
0 , where we can see that one

data point appears more than once across different epochs. Thus, the above matrix multiplication
involves massive correlated data, which makes calculating the bias term E

[∥∥θbias
KN

∥∥2
H

]
intractable.

To resolve this issue, we borrow tools from concentration inequalities for matrix products Huang et al.
(2022). Specifically, we use the following result:
Lemma 4.1 (Corollary of Theorem 7.1 in Huang et al. (2022)). Given n data points such that
z0, · · · zn−1

i.i.d∼ N (0,H), and defining A =
∏n−1
j=0

(
I − ηzjz

⊤
j

)
, we have E∥A − EA∥l ≤(√

δAη2nl
)l
, where δA := C̃8eD4 log d for some absolute constant C̃ > 0.

However, several obstacles prevent us from directly applying Lemma 4.1 to our problem. For example,
we actually need to control error terms like E

∥∥∥∏k+1
i=K A(i) − (EA)l

∥∥∥, where A(i) represents the
product of sequential updates through all samples in epoch i (see the formal definition in Equation (1),
Appendix E). To address this, our main idea is to derive a tight upper bound for the original term, and
decompose this upper bound into the sum of a series of sub-terms for which we can apply Lemma 4.1.
(see the detailed derivation in Appendix G.2.1 and Appendix G.2.2)

Finally, we derive an error bound on matrix deviations based on our calculations, which is a higher-
order infinitesimal of the main term when η ∈

[
Ω
(
T−1

)
, o(T− 3

4 )
]

and K = o
(
η−1T− 3

4

)
, with

T := KN denoting the total number of training steps. This provides a theoretical guarantee for us to
approximate the risk function with a tractable expression. For the bias term, we have

E
[∥∥θbias

KN

∥∥2
H

]
= E

∥∥∥∥∥
(

K∏
k=1

(
N−1∏
l=0

(
I − ηxπk(l)x

⊤
πk(l)

)))
θ0

∥∥∥∥∥
2

H


≈

∥∥∥∥∥
(

K∏
k=1

E

[
N−1∏
l=0

(
I − ηxπk(l)x

⊤
πk(l)

)])
θ0

∥∥∥∥∥
2

H

=
∥∥((I − ηH)KN

)
θ0
∥∥2
H
,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the approximation step follows from Lemma 4.1, and the last equation follows the facts that
E
[
xπk(l)x

⊤
πk(l)

]
= H and xi is uncorrelated with xj for i ̸= j. For the variance term, the data

correlation issue is similar to what we met in the bias term case. Again, leveraging Lemma 4.1 and
following a similar analysis, we can get an approximation formula for the variance term as shown:

E
[
∥θvar

KN∥2H
]
≈ 2σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)
+ ησ2

〈
H, (I − (I − ηH)2KN )(2I − ηH)−1

〉
.

Step 3: Narrowing the Range for Optimal Learning Rate. However, despite we have an analytic
approximation for risk, it is important to note that this approximation holds only for a specific range
of parameters. For a detailed discussion, refer to Lemma G.1. To mitigate this, we first determine
a reasonable range for the optimal learning rate in two steps: First, we choose η̃ = logKN

2λdKN
as a

reference learning rate; Then, by comparing the losses for the reference learning rate and other
candidate learning rates, we can eliminate a large range of values. This analysis helps narrow down
the potential range of learning rates (Lemma G.5 for small K and Lemma G.6 for large K). Within
this range, we further simplify the risk approximation to make it more tractable for optimization, as
shown in the following lemmas:
Lemma 4.2 (Small K). Let H = PDP⊤ be the canonical form of H under similarity,
and let θ̃2d :=

∑d
l=d−nd+1(Pθ0)

2
l . Under Assumption 4.1 and 4.3, for learning rate η ∈[

logKN
3λdKN

, D
2tr(H) logKN
λdtr(H2)KN

]
, K = o(logN), we have R̄(K,N ; η) = M(K,N ; η)(1 + o(1)) with

M(K,N ; η) := 1
2 θ̃

2
dλd exp(−2λdηKN) + ηtr(H)σ2

4 .

Lemma 4.3 (Large K). We define θ̃2d as the same as Lemma 4.2. Under Assumption 4.1 and 4.3,
for learning rate η ∈ [ logKN3λdKN

, o
(

1
N

)
] and K = ω(logN), we have R̄(K,N ; η) =M(K,N ; η)(1+

o(1)) with M(K,N ; η) = 1
2 θ̃

2
dλd exp(−2λdηKN) + ηtr(H)σ2

4 + σ2d
2N .

Step 4: Deriving the Approximately Optimal Learning Rate. At this point, we have narrowed
down the range for the optimal learning rate and simplified the risk approximation. The next step is
to approximate the optimal expected excess risk. To achieve this, we differentiate the simplified risk
function M(K,N ; η) in Lemma 4.2 and Lemma 4.3 with respect to the learning rate η and give the
critical point η = η′(K,N), which are presented as follows:
Lemma 4.4 (Approximately Optimal Learning Rate). Under Assumption 4.1 and 4.3, we consider K-
epoch SGD withN fresh data and learning rate η = η′(K,N) = log ρKN

2λdKN
, where ρ :=

4θ̃2dλd

tr(H)σ2 . Then
it holds for K = o(logN) or K = ω(logN) that R̄(K,N ; η′(K,N)) = R̄∗(K,N) (1 + o(1)) .

Using Lemma 4.4, we complete the proof as follows. By evaluating the risk at the approximately opti-
mal learning rate η′(K,N) = log ρKN

2λdKN
, we obtain an approximation of the optimal risk (Theorem 4.1),

based on which we derive the effective reuse rate (Theorem 4.2).

5 A SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

Natural data distributions often exhibit power law structures. To capture this phenomenon, we go
beyond the strongly convex case and analyze a stylized linear regression model with Zipf-distributed
data, where the excess risk admits a closed-form expression and the effective reuse rate can be
characterized explicitly.

Through this setup, we can see that the effective reuse rate exhibits a similar scaling behavior: as
the number of epochs K increases, E(K,N) initially grows linearly but eventually saturates at a
problem-dependent value that increases with N . In contrast to the strongly convex case, however, the
saturation point does not scale as ∼ logN but instead scales as a power of N .

Problem Setup. We use the same notation for excess risk, one-pass and multi-epoch SGD, and
i.i.d. training data as in Section 3. We specify the data distribution as a Zipf distribution over d
one-hot data points, where the i-th data point is x(i) = µiei for some µi > 0 and the probability
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of sampling the i-th data point is pi = c · i−α for some constants c > 0 and α > 1. The label
is generated by y = ⟨w∗,x⟩ with no label noise. The ground-truth weight w∗ ∈ Rd follows an
isotropic prior distribution.
Assumption 5.1 (Parameter Prior). w∗ is sampled from a prior distribution with E[w∗w∗⊤] = I .

Interpretation. This setup can be interpreted as a simplified model of real-world data with heavy-
tailed feature distributions. Each coordinate represents an atomic feature that appears with Zipf-
distributed probability, mimicking the long-tailed statistics observed in domains such as text and
natural language. The scaling factors µi encode feature importance, which may reflect, for instance,
effects introduced by feature weighting or normalization.

5.1 RESULTS ON POWER-LAW SPECTRUM

Assumption 5.2 (Power-Law Spectrum). There exist two constants a, b > 0 with a− b > 1 such that

the data input distribution satisfies that pi = ci−(a−b) and Λi = i−b, where c =
(∑d

i=1
1

ia−b

)−1

.

Here we establish matching upper and lower bounds for R̄∗(K,N) in the small-K and large-K
regimes, given the solvable model. Comparing with the strongly convex case, we observe a different

scaling behavior: when K ≪ N
b

a−b , R̄∗(K,N) decays as a power law in KN , with exponent a−1
a ;

whereas when K ≫ N
b

a−b , R̄∗(K,N) exhibits a power-law decay in N and is independent of K.
Theorem 5.1. Consider a K-epoch SGD over N fresh data. Under Assumptions 5.1-5.2, and given
the data dimension d = Ω((KN)

1
a ), it holds that

R̄∗(K,N) ≍

{
(KN)

− a−1
a for K = o(N

b
a−b )

N− a−1
a−b for K = ω(N

b
a−b ).

Then we derive the formula of E(K,N) by first solving the equation R̄∗(1, T ′) = R̄∗(K,N) based
on Theorem 5.1, and divide T ′ by N .
Theorem 5.2 (Multi-Epoch Scaling Under Power-Law Spectrum). Consider a K-epoch SGD over N
fresh data. Under Assumptions 5.1-5.2, and given the data dimension d = Ω((KN)

1
a ), it holds that

E(K,N) =

{
K(1 + o(1)) for K = o(N

b
a−b )

Θ(N
b

a−b ) for K = ω(N
b

a−b ).

Under the assumption of a logarithmic power-law spectrum, the trend of the effective reuse rate as a
function of K approximates the phenomena described in Theorem 4.2 in the strongly convex setting
and the trend described in Theorem 4.2 under the power-law spectrum assumption. We still observe
an effective-reuse regime (E(K,N) ≈ K) when K is relatively small (K ≪ N b/(a−b)), and as
K increases, the effective reuse rate undergoes a phase transition, converging to an upper bound
determined by N , entering the limited-reuse regime (E(K,N) = Θ(N b/(a−b))).

We can see that the exponent of this power of N is determined by the rate of eigenvalue decay of
the Hessian and the rate of norm decay of the parameter with respect to dimension. The proofs of
Theorem 5.1 and Theorem 5.2 are given in Appendix I.2 and Appendix I.3 respectively.

5.2 RESULTS ON LOGARITHMIC POWER-LAW SPECTRUM

Further, we aim to understand under the same Hessian matrix, how the data distribution correlated
with P and Λ affects the effective reusing rate. By changing the spectrum of Λ, we can also obtain
matching upper lower bounds for R̄∗(K,N) and a characterization for E(K,N), which behave
differently from the power-spectrum case. Here we present only the latter; the former can be seen in
Appendix D.
Assumption 5.3 (Logarithmic Power-Law Spectrum). There exist two constants a > 1, b > 0 such
that the data input distribution satisfies that pi = ci−a logb(i+ 1) and Λi = 1/logb(i+ 1), where

c =
(∑d

i=1 i
−alogb(i+ 1)

)−1

.
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(a) Strongly convex case: E(K,N)
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(b) The solvable case with Zipf-distributed data and power spectrum:
E(K,N) versus K and N .

Figure 1: Simulation experiments for strongly-convex linear regression and the solvable case with Zipf-
distributed data and power spectrum. Results show that E(K,N) is approximately proportional to some
function of N when N is relatively small, and E(K,N) ≈ K when N is relatively large. For the solvable
case with Zipf-distributed data and power spectrum, we also fit the effective reuse rate using the formula
E(K,N) = c1N

c2 suggested by Theorem 5.2, and the fitted exponent c2 = 0.279 ≈ b
a−b

= 2
7

matches our
theory.

Theorem 5.3 (Multi-Epoch Scaling Under Logarithmic Power-Law Spectrum). Under Assump-
tions 5.1, Assumption 5.3, and given the data dimension d = Ω((KN)

1
a ) for a one-pass SGD and a

K-epoch SGD over N fresh data, it holds that

E(K,N) =

{
K(1 + o(1)) for K = o(logbN)

Θ(logbN) for K = ω(logbN).

The Saturation Point Varies across Different Problem Setups. The phase transition point where
the effectiveness of data reusing changes from effectively reused to limitedly reused varies across
different problem setups. In strongly convex linear regression problems, this phase transition happens
when the limit limK→∞

K
logN changes from 0 to ∞. And in the above power spectrum and log-power

spectrum case, the limit turns to be limK→∞
K

Nb/(a−b) and limK→∞
K

logbN
.

6 EXPERIMENTS

6.1 SIMULATIONS IN SECTION 4

First, we conduct our experiments on synthetic dataset with a strongly convex linear regression to
verify the characterization of effective reuse rate E(K,N) in Theorem 4.2.
Experiments Setup. We generate data pairs (xi, yi) where xi

i.i.d∼ N (0, Id) with dimension
d = 100. For the label yi, we generate it as yi = ⟨w∗,xi⟩ + ξi, where w∗ is the ground truth
generate by standard Gaussin with unit variance. Also, ξi

i.i.d∼ N (0, σ2Id). Here in our simulation,
we set σ to 0.1. To make our simulation aligned with the theoretical setup, we set the learning rate
η ∝ logKN

KN , and we grid search the ratio c := η
logKN/KN for the c∗ which minimizes the final loss

given training steps T = KN .
Results. As shown in Figure 1a, we plot E(K,N) as a function of logN for various fixed values
of K. Each curve corresponds to a fixed number of epochs (e.g., K = 3, 5, . . . , 20) and illustrates
how the effective reuse rate E(K,N) grows with dataset size. For small data size (logN ≪ K),
the effective reuse factor increases roughly linearly with logN , indicating that adding more data
substantially boosts the one-pass equivalent performance. However, as N becomes large (logN ≫
K), each curve flattens out and approaches an asymptote at E(K,N) ≈ K. In other words, once the
dataset is sufficiently large relative to the number of epochs, additional passes through the same data
yield no further benefit beyond a factor of K. This behavior is exactly as predicted by Theorem 4.2:
whenK is much smaller than logN , we haveE(K,N) ≈ K (nearly fullK-fold data reuse), whereas
when K is large relative to logN , the effective reuse saturates and grows only on the order of logN .

6.2 SIMULATIONS IN SECTION 5.1

We now verify the predictions of Theorem 5.2 using synthetic data generated under the spectral
assumptions of Section 5 with a power-law decay Hessian spectrum (Assumption 5.2). In all sub-
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(a) The effective reuse rate E(K,N) as a function
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Figure 2: The effective reuse rate E(K,N) over K and training curves in language model experiments.
Figure 2a shows that E(K,N) ≈ K when K is small, to be specific, K ≤ 4. Figure 2b plots the points where
E(K,N) = 0.8K under different configurations, and we observe that E(K,N) increases as N increases,
indicating that larger datasets can be repeated more.

figures of Figure 1b, we set the data dimension d to 105 and tune all the learning rates to their optimal
values. Here we set a = 4.5 and 1.

Results. Figure 1b plots E(K,N) versus K and logN for the solvable model with Zipf-distributed
data. The curves depicting E(K,N) versus K show that E(K,N) ≈ K when K is relatively small
and saturate to some value depending on N when K is large. In the right panel, which describes
the relationship between E(K,N) and logN , we observe that when K is small (namely K = 2),
E(K,N) increases and approaches K as logN increases, and the plots overlap when K is large.
Those phenomena provide empirical confirmation of the scaling behaviors predicted by Theorem 5.2.
We also fit E(K,N) in the large-K regime with a power-form function as stated in Theorem 5.2.
The fitted exponent is 0.279 ≈ b

a−b =
2
7 , aligning with our theory.

6.3 EMPIRICAL VERIFICATION IN LARGE LANGUAGE MODELS

Experiments Setup. We conduct experiments on a large language model to empirically validate
the hypothesis that larger datasets allow for more effective repetition. We perform pretraining runs
with fresh data sizes of 0.2B, 0.5B, 0.8B, 1.0B, and 2B tokens, each trained for 100 epochs. As a
control, we also include a run with 200B fresh tokens. For each fresh dataset size N and training
epoch K, we approximate the effective reuse rate E(K,N) by determining the effective fresh data
size Nf (K,N) required to achieve the same validation loss after one pass through the data. The
effective reuse rate is then computed as: E(K,N) =

Nf (K,N)
N .

Our experiments utilize a 0.3B parameter model adapted from the Qwen2.5-0.5B architecture (Qwen
et al., 2025) and a subset of the DCLM dataset, totaling 200B tokens. A separate subset of the
DCLM dataset is reserved for validation. Crucially, we use a constant learning rate schedule across
all experiments to align with our theoretical analysis and mitigate the confounding effects of learning
rate schedules, as reported in prior work (Hoffmann et al., 2022; Luo et al., 2025). Figure 2a depicts
the relationship between E(K,N) and K. Figure 2b depicts the training curves for different data
sizes, and marks the points of different curves where E(K,N) = λK, where λ controls how strict
the criterion is for determining when multi-epoch training begins to underperform one-pass training.
Given such λ, we denote the corresponding number of training epochs as K(λ,N), which we refer to
as saturation points. In our experiments, we take λ = 0.75. Further, in Figure 3, we show the precise
relationship between K(λ,N) and N . More details regarding the experiment setup are available in
Appendix C.1.

Previous Work: When K ≤ 4, E(K,N) ≈ K. Our theoretical analysis indicates that E(K,N)
should be close to K when K is small (e.g., K ≤ 4). In Figure 2a, when the epoch number is small
(approximately ≤ 5), we observe that E(K,N) increases at a rate comparable to the epoch number,
as indicated by the black dashed line. Thus our predictions of E(K,N) when K is small aligns with
the data-constrained scaling laws (Muennighoff et al., 2023).

9
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Figure 3: The saturation points K(λ,N) as a function of the dataset size N.

Larger Datasets Allow More Repetition. E(K,N) increases with the number of fresh data sizes
and eventually saturates for sufficiently large fresh datasets. Our results challenge the data-constrained
scaling laws proposed by Muennighoff et al. (2023), which assume a uniform effective number of
epochs across different fresh data sizes. In Figure 2b, we show that at the critical points where
one-pass training start to outperform multi-epoch training significantly, E(K,N) increases as N
increases. This suggests the continued potential for scaling pretraining through multi-epoch training
with larger datasets.

Fitting Experiments. In Figure 3, to provide real-world evidence that larger datasets can be
repeated more, we plot the saturation point values for different N to illustrate how they vary with N .
Then we fit them as a function of N ; see Appendix C.2 for details of the fitting procedure.

Surprisingly, though we do not claim that E(K,N) = Θ(logN) holds for general LLM trainings
when K is large, as we calculated in the strongly convex linear regression case, here we do observe
thatK(λ,N) gradually increases whenN increases, and it follows thatK(λ,N) ≈ 0.80 logN+5.21
with the correlation coefficient being r = 0.97. In this formula, the dataset N is measured in billions
of tokens (B).

Experiments with Learning Rate Decay. For further investigation of the scaling behaviour of
multi-epoch training, we conduct LLM experiments with a non-constant learning rate schedule,
aligning with the common practice in reality. Specifically, we additionally repeat the above analysis
with a WSD learning rate schedule with linear decay. The experimental setup and results are described
in Appendix C.3.

7 CONCLUSION

In this paper, we characterize how multi-epoch training reshapes data scaling laws through the
notion of effective reuse rate E(K,N), defined as the multiplicative factor by which the dataset must
grow under one-pass training to achieve the same test loss as K-epoch training on N samples. In
linear regression with SGD, we prove that when K is small, E(K,N) ≈ K; as K grows, E(K,N)
plateaus at a value of order Θ(logN) under strong convexity and at a power of N under a data
distribution with power-law structure. Therefore, repeating data is not equivalent to scaling by a
constant independent of N ; larger datasets can be repeated more before returns diminish.

Several directions remain open for future study. (i) Our analysis is limited to the linear model, and it
would be interesting to extend the framework to more complex and realistic settings, such as neural
networks with feature learning. (ii) Our work focuses on reusing the whole dataset with multiple
epochs. However, to fully explore the potential of data reuse, one can consider a more efficient
and heuristic approach to repeating data, such as data mixing, curriculum learning, or reusing only
high-quality data. (iii) Technically, our main results rely on strong convexity. In the non-strongly
convex regime, we provide a solvable case with a Zipf-law data distribution. It would be interesting
to generalize these proof ideas to general non-strongly convex linear regression.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we use LLMs (mainly GPT-5 series) to polish some of the sections in our paper, and to
check the grammatical issues. Besides that, we use LLMs to debug our code in LLM experiments
(Section 6.3) and simulation experiments for Section 4 and Section 5. Also, LLMs are used to help
improve the plotting scripts.

B ADDITIONAL RELATED WORKS

Data Reuse in Synthetic Setting. Besides the real-world LLM pre-training regime, many works
also reported the improvement of data reusing under synthetic settings empirically (Charton & Kempe,
2024; Kazdan et al., 2024) or theoretically (Zucchet et al., 2025; Dandi et al., 2024; Arnaboldi et al.,
2025).

Empirical Findings on Scaling Laws. Scaling laws reveal the relationships between large-scale
model training loss and various factors such as model size, data size, and compute budget. These
laws were initially observed by Hestness et al. (2017), but gained significant influence through the
work of Kaplan et al. (2020), and have since been further developed in a series of studies (Henighan
et al., 2020; Hoffmann et al., 2022; Zhai et al., 2022; Kadra et al., 2023; Aghajanyan et al., 2023;
Muennighoff et al., 2023; Bi et al., 2024; Shuai et al., 2024; Kumar et al., 2024; Tissue et al., 2024;
Luo et al., 2025). Notably, Muennighoff et al. (2023) further refined these models by incorporating
the number of training epochs into a more complex scaling law, which empirically describes the
effect of data reuse. In our work, we provide a theoretical analysis of how the effective reuse rate
E(K,N) relies on the epoch number K and fresh data size N , highlighting the role of N in the
scaling behavior of E(K,N), a factor that was overlooked in Muennighoff et al. (2023).

Theoretical Explanations for Scaling Laws. A series of studies (Sharma & Kaplan, 2020; Hutter,
2021; Maloney et al., 2022; Wei et al., 2022; Jain et al., 2024; Michaud et al., 2024; Nam et al., 2024;
Atanasov et al., 2024; Dohmatob et al., 2024; Bahri et al., 2024; Bordelon et al., 2024a; Lin et al.,
2024; Paquette et al., 2025; Bordelon et al., 2024b; Zhang et al., 2024; Ferbach et al., 2025; Li et al.,
2025a) have sought to theoretically explain scaling laws from various perspectives. Among these,
recent works (Bordelon et al., 2024a; Paquette et al., 2025; Lin et al., 2024; Bordelon et al., 2024b)
have analyzed scaling laws by tracking the training dynamics of SGD through linear regression setup.
Specifically, Bordelon et al. (2024a) investigated a full-batch gradient flow setup, while Paquette et al.
(2025) and Bordelon et al. (2024b) focused on online SGD with a sufficiently small constant learning
rate. Additionally, Lin et al. (2024) studied a geometric decaying learning rate schedule (LRS) (Ge
et al., 2019; Wu et al., 2022a). Recently, Li et al. (2025a) proposed a functional scaling law that
characterizes the loss dynamics for general LRSs. However, these scaling law studies did not account
for the impact of data reuse. In contrast, our work examines the scaling behavior of multi-epoch SGD
training within the context of a linear regression setup.

SGD Analysis in Linear Regression. The analysis of SGD in linear regression has been extensively
studied over the years, encompassing both one-pass and multi-epoch SGD. In the context of one-pass
SGD, Zou et al. (2021); Meterez et al. (2025) considered an SGD procedure with a constant step size
and averaged iterates, offering a sharp risk bound in terms of the eigenvalues of the covariance matrix.
Gurbuzbalaban et al. (2021) examined one-pass SGD with batch size and proved that the distribution
of the SGD iterates will converge to a heavy-tailed stationary distribution. Zou et al. (2022) compared
the performance of SGD in the absence of ridge regression. Wu et al. (2022a) and Wu et al. (2022b)
studied SGD in linear regression under covariate shift. Xia et al. (2024) considered SGD updates with
noisy gradient and analyzed the perfect deleted point problem. Li & Gu (2025) considered SGD with
exponential moving average in the linear regression setting. For multi-epoch SGD, Lin & Rosasco
(2019) examined a scenario in which gradients are sampled uniformly at random and mini-batches
are allowed. They analyzed the effects of mini-batch size, number of epochs, and learning rate,
carefully combining these parameters to achieve the optimal convergence rate. Pillaud-Vivien et al.
(2018) showed that while single-pass averaged SGD is optimal for a certain class of "easy" problems,
multiple passes are required to achieve optimal prediction performance on a different class of "hard"
problems, provided that an appropriate step size is chosen. In contrast to the matching upper and
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lower bounds derived by our theory, however, all the above works were only able to derive an upper
bound for the loss.

C ADDITIONAL EXPERIMENTAL DETAILS FOR LLM TRAINING

C.1 PRETRAINING SETUP

In our pretraining experiments, we employ the AdamW optimizer with a weight decay of 0.1 and a
gradient clip of 1.0. We set the peak learning rate to 0.001, aligning with the approximate optimal
learning rate reported by Li et al. (2025b). Balancing the optimal batch size suggested by Li et al.
(2025b) with training efficiency, we utilize a sequence batch size of 128, which corresponds to
roughly 0.5M data points per batch. We adopt the vocabulary of Qwen2.5 (Qwen et al., 2025) models.
Our pretraining model consists of approximately 117 million non-embedding parameters, consistent
with the methodology of Kaplan et al. (2020), and a total of 331 million parameters following the
convention of Hoffmann et al. (2022). The detailed hyperparameter configurations are presented in
Table 2, and the model architecture specifications are provided in Table 1. To ensure a fair comparison
by eliminating the influence of batch order variations, we fix the random seed that governs the data
stream across all experiments.

Table 1: Model configurations and parameter counts. dh: hidden dimension; df : feed-forward
dimension; nl: number of Transformer layers; nh: number of attention heads; nkv: number of key-
value heads (for grouped-query attention); Vocab Size: size of tokenizer vocabulary; #NE params:
number of non-embedding parameters (in millions); #Params: total number of model parameters (in
millions).

Name dh df nl nh nkv Vocab Size #NE params #Params

0.5B 896 4864 24 14 2 151936 355 491
0.3B 640 3328 16 10 2 151936 117 331

Table 2: LLM Experiment Settings

Parameter Value
Data

Sequence Batch Size 128
Sequence Length 4096

Learning Rate
Peak Learning Rate 0.001
Schedule Constant
Warmup Steps 400

Optimizer
Optimizer AdamW
Weight Decay 0.1
β1 0.9
β2 0.95
ϵ 1e-8
Gradient Clip 1.0

C.2 FITTING EXPERIMENTS

To provide real-world evidence that larger datasets can be repeated more, we show how the saturation
points can be used to determine the appropriate number of training epochs. Recall that the saturation
points are the points at which multi-epoch training first starts to underperform the one-pass base-
line. We estimate these points from the pretraining loss curves presented in Section 6.3 and fit its
dependence on N .
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Figure 4: The saturation points K(λ,N) as a function of the data size N under a WSD learning rate
schedule with linear decay.

To estimate this quantity from the training curves, we proceed as follows. First, to reduce the impact
of noise, we smooth the loss curves with exponential moving average (EMA) with decay coefficient
α = 0.9 and a window size of 3 checkpoints. Then for each dataset size N , we examine the ratio
E(K,N)/K. A larger ratio requires multi-epoch training to remain very close to the one-pass
baseline, whereas a smaller ratio allows more deviation. Next, given a threshold hyperparameter λ,
we identify the closest epoch K at which this ratio first falls below λ, which we denote as K(λ,N).
Here we choose λ = 0.75, and we define K(λ,N) as the saturation point.

We fit those points and find that K(λ,N) ≈ 0.80 logN + 5.21 with a correlation coefficient of
r = 0.97. The fitting results are shown in Figure 3.

C.3 EXPERIMENTS WITH WSD LEARNING RATE SCHEDULE

Next, to make our LLM experiments more consistent with real-world pretraining practices, we repeat
the LLM experiments under a warmup-stable-decay(WSD) learning rate schedule.

Concretely, we start from the checkpoints obtained in Section 6.3 for fresh data sizes N ∈
{0.2B, 0.5B, 1B, 2B} after K ∈ {2, 4, 8, 16} epochs of pretraining with a constant learning rate
of 10−3. From each checkpoint, we continue training for one additional epoch while linearly decay-
ing the learning rate from 10−3 to 10−5, resulting in a WSD learning rate schedule followed by a
linear decay. For the one-pass baseline, we adopt the same schedule as in the N = 2B run.

For each dataset size N , this process produces a set of four validation-loss values, each associated
with one of the four selected epoch numbers K. We model the dependence of the final loss on the
training steps x using the parametric form ℓ(x) = A+ B

xa , where A,B, a are fitted parameters. The
fitted curves are then used to predict the final validation loss under this WSD schedule for arbitrary
training budgets. Using these predictions, we compute the saturation points following the same
procedure as in Section 6.3. Here we still choose λ = 0.75.

The resulting saturation points are summarized in Figure 4. We observe that, even under this different
learning rate schedule, the saturation points still satisfy the logarithmic scalingK(λ,N) = Θ(logN).
Specifically, we have K(λ,N) ≈ 2.35 logN + 5.25 with a correlation coefficient of r = 0.96. This
confirms that our message that larger datasets can be repeated more also holds for real LLM training
setups.
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Figure 5: The solvable cases with logarithmic power-law spectrum. E(K,N) exhibits a simi-
lar behavior to that presented in Figure 1. We also fit the effective reuse rate using the formula
E(K,N) = c1 (logN)

c2 suggested by Theorem 5.2, and the fitted exponent c2 = 2 ≈ b = 2
matches our theory.

D ADDITIONAL RESULTS AND SIMULATIONS FOR LOGARITHMIC
POWER-LAW SPECTRUM

D.1 SCALING LAW FOR LOGARITHMIC POWER-LAW SPECTRUM

We now present the scaling law for logarithmic power-law spectrum. Its proof can be seen in
Section I.4.
Theorem D.1. Consider aK-epoch SGD overN fresh data. Under Assumptions 5.1, Assumption 5.3,
and given the data dimension d = Ω((KN)

1
a ), it holds that

R̄∗(K,N) ≍

(KN)
− a−1

a for K = o(logbN)(
N logbN

)− a−1
a

for K = ω(logbN).

D.2 SIMULATIONS IN SECTION 5.2

Now we focus on validating the predictions of Theorem 5.3 using synthetic data generated under the
spectral assumptions of Section 5 and a log-power decay spectrum (Assumption 5.3).

Experiments Setup. Similar to Section 6.2, in all sub-figures of Figure 5, we set the data dimension
d to 105 and tune all the learning rates to their optimal values. Here we set a = 1.5 and b = 2.

Simulations for the Solvable Model. Figure 5 plots E(K,N) versus K and logN for the solvable
model. The curves depicting E(K,N) versus K and E(K,N) versus logN show trends consistent
with those in Section 6.2, aligning with Theorem 5.3. Furthermore, in the large-K regime, we fit the
exponent according to Theorem 5.3 and obtain 2.036 ≈ b = 2, which provides strong validation of
our theory.

E ADDITIONAL NOTATIONS

In this section, we provide some additional notations appeared in the following proof of our main
results.

Key Quantities. We define the following key quantities to analyze the sequential updates. For each
epoch k, let

A(k) :=

0∏
i=N−1

(I − ηxπk(i)x
⊤
πk(i)

) (1)
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represent the product of sequential updates through all samples in epoch k. More generally, we define
the partial product operator:

Z
(k)
a→b :=

b∏
i=a

(I − ηxπk(i)x
⊤
πk(i)

), with A(k) = Z
(k)
N−1→0.

We further define that Z(k)
N−1→N = I . The cumulative effect across epochs is captured by:

T (k) :=

k+1∏
i=K

A(i), and T (K) = I.

Pseudo-expectation Notation Ẽ. Because matrix multiplication is non-commutative and the shuf-
fling in training introduces statistical dependence, the expectations of the random matrices defined
above cannot be written in a tractable closed form. To approximate the population excess risk, we
therefore introduce the auxiliary notation Ẽ. By construction, Ẽ computes the expectation of each
factor as if the variables were independent, deliberately neglecting the correlations. We then invoke
matrix-concentration inequalities to bound the gap between this “pseudo”-expectation and the true
expectation of the original dependent random variables. Specifically, for the above random matrices
used in our proof, here we further define that

ẼZ(k)
a→b := (I − ηH)a−b+1, (2)

ẼA(k) := (I − ηH)N , (3)

ẼT (k) := (I − ηH)N(K−k), (4)

ẼS(ij)
l := Ẽ

[
Z

(i)

N−1→π−1
i (l)+1

]
E
[
xlx

⊤
l

]
Ẽ
[
Z

(j)

π−1
j (l)+1→N−1

]
. (5)

F PROOF OUTLINE IN STRONGLY CONVEX LINEAR REGRESSION

In this section, we give the outline of Lemma G.1, Lemma 4.4, and Theorem 4.2. The main technical
challenges and our proof insights are briefly stated in Section 4.2.

Section 4 centres on Theorem 4.2, which establishes a scaling law for the effective reuse rateE(K,N)
in terms of the relative magnitudes of number of epochs K and dataset size N . Its proof unfolds in
three stages.

1. An explicit approximation of the expected excess risk. Lemma G.1 derives a sufficiently accu-
rate asymptotic formula for the expected excess risk of multi-epoch SGD. The argument begins with
a bias–variance decomposition, splitting the expected excess risk into a variance term (Lemma G.2)
and a bias term (Lemma G.3).

• Variance term. The closed-form approximation relies on concentration properties of matrix
contractions together with a careful treatment of data shuffling.

• Bias term. The same contraction inequality is employed to obtain an analytic expression,
after which tight error bounds are proved for the full range of relative sizes of K and N .
These bounds hold uniformly over a broad class of learning rates, necessitating detailed
case-by-case analysis.

2. Selection of a nearly optimal learning rate. Lemma 4.4 identifies a learning rate whose
resulting loss is asymptotically equivalent to the minimum excess risk attained with the optimal
learning rate as stated in Section 3. This “approximately optimal learning rate” will be fixed in
Appendix G.4.

3. Proof of the effective reuse rate scaling law. With the one-pass and multi-epoch SGD training
learning rate set to the near-optimal learning rate obtained above, the proof of Theorem 4.2 proceeds
to characterise the behaviour of E(K,N) as K and N vary, yielding the desired scaling relation.
Together, these three components establish Theorem 4.2 and provide a comprehensive description of
how reuse efficiency depends on the interplay between K and N .
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G PROOF OF MAIN RESULTS IN STRONGLY CONVEX LINEAR REGRESSION

G.1 STEP I: A CONCRETE VERSION OF BIAS-VARIANCE DECOMPOSITION

Before we begin our proof, we first present the following lemma, which provides the formal version
of the loss estimate for a specific range of learning rate parameters. We define a R̂(K,N, η) as the
estimator of R̄(K,N ; η)

R̂(K,N ; η) := R̂1(K,N ; η)︸ ︷︷ ︸
bias term

+ R̂2(K,N ; η)︸ ︷︷ ︸
var term across epochs

+ R̂3(K,N ; η)︸ ︷︷ ︸
var term within epoch

,

where

R̂1(K,N ; η) :=
1

2
(w0 −w∗)⊤(I − ηH)2KNH(w0 −w∗),

R̂2(K,N ; η) :=
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)
,

R̂3(K,N ; η) :=
ησ2

2

〈
H, (I − (I − ηH)2KN )(2I − ηH)−1

〉
.

G.2 STEP II: RISK APPROXIMATION AND ERROR BOUND ANALYSIS

In this section, we rigorously formulate the analytic risk approximation in Lemma G.1 and provide
its proof. Lemma G.1 indicates that the error bound is of higher order than the main term when the
parameters are restricted to a limited range of values.
Lemma G.1. Under Assumption 4.1 and 4.3, we further assume that for every x in the training
set, ∥x∥ ≤ D for some constant D > 0. Consider a K-epoch SGD with learning rate η ∈[
Ω
(
1
T

)
, o(T− 3

4 )
]
, K = o

(
η−1T− 3

4

)
and data shuffling. Then, after T = KN steps, the estimator

of the expected excess risk satisfies:

R̄(K,N ; η) = R̂(K,N ; η) (1 + o(1)) .

Recall from Section 4.2 that the risk R̄(K,N ; η) can be decomposed into the bias term
R̄bias(K,N ; η) := 1

2

∥∥θbias
t

∥∥2
H

and variance term R̄var(K,N ; η) := 1
2 ∥θ

var
t ∥2H , which implies

that Lemma G.1 is a direct corollary of the following two lemmas:
Lemma G.2 (Variance Term). Suppose that Assumption 4.1 holds. Then for a K-epoch SGD with
dataset size N and learning rate η ∈ [Ω( 1

T ), o(
1

T
1
2
)] and shuffling, when poly(T ) ≳ d, we have the

estimator of the variance term R̄var(K,N ; η) := Ew∼WK,N,η
[R(w)var] after T := KN steps

R̃var(K,N ; η) :=
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)

+
ησ2

2

〈
H, (I − (I − ηH)2KN )(2I − ηH)−1

〉
,

where the expectation is taken on the training set and shuffle, and the estimate error is∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)
∣∣∣ = O(η3T

3
2K2

√
log d).

when K ≤ log 2

η
√
C̃8eD4T log d

.

Lemma G.3 (Bias Term). Under Assumption 4.1, for a K-epoch SGD with dataset size N , learning
rate η and shuffling, when poly(T ) ≳ d, we have the estimator of the bias term R̄bias(K,N ; η) :=
Ew∼WK,N,η

[
R(w)bias

]
after T := KN steps

R̃bias(K,N ; η) :=
1

2
(w0 −w∗)⊤(I − ηH)2KNH(w0 −w∗).

Then we have the following estimate errors:
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1. When K ≥ 2 and K = o

(
N

1
5

(logN)
6
5

)
:

(a) When η ≤ 2 log T
3λdT

, the estimate distance is given by∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)
∣∣∣ = O

(
(1− ηλd)

N(2K−1)K
√
η2KN

)
.

(b) When η ≥ 2 log T
3λdT

, the estimate distance is given by∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)
∣∣∣ = O

(
1

T
4
3

)
.

2. When K = 1: ∣∣∣R̃bias(1, T ; η)− R̄bias(1, T ; η)
∣∣∣ = O

(
η2Te−2λdηT

)
.

G.2.1 VARIANCE TERM ANALYSIS: PROOF OF LEMMA G.2

We first recall some notations Appendix E that Z
(k)
a→b =

∏b
i=a(I − ηxπk(i)x

⊤
πk(i)

), b(k) =∑N−1
l=0 Z

(k)
N−1→l+1ξπk(l)xπk(l), A

(k) = Z
(k)
N−1→0, T (k) =

∏k+1
i=K A(i), and T (K) = I . For simplic-

ity, and if it does not cause confusion, we omit the superscript “var” in all the training parameters
θvar in the proof of Lemma G.2. Now we derive the recursion before and after the k-th epoch.

θkN = (I − ηxπk(N−1)x
⊤
πk(N−1))θkN−1 + ηξπk(N−1)xπk(N−1)

= η

N−1∑
l=0

Z
(k)
N−1→l+1ξπk(l)xπk(l) +A(k)θ(k−1)N

= ηb(k) +A(k)θ(k−1)N ,

where πk(i) is the i-th index after the permutation πk in the K-th epoch. Further writing out the
above recursion gives the parameter after K epochs

θKN = η

K∑
k=1

A(K) · · ·A(k+1)b(k).

A natural move here is to replace θKN with the expression above in the variance term

R̄var(K,N ; η) = E
1

2
θ⊤
KNHθKN = E

1

2

〈
H,θKNθ⊤

KN

〉
=
η2

2
E

〈
H,

1

(N !)K

∑
π1···πK

K∑
i,j=1

T (i)b(i)
(
b(j)
)⊤ (

T (j)
)⊤〉

=
η2σ2

2
E

〈
H,

1

(N !)K

∑
π1···πK

K∑
i,j=1

T (i)

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

=
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

+
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉
. (6)

where in the third equation, we take expectations with respect to the label noise(ξl)N−1
l=0 , and in the

last equation, we decompose the variance term into two parts, according to whether the b(i) and b(j)

are from the same epoch or not.
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After explicitly writing the variance term, and to get a close-form formula for it, we then take pseudo
expectations of T (i), T (j), S(ii)

l , and S
(ij)
l separately to get the approximation of R̄var(K,N ; η),

given as follows:

R̃var(K,N ; η) :=
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

ẼT (i)

N−1∑
l=0

∑
πi,πj

ẼS(ij)
l

 ẼT (i)

〉

+
η2σ2

2
E

〈
H,

1

N !

K∑
i=1

ẼT (i)

(
N−1∑
l=0

∑
πi

ẼS(ii)
l

)
ẼT (i)

〉
.

The intuition of the “pseudo expectation” and the related definitions are in Appendix E. Fix l, notice
that when i ̸= j, by Equation (5),

∑
πi,πj

ẼS(ij)
l :=

∑
πi,πj

Ẽ
[
Z

(i)

N−1→π−1
i (l)+1

xlx
⊤
l Z

(j)

π−1
j (l)+1→N−1

]
:=
∑
πi,πj

(I − ηH)
N−1−π−1

i (l)
H (I − ηH)

N−1−π−1
j (l)

.

For a fixed i, for all m ∈ [0, N − 1], there are (N − 1)! permutations πi that satisfies πi(m) = l. So

∑
πi,πj

ẼS(ij)
l = ((N − 1)!)

2
N−1∑
m,n=0

(I − ηH)
N−1−m

H (I − ηH)
N−1−n

. (7)

By applying a similar derivation to the i = j case, we obtain that

∑
πi

ẼS(ii)
l = (N − 1)!

N−1∑
m=0

(I − ηH)
N−1−m

H (I − ηH)
N−1−m

. (8)

Plugging Equation (7) and Equation (8) into the expression of R̃var(K,N ; η), and we have

R̃var(K,N ; η)

=
η2σ2

2
E

〈
H,

1

N2

K∑
i̸=j
i,j=1

ẼT (i)

(
N−1∑
l=0

N−1∑
m,n=0

(I − ηH)2N−2−m−nH

)
ẼT (i)

〉

+
η2σ2

2
E

〈
H,

1

N

K∑
i=1

ẼT (i)

(
N−1∑
l=0

N−1∑
m=0

(I − ηH)2N−2−2mH

)
ẼT (i)

〉

=
σ2

2
E

〈
H,

1

N

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
(
I − (I − ηH)

N
)2

H−1(I − ηH)N(K−j)

〉
︸ ︷︷ ︸

:=Ψ1

+
ησ2

2
E

〈
H,

K∑
i=1

(I − ηH)N(K−i)
(
I − (I − ηH)

2N
)
(2I − ηH)−1(I − ηH)N(K−i)

〉
︸ ︷︷ ︸

Ψ2

.
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where the second equation uses Equation (4). The quantity Ψ1 accounts for the variance term across
different epochs and Ψ Then we calculate Ψ1 and Ψ2 separately. For Ψ1, we have

Ψ1 =
σ2

2
E

〈
H,

1

N

K∑
i,j=1

(I − ηH)N(K−i)
(
I − (I − ηH)

N
)2

H−1(I − ηH)N(K−j)

〉

− σ2

2
E

〈
H,

1

N

K∑
i=1

(I − ηH)N(K−i)
(
I − (I − ηH)

N
)2

H−1(I − ηH)N(K−i)

〉

=
σ2

2N
tr
((

I − (I − ηH)
KN
)2)

− σ2

2N
tr

((
I − (I − ηH)

N
)2 (

I − (I − ηH)
2N
)−1 (

I − (I − ηH)
2KN

))
=
σ2

N
tr
((

I − (I − ηH)
KN
)(

I + (I − ηH)
N
)−1 (

(I − ηH)
N − (I − ηH)

KN
))

.

The last equation is obtained by direct algebraic calculation. For Ψ2, by direct matrix calculation, we
get

Ψ2 =
ησ2

2
E
〈
H, (2I − ηH)−1

(
I − (I − ηH)

2KN
)〉

.

Next we obtain the error bound for
∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)

∣∣∣, which can be represented as∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)
∣∣∣

≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)

N−1∑
l=0

∑
πi,πj

ẼS(ij)
l

 (I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣ =: I1

+

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉

− η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)

(
N−1∑
l=0

∑
πi

ẼS(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣ =: I2,

where the first inequality uses the triangle inequality. The term I1 represents the error term between
epochs, and I2 represents the error term within one epoch. We will bound I1 and I2 separately in the
proof.

Upper bound for I1. To bound I1, a natural move here is to plug in a term that takes pseudo
expectation over (T (i))Ki=1 but does not take pseudo expectation over (S(ij)

l )l,i,j , and divide I1 into
two terms.

I1 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

〉

− η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)

N−1∑
l=0

∑
πi,πj

ẼS(ij)
l

 (I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣
=: I11 + I12.

Next we bound the terms I11 and I12 separately. Notice that
K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

= (N !)K−2
K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j) (9)

because the summands do not depend on the permutations except πi, πj , plugging Equation (9) into
the expression of I1 we have

I11 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣ .

Then we use Equation (4) to split I11 into three terms and by triangle inequality:

I11 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
T (i) − ẼT (i)

) ∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
ẼT (i)

〉∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

ẼT (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j) − ẼT (j)

)〉∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
T (i) − ẼT (i)

) ∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j) − ẼT (j)

)〉∣∣∣∣∣∣∣∣ .

Next, we use Lemma J.1 and the fact that S(ij)
l ≲ I to bound the matrix inner products:

I11 ≤ η2σ2ND2tr(H)

2(N !)K−2

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥+ E
∥∥∥T (j) − ẼT (j)

∥∥∥
+ E

∥∥∥T (i) − ẼT (i)
∥∥∥∥∥∥T (j) − ẼT (j)

∥∥∥) .
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Notice that Lemma J.2 and Lemma J.5 implies that

E
∥∥∥T (i) − ẼT (i)

∥∥∥ ≤ (
√
δAη2NK + ∥EA∥)K − ∥EA∥K

≤ (
√
δAη2NK + 1)K − 1

≤ 2K
√
δAη2NK when K ≤ log 2

η
√
δAT

,

where δA = C̃8eD4 log d is the constant appeared in Lemma J.4, and C̃ is some absolute constant.
The second inequality uses the fact that (

√
δAη2NK + ∥EA∥)K − ∥EA∥K motonously increases

with ∥EA∥. A similar approach combining Lemma J.2 and Lemma J.6 derives another concentration
inequality for T (i):

E
∥∥∥T (i) − ẼT (i)

∥∥∥2 ≤
(
2K
√
δAη2NK

)2
when K ≤ log 2

η
√
δAT

.

Applying Cauchy-Schwarz’s inequality and the concentration inequalities for
(
T (i)

)
i
, we get that

I11 ≤ η2σ2ND2tr(H)

2(N !)K−2

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥+ E
∥∥∥T (j) − ẼT (j)

∥∥∥
+

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥2) 1
2
(
E
∥∥∥T (j) − ẼT (j)

∥∥∥2) 1
2

)

≤ η2σ2ND2tr(H)

2

K∑
i̸=j
i,j=1

(
4K
√
δAη2NK +

(
2K
√
2δAη2NK

)2)
.

Our next step is to bound I12. We first make use of the fact that I − ηH ≲ I , and get that

I12 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

∑
πi,πj

(
N−1∑
l=0

S
(ij)
l − ẼS(ij)

l

)〉∣∣∣∣∣∣∣∣ .

Recall that for a fixed i, for all m ∈ [0, N − 1], there are (N − 1)! permutations πi that satisfies
πi(m) = l. So

I12 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

((N − 1)!)2
(
Z

(i)
N−1→m+1HZ

(j)
n+1→N−1

−EZ(i)
N−1→m+1HEZ(j)

n+1→N−1

)〉∣∣∣ .
Notice that

Z
(i)
N−1→m+1HZ

(j)
n+1→N−1 − EZ(i)

N−1→m+1HEZ(j)
n+1→N−1

=
(
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

)
HEZ(j)

n+1→N−1 + EZ(i)
N−1→m+1H

(
Z

(j)
n+1→N−1 − EZ(j)

n+1→N−1

)
+
(
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

)
H
(
Z

(j)
n+1→N−1 − EZ(j)

n+1→N−1

)
.
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Applying Lemma J.1 and using the fact that EZ(i)
N−1→m+1 ≲ I ,

I12 ≤ η2σ2tr(H)∥H∥N
2N2

E
K∑
i̸=j
i,j=1

(
N−2∑
m=0

∥∥∥Z(i)
N−1→m+1 − EZ(i)

N−1→m+1

∥∥∥
+

N−2∑
n=0

∥∥∥Z(j)
n+1→N−1 − EZ(j)

n+1→N−1

∥∥∥
+

N−2∑
m=0

N−2∑
n=0

∥∥∥Z(i)
N−1→m+1 − EZ(i)

N−1→m+1

∥∥∥ ∥∥∥Z(j)
n+1→N−1 − EZ(j)

n+1→N−1

∥∥∥) .
Applying Cauchy-Schwarz inequality and Lemma J.4 gives

I12 ≤ η2σ2tr(H)∥H∥N
2N2

K∑
i̸=j
i,j=1

(
N−2∑
m=0

E
∥∥∥Z(i)

N−1→m+1 − EZ(i)
N−1→m+1

∥∥∥
+

N−2∑
n=0

E
∥∥∥Z(j)

n+1→N−1 − EZ(j)
n+1→N−1

∥∥∥
+

N−2∑
m=0

N−2∑
n=0

(
E
∥∥∥Z(i)

N−1→m+1 − EZ(i)
N−1→m+1

∥∥∥2) 1
2
(
E
∥∥∥Z(j)

n+1→N−1 − EZ(j)
n+1→N−1

∥∥∥2) 1
2

)

≤ η2σ2tr(H)∥H∥N
2N2

K∑
i̸=j
i,j=1

(
N−2∑
m=0

(√
δAη2(N − 1−m)

)
+

N−2∑
n=0

(√
δAη2(N − 1− n)

)

+

N−2∑
m=0

N−2∑
n=0

(√
2δAη2(N − 1−m)

)(√
2δAη2(N − 1− n)

))

≲ η3K2
√
N log d+ η4K2N2 log d when η = o(

1√
T
).

Upper bound for I2. We bound I2 using a similar technique as what we did for I1. We first plug in
a term that takes pseudo expectation over (T (i))Ki=1 but does not take pseudo expectation over S(ii)

l
for every l and i, and decompose I2 into two terms:

I2 ≤

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉

− η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣
+

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉

− η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)

(
N−1∑
l=0

∑
πi

ẼS(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣
=: I21 + I22.

Next we bound the terms I21 and I22 separately. Notice that
K∑
i=1

∑
π1···πK
except πi

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)
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= (N !)K−1
K∑
i=1

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

because the summands do not depend on the permutations except πi, we have

I21 =

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣∣∣ .

Then we use the fact that ẼT (i) = (I − ηH)N(K−i) to split I21 into three terms:

I21 ≤

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(
T (i) − ẼT (i)

)∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i) − ẼT (i)

)〉∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(
T (i) − ẼT (i)

)∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i) − ẼT (i)

)〉∣∣∣∣∣∣∣ .

Next, we use Lemma J.1 and the fact that S(ij)
l ≲ I to bound the matrix inner products, and apply

the concentration inequalities we derived for
(
(T )(i)

)
i
:

I21 ≤ η2σ2ND2tr(H)

2(N !)K−1

K∑
i=1

∑
π1···πK
except πi

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥+ E
∥∥∥T (i) − ẼT (i)

∥∥∥
+ E

∥∥∥T (i) − ẼT (i)
∥∥∥2)

≤ η2σ2ND2tr(H)

2

K∑
i=1

(
4K
√
δAη2KN +

(
2K
√
2δAη2KN

)2)
.

Then we bound I22. Recall that I − ηH ≲ I , we get

I22 ≤

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

∑
πi

(
N−1∑
l=0

S
(ii)
l − ẼS(ii)

l

)〉∣∣∣∣∣ .
Recall that for a fixed i, for all m ∈ [0, N − 1], there are (N − 1)! permutations πi that satisfies
πi(m) = l. So

I22 ≤

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

N−1∑
l=0

N−1∑
m=0

(N − 1)!
(
Z

(i)
N−1→m+1HZ

(i)
m+1→N−1

−EZ(i)
N−1→m+1HEZ(i)

m+1→N−1

)〉∣∣∣
=

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

N−1∑
l=0

(N − 1)!

N−2∑
m=0

((
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

)
H
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(
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

))〉∣∣∣ .
Using Lemma J.4, we have

I22 ≤ η2σ2tr(H)∥H∥N
2N

E
K∑
i=1

(
N−2∑
m=0

∥∥∥Z(i)
N−1→m+1 − EZ(i)

N−1→m+1

∥∥∥2)

≤ η2σ2tr(H)∥H∥N
2N

K∑
i=1

N−2∑
m=0

(√
2δAη2(N − 1−m)

)2
≲ η4N2K log d when η = o(

1√
T
).

Combining all the arguments above, we derive that∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)
∣∣∣

≤ I11 + I12 + I21 + I22

≤ C
η2σ2ND2tr(H)

2

K∑
i,j=1

(
4K
√
δAη2NK +

(
2K
√
δAη2NK

)2)
+O(η3K2

√
N log d+ η4K2N2 log d) +O(η4N2K log d)

= O(η3N
3
2K

7
2

√
log d) when η = o(

1√
T
).

The above equation completes the proof.

G.2.2 BIAS TERM ANALYSIS: PROOF OF LEMMA G.3

For simplicity, and as we did in the proof of Lemma G.2, in this section we omit the superscript
"bias" for all the training paramters θbias. Analogous to the proof of Lemma G.2, we can derive the
parameter recursion as

θkN = (I − ηxπk(N−1)x
⊤
πk(N−1))θkN−1

= · · ·
= (I − ηxπk(N−1)x

⊤
πk(N−1)) · · · (I − ηxπk(0)x

⊤
πk(0)

)θ(k−1)N

= A(k)θ(k−1)N .

For the parameter after K-epochs updates, we have

θKN = A(K) · · ·A(1)θ0 =

1∏
l=K

A(l)θ0.

We also have the approximation for the bias term

R̄bias(K,N ; η) =
1

2

〈
H,Eθ2

KN

〉
= E

1

2
θ⊤
KNHθKN

= E
1

2
θ⊤
0

(
1∏

l=K

A(l)

)⊤

H

(
1∏

l=K

A(l)

)
θ0

≈ 1

2
θ⊤
0

(
1∏

l=K

EA(l)

)⊤

H

(
1∏

l=K

EA(l)

)
θ0

=
1

2
θ⊤
0

(
(I − ηH)KN

)
H
(
(I − ηH)KN

)
θ0︸ ︷︷ ︸

=:R̃var(K,N ;η)

.
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The estimate error can be given as∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)
∣∣∣

=

∣∣∣∣∣∣E1

2
θ⊤
0

(
1∏

l=K

A(l)

)⊤

H

(
1∏

l=K

A(l)

)
θ0 −

1

2
θ⊤
0

(
1∏

l=K

EA(l)

)⊤

H

(
1∏

l=K

EA(l)

)
θ0

∣∣∣∣∣∣
=

∣∣∣∣∣∣E1

2
θ⊤
0

(
1∏

l=K

A(l) − ∥EA∥K
)⊤

H

(
1∏

l=K

A(l) − ∥EA∥K
)
θ0

∣∣∣∣∣∣
+ 2

∣∣∣∣∣E1

2
θ⊤
0 ∥EA∥KH

(
1∏

l=K

A(l) − ∥EA∥K
)
θ0

∣∣∣∣∣
≤ E

1

2
∥H∥∥θ0∥2

(∥∥∥AK − (EA)
K
∥∥∥2 + 2∥EA∥K

∥∥∥AK − (EA)
K
∥∥∥) . (10)

where the last equation uses the fact that ∥EA∥ ≤ 1. Next, we discuss the approximation error bound
for the bias term in Equation (10), with different categorizations based on the range of K.

1. Under Assumption 4.1 and K = o

(
N

1
5

(logN)
6
5

)
:

(a) η ≤ 2 log T
3λdT

. We now verify that K = o
(

∥EA∥
η
√
T

)
under given conditions. We have

∥EA∥ = (1− ηλd)
N

= (1− ηλd)
T
K ≥ (1− ηλd)

T
2

≥
(
1− 2 log T

3T

)T
2

= e
T
2 log(1− 2 log T

3T )

= e−
log T

3 +O( 2 log2 T
9T ) = Θ(

1

T
1
3

).

thus

∥EA∥
η
√
T

= Ω(
T

1
6

log T
).

Also, given K = o

(
N

1
5

(logN)
6
5

)
, we obtain that

K = o

(
T

1
6

logN

)
= o

(
T

1
6

log T

)
.

The second equality uses log T = logN + logK = Θ(logN). Now we use the results in
Lemma J.5 and Lemma J.6, and then the estimated distance can be given as∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)

∣∣∣
≤ 1

2
∥H∥∥θ0∥2∥EA∥2K

((√2δAη2NK

∥EA∥
+ 1)K − 1

)2

+ 2

(
(

√
2δAη2NK

∥EA∥
+ 1)K − 1

)
≤ 1

2
∥H∥∥θ0∥2∥EA∥2K

(
8K2δAη

2NK

∥EA∥2
+ 4K

√
2δAη2NK

∥EA∥

)
= O

(
∥EA∥2K−1K

√
η2NK

)
,

where the second inequality is by Lemma J.2.
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(b) η ≥ 2 log T
3λdT

. We have∣∣∣R̃bias(k,N ; η)− R̄bias(k,N ; η)
∣∣∣ ≤ R̃bias(k,N ; η) + R̄bias(k,N ; η)

≤
[
R̃bias(k,N ; η) + R̄bias(k,N ; η)

]∣∣∣
η= 2 log T

3λdT

≤
[∣∣∣R̄bias(k,N ; η)− R̃bias(k,N ; η)

∣∣∣+ 2R̃bias(k,N ; η)
]∣∣∣
η= 2 log T

3λdT

≤
[
O
(
∥EA∥2K−1K

√
η2KN

)
+ 2× 1

2
∥H∥∥θ0∥2∥EA∥2K

]∣∣∣∣
η= 2 log T

3λdT

= O
(
∥EA∥2K

)∣∣
η= 2 log T

3λdT

= O

((
1− 2 log T

3T

)2KN
)

= O(
1

T
4
3

) when K = o

(
N

1
5

(logN)
6
5

)
,

where the first equality uses the fact that K = o
(

∥EA∥
η
√
T

)
when η = 2 log T

3λdT
.

2. For the K = 1 case, which is equivalent to one-pass (OP) SGD, we derive a different upper bound
for bias term error. In this scenario, we have the update rule as

θt = (I − ηxtx
⊤
t )θt−1.

We can denote the covariance as Bt, which is

Bt := Eθtθ⊤
t

= E(I − ηxtx
⊤
t )θt−1θ

⊤
t−1(I − ηxtx

⊤
t )

= Bt−1 − ηHBt−1 − ηBt−1H + η2Extx⊤
t θt−1θ

⊤
t−1xtx

⊤
t

= (I − ηH)Bt−1(I − ηH) + η2E(xtx⊤
t −H)θt−1θ

⊤
t−1(xtx

⊤
t −H). (11)

Since the bias term in the excess risk can be represented as

R̄bias(1, T ; η) =
1

2
⟨H,BT ⟩ .

We then get the lower and upper bounds for Bt, and derive the corresponding lower and upper
bounds for the bias term in the excess risk.

Lower bound. By Equation (11), we get a lower bound of Bt

BT ⪰ (I − ηH)BT−1(I − ηH)

⪰ · · · ⪰ (I − ηH)TB0(I − ηH)T

and

R̄bias(1, T ; η) =
1

2
⟨H,BT ⟩

≥ 1

2

〈
H, (I − ηH)TB0(I − ηH)T

〉
=

1

2
θ⊤
0

(
(I − ηH)T

)
H
(
(I − ηH)T

)
θ0.

Upper bound. By the recursion of Bt, we have

Bt ⪯ (I − ηH)Bt−1(I − ηH) + η2ExT−1,···x0
ExT

(xtx
⊤
t −H)θt−1θ

⊤
t−1(xtx

⊤
t −H)

= (I − ηH)Bt−1(I − ηH) + η2ExT−1,···x0

[
ExT

[
xTx

⊤
T θT−1θ

⊤
T−1xTx

⊤
T

]
−HθT−1θ

⊤
T−1H

]
⪯ (I − ηH)Bt−1(I − ηH) + η2ExT−1,···x0

ExT

[
xTx

⊤
T θT−1θ

⊤
T−1xTx

⊤
T

]
.
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Then, combining Assumption 4.1 and Lemma J.9 gives

BT ⪯ (I − ηH)BT−1(I − ηH) + η2αExT−1,···x0 tr(HθT−1θ
⊤
T−1)H

= (I − ηH)BT−1(I − ηH) + η2α ⟨H,BT−1⟩H
⪯ · · ·

⪯ (I − ηH)TB0(I − ηH)T + η2α

T−1∑
i=0

⟨Bi,H⟩ (I − ηH)2(T−i−1)H,

and

⟨H,BT ⟩ ≤
〈
H, (I − ηH)TB0(I − ηH)T

〉
+η2α

T−1∑
i=0

⟨H,Bi⟩
〈
(I − ηH)2(T−i−1)H,H

〉
.

We also have

⟨H,Bi⟩ ≤ ⟨H, (I − ηH)Bi−1(I − ηH)⟩+ η2αtr(H2) ⟨H,Bi−1⟩
≤ (1− ηλd)

2 ⟨H,Bi−1⟩+ η2αtr(H2) ⟨H,Bi−1⟩
≤ · · ·
≤ [(λ2d + αtr(H2))η2 − 2λdη + 1]i ⟨H,B0⟩

≤ eT log[(λ2
d+αtr(H2))η2−2λdη+1] ⟨H,B0⟩

= e−2λdηi+O(η2i) ⟨H,B0⟩
≤ C1e

−2λdηi ⟨H,B0⟩
and 〈

(I − ηH)2(T−i−1)H,H
〉
=
〈
(I − ηH)2(T−i−1),H2

〉
≤ tr

(
H2
)
(1− ηλd)

2(T−1−i)

≤ tr
(
H2
)
e2(T−1−i) log(1−ηλd)

= tr
(
H2
)
e−2(T−1−i)ηλd+O(η2(T−1−i))

≤ C2e
−2(T−1−i)ηλd

So

⟨H,Bi⟩ ≤
〈
H, (I − ηH)TB0(I − ηH)T

〉
+ η2α

T−1∑
i=0

C1e
−2λdηi ⟨H,B0⟩C2e

−2λdη(T−1−i)tr
(
H2
)

=
〈
H, (I − ηH)TB0(I − ηH)T

〉
+ C3η

2Te−2λdηT

And finally we get∣∣∣∣R̄bias(1, T ; η)− 1

2

〈
H, (I − ηH)⊤B0(I − ηH)

〉∣∣∣∣ = O(η2Te−2λdηT ).

G.3 STEP III: NARROWING THE RANGE FOR OPTIMAL LEARNING RATE

We recap that our goal to get the scaling law formula for strongly convex linear regression with multi
epoch SGD, and the formula of the effective reuse rate. Before we start our proof, we first give a
technical lemma below.

Lemma G.4. Given η ∈
[
ω
(
1
T

)
, o
(

1√
T

)]
, and define nd to be the number of the minimal eigenvalue

λd in H , then it holds that
d∑
i=1

(Pθ0)
2
iλi(1− ηλi)

2T = θ̃2dλd exp(−2λdηT )(1 + o(1)),

d∑
i=1

λi(1− ηλi)
2T = ndλd exp(−2λdηT )(1 + o(1)).
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Proof of Lemma G.4. For the first equation, for any λi > λd, we define ρi = λi

λd
> 1, then we have

(1− ηλi)
2T = exp (2T log(1− ηλi)) = exp

(
2T (−ηλi +O(η2λ2i ))

)
= exp(−2λiηT ) exp(O(η2)) = exp(−2λdρiηT )(1 + o(1))

= (exp(−2λdηT ))
ρi (1 + o(1)) = o(exp(−2λdηT )). (12)

Since λi ≤ D2, we have
d−nd∑
i=1

(Pθ0)
2
iλi(1− ηλi)

2T = o(exp(−2λdηT )),

From Equation (12), we can also directly get the second equation, which completes the proof of
Lemma G.4.

G.3.1 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, SMALL-K CASE

Lemma G.5. Under the conditions in Lemma 4.4, and when K = o (logN), we have η∗ ∈
[ log T3λdT

, α log T
T ], where the constant α := D2tr(H)

λdtr(H2) .

Proof. We first prove the upper bound. Given a learning rate η, Equation (6) gives

R̄(K,N ; η) ≥ R̄var(K,N ; η) =

η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉
︸ ︷︷ ︸

=:ψ1

+
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉
︸ ︷︷ ︸

=:ψ2

.

For ψ1, using the fact that (I − ηxx⊤) ⪰ (I − ηD2I), we replace all the terms (I − ηxx⊤) with
(I − ηD2I) thus we have a lower bound for ψ1

ψ1 ≥ η2σ2

2

〈
H,

N((N − 1)!)2

(N !)K

K∑
i̸=j
i,j=1

∑
{π1···πK}
\{πi,πj}

(1− ηD2)(2K−i−j)N

(
N−1∑
m,n=0

(1− ηD2)2N−2−m−nE[xx⊤]

)〉

=
η2σ2

2ND4

〈
H,

∑
i̸=j
i,j=1

(1− ηD2)(K−i)N (1− ηD2)(K−j)N (1− (1− ηD2)N
)2

H

〉

=
σ2

2ND4
tr
(
H2

(
1− (1− ηD2)KN

)2)− σ2

2ND4
tr

(
H2 1−

(
1− (1− ηD2)N

)2KN
1− (1− ηD2)2N

)

=
σ2

ND4
tr

(
H2 1− (1− ηD2)KN

1 + (1− ηD2)N
(
(1− ηD2)N − (1− ηD2)KN

))
.

For ψ, we use a similar argument to get its lower bound

ψ2 ≥ η2σ2

2

〈
H,

K∑
i=1

(1− ηD2)2N(K−i) 1− (1− ηD2)2N

1− (1− ηD2)2
H

〉

=
ησ2

2D2

〈
H,

1− (1− ηD2)2KN

1− (1− ηD2)2N
1− (1− ηD2)2N

1− (1− ηD2)2
H

〉
=
ησ2tr(H2)

4D2
(1 + o(1)) .
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Notice that from the above lower bound, when K = o(logN), we have

R̄(K,N ; η) ≥ ψ1 + ψ2

≥ O(
1

N
) +

ησ2tr(H2)

4D2
(1 + o(1))

=
ησ2tr(H2)

4D2
(1 + o(1)) . (13)

Taking η > α log T
T , and α = D2tr(H)

λdtr(H2) gives

R̄(K,N ; η) ≥ σ2tr(H) log T

4λdT
(1 + o(1)) .

Now we recall that

R̄∗(K,N) ≤ R̄(K,N ; η′) =M(K,N ; η′) (1 + o(1))

=
σ2tr(H) log T

8λdT
(1 + o(1)) <

σ2tr(H) log T

4λdT
(1 + o(1))

Thus we have that η∗ ≤ α log T
T . Next, we give the lower bound of η∗.

When η < log T
3λdT

, we have that

exp(−2λdT ) =
1

T 2/3
= ω(

log T

T
) = ω(R̄(K,N ; η′)) = ω(R̄∗(K,N)).

The above equation shows η∗ > log T
3λdT

, which completes the proof.

G.3.2 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, LARGE-K CASE

Lemma G.6. Under the conditions in Lemma 4.4, and when K = ω (logN), we have η∗ ∈
[ log T3λdT

, o
(

1
N

)
].

Proof. The proof comprises of three parts. First, we prove that η∗ ≥ log T
3λdT

when T is large. Second,
we verify that η∗ ≤ c

N for sufficiently large N . Finally, we refine the proof in the second step and
justify that η∗ = o

(
1
N

)
. All proofs are carried out by contradiction. The method proceeds as follows:

we take a specific η = η′ and compute its loss, then prove that R̄∗(K,N) > R̄(K,N ; η′) when N is
sufficiently large if η∗ does not fall into some interval.

First, by Equation (15), we have

R̄(K,N ; η′) =
σ2d

2N
(1 + o(1)).

Then we begin our main part of the proof.

Proof Step I: η∗ ≥ log T
3λdT

.

We assume that η∗ < log T
3λdT

. Observe that R̄bias(K,N ; η) decreases with η. So

R̄∗(K,N) ≥ R̄bias(K,N ; η∗) ≥ R̄bias(K,N ; η =
log T

3λdT
)

=
1

2
(w0 −w∗)⊤(I − ηH)2TH(w0 −w∗)(1 + o(1))

∣∣∣∣
η= log T

3λdT

=

(
1

2
θ̃2dλd exp(−2λdηT )

)
(1 + o(1))

∣∣∣∣
η= log T

3λdT

= Θ

(
1

T
2
3

)
= ω

(
1

N

)
,
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where the first equality is due to Lemma G.3, the second equality is due to Lemma G.4, and the last
equality is due to Assumption 4.1.

Proof Step II: η∗ ≤ 4D2d
σ2tr(H2)N . We assume that η∗ > 4D2d

σ2tr(H2)N By Equation (13), we have

R̂(K,N ; η) ≥ ησ2tr(H2)

4D2
(1 + o(1)) >

σ2d

N
(1 + o(1)) >

σ2d

2N
(1 + o(1)),

which is a contradiction.

A direct corollary is that

R̄∗(K,N) = R̂(K,N ; η∗)(1 + o(1))

R̂(K,N ; η∗) =
1

2
(w0 −w∗)⊤(I − η∗H)2TH(w0 −w∗)

+
σ2

N
tr

((
I − (I − η∗H)KN

) (
(I − η∗H)N − (I − η∗H)KN

)
I + (I − η∗H)N

)

+
η∗σ2

2

〈
H,
(
I − (I − η∗H)2T

)
(2I − η∗H)−1

〉
=

1

2

d∑
i=1

(Pθ0)
2
l λi(1− η∗λi)

2T +

d∑
i=1

σ2

N

(1− η∗λi)
N

1 + (1− η∗λi)N

+
η∗σ2

4
tr(H)− η∗σ2

4

d∑
i=1

λi(1− η∗λi)
2T +O

(
(η∗)2

)
=

(
1

2
θ̃2dλd exp(−2λdη

∗T ) +

d∑
i=1

σ2

N

e−Nη
∗λi

1 + e−Nη∗λi
+
η∗σ2

4
tr(H)

)
(1 + o(1)) .

Proof Step III: η∗ = o
(

1
N

)
.

We assume that there exists a constant ϵ > 0 and a sequence (Ni)
∞
i=1 that satisfies Ni → ∞ when

i → ∞ and η∗(Ni) ≥ ϵ
Ni

for all i. As we only conduct our analysis on the sequence (Ni)
∞
i=1,

without loss of generality, we take (Ni)
∞
i=1 = N.

We define f(δ) =
∑d
i=1 σ

2 e−δλi

1+e−δλi
+ δσ2

4 tr(H). Then we have

f ′(δ) =
σ2

4

d∑
i=1

λi −
d∑
i=1

σ2 λie
−δλi

(1 + e−δλi)2
=
σ2

4

d∑
i=1

λi
(1− e−δλi)2

(1 + e−δλi)2
> 0 when δ > 0.

So

f(ϵ) > f(0) =
σ2d

2N
,

and

R̄∗(K,N) ≥ 1

N
f(η∗N)(1 + o(1)) ≥ 1

N
f(ϵ)(1 + o(1)) >

σ2d

2N
(1 + o(1)) = R̄(K,N ; η′),

which is a contradiction.

G.3.3 AN APPROXIMATION OF THE EXCESS RISK, SMALL-K CASE

Lemma G.7. Let θ̃2d =
∑d
l=d−nd+1(Pθ0)

2
l , H = PDP⊤ to be the canonical form under similarity

of H . Under the conditions in Lemma 4.4, for learning rate η ∈
[
logKN
3λdKN

, α logKN
KN

]
for constant

α = D2tr(H)
λdtr(H2) and K = o(logN), then we have the approximation of R̄(K,N ; η) as

R̄(K,N ; η) =M(K,N ; η)(1 + o(1)),

M(K,N ; η) :=
1

2
θ̃2dλd exp(−2λdηT ) +

ηtr(H)σ2

4
,

where steps T = KN .
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Proof. From Lemma G.1, we have that R̄(K,N ; η) = R̂(K,N ; η)(1 + o(1)), where R̂(K,N ; η)
can be written as

R̂(K,N ; η) =
1

2
(w0 −w∗)⊤(I − ηH)2TH(w0 −w∗)

+
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)

+
ησ2

2

〈
H,
(
I − (I − ηH)2T

)
(2I − ηH)−1

〉
=

1

2

d∑
i=1

(Pθ0)
2
l λi(1− ηλi)

2T +

d∑
i=1

σ2

N

(1− ηλi)
N

1 + (1− ηλi)N

+
ησ2

4
tr(H)− ησ2

4

d∑
i=1

λi(1− ηλi)
2T +O

(
η2
)

=

(
1

2
θ̃2dλd exp(−2λdηT ) +

ησ2

4
tr(H)

)
︸ ︷︷ ︸

M(K,N ;η)

(1 + o(1)) +O(
1

N
)

=

(
1

2
θ̃2dλd exp(−2λdηT ) +

ησ2

4
tr(H)

)
︸ ︷︷ ︸

M(K,N ;η)

(1 + o(1)) , (14)

where the second to last equation uses Lemma G.4 and the fact that η(1−ηλd)2T = o (M(K,N, ; η))

for η ∈ [ log T3λdT
, α log T

T ], and the last equation uses the fact that when K = o(logN), O
(

1
N

)
=

o
(

log(N)
K,N

)
= o (M(T ; η)).

G.3.4 AN APPROXIMATION OF THE EXCESS RISK, LARGE-K CASE

Lemma G.8. Under the conditions in Lemma 4.4, for η ∈ [ log T3λdT
, o
(

1
N

)
], and K = ω (logN), we

have

E[R̄(K,N ; η)] =M(K,N ; η)(1 + o(1)),

M(K,N ; η) =
1

2
θ̃2dλd exp(−2λdηT ) +

ηtr(H)σ2

4
+
σ2d

2N
,

where θ̃2d :=
∑d
l=d−nd+1(Pθ0)

2
l , and PDP⊤ is the canonical form under similarity of H .

Proof. Given K = O(N0.1), one can verify that

lim
N→∞

KηT
3
4 = lim

N→∞

K
7
4N

3
4

N
ηN = 0.

So condition K = o
(
η−1T− 3

4

)
is satisfied, thus by invoking Lemma G.1, we have R̄(K,N ; η) =

R̂(K,N ; η)(1 + o(1)).

Note that when η = o
(

1
N

)
, for any i ∈ [1, d], we have

(1− λiη)
N = e−λiηN+O(η2N) = 1 + o(1).
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Combining this with Lemma G.4, we have

R̂(K,N ; η) =
1

2
(w0 −w∗)⊤(I − ηH)2TH(w0 −w∗)

+
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)

+
ησ2

2

〈
H,
(
I − (I − ηH)2T

)
(2I − ηH)−1

〉
=

1

2

d∑
i=1

(Pθ0)
2
l λi(1− ηλi)

2T +

d∑
i=1

σ2

N

(1− ηλi)
N

1 + (1− ηλi)N

+
ησ2

4
tr(H)− ησ2

4

d∑
i=1

λi(1− ηλi)
2T +O

(
η2
)

=

(
1

2
θ̃2dλd exp(−2λdηT ) +

ησ2

4
tr(H)

)
+
σ2d

2N︸ ︷︷ ︸
M(K,N ;η)

(1 + o(1)) , (15)

which concludes the proof.

G.4 STEP IV: DERIVING THE APPROXIMATELY OPTIMAL LEARNING RATE, PROOF OF
LEMMA 4.4

The proof of Lemma 4.4 for the small-K case and large-K case follows a similar pattern. First, we
minimize the aproximate excess risk obtained in Section G.3.3 and Section G.3.4. Then we conduct
an error bound analysis and complete the proof.

G.4.1 PROOF OF LEMMA 4.4, SMALL K

Part I: Minimizing the Approximation of the Excess Risk
Lemma G.9. Under Assumption 4.1 and 4.3, we consider K-epoch SGD with N fresh data and
learning rate η satisfying η ∈ [ log T3λdT

, α log T
T ], where steps T := KN and α is some constant

independent of T , but can depend on D and λ1, λ2, . . . , λd. Then when K = o (logN), the chosen
learning rate η′ = log ρT

2λdT
= argminη∈[ log T

3λdT ,
α log T

T ]M(K,N ; η).

Proof. Given Lemma G.7, we take the derivative of M(K,N ; η) with respect to η

∂M

∂η
= −θ̃2dλ2dT exp(−2λdηT ) +

tr(H)σ2

4
.

Define ρ :=
4θ̃2dλd

tr(H)σ2 , and we let ∂M∂η = 0, then we get

0 = −ρT exp(−2λdηT ) + 1

ρT = exp(2λdηT )

η =
log ρT

2λdT
.

The above equation completes the proof.

Part II: Error Bound Analysis
Lemma G.10. ConsiderK-epoch SGD withN fresh data and learning rate η. Given a set of learning
rate values Γ, and an excess risk estimate that satisfies R̄(K,N ; η) =M(K,N ; η)(1 + o(1)) when
η ∈ Γ. Assume that η′ = argminΓM(K,N ; η) and η∗ ∈ Γ. Then we have R̄(K,N ; η′(K,N)) =
R̄∗(K,N) (1 + o(1)).
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Proof. According to the optimality of η∗, it holds that

R̄∗(K,N) ≤ R̄(K,N ; η′) =M(K,N ; η)(1 + o(1)).

Also, according to the optimality of η′, it holds that

M(K,N ; η′)(1 + o(1)) ≤M(K,N ; η∗)(1 + o(1)) = R̄∗(K,N)

Combining the above two equations gives

R̄(K,N ; η′) = R̄∗(K,N)(1 + o(1)).

Combine the above two lemmas and we finish the whole proof.

G.4.2 PROOF OF LEMMA 4.4, LARGE K

Part I: Minimizing the Approximation of the Excess Risk
Lemma G.11. Under Assumption 4.1 and 4.3, we consider K-epoch SGD with N fresh data and
learning rate η satisfying η ∈ [ log T3λdT

, o
(

1
N

)
]. Then when K = ω (logN), the chosen learning rate

η′ = log ρT
2λdT

= argmin[ log T
3λdT ,o(

1
N )]M(K,N ; η).

Proof. Given Lemma G.8, we compute the global minima of M(K,N ; η), we have η′ = log T
2λdT

+

O
(
1
T

)
= argminη∈RM(K,N ; η), which lies in the regime [ log T3λdT

, o
(

1
N

)
] when N is sufficiently

large.

Part II: Error Bound Analysis The proof of Lemma 4.4 concludes directly by applying Lem-
mas G.6, G.8, G.10 and G.11.

Combine the above two parts and we finish the whole proof.

G.5 PROOF OF THEOREM 4.1

Proof. Notice from Lemma G.1 and Lemma G.4, we have that

R̄(K,N ; η) =
1

2
θ̃2dλd(1− ηλd)

2KN (1 + o(1))︸ ︷︷ ︸
R̂1(K,N,η)

+

d∑
i=1

σ2

N

(1− ηλi)
N

1 + (1− ηλi)N︸ ︷︷ ︸
R̂2(K,N,η)

+
ησ2

4
tr(H)− ndησ

2

4
λd(1− ηλd)

2KN (1 + o(1))︸ ︷︷ ︸
R̂3(K,N,η)

when η ∈
[
ω

(
1

T

)
, o

(
1

T
3
4

)]
.

Next, we carefully analyze the magnitude of R̂1(K,N, η), R̂2(K,N, η), and R̂3(K,N, η), and
using these results, we can simplify the excess risk expression.

Now, We take η = log ρT
2λdT

= logKN
2λdKN

+O
(
1
T

)
in Lemma 4.4, then

(1− λdη)
2KN

= exp

(
2KN log

(
1− logKN

2KN
−O

(
1

T

)))
= exp (− logKN +O(1))

= O

(
1

T

)
.
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Thus

R̂1(K,N, η) =
1

2
θ̃2dλd (1− λdη)

2KN

= O

(
1

T

)
,

and

R̂3(K,N, η) =
σ2tr(H) log T

8λdT
− ndσ

2 log T

8λdT
λd (1− λdη)

2KN
(1 + o(1))

=
σ2tr(H) log T

8λdT

(
1 +O

(
1

T

))
=
σ2tr(H) log T

8λdT
(1 + o(1))

= ω(R̂1(K,N, η)).

Next, we discuss two scenarios where K is relatively small and K is relatively large, to be specific,
K = o(logN) and K = ω(logN).

When K = o(logN), We have

(1− λiη)
N =

(
1− logKN

2KN
ρi +O

(
1

KN

))N
= exp

(
N log

(
1− logKN

2KN
ρi +O

(
1

KN

)))
= exp

(
− logKN

2K
ρi(1 + o(1))

)
= o(1).

As a consequence,

R̂2(K,N, η) =

d∑
i=1

σ2

N

o(1)

1 + o(1)

= o

(
1

N

)
.

Meanwhile,

R̂3(K,N, η) = O

(
logKN

KN

)
= O

(
1

N

)
= ω

(
R̂2(K,N, η)

)
.

So

R̄∗(K,N) = R̂(K,N ; η)(1 + o(1)) =
σ2tr(H) log T

8λdT
(1 + o(1)).

When K = ω (logN), we have

(1− λiη)
N =

(
1− logKN

2KN
ρi +O

(
1

KN

))N
= exp

(
N log

(
1− logKN

2KN
ρi +O

(
1

KN

)))
= exp

(
− logKN

2K
ρi +O

(
1

K

))
= exp (o(1))

= 1 + o(1).
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So

R̂2(K,N, η) =

d∑
i=1

σ2

N

1 + o(1)

2 + o(1)
=
σ2d

2N
(1 + o(1))

= O

(
1

N

)
.

R̂3(K,N, η) = O

(
logKN

KN

)
= o

(
1

N

)
= o

(
R̂2(K,N, η)

)
.

As a result, we have

R̄∗(K,N) = R̂(K,N ; η)(1 + o(1)) =
σ2d

2N
(1 + oN (1)).

G.6 PROOF OF THEOREM 4.2

Now we establish the formulation of E(K,N) by solving the equation R̄∗(1, T ′) = R̄∗(K,N).

When K = o(logN), solving R̄∗(1, T ′) = R̄∗(K,N), we get

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) =
σ2tr(H) log T

8λdT
(1 + oT (1))

log T ′

T ′ (1 + oT ′(1)) =
log T

T
(1 + oT (1)). (16)

According to the definition of the small o notation, there exists a constant T̃0 such that when T > T̃0,
the right hand side is smaller than maxT ′∈1,2,3

log T ′

T ′ (1 + oT ′(1)). So W.L.O.G, we could assume
that T ′ ≥ 3 in the following and use the fact that the function log x

x is monotonously decreasing when
x > 3.

Lemma G.12. Given T ′ and N satisfying Equation (16), it holds that T ′ ≂ T when T > T0 for
some constant T0.

Proof. Notice that there exists T1 such that |oT (1)| < 1
2 when T > T1, and oT ′(1) is bounded.

Furthermore, oT ′(1) > −1, because the left hand side is strictly greater than zero due to the fact that
η < 1

D2 . So when T > T1, we have

c4
log T ′

T ′ ≤ 3

2

log T

T
(17)

c5
log T ′

T ′ ≥ 1

2

log T

T
(18)

for two constants c4 ≤ 1 ≤ c5. We claim that T ′ ≥ c4
3 T =: αT when T ≥ 1

α2 ; otherwise,

c4
log T ′

T ′ ≥ c4
logαT

αT

=
3 logαT

T

≥ 3 log T

2T
when T ≥ 1

α2
,

which contradicts Equation (17). We also have T ′ ≤ 3c5T =: βT when T ≥ β2 by a similar
argument; otherwise,

c5
log T ′

T ′ ≤ c5
log βT

βT

=
log βT

3T

≤ log T

2T
when T ≥ β2,
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which contradicts Equation (18). So T ′ ≂ T when T ≥ min(T1,
1
α2 , β

2, T̃0) = T0.

Next, we prove the first part in Theorem 4.2, which is E(K,N) = K(1+ o(1)) when K = o(logN).
We define F (T ) = log T

T , δ(T ) = |oT (1)|, and ϵ(T ′) = |oT ′(1)|, so

F (T ′)(1− ϵ(T ′)) ≤ F (T )(1 + δ(T ))

F (T ′)(1 + ϵ(T ′)) ≥ F (T )(1− δ(T ))

Consequently, we have

−F (T )δ(T )− F (T ′)ϵ(T ′) ≤ F (T ′)− F (T ) ≤ F (T )δ(T ) + F (T ′)ϵ(T ′). (19)

So due to the convexity of F (T ),

− log T − 1

T 2
(T ′ − T ) ≤ F ′(T )(T ′ − T ) ≤ F (T ′)− F (T ) ≤ F (T )δ(T ) + F (T ′)ϵ(T ′) =

log T

T
|o(1)|.

Thus we have

T ′ ≥ T (1− o(1)).

The above equation completes the proof.

Combining Equation (16) and Lemma G.12 gets

− log T − 1

T 2
(T − T ′) ≂ − log T ′ − 1

T ′2 (T − T ′). (20)

Further using Equation (19),

F ′(T ′)(T − T ′) ≤ F (T )− F (T ′) ≤ F (T )δ(T ) + F (T ′)ϵ(T ′) (21)

Combining Equation (20) and Equation (21) gives

T ′ ≤ T (1 + o(1)).

Substituding the definition of E(K,N) and we get the first part in Theorem 4.2.

When K = ω(logN), solving R̄∗(1, T ′) = R̄∗(K,N), we get

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) =
σ2d

2N
(1 + oN (1)). (22)

There exists a constant Ñ0 such that when N > Ñ0, the right hand side is smaller than the minimal
value of R̄∗(1, T ′) when T ′ is finite, that is, minT ′∈1,2,3

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)). So W.L.O.G,
we could assume that T ′ ≥ 3 in the following and use the fact that the function log x

x is monotonously
decreasing when x > 3.

Now we provide a lemma to give a loose bound of T ′ fisrt, and then we apply the lemma to get the
formula of E(K,N).

Lemma G.13. Given T ′ andN satisfying Equation (22). It holds thatN ≤ T ′ ≤ N
3
2 whenN ≥ N0

for some constant N0.

Proof. Notice that there exists N1 such that |oN (1)| < 1
2 when N > N1, and oT ′(1) is bounded.

Furthermore, oT ′(1) > −1, because the left hand side is strictly greater than zero due to the fact that
η < 1

D2 . So when N > N1, for the left side in Equation (22), we have

c6
log T ′

T ′ ≤ σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) ≤ c7
log T ′

T ′ ,
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where c6 < c7 are two positive constants. And for the right side,

c8
N

≤ σ2d

2N
(1 + oN (1)) ≤ c9

N
,

where c8 < c9 are two positive constants. Then we prove that T ′ ≥ N when N ≥ max
(
e

c9
c6 , 3

)
.

Otherwise, we have

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) ≥ c6
log T ′

T ′ ≥ c6
logN

N
≥ c9
N

≥ σ2d

2N
(1 + oN (1)),

which is a contradiction. Then we prove that T ′ ≤ N
3
2 when N ≥

(
c10
c8

)4
for some constant c10.

Otherwise, we have

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) ≤ c7
log T ′

T ′ ≤ c7
logN

3
2

N
3
2

=
3c7
2

logN

N
3
2

≤ c10

N
5
4

≤ c8
N

≤ σ2d

2N
(1 + oN (1)),

which is another contradiction. The third inequality uses the fact that logN

N
1
4

is bounded. We take

N0 = max

(
N1, e

c9
c6 ,
(
c10
c8

)4
, Ñ0

)
and we prove the claim.

Combining Equation (22) and Lemma G.13 gives

T ′ = Θ(N log T ′) = Θ(N logN). (23)

Again, combining Equation (23) and Equation (22), and we get

T ′ =
tr(H)N log T ′

4λdd
(1 + oN (1)) =

tr(H)N logN

4λdd
(1 + oN (1)),

and

E(K,N) =
T ′

N
=

tr(H) logN

4λdd
(1 + oN (1))

as a direct corollary.

The above equation immediately finish the proof.

H PROOF OUTLINE FOR THE SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

In this section, we give the proof sketch of Lemma I.1 and Theorem 5.2-5.3. Lemma I.1 gives a
general expression of the excess risk, Theorem 5.2 and Theorem 5.3 characterise the behavior of
E(K,N) respectively under power spectrum and logarithm power spectrum assumption. Their proof
outlines are given separately as follows.

1. Proof sketch of Lemma I.1. We exploit the properties that the sequantial updates are commuta-
tive and all finite-order moments of data are computable, and we obtain the result through a direct
calculation.

2. Proof sketch of Theorem 5.2 and Theorem 5.3. For Theorem 5.2, we consider two cases
when K is relatively small and K is relatively large. As a special case, one-pass senario belongs to
the small-K case. We first derive matching upper bounds and lower bounds for high-dimensional
cases for both the two regimes. The core of the proof lies in determining E(K,N) by solving
ER(wT ′) = ER(wK,N ), which requires an asymptotic analysis. We tackle this issue with two
steps. First we prove a loose bound for T ′ for N beyond a threshold, then we refine the obtained
results and utilize the convexity of loss approximation to derive more precise estimates. The proof of
Theorem 5.3 is similar to that of Theorem 5.2.
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I PROOF OF MAIN RESULTS FOR THE SOLVABLE CASE WITH
ZIPF-DISTRIBUTED DATA

Similar to the proof insights in Section 4, the first move to get the formula of the effective reuse rate
is to get an accurate proxy of the excess risk. Here, leveraging the simplicity of the setting, we can
derive a general closed formula for the excess risk.
Lemma I.1. Under Assumption 5.1, the excesss risk for K-epoch training over N fresh data , with
learning rate η can be given by

R̄(K,N ; η) =
1

2

〈
PΛ,

(
I − P + P (I − ηΛ)

2K
)N〉

,

where the expectation is over the randomness of w∗ and training datasets {xi, yi}N−1
i=0 .

The above lemma states that we can explicitly write out the exact expression for the excess risk.
From the above expression for the excess risk, we can observe that, in the absence of label noise
interference, and under the condition that the absolute values of all elements of the diagonal matrix
I − ηΛ are less than 1, the optimal learning rate can be of the constant order. Therefore, in the
subsequent study of the effective reuse rate, we consider using the same learning rate η = Θ(1) for
both multi-epoch and one-pass SGD.

It is worth noting that here we are actually describing a more general problem setting than the Zipf
law, as we only impose constraints on the power spectrum of the Hessian matrix H . In contrast, the
probability matrix P can follow Zipf’s law or any other law. In the remainder of this section, we
first consider the classic Zipf’s law setting, where P follows a power law, and the data matrix Λ also
follows a power law, which is consistent with the previous power law analysis. In Section 5.2, we
explore the case where P follows a log-power spectrum (Lin et al., 2024), and investigate the impact
of changing the spectrum’s properties on the resulting effective reuse rate formula.

I.1 A CLOSED FORMULA FOR THE EXCESS RISK: PROOF OF LEMMA I.1

We first write out the update of parameter after K epochs

θKN = A(K) · · ·A(1)θ0 =

1∏
l=K

A(l)θ0

=
(
I − ηxN−1x

⊤
N−1

)K · · ·
(
I − ηx0x

⊤
0

)K
θ0.

Then we get the excess risk expression as

R̄(K,N ; η) = E
1

2
θ⊤
K,NHθK,N

= E
1

2
θT0 PΛ

(
I − ηxN−1x

⊤
N−1

)2K · · ·
(
I − ηx0x

⊤
0

)2K
θ0.

Assumption 5.1 gives

R̄(K,N ; η) = E
1

2

〈
θ0θ

T
0 ,PΛ

(
I − ηxN−1x

⊤
N−1

)2K · · ·
(
I − ηx0x

⊤
0

)2K〉
=

1

2

〈
I,PΛ

(
E
(
I − ηxx⊤)2K)N〉 .

Direct calculation gives

E
(
xx⊤)j = d∑

i=1

µ2j−2
i piµ

2
i eie

⊤
i = PΛj ,

and

E
[(
I − ηxx⊤)2K] = I +

2K∑
j=1

(
2K

j

)
(−1)jηjPΛj = I − P + P (I − ηΛ)2K .

Then we can write out the excess risk as

R̄(K,N ; η) =
1

2

〈
PΛ,

(
I − P + P (I − ηΛ)2K

)N〉
.

The above equation completes the proof.
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I.2 SCALING LAWS FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.1

Before we begin our main part of the proof, note that for all η = Θ(1) and η ≤ 2, there exists
d1 = Θ(1) > 0 such that 1− η

ib
> 0 when i > d1. Then we divide the expected excess risk into two

parts:

R̄(K,N ; η) =
1

2

d∑
i=1

c

ia

(
1− c

ia−b

(
1−

(
1− η

ib

)2K))N

=
1

2

d1∑
i=1

c

ia

(
1− c

ia−b

(
1−

(
1− η

ib

)2K))N
︸ ︷︷ ︸

S1(K,N ;η)

+
1

2

d∑
i=d1+1

c

ia

(
1− c

ia−b

(
1−

(
1− η

ib

)2K))N
︸ ︷︷ ︸

S2(K,N ;η)

.

The intuition behind our proof here is quite similar to what we do in Appendix G.5. We first separately
simplify the expression of the excess risk when K = o(N

b
a−b ) and K = ω(N

b
a−b ). The proofs for

both the small-K and large-K regimes proceed in parallel. We first control S2(K,N ; η) over a broad
range of learning rates and identify a near-optimal η′ for which S1 is negligible compared to S2. This
allows us to approximate R̄∗(K,N) via R̄(K,N ; η′) and S2(K,N ; η∗).

I.2.1 PROOF OF THEOREM 5.1: SMALL-K CASE

The Expected Excess Risk Approximation.

Lemma I.2. Suppose the assumptions in Theorem 5.2 hold. When K = o(N
b

a−b ) and η = Θ(1), we
define the estimator of S2(K,N ; η) as

S̃2(K,N ; η) :=
1

2

d∑
i=d1+1

c

ia
e

−2KNcη
ia .

Then we have S2(K,N ; η) = S̃2(K,N ; η)(1 + o(1)), and S̃2(K,N ; η) ≂ 1

(KN)
a−1
a

.

Proof. By the fact that K = o(N
b

a−b ), there exists a constant N2 such that when N ≥ N2, K ≤

N
b

a−b . And we define F (x) := c
xa

(
1− c

xa−b

(
1−

(
1− η

xb

)2K))N
. Direct observation gives us

that under Assumption 5.2, R̄(K,N ; η) ∝
∑d
i=1 F (i). Next we take the derivative of F and analyze

its maximizer.

F ′(x) = − ac

xa+1

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N
+
cN

xa

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N−1

· Φ(x)

=
c

xa

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N−1

(
−a
x

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)
+NΦ(x)

)
=

c

x2a−b+1

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N−1

·G(x).
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where we define

G(x) := −a
(
xa−b − c+ c

(
1− η

xb

)2K)
+N

(
(a− b)c− (a− b)c

(
1− η

xb

)2K
+

2cKbη

xb

(
1− η

xb

)2K−1
)
,

and

Φ(x) :=

(
(a− b)c

xa−b+1
− (a− b)c

xa−b+1

(
1− η

xb

)2K
+

2cKbη

xa+1

(
1− η

xb

)2K−1
)
.

We denote the maximizer of F (x) by x0, so G(x0) = 0. We claim that:

when N ≥ N2, x0 ≥ min

((
KN(a−b)cη

2a

) 1
a

, 6
1
b (KN)

1
a

)
=: x1.

Proof of the claim. Notice that when N ≥ N2,

η

xb
≤ 1

6(KN)
b
a

≤ 1

6K
.

We assume that the claim is wrong, then

G(x0) ≥ N

(
(a− b)c− (a− b)c

(
1− η

xb

)2K)
− axa−b

≥ KN(a− b)cη − axa

xb

≥ KN(a− b)cη

2xb1
> 0,

which is a contradiction. The third inequality comes from Lemma J.3.

So x0 = Ω
(
(KN)

1
a

)
. Further pluging this into G(x0) = 0 that

G(x0) = −axa−b0 (1 + o(1)) +N

(
2K(a− b)cη

xb0
(1 + o(1)) +

2K(a− b)cη

xb0
(1 + o(1))

)
= 0.

gives

x0 = Θ
(
(KN)

1
a

)
, F (x0) = Θ

(
1

KN

)
.

Then we have

S2(K,N ; η) =
1

2

K
0.5

a+0.5b (KN)
1

a+0.5b∑
i=d1+1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N

+
1

2

d∑
K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N
:= J1 + J2.

Furthermore, we have

J1 ≲ K
0.5

a+0.5b (KN)
1

a+0.5bF (x0) ≲
K

0.5
a+0.5b (KN)

1
a+0.5b

KN
,

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

and

J2 =
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N

=
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia

(
1− 2Kcη

ia
+O

(
K2

ia+b

))N

=
1

2

d∑
K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e
N log

(
1− 2Kcη

ia +O
(

K2

ia+b

))

=
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e

−2KNcη
ia +O

(
K2N

ia+b

)

=
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e

−2KNcη
ia (1 + o(1)).

We define K1(x) = c
xa e

−2KNcη
xa . We can derive that argmaxK1(x) = Θ

(
(KN)

1
a

)
, and

maxK1(x) = Θ
(

1
KN

)
. So when d ≥ 3(KN)

1
a , we have

J2 ≥ 1

2

3(KN)
1
a∑

i=(KN)
1
a

c

ia
e

−2KNcη
ia (1 + o(1))

≳ (KN)
1
a × ce−2cη

KN
≳

(KN)
1
a

KN
.

We can verify that J1 = o(J2) as a direct consequence. We define

S̃2(K,N ; η) =
1

2

d∑
i=d1+1

c

ia
e

−2KNcη
ia

=
1

2

K
0.5

a+0.5b (KN)
1

a+0.5b∑
i=d1+1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e

−2KNcη
ia

:= J̃1 + J̃2.

We have J2 = J̃2(1 + o(1)), and

J̃1 ≤ K
0.5

a+0.5b (KN)
1

a+0.5b ×maxK1(x) ≲
K

0.5
a+0.5b (KN)

1
a+0.5b

KN
= o(J̃2).

So S2(K,N ; η) = S̃2(K,N ; η)(1 + o(1)).

The matching upper and lower bounds for S̃2(K,N ; η) comes directly from Lemma J.7.

By combining the expression of S̃2(K,N ; η) with Lemma J.7, we get another lemma:

Lemma I.3. Suppose the assumptions in Theorem 5.2 hold, and the expression of S̃2(K,N ; η) is
given in Lemma I.2. Then we have ∂

∂η S̃2(K,N ; η) ≂ − 1

(KN)
a−1
a

.
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Proof.

∂

∂η
S̃2(K,N ; η) = −KN

d∑
i=d1+1

c

i2a
e

−2KNcη
ia

≂ − 1

(KN)
a−1
a

,

where the second line comes from Lemma J.7.

Lemma I.4. Suppose the assumptions in Theorem 5.2 hold, and the expression of S̃2(K,N ; η) is
given in Lemma I.2. Consider two learning rate options η, η′ = Θ(1)that satisfy η− η′ = o(1). Then
we have S̃2(K,N ; η) = S̃2(K,N ; η′)(1 + o(1)).

Proof. ∣∣∣S̃2(K,N ; η)− S̃2(K,N ; η′)
∣∣∣ = ∣∣∣∣ ∂∂η S̃2(K,N ; η̃)

∣∣∣∣ |(η − η′)|

≂
1

(KN)
a−1
a

|(η − η′)|

= S̃2(K,N ; η′)o(1),

where η̃ ∈ [min(η, η′),max(η, η′)] = Θ(1), and the first line comes from Lagrange’s Mean Value
Theorem. The secome line comes from Lemma I.3, and the last line comes from Lemma I.2.

The Range of Optimal Learning Rate. First, take η′ = 2− (a−1)da−b
1

ac
logKN
KN , and we have

S1(K,N ; η′) ≤ d1c

2

1− c

da−b1

+
c

da−b1

(
1− (a− 1)da−b1

ac

logKN

KN

)2K
N

.

By a Taylor expansion argument, we have

S1(K,N ; η′) =
d1c

2

(
1− 2Kc

da−b1

× (a− 1)da−b1

ac

logKN

KN
(1 + o(1))

)N

=
d1c

2

(
1− 2(a− 1)

a

logKN

N
(1 + o(1))

)N
=
d1c

2
eN log(1− 2(a−1)

a
log KN

N (1+o(1)))

≂
1

(KN)
2(a−1)

a

= o(S2(K,N ; η′)),

where the last inequality comes from Lemma I.2. Then we have

R̄(K,N ; η′) = S1(K,N ; η′) + S2(K,N ; η′)

= S̃2(K,N ; η′)(1 + o(1))

= S̃2(K,N ; 2)(1 + o(1))

=

(
1

2

d∑
i=d1+1

c

ia
e

−4KNc
ia

)
(1 + o(1)).

Then we prove that η∗ ∈ [2 − o(1), 2]. We prove by contradiction, and assume that there exist a
constant ϵ > 0 and a sequence (Ni)

∞
i=1 → ∞ such that η∗(Ni) ≤ 2 − ϵ for all i ≥ 1. As we only
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analyze with respect to the sequence (Ni)
∞
i=1, without loss of generality, we take (Ni)

∞
i=1 = N. By

Lemma I.2, we have
R̄∗(K,N) ≥ S2(K,N ; η∗) = S̃2(K,N ; η∗)(1 + o(1))

≥
[
S̃2(K,N ; 2) + ϵ

∂

∂η
S̃2(K,N ; 2)

]
(1 + o(1)) > R̄(K,N ; η′)

when N is sufficiently large, which is a contradiction. So
R̄∗(K,N) = S1(K,N ; η∗) + S2(K,N ; η∗)

= S1(K,N ; η∗) + S̃2(K,N ; η∗)(1 + o(1))

= S1(K,N ; η∗) + S̃2(K,N ; 2)(1 + o(1)) ≤ R̄(K,N ; η′).

Thus, S1(K,N ; η∗) = o
(
S̃2(K,N ; 2)

)
, and R̄∗(K,N) = S̃2(K,N ; 2)(1 + o(1)).

By Lemma I.2 and Lemma J.7, there exist two constants C1 and C2 such that R̄∗(K,N) ≤ C1

(KN)
a−1
a

and R̄∗(K,N) ≥ C2

(KN)
a−1
a

when the condition d = Ω(T
1
a ) holds. For one-pass case, by Lemma I.2

and Lemma J.7, we have
R̄∗(1, T ′) = R̄(1, T ′; η∗(1, T ′)|d=d)

≤ R̄(1, T ′; η∗(1, T ′)|d=∞)

= R̄∗(1, T ′)
∣∣
d=∞ =

1

2

∞∑
i=d1+1

c

ia
e−

4KNc
ia (1 + o(1)) ≤ C3

T ′ a−1
a

(24)

and

R̄∗(1, T ′) =
1

2

d∑
i=d1+1

c

ia
e−

4KNc
ia (1 + o(1)) ≥ C4

T ′ a−1
a

when d = Ω
(
T ′ 1a

)
. (25)

I.2.2 PROOF OF THEOREM 5.1: LARGE-K CASE

The Expected Excess Risk Approximation.

Lemma I.5. Suppose the assumptions in Theorem 5.2 hold. When K = ω(N
b

a−b ) and η = Θ(1),
we have S2(K,N ; η) ≂ 1

N
a−1
a−b

.

Proof. There exists N3 such that when N ≥ N3, we have K ≥ N
b

a−b . Then when d ≥ 3(KN)
1
a ≥

3N
1

a−b , we give the lower bound of the loss:

S2(K,N ; η) ≥ 1

2

3N
1

a−b∑
i=N

1
a−b

c

ia

(
1− c

ia−b

)N

≥ 1

2

2N
1

a−b

(3N
1

a−b )a
(1− c

N
)N

≳
1

N
a−1
a−b

.

Then we derive the upper bound of the loss:

S2(K,N ; η) ≤ 1

2

∞∑
i=1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N

≤ 1

2

N
1

a−b∑
i=1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N
+

1

2

∞∑
i=N

1
a−b +1

c

ia
.
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When K = ω(N
b

a−b ) and i ≤ N
1

a−b ,

(
1− η

ib

)2K
≤
(
1− η

N
b

a−b

)2K

= e
2K log

(
1− η

N
b

a−b

)

≤ e
−2K η

N
b

a−b = o(1).

Then there exists N4 such that
(
1− η

ib

)2K ≤ 1
2 when N ≥ N4. So when N ≥ max(N3, N4), we

have

S2(K,N ; η) ≤ 1

2

N
1

a−b∑
i=1

c

ia

(
1− c

2ia−b

)N
+

1

2

∞∑
i=N

1
a−b +1

c

ia
.

One can derive that max c
ia

(
1− c

2ia−b

)N
= Θ

(
1

N
a

a−b

)
. So

R̄∗(K,N) ≲
1

N
a−1
a−b

+
1

N
a−1
a−b

≲
1

N
a−1
a−b

.

And we complete the proof.

The Range of Optimal Learning Rate. First, take η′ = 1.5, and we have

S1(K,N ; η′) ≤ d1c

2

(
1− c

da−b1

+
c

da−b1

(
max

(
0.5, 1− 1.5

db1

))2K
)N

=
d1c

2
(1−Θ(1))

N

= o(S2(K,N ; η′)),

where the last inequality comes from Lemma I.5. Then we have

R̄(K,N ; η′) = S1(K,N ; η′) + S2(K,N ; η′)

= S2(K,N ; η′)(1 + o(1))

It is obvious that η∗ ∈ [1, 2]. We know that

R̄∗(K,N) = S1(K,N ; η∗) + S2(K,N ; η∗) ≤ R̄(K,N ; η′) = S2(K,N, η
′)(1 + o(1)).

By Lemma I.5, we have

S2(K,N ; η∗) = Θ
(
N− a−1

a−b

)
and S2(K,N ; η′) = Θ

(
N− a−1

a−b

)
,

which directly implies that

S1(K,N ; η∗) = O
(
N− a−1

a−b

)
, R̄∗(K,N) = Θ

(
N− a−1

a−b

)
.

I.3 E(K,N) FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.2

I.3.1 PROOF OF THEOREM 5.2, SMALL-K CASE

Let T ′ be defined implicitly by equating the averaged risks at their optimal step sizes:

R̄∗(1, T ′) = R̄∗(K,N). (26)

We claim that (
C4

C1

) a
a−1

T ≤ T ′ ≤
(
C3

C2

) a
a−1

T. (27)
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Proof. We argue by contradiction, considering two exclusive violations of Equation (27).

1. Case 1: T ′ >
(
C3

C2

) a
a−1T . By the risk bounds encoded by (C2, C3) for one-pass training

with T ′ fresh data and by (C1, C4) for K-epoch training with N fresh data, this inequality
forces

R̄∗(1, T ′) < R̄∗(K,N),

which contradicts the defining equality Equation (26).

2. Case 2: T ′ <
(
C4

C1

) a
a−1T . given d = Ω(T

1
a ) we still have d = Ω

(
(T ′)1/a

)
. The same risk

comparisons then yield
R̄∗(1, T ′) > R̄∗(K,N),

again contradicting Equation (26).

Both contradictions rule out violations; hence Equation (27) holds.

Therefore, the desired characterization of E(K,N) follows directly from Lemma J.8.

I.3.2 PROOF OF THEOREM 5.2, LARGE-K CASE

By Theorem 5.1, there exist constants C5, C6 > 0 such that, given d = Ω(T
1
a ),

C6

N
a−1
a−b

≤ R̄∗(K,N) ≤ C5

N
a−1
a−b

. (28)

Let T ′ be defined by equating the averaged risks at their optimal step sizes:

R̄∗(K,N) = R̄∗(1, T ′). (29)

Combining Equation (28), Equation (29) with Equation (24), Equation (25), we claim that(
C4

C5

) a
a−1

N
a

a−b ≤ T ′ ≤
(
C3

C6

) a
a−1

N
a

a−b . (30)

Proof of the claim. We argue by contradiction.

1. Upper violation. If T ′ >
(
C3

C6

) a
a−1N

a
a−b , then by Equation (24) and Equation (28) (lower

bound),

R̄∗(1, T ′) ≤ C3

(T ′)
a−1
a

<
C6

N
a−1
a−b

≤ R̄∗(K,N),

which contradicts Equation (29).

2. Lower violation. If T ′ <
(
C4

C5

) a
a−1N

a
a−b , then the condition d = Ω(T

1
a ) gives

d = Ω
(
N

1
a−b

)
= Ω

(
(T ′)

1
a

)
.

Using Equation (25) and Equation (28) (upper bound),

R̄∗(1, T ′) ≥ C4

(T ′)
a−1
a

>
C5

N
a−1
a−b

≥ R̄∗(K,N),

again contradicting Equation (29).

Both contradictions are impossible; hence Equation (30) holds.

The characterization of E(K,N) follows directly by the claim.
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I.4 SCALING LAWS FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM D.1

Similar to the proof of Theorem 5.1, the proof of Theorem 5.3 consists of two parts: First part is the
case when K = o(logbN), and the second part is the case when K = ω(logbN).

Before we begin our main part of the proof, note that for all η = Θ(1) and η ≤ 2, there exists
d2 = Θ(1) > 0 such that 1− η

logb(i+1)
> 0 when i > d2. Then we divide the loss into two parts:

R̄(K,N ; η) =
1

2

d∑
i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

=
1

2

d2∑
i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

︸ ︷︷ ︸
V1(K,N ;η)

+

d∑
d2+1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

︸ ︷︷ ︸
V2(K,N ;η)

.

I.4.1 PROOF OF THEOREM D.1: SMALL-K CASE

The Expected Excess Risk Approximization.
Lemma I.6. Suppose the assumptions in Theorem 5.3 hold. When K = o(logbN), we define the
estimate of V (K,N ; η) as

Ṽ2(K,N ; η) :=
1

2

d∑
i=1

c

ia
e

−2KNcη
ia .

Then we have V2(K,N ; η) = Ṽ (K,N ; η)(1 + o(1)), and Ṽ2(K,N ; η) ≂ 1

(KN)
a−1
a

.

Proof of Lemma I.6. We first define a function

W (x) :=
c

xa

(
1− c logb(x+ 1)

xa

(
1−

(
1− η

logb(x+ 1)

)2K
))N

.

Direct observation gives us that under Assumption 5.3, R̄(K,N ; η) ∝
∑d
i=1W (i). Simliarly we

take the derivative of W .

W ′(x) = − ac

xa+1

(
1− c logb(x+ 1)

xa
+
c logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K
)N

+
cN

xa

(
1− c logb(x+ 1)

xa
+
c logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K
)N−1

((
ac logb(x+ 1)

xa+1
− bc logb−1(x+ 1)

xa(x+ 1)

)(
1−

(
1− η

logb(x+ 1)

)2K
)

+
2cK logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K−1
bη

(x+ 1) logb+1(x+ 1)

)

=
c

x2a+1

(
1− c logb(x+ 1)

xa
+
c logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K
)N−1

(
−a

(
xa − c logb(x+ 1) + c logb(x+ 1)

(
1− η

logb(x+ 1)

)2K
)
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+N

((
ac logb(x+ 1)− bc logb−1(x+ 1)

x

x+ 1

)(
1−

(
1− η

logb(x+ 1)

)2K
)

+
2cKbη

log(x+ 1)

(
1− η

logb(x+ 1)

)2K−1
x

x+ 1

))
.

We define

G(x) = −a

(
xa − c logb(x+ 1) + c logb(x+ 1)

(
1− η

logb(x+ 1)

)2K
)

+N

((
ac logb(x+ 1)− bc logb−1(x+ 1)

x

x+ 1

)(
1−

(
1− η

logb(x+ 1)

)2K
)

+
2cKbη

log(x+ 1)

(
1− η

logb(x+ 1)

)2K−1
x

x+ 1

)
,

and x0 is defined to be the maximum of W (x), so G(x0) = 0.

G(x) ≥ N logb(x+ 1)

(
ac− bc

log(x+ 1)

x

x+ 1

)(
1−

(
1− η

logb x

)2K
)

− axa

≥ N(a− b)c logb(x+ 1)

(
1−

(
1− η

logb(x+ 1)

)2K
)

− axa

= N(a− b)c logb(x+ 1)× η

logb(x+ 1)

(
2K−1∑
i=0

(
1− η

logb(x+ 1)

)i)
− axa

≥ N(a− b)cη − axa.

So x0 = Ω
(
N

1
a

)
is an direct conclusion by G(x0) = 0. Also , by solving G(x0) = 0, we can get

the approximation of x0 as

G(x0) = −axa0(1 + o(1))

+N

(
ac logb(x0 + 1)(1 + o(1))× 2Kη

logb(x0 + 1)
(1 + o(1)) +O

(
K

logN

))
= −axa0(1 + o(1)) + 2KNacη(1 + o(1)) = 0,

thus we have

x0 = Θ
(
(KN)

1
a

)
, W (x0) = Θ

(
1

KN

)
.

There exists a constant N5 such that K ≤ logbN when N ≥ N5. So when N ≥ N5 and d ≥

3(KN)
1
a ≥ 3(KN)

1
a

(
K

logbN

) 1
2a

, we have

V2(K,N ; η) =
1

2

(KN)
1
a

(
K

logb N

) 1
2a∑

i=d2+1

c

ia

(
1− c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

+
1

2

d∑
(KN)

1
a

(
K

logb N

) 1
2a

c

ia

(
1− c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

:= ψ1 + ψ2.

Furthermore,

ψ1 ≲ (KN)
1
a

(
K

logbN

) 1
2a

×W (x0) ≲
(KN)

1
a

(
K

logbN

) 1
2a

KN
,
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and

ψ2 =
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1− η

logb(i+ 1)

)2K
)N

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia

(
1− 2Kcη

ia
+O

(
K2

ia logb(i+ 1)

))N

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e
N log

(
1− 2Kcη

ia +O
(

K2

ia logb(i+1)

))

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e

−2KNcη
ia +O

(
K2N
i2a

)
+O
(

K2N

ia logb(i+1)

)

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e

−2KNcη
ia (1 + o(1)).

We recall K1(x) = c
xa e

−2KNcη
xa . We can verify that argmaxK1(x) = Θ

(
(KN)

1
a

)
and

maxK1(x) = Θ
(

1
KN

)
through a direct calculation. So for ψ2 we have

ψ2 ≥ 1

2

3(KN)
1
a∑

i=(KN)
1
a

c

ia
e

−2KNcη
ia (1 + o(1))

≳
(KN)

1
a

KN
.

We can verify that ψ1 = o(ψ2) as a direct consequence. We define

Ṽ2(K,N ; η) =
1

2

d∑
i=d2+1

c

ia
e

−2KNcη
ia

=
1

2

(KN)
1
a

(
K

logb N

) 1
2a∑

i=d2+1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e

−2KNcη
ia

:= ψ̃1 + ψ̃2.

We have ψ2 = ψ̃2(1 + o(1)), and

ψ̃1 ≲
(KN)

1
a

(
K

logbN

) 1
2a

KN
= o(ψ̃2).

So V2(K,N ; η) = Ṽ2(K,N ; η)(1 + o(1)).
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Finally, we derive a matching upper and lower bound for Ṽ2(K,N ; η) and conclude the proof:

Ṽ2(K,N ; η) ≥ J̃2 ≳ J2 ≳
1

(KN)
a−1
a

.

Ṽ2(K,N ; η) =
1

2

(KN)
1
a∑

i=d2+1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=(KN)

1
a +1

c

ia
e

−2KNcη
ia

≤ 1

2

(KN)
1
a∑

i=1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=(KN)

1
a +1

c

ia

≲
(KN)

1
a

KN
+

1

(KN)
a−1
a

≲
1

(KN)
a−1
a

.

Then we complete the proof.

Notice that Ṽ2(K,N ; η) and V2(K,N ; η) are identical to each other, so we can directly apply
Lemma I.3 and Lemma I.4 in the remainding proof of Theorem 5.3.

The Range of Optimal Learning Rate. First, take η′ = 2 logb(2)− ϵ, where ϵ := (a−1)da2
ac

logKN
KN ,

and we have

V1(K,N ; η′) ≤ d2c

2

(
1− c logb(2)

da2
+
c logb(2)

da2

(
1− ϵ

logb(2)

)2K
)N

=
d2c

2

(
1− 2Kc logb(2)

da2
× ϵ

logb(2)
(1 + o(1))

)N

=
d2c

2

(
1− 2(a− 1)

a

logKN

N
(1 + o(1))

)N
=
d2c

2
eN log(1− 2(a−1)

a
log KN

N (1+o(1)))

≂
1

(KN)
2(a−1)

a

= o(V2(K,N ; η′)),

where the last inequality comes from Lemma I.6. Then we have

R̄(K,N ; η′) = V1(K,N ; η′) + V2(K,N ; η′)

= Ṽ2(K,N ; η′)(1 + o(1))

= Ṽ2(K,N ; 2)(1 + o(1))

=

(
1

2

d∑
i=d1+1

c

ia
e

−4 logb(2)KNc
ia

)
(1 + o(1)).

Then we prove that η∗ ∈ [2 logb(2)− o(1), 2 logb(2)]. We prove by contradiction, and assume that
there exist a constant ϵ > 0 and a sequence (Ni)

∞
i=1 → ∞ such that η∗(Ni) ≤ 2 logb(2)− ϵ for all

i ≥ 1. As we only analyze with respect to the sequence (Ni)
∞
i=1, without loss of generality, we take

(Ni)
∞
i=1 = N. By Lemma I.2, we have

R̄∗(K,N) ≥ V2(K,N ; η∗) = Ṽ2(K,N ; η∗)(1 + o(1))

≥
[
Ṽ2(K,N ; 2) + ϵ

∂

∂η
Ṽ2

(
K,N ; 2 logb(2)

)]
(1 + o(1)) > R̄(K,N ; η′)
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when N is sufficiently large, which is a contradiction. So

R̄∗(K,N) = V1(K,N ; η∗) + V2(K,N ; η∗)

= V1(K,N ; η∗) + Ṽ2(K,N ; η∗)(1 + o(1))

= V1(K,N ; η∗) + Ṽ2

(
K,N ; 2 logb(2)

)
(1 + o(1)) ≤ R̄(K,N ; η′).

So V1(K,N ; η∗) = o
(
Ṽ2

(
K,N ; 2 logb(2)

))
, and R̄∗(K,N) = Ṽ2(K,N ; 2 logb(2))(1+ o(1)) ≂

1

(KN)
a−1
a

.

I.4.2 PROOF OF THEOREM D.1, LARGE-K CASE

The Expected Excess Risk Approximation.

Lemma I.7. Suppose the assumptions Theorem 5.3 hold. When K = ω(logbN), we have
V2(K,N ; η) ≂ 1

(N logbN)
a−1
a

.

Proof of Lemma I.7. By K = ω(logbN), there exists a constant N6 > 0 such that K > logbN

when N ≥ N6. We notice that when i = Θ

((
N logbN

) 1
a

)
, log(i+ 1) = Θ(logN). Then, when

N ≥ N6 and d ≥ 3(KN)
1
a ≥ 3

(
N logbN

) 1
a

, we have

V2(K,N ; η) ≥ 1

2

3(N logbN)
1
a∑

i=(N logbN)
1
a

c

ia

(
1− c logb(i+ 1)

ia

)N

≥ 1

2

2
(
N logbN

) 1
a

3aN logbN
(1− c11

N
)N

≳
1(

N logbN
) a−1

a

.

For the upper bound, we have

R̄(K,N ; η) ≤ 1

2

∞∑
i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1− η

logb(i+ 1)

)2K
)N

≤ 1

2

(N logbN)
1
a∑

i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1− η

logb(i+ 1)

)2K
)N

+
1

2

∞∑
i=(N logbN)

1
a +1

c

ia
.

When K = ω(logbN) and i ≤
(
N logbN

) 1
a

,

(
1− η

logb(i+ 1)

)K
≤
(
1− c12

logbN

)K
= e

K log
(
1− c12

logb N

)

≤ e
−K c12

logb N = o(1).
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So there exists N7 such that when N ≥ N7,
(
1− η

logb(i+1)

)K
≤ 1

2 , and when N ≥ max(N6, N7),

R̄(K,N ; η) ≤ 1

2

(N logbN)
1
a∑

i=1

c

ia

(
1− c logb(i+ 1)

2ia

)N
+

1

2

∞∑
i=(N logbN)

1
a +1

c

ia
.

One can derive that maxx
c
xa

(
1− c logb(x+1)

2xa

)N
= Θ

(
1

N logbN

)
.

So finally, we have

V2(K,N ; η) ≤ R̄(K,N ; η) ≲
1(

N logbN
) a−1

a

+
1(

N logbN
) a−1

a

≲
1(

N logbN
) a−1

a

,

and we get the result.

The Range of Optimal Learning Rate. First, take η′ = 1.5 logb(2), and we have

V1(K,N ; η′) ≤ d2c

2

1− c logb(2)

da2
+
c logb(2)

da2
max

(
0.5, 1− 1.5 logb(2)

logb(d2 + 1)

)2K
N

=
d1c

2
(1−Θ(1))

N

= o(V2(K,N ; η′)),

where the last inequality comes from Lemma I.5. Then we have

R̄(K,N ; η′) = V1(K,N ; η′) + V2(K,N ; η′)

= Ṽ2(K,N ; η′)(1 + o(1))

It is obvious that η∗ ∈
[
logb(2), 2 logb(2)

]
. We know that

R̄∗(K,N) = V1(K,N ; η∗) + V2(K,N ; η∗) ≤ R̄(K,N ; η′) = V2(K,N, η
′)(1 + o(1))

≂
1(

N logbN
) a−1

a

.

I.5 E(K,N) FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM 5.3

I.5.1 PROOF OF THEOREM 5.3, SMALL-K CASE

The proof here is almost a reproduction of the proof in Appendix I.2.1.

I.5.2 PROOF OF THEOREM 5.3, LARGE-K CASE

Consider the multi-epoch training setting with d = Ω
(
(KN)

1
a+b

)
. By Lemmas I.7 and J.7, there

exist constants C7, C8 > 0 such that

C8

N(logN)b
≤ R̄∗(K,N) ≤ C7

N(logN)b
. (31)

Let T ′ be defined by matching the expected risks:

R̄∗(K,N) = R̄∗(1, T ′). (32)
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In the one-pass case, we use the constants C3, C4 > 0 (as defined in the proof of Theorem 5.2) to
control R̄∗(1, T ′).

We claim that (
C4

C7

) a
a−1

N(logN)b ≤ T ′ ≤
(
C3

C8

) a
a−1

N(logN)b. (33)

Proof of the claim. We argue by contradiction.

1. Upper bound violation. If T ′ >
(
C3

C8

) a
a−1 N(logN)b, then the one-pass upper bound

together with Equation (31) (multi-epoch lower bound) imply

R̄∗(K,N) < R̄∗(1, T ′),

which contradicts the defining equality Equation (32).

2. Lower bound violation. If T ′ <
(
C4

C7

) a
a−1 N(logN)b, then d = Ω

(
(KN)

1
a+b

)
yields

d = Ω
(
(N(logN)b)1/a

)
= Ω

(
(T ′)1/a

)
,

so the one-pass lower bound together with Equation (31) (multi-epoch upper bound) give

R̄∗(K,N) > R̄∗(1, T ′),

again contradicting Equation (32).

Both violations are impossible; hence Equation (33) holds.

Thus, in the large-K multi-epoch regime, the matched one-epoch training time satisfies T ′ =
Θ
(
N(logN)b

)
up to fixed constants. Therefore, the desired characterization of E(K,N) follows

directly.

J ADDITIONAL TECHNICAL LEMMAS

Lemma J.1. For any PSD matrix A, it holds that

⟨H,A⟩ ≤ tr(H)∥A∥.

Proof. We denote the PSD decomposition of H by

H =
d∑
i=1

λiqiq
⊤
i

where λi and qi are the eigenvalues and corresponding eigenvectors of H . So we get

⟨H,A⟩ =

〈
d∑
i=1

λiqiq
⊤
i ,A

〉

=

d∑
i=1

λiq
⊤
i Aqi

≤
d∑
i=1

λi∥A∥

= tr(H)∥A∥,
which completes the proof.

Lemma J.2. When l ≥ 1, we have

(1 + x)l ≤ 1 + 2lx, x ∈ [0,
log 2

l
]
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Proof. We define f(x) := (1 + x)l − (1 + 2lx). Calculating the derivative and notice the fact that
2x − 1 ≥ (log 2)x, we obtain

f
′
(x) = l(1 + x)l−1 − 2l

≤ l(1 + 2
1
l − 1)l−1 − 2l

≤ l × 2
l−1
l − 2l ≤ 0.

The above equation completes the proof.

Lemma J.3. When l ≥ 1, we have

(1− x)2l ≤ 1− lx, x ∈ [0,
1

6l
]

.

Proof. We define g(x) := (1− x)2l − (1− lx). Calculating the derivative, we obtain

g′(x) = −2l(1− x)2l−1 + l ≤ 0 when x ∈ [0, 1− 2−
1

2l−1 ].

Notice that h(x) = 2x is convex, so for x ∈ [0, 1], we have

h(−x+ 0× (1− x)) ≤ xh(−1) + (1− x)h(0),

that is

2−x ≤ 1− x

2
when x ∈ [0, 1].

So

1− 2−
1

2l−1 ≥ 1−
(
1− 1

2(2l − 1)

)
=

1

2(2l − 1)
≥ 1

6l
when l ≥ 1,

which concludes the proof.

Lemma J.4. Given N data points such that x0, · · ·xn−1
i.i.d∼ N (0,H), and define A = (I −

ηxN−1x
⊤
N−1) · · · (I − ηx0x

⊤
0 ). Then we have

E∥A− EA∥l ≤
(√

δAη2Nl
)l
,

where δA := C̃8eD4 log d for some absolute constant C̃ > 0.

Proof. We define Q := A− EA for convenience. We can obtain a concentration inequality for ∥Q∥
due to the boundedness of x according to Theorem 7.1 in Huang et al. (2022).

We define
Yi := I − ηxix

⊤
i

For any 1 ≤ i ≤ N , we can choose mi = 1, and we have

∥Yi − EYi∥ = ∥η(H − xix
⊤
i )∥ ≤ 2D2η := σi

So we know that MA = 1, vA = 4D4η2N , and

P{∥Q∥ ≥ t} ≤ de
− t2

2evA = de
− t2

8eD4η2N when t2 ≥ 8eD4η2N.

Furthermore, we have

P{∥Q∥ ≥ t} ≤ e
− t2

16eD4η2N when t2 ≥ 16eD4η2N log d.

So there exists a non-negative sub-Gaussian random variable Z, s.t

P{∥Q∥ ≥ t} ≤ P{Z ≥ t} ≤ e
− t2

16eD4η2N when t2 ≥ 16eD4η2N log d.
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Then for all l ≥ 1, we can get

E∥Q∥l = E∥Q∥l(1{∥Q∥≤
√

16eD4η2N log d} + 1{∥Q∥>
√

16eD4η2N log d})

≤
(√

16eD4η2N log d
)l

+ E∥Q∥l1{∥Q∥>
√

16eD4η2N log d}

≤
(√

16eD4η2N log d
)l

+

∫ +∞

√
16eD4η2N log d

P{∥Q∥ ≥ t}ltl−1 dt

≤
(√

16eD4η2N log d
)l

+

∫ +∞

0

P{Z ≥ t}ltl−1 dt

≤
(√

16eD4η2N log d
)l

+ EZl

≤
(√

16eD4η2N log d
)l

+ (
√
C16eD4η2Nl log d)l

≤
(√

C̃8eD4η2Nl log d

)l
.

where C and C̃ are absolute constants, the fifth inequality is due to Proposition 2.5.2 in (Vershynin,
2018).

Lemma J.5. For any l ≤ K, we have

E

∥∥∥∥∥
l∏

k=1

A(k) − (EA)l

∥∥∥∥∥ ≤
(√

δAη2Nl + ∥EA∥
)l

− ∥EA∥l,

where δA is the same positive constant appearing in Lemma J.4.

Proof. Let a = ∥EA∥ and cl =
√
C̃8eD4η2Nl log d. Define the perturbation Q(k) = A(k) − EA.

Expanding the product as

l∏
k=1

A(k) =

l∏
k=1

(
Q(k) + EA

)
=

l∑
m=0

∑
S∈([l]m)

PS ,

where PS is the matrix product with Q(k) at positions k ∈ S and EA elsewhere, preserving order.
The difference is

l∏
k=1

A(k) − (EA)l =

l∑
m=1

∑
S∈([l]m)

PS .

By the triangle inequality and linearity of expectation:

E

∥∥∥∥∥
l∏

k=1

A(k) − (EA)l

∥∥∥∥∥ ≤
l∑

m=1

∑
S∈([l]m)

E∥PS∥.

For each S , decompose into t maximal consecutive blocks B1, . . . ,Bt with sizes s1, . . . , st (
∑
si =

m). By Folland’s Hölder inequality and Lemma J.4:

E∥PS∥ ≤ al−mE
t∏
i=1

∏
j∈Bi

∥∥∥Q(j)
∥∥∥ ≤ al−m

t∏
i=1

∏
j∈Bi

(
E
∥∥∥Q(j)

∥∥∥si) 1
si ≤ al−m

t∏
i=1

csisi .

Since css =
(√

C̃8eD4η2Ns log d

)s
is increasing in s and si ≤ l:

csisi ≤ csil ⇒ E∥PS∥ ≤ al−mcml .
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Summing over all S with |S| = m:∑
S∈([l]m)

E∥PS∥ ≤
(
l

m

)
al−mcml .

Thus the total bound is:
l∑

m=1

(
l

m

)
al−mcml = (a+ cl)

l − al,

completing the proof.

Lemma J.6. For any l ≤ K, it holds that

E

∥∥∥∥∥
l∏

k=1

A(k) − (EA)l

∥∥∥∥∥
2

≤
[(√

2δAη2Nl + ∥EA∥
)l

− ∥EA∥l
]2
,

where δA is the same positive constant appearing in Lemma J.4.

Proof. Set a = ∥EA∥2 and cl =
√
C̃16eD4η2Nl log d. Define the perturbation Q(k) = A(k)−EA.

Expand the matrix product as:

l∏
k=1

A(k) =

l∏
k=1

(
Q(k) + EA

)
=

l∑
m=0

∑
S∈([l]m)

PS ,

where PS denotes the ordered matrix product with Q(k) at positions k ∈ S and EA elsewhere. The
target difference is:

l∏
k=1

A(k) − (EA)l =

l∑
m=1

∑
S∈([l]m)

PS .

For the squared spectral norm, we have:

E

∥∥∥∥∥
l∑

m=1

∑
S

PS

∥∥∥∥∥
2

≤ E

(
l∑

m=1

∑
S

∥PS∥

)2

=

l∑
m=1

l∑
n=1

∑
Sm

∑
Sn

E [∥PSm
∥∥PSn

∥] ,

where Sm and Sn range over all subsets of [l] with sizes m and n, respectively. For each pair
(Sm,Sn), decompose the union U = Sm ∪ Sn into t maximal consecutive blocks B1, . . . ,Bt with
sizes si = |Bi| (

∑t
i=1 si = |U| = m+ n). By Folland’s Hölder inequality and Lemma J.4:

E [∥PSm
∥∥PSn

∥] ≤ a2l−m−nE
t∏
i=1

∏
j∈Bi

∥Qj∥

≤ a2l−m−n
t∏
i=1

∏
j∈Bi

E
(
∥Qj∥m+n

) 1
m+n

≤ a2l−m−n
(√

C̃8eD4η2N(m+ n) log d

)m+n

≤ a2l−m−ncm+n
l .

The combinatorial count satisfies: ∑
Sm

∑
Sn

1 =

(
l

m

)(
l

n

)
.
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Combining all terms:

E

∥∥∥∥∥
l∏

k=1

A(k) − al

∥∥∥∥∥
2

≤
l∑

m=1

l∑
n=1

(
l

m

)(
l

n

)
a2l−m−ncm+n

l =
[
(a+ cl)

l − al
]2
,

where the last equality follows from the binomial theorem applied to (a+ cl)
2l.

Lemma J.7. Consider a function of training time T given by

L(T ) = 1

2

d∑
i=d1+1

c

il
e−

2Tcη
ia ,

where c, l are some absolute constants, d1 = Θ(1), and l > 1. Then we have:

1. L(T ) ≲ 1

T
l−1
a

;

2. Given d = Θ
(
(KN)

1
a

)
, L(T ) ≳ 1

T
l−1
a

.

Proof. Computing the derivative of f(x) = c
xl e

− 2Tcη
xa , we have

argmax
x

f(x) = Θ
(
(KN)

1
a

)
,

max
x

f(x) = Θ

(
1

(KN)
l
a

)
.

Then

1. For the upper bound, we have

L(T ) ≤ 1

2

∞∑
i=d1+1

c

il
e−

2Tcη
ia ≤ 1

2

(KN)
1
a∑

i=d1+1

c

il
e−

2Tcη
ia +

1

2

∞∑
i=(KN)

1
a +1

c

il

≲ (KN)
1
a × 1

(KN)
l
a

+
1

(KN)
l−1
a

≲
1

(KN)
l−1
a

.

2. For the lower bound, when d ≥ 3T
1
a , we have

L(T ) ≥ 1

2

3(KN)
1
a∑

i=(KN)
1
a

c

il
e−

2Tcη
ia ≥ 1

2

c

3l(KN)
l
a

e−2cη × 2(KN)
1
a ≳

1

(KN)
l−1
a

.

The above equation comletes the proof.

Lemma J.8. Given an estimator of the excess risk for ME and OP cases

S̃2(K,N ; η) =
1

2

d∑
i=d1+1

c

ia
e

−2KNcη
ia ,

and

S̃2(1, T
′; η) =

1

2

d∑
i=d1+1

c

ia
e

−2T ′cη
ia

for some d1 = Θ(1). If the ME excess risk and OP excess risk satisfy that

R̄(K,N ; η) = S̃2(K,N ; η)(1 + o(1))

R̄(1, T ′; η) = S̃2(1, T
′; η)(1 + o(1)),

then give d = Ω(T
1
a ) and when T ′ ≂ T , it holds that

E(K,N) ∈ [K(1− o(1)),K(1 + o(1))] .
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Proof. We define H(T ) = S̃2(K,N ; η) and α = T ′

T . By definition of E(K,N), we have T ′ =
E(K,N)N . Our goal is to prove that α ∈ [1− o(1), 1 + o(1)].

Solving R̄(K,N ; η) = R̄(1, T ′; η), we can get H(T )(1+ oN (1)) = H(T ′)(1+ oT ′(1)). We define
δ(K,N) = R̄(K,N ;η)−S̃2(K,N ;η)

S̃2(K,N ;η)
= o(1), and δ(1, T ′)) = R̄(1,T ′;η)−S̃2(1,T

′;η)

S̃2(1,T ′;η)
= o(1). Then we

can derive that

H(T ′)(1− δ(1, T ′)) ≤ H(T )(1 + δ(K,N))

H(T ′)(1 + δ(1, T ′)) ≥ H(T )(1− δ(K,N))

which indicates that

−δ(1, T ′)H(T ′)− δ(K,N)H(T ) ≤ H(T ′)−H(T ) ≤ δ(1, T ′)H(T ′) + δ(K,N)H(T ).

Notice that H(T ) is strongly convex, and we have H(T ) ≂ 1

(KN)
a−1
a

and H ′(T ) =

1
2

∑d
i=1

c
i2a e

−2KNcη
ia ≂ 1

(KN)
2a−1

a

by Lemma J.7. We are now ready to prove that α ∈ [1 −

o(1), 1 + o(1)].

− 1

T (2− 1
a )
(T ′ − T ) ≲ H ′(T )(T ′ − T ) ≤ H(T ′)−H(T ) ≤ H ′(T ′)(T ′ − T ) ≲ − 1

T ′(2− 1
a )
(T ′ − T )

δ(1, T ′)H(T ′) + δ(K,N)H(T ) ≲
δ(1, T ′)

T ′(1− 1
a )

+
δ(K,N)

T (1− 1
a )

≲
o(1)

T (1− 1
a )
.

So

T − T ′

T (1− 1
a )

≲
o(1)

T (1− 1
a )

− o(1)

T (1− 1
a )

≲ − 1

T ′(1− 1
a )
(T ′ − T ).

Direct calculation yields the result.

Lemma J.9 (Hyper-Contractivity). Given d-dimension random vector x ∼ D satisfying that ∥x∥ ≤
D for some constant D, and the covariance matrix H := Ex∼D

[
xx⊤] = diag(λ1, λ2, . . . , λd),

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ c for some constant c > 0, then the following holds:

E
[
xx⊤Pxx⊤] ≤ α tr(HP )H

for some constant α > 0 independent of P .

Proof. By Dieuleveut et al. (2017), the above lemma holds for data distributions with a bounded
kurtosis along every direction, i.e., there exists a constant κ > 0 such that

for every v ∈ Rd, E
[
⟨v,x⟩4

]
≤ κ ⟨v,Hv⟩2 .

So that it suffices to verify the above inequality. Since λd ≥ c, we have

⟨v,Hv⟩2 ≥ c2∥v∥4.

For the left side, by the triangle inequality and that ∥x∥ is bounded

⟨v,x⟩4 ≤ ∥v∥4∥x∥4 ≤ D4∥v∥4.

Combining the above two inequalities gives

E
[
⟨v,x⟩4

]
≤ D4

c2
⟨v,Hv⟩2 .

Now setting κ = D4

c2 completes the proof.
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