
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LARGER DATASETS CAN BE REPEATED MORE:
A THEORETICAL ANALYSIS OF MULTI-EPOCH
SCALING IN LINEAR REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

While data scaling laws of large language models (LLMs) have been widely
examined in the one-pass regime with massive corpora, their form under limited
data and repeated epochs remains largely unexplored. This paper presents a
theoretical analysis of how a common workaround, training for multiple epochs on
the same dataset, reshapes the data scaling laws in linear regression. Concretely,
we ask: to match the performance of training on a dataset of size N for K epochs,
how much larger must a dataset be if the model is trained for only one pass?
We quantify this using the effective reuse rate of the data, E(K,N), which we
define as the multiplicative factor by which the dataset must grow under one-pass
training to achieve the same test loss as K-epoch training. Our analysis precisely
characterizes the scaling behavior of E(K,N) for SGD in linear regression under
either strong convexity or Zipf-distributed data: (1) When K is small, we prove
that E(K,N) ≈ K, indicating that every new epoch yields a linear gain; (2) As
K increases, E(K,N) plateaus at a problem-dependent value that grows with
N (Θ(logN) for the strongly-convex case), implying that larger datasets can be
repeated more times before the marginal benefit vanishes. These theoretical findings
point out a neglected factor in a recent empirical study by Muennighoff et al. (2023),
which claimed that training LLMs for up to 4 epochs results in negligible loss
differences compared to using fresh data at each step, i.e., E(K,N) ≈ K for
K ≤ 4 in our notation. Supported by further empirical validation with LLMs, our
results reveal that the maximum K value for which E(K,N) ≈ K in fact depends
on the data size and distribution, and underscore the need to explicitly model both
factors in future studies of scaling laws with data reuse.

1 INTRODUCTION

Scaling laws (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022) have emerged as a
central framework for characterizing the behavior of large language model (LLM) pre-training. The
Chinchilla scaling law (Hoffmann et al., 2022) established robust empirical trends in performance
as a joint function of model size and dataset size under the one-pass training paradigm, in which
each data point is used at most once. This assumption, however, is becoming increasingly untenable.
The quest for more capable models has driven an unprecedented escalation in data requirements:
from fewer than 10 billion tokens for GPT-2, to 300 billion for GPT-3 (Brown et al., 2020), 2 trillion
for Chinchilla and LLaMA 2 (Hoffmann et al., 2022; Touvron et al., 2023), and 36 trillion for
Qwen3 (Yang et al., 2025). Projections further suggest that the pool of publicly available data may be
exhausted as early as 2028 (Villalobos et al., 2024).

A common response to this emerging data scarcity is to train models for multiple epochs over the
same dataset. Recent empirical studies have begun to examine the consequences of such repetition:
for example, Muennighoff et al. (2023) and Xue et al. (2023) show that moderate reuse can still yield
competitive pre-training performance. Yet the fundamental scaling behavior of multi-epoch training
remains poorly understood—particularly from a theoretical standpoint.

In this paper, we study a fundamental question in understanding how multi-epoch training affects
the data scaling laws: To what extent does training for K epochs on N samples can be effectively

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

seen as one-pass training with an increased number of data samples? Formally, let L(K,N) denote
the expected loss of K-epoch training on N samples. We define the effective dataset size N ′(K,N)
as the minimal number of samples in one-pass training that achieves a comparable or lower loss
L(1, N ′) ≤ L(K,N). In this paper, we concern about the ratio E(K,N) = N ′(K,N)/N , which
we term as the effective reuse rate of the data, a key quantity that characterizes how many times larger
the dataset must grow to match the same performance as K-epoch training (see the detailed version
in Definition 3.1).

In a recent study of scaling laws for multi-epoch training, Muennighoff et al. (2023) encountered this
question and proposed an empirical approximation: N ′(K,N) =

(
1 +R∗(1− e−(K−1)/R∗

)
)
·N ,

where R∗ is a fitted constant (R∗ ≈ 15.39 in their experiments). This formula suggests that the
benefit of repetition grows with K but saturates exponentially at (1 +R∗) ·N as K increases. While
supported by some empirical evidence in their study, this approximation still leads to a noticeable
gap between scaling law predictions and empirical results (see Figure 3 in their paper). Moreover,
the formula implies that the ratio E(K,N) = N ′(K,N)/N is independent of N , so the benefit of
repeating the dataset K times is equivalent to increasing its size by a factor that depends only on K,
regardless of how large N is. It remains unclear to what extent this independence holds in general.

Our Contributions. In this paper, we approach the above question on the effective reuse rate of
data in the setting of linear regression, a setting that is simple enough to reveal the key mechanisms
of data reuse, while still tractable for precise analysis under stochastic gradient descent (SGD). We
provide a theoretical characterization of E(K,N) in various regimes, and point out a neglected factor
in the empirical study of Muennighoff et al. (2023): the effective reuse rate depends not only on the
number of epochs K, but also on the dataset size N . In fact, larger datasets can be repeated more.
Our main contributions are as follows:

1. In Section 4, we study the strongly convex case of linear regression, and show that when
K is small, E(K,N) ≈ K, indicating that every new epoch leads to a linear gain. As K
increases, E(K,N) saturates at a problem-dependent value of order Θ(logN), suggesting
that larger datasets can be repeated for more epochs before the marginal benefit vanishes.

2. In Section 5, we go beyond the strongly convex case and study a class of Zipf-law distributed
data, and show that E(K,N) exhibits a similar scaling behavior to the strongly convex case,
except that the saturation point scales as a power of N instead of logN .

3. Technically, we derive the optimal learning rate (Lemma 4.4) for multi-epoch SGD in linear
regression and its corresponding approximation formula for the expected excess risk up to
an o(1) multiplicative error (Lemma G.1). These results may be of independent interest.

4. In Section 6, we conduct LLM pretraining experiments up to 200B repeated tokens, and
empirically validate our theoretical predictions. The results confirm that E(K,N) ≈ K for
small K, and that for fixed K, the effective reuse rate increases monotonically with N . This
provides direct evidence for our main conclusion: larger datasets can be repeated more.

2 RELATED WORK

Data Reuse in LLM Pre-Training. Empirically, there is a long debate over the effect of data reuse
in LLM pre-training. Some works (Lee et al., 2021; Hoffmann et al., 2022; Hernandez et al., 2022;
Wang et al., 2023) suggested it may be harmful, while some work (Taylor et al., 2022) reported the
benefit of data reusing when the number of epochs is small (K ≤ 4). Xue et al. (2023) then discovered
a degradation phenomenon in multi-epoch training and investigated relevant factors and regularization
methods to tackle it. Muennighoff et al. (2023) trained LLMs under different configurations and also
found that reusing data is as good as using fresh data in the first few epochs. Yet, as the number of
epochs increases, the returns for repetitions diminish. In our work, from a theoretical perspective, we
rigorously analyzed the effect of data reuse using non-asymptotic techniques, and we defined and
calculated the effective reuse rate under two cases, shedding light on the theoretical understanding of
data reusing in LLM pre-training.

Comparison with Lin et al. (2025). A recent study on linear regression with data reusing (Lin
et al., 2025) is among the most relevant to our results. They showed that when the number of
epochs is relatively small (smaller than some power of the dataset size), the order of loss remains the
same as one pass SGD for the same iterations, which aligns with our results. However, their results

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

only imply that E(K,N) = Θ(K) for small K, while our analysis directly gives the explicit loss
characterization with o(1) relative error bound and a more exact description of the effective reuse
rate, which reflects the data reusing scaling behaviour. Our analysis is across various problem setups,
and further shows the general scaling trend of data reusing under different problem setups.

3 PRELIMINARIES

Notations. We use ∥ · ∥ to denote the ℓ2-norm of vectors and the corresponding operator norm
of matrices. For two sequences (An)

∞
n=0 and (Bn)

∞
n=0, we write An = O(Bn), or alternatively

An ≲ Bn, Bn = Ω(An), Bn ≳ An, if there exist constants C > 0, N > 0 such that |An| ≤ C|Bn|
for all n ≥ N . We write An = Θ(Bn), or alternatively An ≍ Bn, if both An = O(Bn) and
An = Ω(Bn) hold. Moreover, for some variable n, we write An = on(Bn) if for every constant
c > 0, there exists n0 > 0 such that |An| < c|Bn| for all n ≥ n0. In this paper, when n is
clear from the context, we write An = o(Bn) for short. Furthermore, we write An = ω(Bn) if
Bn = o(An). For matrices A1,A2, . . . ,An, we use

∏n
l=1 Al to denote the product A1A2 . . .An.

Let ∥u∥S =
√
u⊤Su for a vector u and a positive semi-definite (psd) matrix S.

Linear Regression Problem. We focus on a linear regression setup, where data point (x, y) ∈
Rd × R follows a joint distribution D and ∥x∥ ≤ D for some constant D. W.L.O.G., we assume
that the covariance matrix of data input is diagonal, i.e., H := E[xx⊤] = diag (λ1, λ2, . . . , λd),
where λ1 ≥ λ2 ≥ · · · ≥ λd. A direct corollary is that λ1 ≤ D2. For a given data input x, the label
y is generated by y := ⟨w∗,x⟩ + ξ, where w∗ ∈ Rd is the ground-truth weight and ξ represents
the independent random label noise with E[ξ] = 0 and E[ξ2] = σ2. We aim to train a linear model
f(x;w) := ⟨w,x⟩ to predict the data label, where w ∈ Rd is the trainable parameter. We use
MSE-loss ℓ(w;x, y) := 1

2 (f(x;w)− y)2 to measure the fitting error. Then, the population loss is
defined as L(w) := E(x,y)∼D[ℓ(w;x, y)]. Further we define the excess risk R(w) := L(w)− 1

2σ
2,

which is the expected population loss minus the irreducible loss 1
2σ

2.

Multi-Epoch SGD Training Algorithm. Consider a finite training dataset with N data points
{(x0, y0), (x1, y1), . . . , (xN−1, yN−1)}, where the data points (xi, yi) are i.i.d. sampled from the
distribution D. We useK-epoch stochastic gradient descent (SGD) with random shuffling to minimize
the loss function. And the initial parameter w0 is set to 0. Formally, we denote K independent
random permutations of [N] by π1, . . . , πK . And we define jt := πkt(it), where it := t mod N ,
kt := ⌊t/N⌋+ 1. Then we have the update rule for K-epoch SGD with N data points

wt+1 = wt − η∇wℓ(wt;xjt , yjt) =
(
I − ηxjtx

⊤
jt

)
wt + ηξjtxjt .

Next, given a K-epoch SGD over N data points, with learning rate η, we define WK,N,η to be the
distribution of wKN . The randomness within wKN comes from the random draw of the dataset,
label noise ξ, and the shuffling in SGD. Based on this, we define the expected excess risk of a given
K-epoch SGD over N data points, with learning rate η as R̄(K,N ; η) := Ew∼WK,N,η

[R(w)]. We
assume η ≤ D−2 for training stability.

Comparing Performance under Optimal Learning Rate Regime. To compare the performance
of one-pass and multi-epoch SGD, we consider the settings where the learning rates for both methods
are tuned to the optimal. Formally, we introduce the notion of the optimal expected excess risk of
K-epoch SGD for N samples as R̄∗(K,N) := minη∈(0, 1

D2]{R̄(K,N ; η)}. To calculate this value
in math, we will show in the next section that we can get a learning rate choice that can approximately
achieve the above optimal expected excess risk R̄∗(K,N) both for one-pass and multi-epoch SGD.
Following our discussion in the introduction, we define the effective reuse rate as follows:
Definition 3.1 (Effective Reuse Rate). Given K-epoch SGD trained with N fresh data samples, the
effective reuse ratio is defined as: E(K,N) := 1

N min{N ′ ≥ 0 : R̄∗(1, N ′) ≤ R̄∗(K,N)}.
That is, the effective reuse rate measures how many times larger the dataset must grow under one-pass
training to match the performance of K-epoch training, both under the optimal learning rate regime.

4 MULTI-EPOCH SCALING IN STRONGLY CONVEX LINEAR REGRESSION

In the study of linear regression problems, the strongly convex case is a classical and central theoretical
framework, serving as the standard entry point before many relaxing to weaker conditions (Hastie,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2009; Ge et al., 2019). In Section 4.1, we first give the problem setups and the main results of the
effective reuse rate. In Section 4.2, we give a proof sketch for our theoretical results, and the detailed
proof of this section can be found in Appendix G.

4.1 MAIN RESULTS

As we focus on the strongly convex case, we make the following assumption on the minimum
eigenvalue of the Hessian matrix.
Assumption 4.1 (Strong Convexity). We assume that λd ≥ µ for some constant µ > 0.

For simplicity, we make the following prior for the ground-truth weight w∗.
Assumption 4.2 (Parameter Prior). The ground truth w∗ satisfies w∗

i ̸= 0 for all i ∈ [d].

As the number of samples N can be very large in practice, training on the entire dataset for a large
amount of epochs can be computationally expensive. This motivates us to impose an upper bound on
the number of epochs K. Technically, this helps us to rule out cases with severe overfitting.
Assumption 4.3 (Computationally feasible number of epochs). We assume that the training dataset
size N and number of epochs K satisfy K = O(N0.1).

Here, the exponent 0.1 is chosen for ease of calculation, though it may not be tight.

To compute E(K,N), we first precisely characterize the optimal expected excess risk. In particular,
we derive asymptotic expansions for R̄∗(K,N) in the regimes K = o(logN) and K = ω(logN),
each expressed as a leading term accompanied by an explicitly controlled higher-order remainder.
Theorem 4.1 (Multi-Epoch Data Scaling Law). Under Assumptions 4.1 to 4.3, for multi-epoch SGD
with the number of epochs K, dataset size of N , it holds that

R̄∗(K,N) =

{
σ2tr(H)

8λd
(1 + oN (1)) · log(KN)

KN for K = o(logN),
σ2d
2 (1 + oN (1)) · 1

N for K = ω(logN).

Theorem 4.1 describes how expected excess risk decays with number of epochs K and dataset size
N when choosing the optimal learning rate. When K ≪ logN , then R̄∗(K,N) = Θ

(
log T
T

)
where

T = KN ; by contrast, when K ≫ logN , then R̄∗(K,N) = Θ
(

1
N

)
which does not depend on K,

showing that endless data reuse turns to be useless.

Next we propose the expression of E(K,N) by applying Theorem 4.1.
Theorem 4.2. Under Assumptions 4.1 to 4.3, for multi-epoch SGD with the number of epochs K,
dataset size of N , it holds that

E(K,N) =

{
(1 + oN (1)) ·K for K = o(logN),
tr(H)
4λdd

(1 + oN (1)) · logN for K = ω(logN).

Theorem 4.2 pinpoints two regimes for the effective reuse rate in the strongly convex case. The first
one is an effective-reuse regime: when K ≪ logN , then E(K,N) = K (1 + o(1)). This suggests
that each extra epoch is essentially as valuable as a fresh pass. The second one is a limited-reuse
regime: whenK ≫ logN , then E(K,N) = tr(H) logN

4λdd
(1+oN (1)), which means additional epochs

yield only logarithmic gains. This further implies that the model has effectively “seen” the dataset
enough times that additional repetition is redundant.

Together, these two asymptotic descriptions expose a phase transition when the quantity
limN→∞

K
logN changes from 0 to ∞. For the former case (limN→∞

K
logN = 0), multi-epoch

training behaves like unlimited data augmentation; fo the latter (limN→∞
K

logN = ∞), the benefits of
reusing data all but vanish, capping E(K,N) at Θ(logN). This insight provides a precise guideline
for practitioners: one should allocate epochs up to order logN to maximize effective data utilization,
but pushing K significantly beyond that yields rapidly diminishing returns.

Larger Datasets Can Be Repeated More. Our theorem provides the following insight. Fixing the
data distribution, as we collect more data, the largest possible epoch number K in the effective-reuse
regime also increases. This means that for larger datasets, multi-epoch training is able to reuse every
data point more effectively. Specifically, for the setup we study in this section, if we have collected N

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

data points in total, then with multi-epoch training, we can get a performance comparable to one-pass
training on Θ(N logN) data points, which is superlinear in the number of data points we collected.

This finding points out a neglected factor in the data-constrained scaling laws proposed in Muennighoff
et al. (2023), which assumed a uniform effective number of epochs across different fresh data sizes.
In Section 6.3, we validate this insight by showing that the effective reuse rate indeed increases with
the dataset size in LLM pretraining.

4.2 PROOF SKETCH

We now provide a proof sketch of our main results. First, we need to compute the optimal expected
excess risk R̄∗(K,N). This requires us to compute R̄(K,N ; η) and then select the optimal learning
rate η∗ that minimizes R̄(K,N ; η). However, due to the random shuffling and multi-pass processing
of the training data, directly analyzing R̄(K,N ; η) is intractable. To overcome this, we seek an
analytic approximation of R̄(K,N ; η), which is derived through the following steps.

Step 1: Bias-Variance Decomposition for Training Dynamics. Following the widely-applied
bias-variance decomposition approach to analyzing the dynamics of SGD training (Neu & Rosasco,
2018; Ge et al., 2019; Zou et al., 2021; Wu et al., 2022a), we define θt = wt −w∗ and examine
the following two processes of bias and variance: θbias

t+1 = θbias
t − η

〈
θbias
t ,xjt

〉
xjt , θvar

t+1 =

θvar
t − η ⟨θvar

t ,xjt⟩xjt + ηξjtxjt , where two processes are initialized as θbias
0 = w0 − w∗ and

θvar
0 = 0. It follows that θt = θbias

t + θvar
t , with E[θvar

t] = 0. We can then decompose the excess
risk R(wt) into two components: the bias term and the variance term, which we formalize as follows
R(wt) =

1
2 ∥θt∥

2
H = 1

2

∥∥θbias
t

∥∥2
H

+ 1
2 ∥θ

var
t ∥2H .

Step 2: Analytic Risk Approximation by Matrix Concentration. A key challenge in tracking the
dynamics of multi-epoch SGD training arises from the non-commutative nature of the matrices in
the weight updates, which depend on randomly shuffled and multi-pass data. For example, the bias
weight evolves as θbias

KN =
(∏K

k=1

(∏N
l=1

(
I − ηxπk(l)x

⊤
πk(l)

)))
θbias
0 , where we can see that one

data point appears more than once across different epochs. Thus, the above matrix multiplication
involves massive correlated data, which makes calculating the bias term E

[∥∥θbias
KN

∥∥2
H

]
intractable.

To resolve this issue, we borrow tools from concentration inequalities for matrix products Huang et al.
(2022). Specifically, we use the following result:
Lemma 4.1 (Corollary of Theorem 7.1 in Huang et al. (2022)). Given n data points such that
z0, · · · zn−1

i.i.d∼ N (0,H), and defining A =
∏n−1
j=0

(
I − ηzjz

⊤
j

)
, we have E∥A − EA∥l ≤(√

δAη2nl
)l
, where δA := C̃8eD4 log d for some absolute constant C̃ > 0.

However, several obstacles prevent us from directly applying Lemma 4.1 to our problem. For example,
we actually need to control error terms like E

∥∥∥∏k+1
i=K A(i) − (EA)l

∥∥∥, where A(i) represents the
product of sequential updates through all samples in epoch i (see the formal definition in Equation (1),
Appendix E). To address this, our main idea is to derive a tight upper bound for the original term, and
decompose this upper bound into the sum of a series of sub-terms for which we can apply Lemma 4.1.
(see the detailed derivation in Appendix G.2.1 and Appendix G.2.2)

Finally, we derive an error bound on matrix deviations based on our calculations, which is a higher-
order infinitesimal of the main term when η ∈

[
Ω
(
T−1

)
, o(T− 3

4)
]

and K = o
(
η−1T− 3

4

)
, with

T := KN denoting the total number of training steps. This provides a theoretical guarantee for us to
approximate the risk function with a tractable expression. For the bias term, we have

E
[∥∥θbias

KN

∥∥2
H

]
= E

∥∥∥∥∥
(

K∏
k=1

(
N−1∏
l=0

(
I − ηxπk(l)x

⊤
πk(l)

)))
θ0

∥∥∥∥∥
2

H


≈

∥∥∥∥∥
(

K∏
k=1

E

[
N−1∏
l=0

(
I − ηxπk(l)x

⊤
πk(l)

)])
θ0

∥∥∥∥∥
2

H

=
∥∥((I − ηH)KN

)
θ0
∥∥2
H
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the approximation step follows from Lemma 4.1, and the last equation follows the facts that
E
[
xπk(l)x

⊤
πk(l)

]
= H and xi is uncorrelated with xj for i ̸= j. For the variance term, the data

correlation issue is similar to what we met in the bias term case. Again, leveraging Lemma 4.1 and
following a similar analysis, we can get an approximation formula for the variance term as shown:

E
[
∥θvar

KN∥2H
]
≈ 2σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)
+ ησ2

〈
H, (I − (I − ηH)2KN)(2I − ηH)−1

〉
.

Step 3: Narrowing the Range for Optimal Learning Rate. However, despite we have an analytic
approximation for risk, it is important to note that this approximation holds only for a specific range
of parameters. For a detailed discussion, refer to Lemma G.1. To mitigate this, we first determine
a reasonable range for the optimal learning rate in two steps: First, we choose η̃ = logKN

2λdKN
as a

reference learning rate; Then, by comparing the losses for the reference learning rate and other
candidate learning rates, we can eliminate a large range of values. This analysis helps narrow down
the potential range of learning rates (Lemma G.5 for small K and Lemma G.6 for large K). Within
this range, we further simplify the risk approximation to make it more tractable for optimization, as
shown in the following lemmas:
Lemma 4.2 (Small K). Let H = PDP⊤ be the canonical form of H under similarity,
and let θ̃2d :=

∑d
l=d−nd+1(Pθ0)

2
l . Under Assumption 4.1 and 4.3, for learning rate η ∈[

logKN
3λdKN

, D
2tr(H) logKN
λdtr(H2)KN

]
, K = o(logN), we have R̄(K,N ; η) = M(K,N ; η)(1 + o(1)) with

M(K,N ; η) := 1
2 θ̃

2
dλd exp(−2λdηKN) + ηtr(H)σ2

4 .

Lemma 4.3 (Large K). We define θ̃2d as the same as Lemma 4.2. Under Assumption 4.1 and 4.3,
for learning rate η ∈ [logKN3λdKN

, o
(

1
N

)
] and K = ω(logN), we have R̄(K,N ; η) =M(K,N ; η)(1+

o(1)) with M(K,N ; η) = 1
2 θ̃

2
dλd exp(−2λdηKN) + ηtr(H)σ2

4 + σ2d
2N .

Step 4: Deriving the Approximately Optimal Learning Rate. At this point, we have narrowed
down the range for the optimal learning rate and simplified the risk approximation. The next step is
to approximate the optimal expected excess risk. To achieve this, we differentiate the simplified risk
function M(K,N ; η) in Lemma 4.2 and Lemma 4.3 with respect to the learning rate η and give the
critical point η = η′(K,N), which are presented as follows:
Lemma 4.4 (Approximately Optimal Learning Rate). Under Assumption 4.1 and 4.3, we consider K-
epoch SGD withN fresh data and learning rate η = η′(K,N) = log ρKN

2λdKN
, where ρ :=

4θ̃2dλd

tr(H)σ2 . Then
it holds for K = o(logN) or K = ω(logN) that R̄(K,N ; η′(K,N)) = R̄∗(K,N) (1 + o(1)) .

Using Lemma 4.4, we complete the proof as follows. By evaluating the risk at the approximately opti-
mal learning rate η′(K,N) = log ρKN

2λdKN
, we obtain an approximation of the optimal risk (Theorem 4.1),

based on which we derive the effective reuse rate (Theorem 4.2).

5 A SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

Natural data distributions often exhibit power law structures. To capture this phenomenon, we go
beyond the strongly convex case and analyze a stylized linear regression model with Zipf-distributed
data, where the excess risk admits a closed-form expression and the effective reuse rate can be
characterized explicitly.

Through this setup, we can see that the effective reuse rate exhibits a similar scaling behavior: as
the number of epochs K increases, E(K,N) initially grows linearly but eventually saturates at a
problem-dependent value that increases with N . In contrast to the strongly convex case, however, the
saturation point does not scale as ∼ logN but instead scales as a power of N .

Problem Setup. We use the same notation for excess risk, one-pass and multi-epoch SGD, and
i.i.d. training data as in Section 3. We specify the data distribution as a Zipf distribution over d
one-hot data points, where the i-th data point is x(i) = µiei for some µi > 0 and the probability

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

of sampling the i-th data point is pi = c · i−α for some constants c > 0 and α > 1. The label
is generated by y = ⟨w∗,x⟩ with no label noise. The ground-truth weight w∗ ∈ Rd follows an
isotropic prior distribution.
Assumption 5.1 (Parameter Prior). w∗ is sampled from a prior distribution with E[w∗w∗⊤] = I .

Interpretation. This setup can be interpreted as a simplified model of real-world data with heavy-
tailed feature distributions. Each coordinate represents an atomic feature that appears with Zipf-
distributed probability, mimicking the long-tailed statistics observed in domains such as text and
natural language. The scaling factors µi encode feature importance, which may reflect, for instance,
effects introduced by feature weighting or normalization.

5.1 RESULTS ON POWER-LAW SPECTRUM

Assumption 5.2 (Power-Law Spectrum). There exist two constants a, b > 0 with a− b > 1 such that

the data input distribution satisfies that pi = ci−(a−b) and Λi = i−b, where c =
(∑d

i=1
1

ia−b

)−1

.

Here we establish matching upper and lower bounds for R̄∗(K,N) in the small-K and large-K
regimes, given the solvable model. Comparing with the strongly convex case, we observe a different

scaling behavior: when K ≪ N
b

a−b , R̄∗(K,N) decays as a power law in KN , with exponent a−1
a ;

whereas when K ≫ N
b

a−b , R̄∗(K,N) exhibits a power-law decay in N and is independent of K.
Theorem 5.1. Consider a K-epoch SGD over N fresh data. Under Assumptions 5.1-5.2, and given
the data dimension d = Ω((KN)

1
a), it holds that

R̄∗(K,N) ≍

{
(KN)

− a−1
a for K = o(N

b
a−b)

N− a−1
a−b for K = ω(N

b
a−b).

Then we derive the formula of E(K,N) by first solving the equation R̄∗(1, T ′) = R̄∗(K,N) based
on Theorem 5.1, and divide T ′ by N .
Theorem 5.2 (Multi-Epoch Scaling Under Power-Law Spectrum). Consider a K-epoch SGD over N
fresh data. Under Assumptions 5.1-5.2, and given the data dimension d = Ω((KN)

1
a), it holds that

E(K,N) =

{
K(1 + o(1)) for K = o(N

b
a−b)

Θ(N
b

a−b) for K = ω(N
b

a−b).

Under the assumption of a logarithmic power-law spectrum, the trend of the effective reuse rate as a
function of K approximates the phenomena described in Theorem 4.2 in the strongly convex setting
and the trend described in Theorem 4.2 under the power-law spectrum assumption. We still observe
an effective-reuse regime (E(K,N) ≈ K) when K is relatively small (K ≪ N b/(a−b)), and as
K increases, the effective reuse rate undergoes a phase transition, converging to an upper bound
determined by N , entering the limited-reuse regime (E(K,N) = Θ(N b/(a−b))).

We can see that the exponent of this power of N is determined by the rate of eigenvalue decay of
the Hessian and the rate of norm decay of the parameter with respect to dimension. The proofs of
Theorem 5.1 and Theorem 5.2 are given in Appendix I.2 and Appendix I.3 respectively.

5.2 RESULTS ON LOGARITHMIC POWER-LAW SPECTRUM

Further, we aim to understand under the same Hessian matrix, how the data distribution correlated
with P and Λ affects the effective reusing rate. By changing the spectrum of Λ, we can also obtain
matching upper lower bounds for R̄∗(K,N) and a characterization for E(K,N), which behave
differently from the power-spectrum case. Here we present only the latter; the former can be seen in
Appendix D.
Assumption 5.3 (Logarithmic Power-Law Spectrum). There exist two constants a > 1, b > 0 such
that the data input distribution satisfies that pi = ci−a logb(i+ 1) and Λi = 1/logb(i+ 1), where

c =
(∑d

i=1 i
−alogb(i+ 1)

)−1

.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

100 1000 10000 100000
N

2

3

4

E(
K,

N)

E(K,N) vs N for Different K
k = 2
k = 3
k = 5
k = 10
k = 20

(a) Strongly convex case: E(K,N)
with N .

100 101 102 103
K

100

101

E(
K,

N
)

Power Spectrum: E(K, N) vs K
N = 5 * 104

N = 1 * 105

N = 5 * 105

N = 1 * 106

N = 5 * 106

N = 1 * 107

11 12 13 14 15 16
log(N)

101

E(
K,

N
)

Power Spectrum: E(K, N) vs log(N)
K=2
K=100
K=1000
E(K, N) = 0.245N0.279

(b) The solvable case with Zipf-distributed data and power spectrum:
E(K,N) versus K and N .

Figure 1: Simulation experiments for strongly-convex linear regression and the solvable case with Zipf-
distributed data and power spectrum. Results show that E(K,N) is approximately proportional to some
function of N when N is relatively small, and E(K,N) ≈ K when N is relatively large. For the solvable
case with Zipf-distributed data and power spectrum, we also fit the effective reuse rate using the formula
E(K,N) = c1N

c2 suggested by Theorem 5.2, and the fitted exponent c2 = 0.279 ≈ b
a−b

= 2
7

matches our
theory.

Theorem 5.3 (Multi-Epoch Scaling Under Logarithmic Power-Law Spectrum). Under Assump-
tions 5.1, Assumption 5.3, and given the data dimension d = Ω((KN)

1
a) for a one-pass SGD and a

K-epoch SGD over N fresh data, it holds that

E(K,N) =

{
K(1 + o(1)) for K = o(logbN)

Θ(logbN) for K = ω(logbN).

The Saturation Point Varies across Different Problem Setups. The phase transition point where
the effectiveness of data reusing changes from effectively reused to limitedly reused varies across
different problem setups. In strongly convex linear regression problems, this phase transition happens
when the limit limK→∞

K
logN changes from 0 to ∞. And in the above power spectrum and log-power

spectrum case, the limit turns to be limK→∞
K

Nb/(a−b) and limK→∞
K

logbN
.

6 EXPERIMENTS

6.1 SIMULATIONS IN SECTION 4

First, we conduct our experiments on synthetic dataset with a strongly convex linear regression to
verify the characterization of effective reuse rate E(K,N) in Theorem 4.2.
Experiments Setup. We generate data pairs (xi, yi) where xi

i.i.d∼ N (0, Id) with dimension
d = 100. For the label yi, we generate it as yi = ⟨w∗,xi⟩ + ξi, where w∗ is the ground truth
generate by standard Gaussin with unit variance. Also, ξi

i.i.d∼ N (0, σ2Id). Here in our simulation,
we set σ to 0.1. To make our simulation aligned with the theoretical setup, we set the learning rate
η ∝ logKN

KN , and we grid search the ratio c := η
logKN/KN for the c∗ which minimizes the final loss

given training steps T = KN .
Results. As shown in Figure 1a, we plot E(K,N) as a function of logN for various fixed values
of K. Each curve corresponds to a fixed number of epochs (e.g., K = 3, 5, . . . , 20) and illustrates
how the effective reuse rate E(K,N) grows with dataset size. For small data size (logN ≪ K),
the effective reuse factor increases roughly linearly with logN , indicating that adding more data
substantially boosts the one-pass equivalent performance. However, as N becomes large (logN ≫
K), each curve flattens out and approaches an asymptote at E(K,N) ≈ K. In other words, once the
dataset is sufficiently large relative to the number of epochs, additional passes through the same data
yield no further benefit beyond a factor of K. This behavior is exactly as predicted by Theorem 4.2:
whenK is much smaller than logN , we haveE(K,N) ≈ K (nearly fullK-fold data reuse), whereas
when K is large relative to logN , the effective reuse saturates and grows only on the order of logN .

6.2 SIMULATIONS IN SECTION 5.1

We now verify the predictions of Theorem 5.2 using synthetic data generated under the spectral
assumptions of Section 5 with a power-law decay Hessian spectrum (Assumption 5.2). In all sub-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
#Epoch

0

5

10

15

20

E(
K,

N)

E(K,N) = #Epoch

0.2B 0.5B 0.8B 1B 2B

(a) The effective reuse rate E(K,N) as a function
of the epoch number K.

103 104 105

Step

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

500M Tokens x 4.8 Epochs

1B Tokens x 5.2 Epochs
2B Tokens x 5.8 Epochs

One Pass (200B) 500M 1B 2B

(b) Training loss as a function of training steps for different
fresh data sizes.

Figure 2: The effective reuse rate E(K,N) over K and training curves in language model experiments.
Figure 2a shows that E(K,N) ≈ K when K is small, to be specific, K ≤ 4. Figure 2b plots the points where
E(K,N) = 0.8K under different configurations, and we observe that E(K,N) increases as N increases,
indicating that larger datasets can be repeated more.

figures of Figure 1b, we set the data dimension d to 105 and tune all the learning rates to their optimal
values. Here we set a = 4.5 and 1.

Results. Figure 1b plots E(K,N) versus K and logN for the solvable model with Zipf-distributed
data. The curves depicting E(K,N) versus K show that E(K,N) ≈ K when K is relatively small
and saturate to some value depending on N when K is large. In the right panel, which describes
the relationship between E(K,N) and logN , we observe that when K is small (namely K = 2),
E(K,N) increases and approaches K as logN increases, and the plots overlap when K is large.
Those phenomena provide empirical confirmation of the scaling behaviors predicted by Theorem 5.2.
We also fit E(K,N) in the large-K regime with a power-form function as stated in Theorem 5.2.
The fitted exponent is 0.279 ≈ b

a−b =
2
7 , aligning with our theory.

6.3 EMPIRICAL VERIFICATION IN LARGE LANGUAGE MODELS

Experiments Setup. We conduct experiments on a large language model to empirically validate
the hypothesis that larger datasets allow for more effective repetition. We perform pretraining runs
with fresh data sizes of 0.2B, 0.5B, 0.8B, 1.0B, and 2B tokens, each trained for 100 epochs. As a
control, we also include a run with 200B fresh tokens. For each fresh dataset size N and training
epoch K, we approximate the effective reuse rate E(K,N) by determining the effective fresh data
size Nf (K,N) required to achieve the same validation loss after one pass through the data. The
effective reuse rate is then computed as: E(K,N) =

Nf (K,N)
N .

Our experiments utilize a 0.3B parameter model adapted from the Qwen2.5-0.5B architecture (Qwen
et al., 2025) and a subset of the DCLM dataset, totaling 200B tokens. A separate subset of the
DCLM dataset is reserved for validation. Crucially, we use a constant learning rate schedule across
all experiments to align with our theoretical analysis and mitigate the confounding effects of learning
rate schedules, as reported in prior work (Hoffmann et al., 2022; Luo et al., 2025). Figure 2a depicts
the relationship between E(K,N) and K. Figure 2b depicts the training curves for different data
sizes, and marks the points of different curves where E(K,N) = λK, where λ controls how strict
the criterion is for determining when multi-epoch training begins to underperform one-pass training.
Given such λ, we denote the corresponding number of training epochs as K(λ,N), which we refer to
as saturation points. In our experiments, we take λ = 0.75. Further, in Figure 3, we show the precise
relationship between K(λ,N) and N . More details regarding the experiment setup are available in
Appendix C.1.

Previous Work: When K ≤ 4, E(K,N) ≈ K. Our theoretical analysis indicates that E(K,N)
should be close to K when K is small (e.g., K ≤ 4). In Figure 2a, when the epoch number is small
(approximately ≤ 5), we observe that E(K,N) increases at a rate comparable to the epoch number,
as indicated by the black dashed line. Thus our predictions of E(K,N) when K is small aligns with
the data-constrained scaling laws (Muennighoff et al., 2023).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1006 × 10 1 2 × 100

Fresh Data Size(B)

4.75

5.00

5.25

5.50

5.75

Sa
tu

ra
tio

n
Po

in
ts

Fit: y = 0.80 log x + 5.21
 r = 0.97

Figure 3: The saturation points K(λ,N) as a function of the dataset size N.

Larger Datasets Allow More Repetition. E(K,N) increases with the number of fresh data sizes
and eventually saturates for sufficiently large fresh datasets. Our results challenge the data-constrained
scaling laws proposed by Muennighoff et al. (2023), which assume a uniform effective number of
epochs across different fresh data sizes. In Figure 2b, we show that at the critical points where
one-pass training start to outperform multi-epoch training significantly, E(K,N) increases as N
increases. This suggests the continued potential for scaling pretraining through multi-epoch training
with larger datasets.

Fitting Experiments. In Figure 3, to provide real-world evidence that larger datasets can be
repeated more, we plot the saturation point values for different N to illustrate how they vary with N .
Then we fit them as a function of N ; see Appendix C.2 for details of the fitting procedure.

Surprisingly, though we do not claim that E(K,N) = Θ(logN) holds for general LLM trainings
when K is large, as we calculated in the strongly convex linear regression case, here we do observe
thatK(λ,N) gradually increases whenN increases, and it follows thatK(λ,N) ≈ 0.80 logN+5.21
with the correlation coefficient being r = 0.97. In this formula, the dataset N is measured in billions
of tokens (B).

Experiments with Learning Rate Decay. For further investigation of the scaling behaviour of
multi-epoch training, we conduct LLM experiments with a non-constant learning rate schedule,
aligning with the common practice in reality. Specifically, we additionally repeat the above analysis
with a WSD learning rate schedule with linear decay. The experimental setup and results are described
in Appendix C.3.

7 CONCLUSION

In this paper, we characterize how multi-epoch training reshapes data scaling laws through the
notion of effective reuse rate E(K,N), defined as the multiplicative factor by which the dataset must
grow under one-pass training to achieve the same test loss as K-epoch training on N samples. In
linear regression with SGD, we prove that when K is small, E(K,N) ≈ K; as K grows, E(K,N)
plateaus at a value of order Θ(logN) under strong convexity and at a power of N under a data
distribution with power-law structure. Therefore, repeating data is not equivalent to scaling by a
constant independent of N ; larger datasets can be repeated more before returns diminish.

Several directions remain open for future study. (i) Our analysis is limited to the linear model, and it
would be interesting to extend the framework to more complex and realistic settings, such as neural
networks with feature learning. (ii) Our work focuses on reusing the whole dataset with multiple
epochs. However, to fully explore the potential of data reuse, one can consider a more efficient
and heuristic approach to repeating data, such as data mixing, curriculum learning, or reusing only
high-quality data. (iii) Technically, our main results rely on strong convexity. In the non-strongly
convex regime, we provide a solvable case with a Zipf-law data distribution. It would be interesting
to generalize these proof ideas to general non-strongly convex linear regression.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,
Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative
mixed-modal language models. In International Conference on Machine Learning, pp. 265–279.
PMLR, 2023.

Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan. Repetita iuvant:
Data repetition allows sgd to learn high-dimensional multi-index functions, 2025. URL https:
//arxiv.org/abs/2405.15459.

Alexander Atanasov, Jacob A Zavatone-Veth, and Cengiz Pehlevan. Scaling and renormalization in
high-dimensional regression. arXiv preprint arXiv:2405.00592, 2024.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. arXiv preprint arXiv:2402.01092, 2024a.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve neural
scaling laws. arXiv preprint arXiv:2409.17858, 2024b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

François Charton and Julia Kempe. Emergent properties with repeated examples. arXiv preprint
arXiv:2410.07041, 2024.

Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and Florent Krzakala.
The benefits of reusing batches for gradient descent in two-layer networks: Breaking the curse of
information and leap exponents, 2024. URL https://arxiv.org/abs/2402.03220.

Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger conver-
gence rates for least-squares regression. Journal of Machine Learning Research, 18(101):1–51,
2017.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails: Model
collapse as a change of scaling laws. arXiv preprint arXiv:2402.07043, 2024.

Damien Ferbach, Katie Everett, Gauthier Gidel, Elliot Paquette, and Courtney Paquette. Dimension-
adapted momentum outscales sgd. arXiv preprint arXiv:2505.16098, 2025.

Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons,
1999.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. Advances in neural
information processing systems, 32, 2019.

Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. The heavy-tail phenomenon in sgd. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 3964–3975. PMLR, 18–
24 Jul 2021. URL https://proceedings.mlr.press/v139/gurbuzbalaban21a.
html.

Trevor Hastie. The elements of statistical learning: data mining, inference, and prediction, 2009.

11

https://arxiv.org/abs/2405.15459
https://arxiv.org/abs/2405.15459
https://arxiv.org/abs/2402.03220
https://proceedings.mlr.press/v139/gurbuzbalaban21a.html
https://proceedings.mlr.press/v139/gurbuzbalaban21a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, et al. Scaling laws and interpretability
of learning from repeated data. arXiv preprint arXiv:2205.10487, 2022.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

De Huang, Jonathan Niles-Weed, Joel A Tropp, and Rachel Ward. Matrix concentration for products.
Foundations of Computational Mathematics, 22(6):1767–1799, 2022.

Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and surrogate
data, 2024. URL https://arxiv.org/abs/2402.04376.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Power laws for hyperparameter
optimization. arXiv preprint arXiv:2302.00441, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser, Rafael Rafailov, David L
Donoho, and Sanmi Koyejo. Collapse or thrive? perils and promises of synthetic data in a
self-generating world. arXiv preprint arXiv:2410.16713, 2024.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. arXiv
preprint arXiv:2107.06499, 2021.

Binghui Li, Fengling Chen, Zixun Huang, Lean Wang, and Lei Wu. Unveiling the role of learning
rate schedules via functional scaling laws. arXiv preprint arXiv:2509.19189, 2025a.

Houyi Li, Wenzhen Zheng, Jingcheng Hu, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie
Xuyang, Yuantao Fan, Shuigeng Zhou, Xiangyu Zhang, and Daxin Jiang. Predictable scale:
Part i – optimal hyperparameter scaling law in large language model pretraining, 2025b. URL
https://arxiv.org/abs/2503.04715.

Xuheng Li and Quanquan Gu. Understanding sgd with exponential moving average: A case study in
linear regression. arXiv preprint arXiv:2502.14123, 2025.

Junhong Lin and Lorenzo Rosasco. Optimal rates for multi-pass stochastic gradient methods, 2019.
URL https://arxiv.org/abs/1605.08882.

Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear
regression: Compute, parameters, and data. arXiv preprint arXiv:2406.08466, 2024.

Licong Lin, Jingfeng Wu, and Peter L Bartlett. Improved scaling laws in linear regression via data
reuse. arXiv preprint arXiv:2506.08415, 2025.

12

https://arxiv.org/abs/2402.04376
https://arxiv.org/abs/2503.04715
https://arxiv.org/abs/1605.08882

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Zhiyuan Liu, Maosong Sun, Kaifeng Lyu,
and Wenguang Chen. A multi-power law for loss curve prediction across learning rate schedules.
arXiv preprint arXiv:2503.12811, 2025.

Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
arXiv preprint arXiv:2210.16859, 2022.

Alexandru Meterez, Depen Morwani, Costin-Andrei Oncescu, Jingfeng Wu, Cengiz Pehlevan, and
Sham Kakade. A simplified analysis of sgd for linear regression with weight averaging. arXiv
preprint arXiv:2506.15535, 2025.

Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural scaling.
Advances in Neural Information Processing Systems, 36, 2024.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023.

Yoonsoo Nam, Nayara Fonseca, Seok Hyeong Lee, and Ard Louis. An exactly solvable model for
emergence and scaling laws. arXiv preprint arXiv:2404.17563, 2024.

Gergely Neu and Lorenzo Rosasco. Iterate averaging as regularization for stochastic gradient descent.
In Conference On Learning Theory, pp. 3222–3242. PMLR, 2018.

Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of compute-
optimal neural scaling laws, 2025. URL https://arxiv.org/abs/2405.15074.

Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of stochastic
gradient descent on hard learning problems through multiple passes, 2018. URL https://
arxiv.org/abs/1805.10074.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold,
2020. URL https://arxiv.org/abs/2004.10802.

Xian Shuai, Yiding Wang, Yimeng Wu, Xin Jiang, and Xiaozhe Ren. Scaling law for language
models training considering batch size. arXiv preprint arXiv:2412.01505, 2024.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
arXiv preprint arXiv:2211.09085, 2022.

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge University Press, 2018.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Will we run out of data? limits of llm scaling based on human-generated data, 2024.

Peihao Wang, Rameswar Panda, and Zhangyang Wang. Data efficient neural scaling law via model
reusing. In International Conference on Machine Learning, pp. 36193–36204. PMLR, 2023.

13

https://arxiv.org/abs/2405.15074
https://arxiv.org/abs/1805.10074
https://arxiv.org/abs/1805.10074
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2004.10802

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
real-world neural representations generalize. In International Conference on Machine Learning,
pp. 23549–23588. PMLR, 2022.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. Last iterate
risk bounds of sgd with decaying stepsize for overparameterized linear regression, 2022a. URL
https://arxiv.org/abs/2110.06198.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. The power
and limitation of pretraining-finetuning for linear regression under covariate shift, 2022b. URL
https://arxiv.org/abs/2208.01857.

Zhangjie Xia, Chi-Hua Wang, and Guang Cheng. Data deletion for linear regression with noisy sgd.
arXiv preprint arXiv:2410.09311, 2024.

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not to repeat:
Insights from scaling llm under token-crisis. Advances in Neural Information Processing Systems,
36:59304–59322, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster, and
Sham Kakade. How does critical batch size scale in pre-training? arXiv preprint arXiv:2410.21676,
2024.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
of constant-stepsize sgd for linear regression. In Conference on Learning Theory, pp. 4633–4635.
PMLR, 2021.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P. Foster, and Sham M. Kakade.
The benefits of implicit regularization from sgd in least squares problems, 2022. URL https:
//arxiv.org/abs/2108.04552.

Nicolas Zucchet, Francesco d’Angelo, Andrew K Lampinen, and Stephanie CY Chan. The emer-
gence of sparse attention: impact of data distribution and benefits of repetition. arXiv preprint
arXiv:2505.17863, 2025.

14

https://arxiv.org/abs/2110.06198
https://arxiv.org/abs/2208.01857
https://arxiv.org/abs/2108.04552
https://arxiv.org/abs/2108.04552

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 2

3 Preliminaries 3

4 Multi-Epoch Scaling in Strongly Convex Linear Regression 3

4.1 Main Results . 4

4.2 Proof Sketch . 5

5 A Solvable Case with Zipf-distributed Data 6

5.1 Results on Power-Law Spectrum . 7

5.2 Results on Logarithmic Power-law Spectrum . 7

6 Experiments 8

6.1 Simulations in Section 4 . 8

6.2 Simulations in Section 5.1 . 8

6.3 Empirical Verification in Large Language Models 9

7 Conclusion 10

A The Use of Large Language Models (LLMs) 17

B Additional Related Works 17

C Additional Experimental Details for LLM Training 18

C.1 Pretraining Setup . 18

C.2 Fitting Experiments . 18

C.3 Experiments with WSD Learning Rate Schedule 19

D Additional Results and Simulations for Logarithmic Power-Law Spectrum 20

D.1 Scaling Law for Logarithmic Power-Law Spectrum 20

D.2 Simulations in Section 5.2 . 20

E Additional Notations 20

F Proof Outline in Strongly Convex Linear Regression 21

G Proof of Main Results in Strongly Convex Linear Regression 22

G.1 Step I: A Concrete Version of Bias-Variance Decomposition 22

G.2 Step II: Risk Approximation and Error Bound Analysis 22

G.2.1 Variance Term Analysis: Proof of Lemma G.2 23

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

G.2.2 Bias Term Analysis: Proof of Lemma G.3 30

G.3 Step III: Narrowing the Range for Optimal Learning Rate 33

G.3.1 A description of the Range of Optimal Learning Rate, Small-K Case . . . 34

G.3.2 A description of the Range of Optimal Learning Rate, Large-K Case . . . 35

G.3.3 An Approximation of the Excess Risk, Small-K Case 36

G.3.4 An Approximation of the Excess Risk, Large-K Case 37

G.4 Step IV: Deriving the Approximately Optimal Learning Rate, Proof of Lemma 4.4 . 38

G.4.1 Proof of Lemma 4.4, small K . 38

G.4.2 Proof of Lemma 4.4, large K . 39

G.5 Proof of Theorem 4.1 . 39

G.6 Proof of Theorem 4.2 . 41

H Proof Outline for the Solvable Case with Zipf-distributed Data 43

I Proof of Main Results for the Solvable Case with Zipf-distributed Data 44

I.1 A Closed Formula for the Excess Risk: Proof of Lemma I.1 44

I.2 Scaling Laws for Power-Law Spectrum: Proof of Theorem 5.1 45

I.2.1 Proof of Theorem 5.1: Small-K Case . 45

I.2.2 Proof of Theorem 5.1: Large-K Case . 49

I.3 E(K,N) for Power-Law Spectrum: Proof of Theorem 5.2 50

I.3.1 Proof of Theorem 5.2, small-K case . 50

I.3.2 Proof of Theorem 5.2, Large-K Case . 51

I.4 Scaling Laws for Logarithmic Power-Law Spectrum: Proof of Theorem D.1 52

I.4.1 Proof of Theorem D.1: Small-K Case . 52

I.4.2 Proof of Theorem D.1, Large-K case . 56

I.5 E(K,N) for Logarithmic Power-Law Spectrum: Proof of Theorem 5.3 57

I.5.1 Proof of Theorem 5.3, Small-K Case . 57

I.5.2 Proof of Theorem 5.3, Large-K Case . 57

J Additional Technical lemmas 58

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we use LLMs (mainly GPT-5 series) to polish some of the sections in our paper, and to
check the grammatical issues. Besides that, we use LLMs to debug our code in LLM experiments
(Section 6.3) and simulation experiments for Section 4 and Section 5. Also, LLMs are used to help
improve the plotting scripts.

B ADDITIONAL RELATED WORKS

Data Reuse in Synthetic Setting. Besides the real-world LLM pre-training regime, many works
also reported the improvement of data reusing under synthetic settings empirically (Charton & Kempe,
2024; Kazdan et al., 2024) or theoretically (Zucchet et al., 2025; Dandi et al., 2024; Arnaboldi et al.,
2025).

Empirical Findings on Scaling Laws. Scaling laws reveal the relationships between large-scale
model training loss and various factors such as model size, data size, and compute budget. These
laws were initially observed by Hestness et al. (2017), but gained significant influence through the
work of Kaplan et al. (2020), and have since been further developed in a series of studies (Henighan
et al., 2020; Hoffmann et al., 2022; Zhai et al., 2022; Kadra et al., 2023; Aghajanyan et al., 2023;
Muennighoff et al., 2023; Bi et al., 2024; Shuai et al., 2024; Kumar et al., 2024; Tissue et al., 2024;
Luo et al., 2025). Notably, Muennighoff et al. (2023) further refined these models by incorporating
the number of training epochs into a more complex scaling law, which empirically describes the
effect of data reuse. In our work, we provide a theoretical analysis of how the effective reuse rate
E(K,N) relies on the epoch number K and fresh data size N , highlighting the role of N in the
scaling behavior of E(K,N), a factor that was overlooked in Muennighoff et al. (2023).

Theoretical Explanations for Scaling Laws. A series of studies (Sharma & Kaplan, 2020; Hutter,
2021; Maloney et al., 2022; Wei et al., 2022; Jain et al., 2024; Michaud et al., 2024; Nam et al., 2024;
Atanasov et al., 2024; Dohmatob et al., 2024; Bahri et al., 2024; Bordelon et al., 2024a; Lin et al.,
2024; Paquette et al., 2025; Bordelon et al., 2024b; Zhang et al., 2024; Ferbach et al., 2025; Li et al.,
2025a) have sought to theoretically explain scaling laws from various perspectives. Among these,
recent works (Bordelon et al., 2024a; Paquette et al., 2025; Lin et al., 2024; Bordelon et al., 2024b)
have analyzed scaling laws by tracking the training dynamics of SGD through linear regression setup.
Specifically, Bordelon et al. (2024a) investigated a full-batch gradient flow setup, while Paquette et al.
(2025) and Bordelon et al. (2024b) focused on online SGD with a sufficiently small constant learning
rate. Additionally, Lin et al. (2024) studied a geometric decaying learning rate schedule (LRS) (Ge
et al., 2019; Wu et al., 2022a). Recently, Li et al. (2025a) proposed a functional scaling law that
characterizes the loss dynamics for general LRSs. However, these scaling law studies did not account
for the impact of data reuse. In contrast, our work examines the scaling behavior of multi-epoch SGD
training within the context of a linear regression setup.

SGD Analysis in Linear Regression. The analysis of SGD in linear regression has been extensively
studied over the years, encompassing both one-pass and multi-epoch SGD. In the context of one-pass
SGD, Zou et al. (2021); Meterez et al. (2025) considered an SGD procedure with a constant step size
and averaged iterates, offering a sharp risk bound in terms of the eigenvalues of the covariance matrix.
Gurbuzbalaban et al. (2021) examined one-pass SGD with batch size and proved that the distribution
of the SGD iterates will converge to a heavy-tailed stationary distribution. Zou et al. (2022) compared
the performance of SGD in the absence of ridge regression. Wu et al. (2022a) and Wu et al. (2022b)
studied SGD in linear regression under covariate shift. Xia et al. (2024) considered SGD updates with
noisy gradient and analyzed the perfect deleted point problem. Li & Gu (2025) considered SGD with
exponential moving average in the linear regression setting. For multi-epoch SGD, Lin & Rosasco
(2019) examined a scenario in which gradients are sampled uniformly at random and mini-batches
are allowed. They analyzed the effects of mini-batch size, number of epochs, and learning rate,
carefully combining these parameters to achieve the optimal convergence rate. Pillaud-Vivien et al.
(2018) showed that while single-pass averaged SGD is optimal for a certain class of "easy" problems,
multiple passes are required to achieve optimal prediction performance on a different class of "hard"
problems, provided that an appropriate step size is chosen. In contrast to the matching upper and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

lower bounds derived by our theory, however, all the above works were only able to derive an upper
bound for the loss.

C ADDITIONAL EXPERIMENTAL DETAILS FOR LLM TRAINING

C.1 PRETRAINING SETUP

In our pretraining experiments, we employ the AdamW optimizer with a weight decay of 0.1 and a
gradient clip of 1.0. We set the peak learning rate to 0.001, aligning with the approximate optimal
learning rate reported by Li et al. (2025b). Balancing the optimal batch size suggested by Li et al.
(2025b) with training efficiency, we utilize a sequence batch size of 128, which corresponds to
roughly 0.5M data points per batch. We adopt the vocabulary of Qwen2.5 (Qwen et al., 2025) models.
Our pretraining model consists of approximately 117 million non-embedding parameters, consistent
with the methodology of Kaplan et al. (2020), and a total of 331 million parameters following the
convention of Hoffmann et al. (2022). The detailed hyperparameter configurations are presented in
Table 2, and the model architecture specifications are provided in Table 1. To ensure a fair comparison
by eliminating the influence of batch order variations, we fix the random seed that governs the data
stream across all experiments.

Table 1: Model configurations and parameter counts. dh: hidden dimension; df : feed-forward
dimension; nl: number of Transformer layers; nh: number of attention heads; nkv: number of key-
value heads (for grouped-query attention); Vocab Size: size of tokenizer vocabulary; #NE params:
number of non-embedding parameters (in millions); #Params: total number of model parameters (in
millions).

Name dh df nl nh nkv Vocab Size #NE params #Params

0.5B 896 4864 24 14 2 151936 355 491
0.3B 640 3328 16 10 2 151936 117 331

Table 2: LLM Experiment Settings

Parameter Value
Data

Sequence Batch Size 128
Sequence Length 4096

Learning Rate
Peak Learning Rate 0.001
Schedule Constant
Warmup Steps 400

Optimizer
Optimizer AdamW
Weight Decay 0.1
β1 0.9
β2 0.95
ϵ 1e-8
Gradient Clip 1.0

C.2 FITTING EXPERIMENTS

To provide real-world evidence that larger datasets can be repeated more, we show how the saturation
points can be used to determine the appropriate number of training epochs. Recall that the saturation
points are the points at which multi-epoch training first starts to underperform the one-pass base-
line. We estimate these points from the pretraining loss curves presented in Section 6.3 and fit its
dependence on N .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1006 × 10 1 2 × 100

Fresh Data Size(B)

4

5

6

7

Sa
tu

ra
tio

n
Po

in
ts

Fit: y = 2.35 log x + 5.25
 r = 0.96

Figure 4: The saturation points K(λ,N) as a function of the data size N under a WSD learning rate
schedule with linear decay.

To estimate this quantity from the training curves, we proceed as follows. First, to reduce the impact
of noise, we smooth the loss curves with exponential moving average (EMA) with decay coefficient
α = 0.9 and a window size of 3 checkpoints. Then for each dataset size N , we examine the ratio
E(K,N)/K. A larger ratio requires multi-epoch training to remain very close to the one-pass
baseline, whereas a smaller ratio allows more deviation. Next, given a threshold hyperparameter λ,
we identify the closest epoch K at which this ratio first falls below λ, which we denote as K(λ,N).
Here we choose λ = 0.75, and we define K(λ,N) as the saturation point.

We fit those points and find that K(λ,N) ≈ 0.80 logN + 5.21 with a correlation coefficient of
r = 0.97. The fitting results are shown in Figure 3.

C.3 EXPERIMENTS WITH WSD LEARNING RATE SCHEDULE

Next, to make our LLM experiments more consistent with real-world pretraining practices, we repeat
the LLM experiments under a warmup-stable-decay(WSD) learning rate schedule.

Concretely, we start from the checkpoints obtained in Section 6.3 for fresh data sizes N ∈
{0.2B, 0.5B, 1B, 2B} after K ∈ {2, 4, 8, 16} epochs of pretraining with a constant learning rate
of 10−3. From each checkpoint, we continue training for one additional epoch while linearly decay-
ing the learning rate from 10−3 to 10−5, resulting in a WSD learning rate schedule followed by a
linear decay. For the one-pass baseline, we adopt the same schedule as in the N = 2B run.

For each dataset size N , this process produces a set of four validation-loss values, each associated
with one of the four selected epoch numbers K. We model the dependence of the final loss on the
training steps x using the parametric form ℓ(x) = A+ B

xa , where A,B, a are fitted parameters. The
fitted curves are then used to predict the final validation loss under this WSD schedule for arbitrary
training budgets. Using these predictions, we compute the saturation points following the same
procedure as in Section 6.3. Here we still choose λ = 0.75.

The resulting saturation points are summarized in Figure 4. We observe that, even under this different
learning rate schedule, the saturation points still satisfy the logarithmic scalingK(λ,N) = Θ(logN).
Specifically, we have K(λ,N) ≈ 2.35 logN + 5.25 with a correlation coefficient of r = 0.96. This
confirms that our message that larger datasets can be repeated more also holds for real LLM training
setups.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

100 101 102 103
K

100

101

E(
K,

N
)

Log Spectrum: E(K, N) vs K

N = 5 * 103

N = 1 * 104

N = 5 * 104

N = 1 * 105

N = 5 * 105

N = 1 * 106

9 10 11 12 13 14
log(N)

101

E(
K,

N
)

Log Spectrum: E(K, N) vs log(N)

K=2
K=525
K=1000
E(K, N) = 0.276·(logN)2.036

Figure 5: The solvable cases with logarithmic power-law spectrum. E(K,N) exhibits a simi-
lar behavior to that presented in Figure 1. We also fit the effective reuse rate using the formula
E(K,N) = c1 (logN)

c2 suggested by Theorem 5.2, and the fitted exponent c2 = 2 ≈ b = 2
matches our theory.

D ADDITIONAL RESULTS AND SIMULATIONS FOR LOGARITHMIC
POWER-LAW SPECTRUM

D.1 SCALING LAW FOR LOGARITHMIC POWER-LAW SPECTRUM

We now present the scaling law for logarithmic power-law spectrum. Its proof can be seen in
Section I.4.
Theorem D.1. Consider aK-epoch SGD overN fresh data. Under Assumptions 5.1, Assumption 5.3,
and given the data dimension d = Ω((KN)

1
a), it holds that

R̄∗(K,N) ≍

(KN)
− a−1

a for K = o(logbN)(
N logbN

)− a−1
a

for K = ω(logbN).

D.2 SIMULATIONS IN SECTION 5.2

Now we focus on validating the predictions of Theorem 5.3 using synthetic data generated under the
spectral assumptions of Section 5 and a log-power decay spectrum (Assumption 5.3).

Experiments Setup. Similar to Section 6.2, in all sub-figures of Figure 5, we set the data dimension
d to 105 and tune all the learning rates to their optimal values. Here we set a = 1.5 and b = 2.

Simulations for the Solvable Model. Figure 5 plots E(K,N) versus K and logN for the solvable
model. The curves depicting E(K,N) versus K and E(K,N) versus logN show trends consistent
with those in Section 6.2, aligning with Theorem 5.3. Furthermore, in the large-K regime, we fit the
exponent according to Theorem 5.3 and obtain 2.036 ≈ b = 2, which provides strong validation of
our theory.

E ADDITIONAL NOTATIONS

In this section, we provide some additional notations appeared in the following proof of our main
results.

Key Quantities. We define the following key quantities to analyze the sequential updates. For each
epoch k, let

A(k) :=

0∏
i=N−1

(I − ηxπk(i)x
⊤
πk(i)

) (1)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

represent the product of sequential updates through all samples in epoch k. More generally, we define
the partial product operator:

Z
(k)
a→b :=

b∏
i=a

(I − ηxπk(i)x
⊤
πk(i)

), with A(k) = Z
(k)
N−1→0.

We further define that Z(k)
N−1→N = I . The cumulative effect across epochs is captured by:

T (k) :=

k+1∏
i=K

A(i), and T (K) = I.

Pseudo-expectation Notation Ẽ. Because matrix multiplication is non-commutative and the shuf-
fling in training introduces statistical dependence, the expectations of the random matrices defined
above cannot be written in a tractable closed form. To approximate the population excess risk, we
therefore introduce the auxiliary notation Ẽ. By construction, Ẽ computes the expectation of each
factor as if the variables were independent, deliberately neglecting the correlations. We then invoke
matrix-concentration inequalities to bound the gap between this “pseudo”-expectation and the true
expectation of the original dependent random variables. Specifically, for the above random matrices
used in our proof, here we further define that

ẼZ(k)
a→b := (I − ηH)a−b+1, (2)

ẼA(k) := (I − ηH)N , (3)

ẼT (k) := (I − ηH)N(K−k), (4)

ẼS(ij)
l := Ẽ

[
Z

(i)

N−1→π−1
i (l)+1

]
E
[
xlx

⊤
l

]
Ẽ
[
Z

(j)

π−1
j (l)+1→N−1

]
. (5)

F PROOF OUTLINE IN STRONGLY CONVEX LINEAR REGRESSION

In this section, we give the outline of Lemma G.1, Lemma 4.4, and Theorem 4.2. The main technical
challenges and our proof insights are briefly stated in Section 4.2.

Section 4 centres on Theorem 4.2, which establishes a scaling law for the effective reuse rateE(K,N)
in terms of the relative magnitudes of number of epochs K and dataset size N . Its proof unfolds in
three stages.

1. An explicit approximation of the expected excess risk. Lemma G.1 derives a sufficiently accu-
rate asymptotic formula for the expected excess risk of multi-epoch SGD. The argument begins with
a bias–variance decomposition, splitting the expected excess risk into a variance term (Lemma G.2)
and a bias term (Lemma G.3).

• Variance term. The closed-form approximation relies on concentration properties of matrix
contractions together with a careful treatment of data shuffling.

• Bias term. The same contraction inequality is employed to obtain an analytic expression,
after which tight error bounds are proved for the full range of relative sizes of K and N .
These bounds hold uniformly over a broad class of learning rates, necessitating detailed
case-by-case analysis.

2. Selection of a nearly optimal learning rate. Lemma 4.4 identifies a learning rate whose
resulting loss is asymptotically equivalent to the minimum excess risk attained with the optimal
learning rate as stated in Section 3. This “approximately optimal learning rate” will be fixed in
Appendix G.4.

3. Proof of the effective reuse rate scaling law. With the one-pass and multi-epoch SGD training
learning rate set to the near-optimal learning rate obtained above, the proof of Theorem 4.2 proceeds
to characterise the behaviour of E(K,N) as K and N vary, yielding the desired scaling relation.
Together, these three components establish Theorem 4.2 and provide a comprehensive description of
how reuse efficiency depends on the interplay between K and N .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G PROOF OF MAIN RESULTS IN STRONGLY CONVEX LINEAR REGRESSION

G.1 STEP I: A CONCRETE VERSION OF BIAS-VARIANCE DECOMPOSITION

Before we begin our proof, we first present the following lemma, which provides the formal version
of the loss estimate for a specific range of learning rate parameters. We define a R̂(K,N, η) as the
estimator of R̄(K,N ; η)

R̂(K,N ; η) := R̂1(K,N ; η)︸ ︷︷ ︸
bias term

+ R̂2(K,N ; η)︸ ︷︷ ︸
var term across epochs

+ R̂3(K,N ; η)︸ ︷︷ ︸
var term within epoch

,

where

R̂1(K,N ; η) :=
1

2
(w0 −w∗)⊤(I − ηH)2KNH(w0 −w∗),

R̂2(K,N ; η) :=
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)
,

R̂3(K,N ; η) :=
ησ2

2

〈
H, (I − (I − ηH)2KN)(2I − ηH)−1

〉
.

G.2 STEP II: RISK APPROXIMATION AND ERROR BOUND ANALYSIS

In this section, we rigorously formulate the analytic risk approximation in Lemma G.1 and provide
its proof. Lemma G.1 indicates that the error bound is of higher order than the main term when the
parameters are restricted to a limited range of values.
Lemma G.1. Under Assumption 4.1 and 4.3, we further assume that for every x in the training
set, ∥x∥ ≤ D for some constant D > 0. Consider a K-epoch SGD with learning rate η ∈[
Ω
(
1
T

)
, o(T− 3

4)
]
, K = o

(
η−1T− 3

4

)
and data shuffling. Then, after T = KN steps, the estimator

of the expected excess risk satisfies:

R̄(K,N ; η) = R̂(K,N ; η) (1 + o(1)) .

Recall from Section 4.2 that the risk R̄(K,N ; η) can be decomposed into the bias term
R̄bias(K,N ; η) := 1

2

∥∥θbias
t

∥∥2
H

and variance term R̄var(K,N ; η) := 1
2 ∥θ

var
t ∥2H , which implies

that Lemma G.1 is a direct corollary of the following two lemmas:
Lemma G.2 (Variance Term). Suppose that Assumption 4.1 holds. Then for a K-epoch SGD with
dataset size N and learning rate η ∈ [Ω(1

T), o(
1

T
1
2
)] and shuffling, when poly(T) ≳ d, we have the

estimator of the variance term R̄var(K,N ; η) := Ew∼WK,N,η
[R(w)var] after T := KN steps

R̃var(K,N ; η) :=
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)

+
ησ2

2

〈
H, (I − (I − ηH)2KN)(2I − ηH)−1

〉
,

where the expectation is taken on the training set and shuffle, and the estimate error is∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)
∣∣∣ = O(η3T

3
2K2

√
log d).

when K ≤ log 2

η
√
C̃8eD4T log d

.

Lemma G.3 (Bias Term). Under Assumption 4.1, for a K-epoch SGD with dataset size N , learning
rate η and shuffling, when poly(T) ≳ d, we have the estimator of the bias term R̄bias(K,N ; η) :=
Ew∼WK,N,η

[
R(w)bias

]
after T := KN steps

R̃bias(K,N ; η) :=
1

2
(w0 −w∗)⊤(I − ηH)2KNH(w0 −w∗).

Then we have the following estimate errors:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1. When K ≥ 2 and K = o

(
N

1
5

(logN)
6
5

)
:

(a) When η ≤ 2 log T
3λdT

, the estimate distance is given by∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)
∣∣∣ = O

(
(1− ηλd)

N(2K−1)K
√
η2KN

)
.

(b) When η ≥ 2 log T
3λdT

, the estimate distance is given by∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)
∣∣∣ = O

(
1

T
4
3

)
.

2. When K = 1: ∣∣∣R̃bias(1, T ; η)− R̄bias(1, T ; η)
∣∣∣ = O

(
η2Te−2λdηT

)
.

G.2.1 VARIANCE TERM ANALYSIS: PROOF OF LEMMA G.2

We first recall some notations Appendix E that Z
(k)
a→b =

∏b
i=a(I − ηxπk(i)x

⊤
πk(i)

), b(k) =∑N−1
l=0 Z

(k)
N−1→l+1ξπk(l)xπk(l), A

(k) = Z
(k)
N−1→0, T (k) =

∏k+1
i=K A(i), and T (K) = I . For simplic-

ity, and if it does not cause confusion, we omit the superscript “var” in all the training parameters
θvar in the proof of Lemma G.2. Now we derive the recursion before and after the k-th epoch.

θkN = (I − ηxπk(N−1)x
⊤
πk(N−1))θkN−1 + ηξπk(N−1)xπk(N−1)

= η

N−1∑
l=0

Z
(k)
N−1→l+1ξπk(l)xπk(l) +A(k)θ(k−1)N

= ηb(k) +A(k)θ(k−1)N ,

where πk(i) is the i-th index after the permutation πk in the K-th epoch. Further writing out the
above recursion gives the parameter after K epochs

θKN = η

K∑
k=1

A(K) · · ·A(k+1)b(k).

A natural move here is to replace θKN with the expression above in the variance term

R̄var(K,N ; η) = E
1

2
θ⊤
KNHθKN = E

1

2

〈
H,θKNθ⊤

KN

〉
=
η2

2
E

〈
H,

1

(N !)K

∑
π1···πK

K∑
i,j=1

T (i)b(i)
(
b(j)
)⊤ (

T (j)
)⊤〉

=
η2σ2

2
E

〈
H,

1

(N !)K

∑
π1···πK

K∑
i,j=1

T (i)

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

=
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

+
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉
. (6)

where in the third equation, we take expectations with respect to the label noise(ξl)N−1
l=0 , and in the

last equation, we decompose the variance term into two parts, according to whether the b(i) and b(j)

are from the same epoch or not.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

After explicitly writing the variance term, and to get a close-form formula for it, we then take pseudo
expectations of T (i), T (j), S(ii)

l , and S
(ij)
l separately to get the approximation of R̄var(K,N ; η),

given as follows:

R̃var(K,N ; η) :=
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

ẼT (i)

N−1∑
l=0

∑
πi,πj

ẼS(ij)
l

 ẼT (i)

〉

+
η2σ2

2
E

〈
H,

1

N !

K∑
i=1

ẼT (i)

(
N−1∑
l=0

∑
πi

ẼS(ii)
l

)
ẼT (i)

〉
.

The intuition of the “pseudo expectation” and the related definitions are in Appendix E. Fix l, notice
that when i ̸= j, by Equation (5),

∑
πi,πj

ẼS(ij)
l :=

∑
πi,πj

Ẽ
[
Z

(i)

N−1→π−1
i (l)+1

xlx
⊤
l Z

(j)

π−1
j (l)+1→N−1

]
:=
∑
πi,πj

(I − ηH)
N−1−π−1

i (l)
H (I − ηH)

N−1−π−1
j (l)

.

For a fixed i, for all m ∈ [0, N − 1], there are (N − 1)! permutations πi that satisfies πi(m) = l. So

∑
πi,πj

ẼS(ij)
l = ((N − 1)!)

2
N−1∑
m,n=0

(I − ηH)
N−1−m

H (I − ηH)
N−1−n

. (7)

By applying a similar derivation to the i = j case, we obtain that

∑
πi

ẼS(ii)
l = (N − 1)!

N−1∑
m=0

(I − ηH)
N−1−m

H (I − ηH)
N−1−m

. (8)

Plugging Equation (7) and Equation (8) into the expression of R̃var(K,N ; η), and we have

R̃var(K,N ; η)

=
η2σ2

2
E

〈
H,

1

N2

K∑
i̸=j
i,j=1

ẼT (i)

(
N−1∑
l=0

N−1∑
m,n=0

(I − ηH)2N−2−m−nH

)
ẼT (i)

〉

+
η2σ2

2
E

〈
H,

1

N

K∑
i=1

ẼT (i)

(
N−1∑
l=0

N−1∑
m=0

(I − ηH)2N−2−2mH

)
ẼT (i)

〉

=
σ2

2
E

〈
H,

1

N

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
(
I − (I − ηH)

N
)2

H−1(I − ηH)N(K−j)

〉
︸ ︷︷ ︸

:=Ψ1

+
ησ2

2
E

〈
H,

K∑
i=1

(I − ηH)N(K−i)
(
I − (I − ηH)

2N
)
(2I − ηH)−1(I − ηH)N(K−i)

〉
︸ ︷︷ ︸

Ψ2

.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where the second equation uses Equation (4). The quantity Ψ1 accounts for the variance term across
different epochs and Ψ Then we calculate Ψ1 and Ψ2 separately. For Ψ1, we have

Ψ1 =
σ2

2
E

〈
H,

1

N

K∑
i,j=1

(I − ηH)N(K−i)
(
I − (I − ηH)

N
)2

H−1(I − ηH)N(K−j)

〉

− σ2

2
E

〈
H,

1

N

K∑
i=1

(I − ηH)N(K−i)
(
I − (I − ηH)

N
)2

H−1(I − ηH)N(K−i)

〉

=
σ2

2N
tr
((

I − (I − ηH)
KN
)2)

− σ2

2N
tr

((
I − (I − ηH)

N
)2 (

I − (I − ηH)
2N
)−1 (

I − (I − ηH)
2KN

))
=
σ2

N
tr
((

I − (I − ηH)
KN
)(

I + (I − ηH)
N
)−1 (

(I − ηH)
N − (I − ηH)

KN
))

.

The last equation is obtained by direct algebraic calculation. For Ψ2, by direct matrix calculation, we
get

Ψ2 =
ησ2

2
E
〈
H, (2I − ηH)−1

(
I − (I − ηH)

2KN
)〉

.

Next we obtain the error bound for
∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)

∣∣∣, which can be represented as∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)
∣∣∣

≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)

N−1∑
l=0

∑
πi,πj

ẼS(ij)
l

 (I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣ =: I1

+

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉

− η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)

(
N−1∑
l=0

∑
πi

ẼS(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣ =: I2,

where the first inequality uses the triangle inequality. The term I1 represents the error term between
epochs, and I2 represents the error term within one epoch. We will bound I1 and I2 separately in the
proof.

Upper bound for I1. To bound I1, a natural move here is to plug in a term that takes pseudo
expectation over (T (i))Ki=1 but does not take pseudo expectation over (S(ij)

l)l,i,j , and divide I1 into
two terms.

I1 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣
25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

+

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

〉

− η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

(I − ηH)N(K−i)

N−1∑
l=0

∑
πi,πj

ẼS(ij)
l

 (I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣
=: I11 + I12.

Next we bound the terms I11 and I12 separately. Notice that
K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

= (N !)K−2
K∑
i̸=j
i,j=1

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j) (9)

because the summands do not depend on the permutations except πi, πj , plugging Equation (9) into
the expression of I1 we have

I11 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(I − ηH)N(K−i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
(I − ηH)N(K−j)

〉∣∣∣∣∣∣∣∣ .

Then we use Equation (4) to split I11 into three terms and by triangle inequality:

I11 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
T (i) − ẼT (i)

) ∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)
ẼT (i)

〉∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

ẼT (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j) − ẼT (j)

)〉∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
T (i) − ẼT (i)

) ∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j) − ẼT (j)

)〉∣∣∣∣∣∣∣∣ .

Next, we use Lemma J.1 and the fact that S(ij)
l ≲ I to bound the matrix inner products:

I11 ≤ η2σ2ND2tr(H)

2(N !)K−2

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥+ E
∥∥∥T (j) − ẼT (j)

∥∥∥
+ E

∥∥∥T (i) − ẼT (i)
∥∥∥∥∥∥T (j) − ẼT (j)

∥∥∥) .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Notice that Lemma J.2 and Lemma J.5 implies that

E
∥∥∥T (i) − ẼT (i)

∥∥∥ ≤ (
√
δAη2NK + ∥EA∥)K − ∥EA∥K

≤ (
√
δAη2NK + 1)K − 1

≤ 2K
√
δAη2NK when K ≤ log 2

η
√
δAT

,

where δA = C̃8eD4 log d is the constant appeared in Lemma J.4, and C̃ is some absolute constant.
The second inequality uses the fact that (

√
δAη2NK + ∥EA∥)K − ∥EA∥K motonously increases

with ∥EA∥. A similar approach combining Lemma J.2 and Lemma J.6 derives another concentration
inequality for T (i):

E
∥∥∥T (i) − ẼT (i)

∥∥∥2 ≤
(
2K
√
δAη2NK

)2
when K ≤ log 2

η
√
δAT

.

Applying Cauchy-Schwarz’s inequality and the concentration inequalities for
(
T (i)

)
i
, we get that

I11 ≤ η2σ2ND2tr(H)

2(N !)K−2

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥+ E
∥∥∥T (j) − ẼT (j)

∥∥∥
+

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥2) 1
2
(
E
∥∥∥T (j) − ẼT (j)

∥∥∥2) 1
2

)

≤ η2σ2ND2tr(H)

2

K∑
i̸=j
i,j=1

(
4K
√
δAη2NK +

(
2K
√
2δAη2NK

)2)
.

Our next step is to bound I12. We first make use of the fact that I − ηH ≲ I , and get that

I12 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

∑
πi,πj

(
N−1∑
l=0

S
(ij)
l − ẼS(ij)

l

)〉∣∣∣∣∣∣∣∣ .

Recall that for a fixed i, for all m ∈ [0, N − 1], there are (N − 1)! permutations πi that satisfies
πi(m) = l. So

I12 ≤

∣∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)2

K∑
i̸=j
i,j=1

N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

((N − 1)!)2
(
Z

(i)
N−1→m+1HZ

(j)
n+1→N−1

−EZ(i)
N−1→m+1HEZ(j)

n+1→N−1

)〉∣∣∣ .
Notice that

Z
(i)
N−1→m+1HZ

(j)
n+1→N−1 − EZ(i)

N−1→m+1HEZ(j)
n+1→N−1

=
(
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

)
HEZ(j)

n+1→N−1 + EZ(i)
N−1→m+1H

(
Z

(j)
n+1→N−1 − EZ(j)

n+1→N−1

)
+
(
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

)
H
(
Z

(j)
n+1→N−1 − EZ(j)

n+1→N−1

)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Applying Lemma J.1 and using the fact that EZ(i)
N−1→m+1 ≲ I ,

I12 ≤ η2σ2tr(H)∥H∥N
2N2

E
K∑
i̸=j
i,j=1

(
N−2∑
m=0

∥∥∥Z(i)
N−1→m+1 − EZ(i)

N−1→m+1

∥∥∥
+

N−2∑
n=0

∥∥∥Z(j)
n+1→N−1 − EZ(j)

n+1→N−1

∥∥∥
+

N−2∑
m=0

N−2∑
n=0

∥∥∥Z(i)
N−1→m+1 − EZ(i)

N−1→m+1

∥∥∥ ∥∥∥Z(j)
n+1→N−1 − EZ(j)

n+1→N−1

∥∥∥) .
Applying Cauchy-Schwarz inequality and Lemma J.4 gives

I12 ≤ η2σ2tr(H)∥H∥N
2N2

K∑
i̸=j
i,j=1

(
N−2∑
m=0

E
∥∥∥Z(i)

N−1→m+1 − EZ(i)
N−1→m+1

∥∥∥
+

N−2∑
n=0

E
∥∥∥Z(j)

n+1→N−1 − EZ(j)
n+1→N−1

∥∥∥
+

N−2∑
m=0

N−2∑
n=0

(
E
∥∥∥Z(i)

N−1→m+1 − EZ(i)
N−1→m+1

∥∥∥2) 1
2
(
E
∥∥∥Z(j)

n+1→N−1 − EZ(j)
n+1→N−1

∥∥∥2) 1
2

)

≤ η2σ2tr(H)∥H∥N
2N2

K∑
i̸=j
i,j=1

(
N−2∑
m=0

(√
δAη2(N − 1−m)

)
+

N−2∑
n=0

(√
δAη2(N − 1− n)

)

+

N−2∑
m=0

N−2∑
n=0

(√
2δAη2(N − 1−m)

)(√
2δAη2(N − 1− n)

))

≲ η3K2
√
N log d+ η4K2N2 log d when η = o(

1√
T
).

Upper bound for I2. We bound I2 using a similar technique as what we did for I1. We first plug in
a term that takes pseudo expectation over (T (i))Ki=1 but does not take pseudo expectation over S(ii)

l
for every l and i, and decompose I2 into two terms:

I2 ≤

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉

− η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣
+

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉

− η2σ2

2
E

〈
H,

1

N !

K∑
i=1

(I − ηH)N(K−i)

(
N−1∑
l=0

∑
πi

ẼS(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣
=: I21 + I22.

Next we bound the terms I21 and I22 separately. Notice that
K∑
i=1

∑
π1···πK
except πi

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

= (N !)K−1
K∑
i=1

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

because the summands do not depend on the permutations except πi, we have

I21 =

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉

− η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣∣∣ .

Then we use the fact that ẼT (i) = (I − ηH)N(K−i) to split I21 into three terms:

I21 ≤

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(
T (i) − ẼT (i)

)∑
πi

(
N−1∑
l=0

S
(ii)
l

)
(I − ηH)N(K−i)

〉∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(I − ηH)N(K−i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i) − ẼT (i)

)〉∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

(
T (i) − ẼT (i)

)∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i) − ẼT (i)

)〉∣∣∣∣∣∣∣ .

Next, we use Lemma J.1 and the fact that S(ij)
l ≲ I to bound the matrix inner products, and apply

the concentration inequalities we derived for
(
(T)(i)

)
i
:

I21 ≤ η2σ2ND2tr(H)

2(N !)K−1

K∑
i=1

∑
π1···πK
except πi

(
E
∥∥∥T (i) − ẼT (i)

∥∥∥+ E
∥∥∥T (i) − ẼT (i)

∥∥∥
+ E

∥∥∥T (i) − ẼT (i)
∥∥∥2)

≤ η2σ2ND2tr(H)

2

K∑
i=1

(
4K
√
δAη2KN +

(
2K
√
2δAη2KN

)2)
.

Then we bound I22. Recall that I − ηH ≲ I , we get

I22 ≤

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

∑
πi

(
N−1∑
l=0

S
(ii)
l − ẼS(ii)

l

)〉∣∣∣∣∣ .
Recall that for a fixed i, for all m ∈ [0, N − 1], there are (N − 1)! permutations πi that satisfies
πi(m) = l. So

I22 ≤

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

N−1∑
l=0

N−1∑
m=0

(N − 1)!
(
Z

(i)
N−1→m+1HZ

(i)
m+1→N−1

−EZ(i)
N−1→m+1HEZ(i)

m+1→N−1

)〉∣∣∣
=

∣∣∣∣∣η2σ2

2
E

〈
H,

1

N !

K∑
i=1

N−1∑
l=0

(N − 1)!

N−2∑
m=0

((
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

)
H

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(
Z

(i)
N−1→m+1 − EZ(i)

N−1→m+1

))〉∣∣∣ .
Using Lemma J.4, we have

I22 ≤ η2σ2tr(H)∥H∥N
2N

E
K∑
i=1

(
N−2∑
m=0

∥∥∥Z(i)
N−1→m+1 − EZ(i)

N−1→m+1

∥∥∥2)

≤ η2σ2tr(H)∥H∥N
2N

K∑
i=1

N−2∑
m=0

(√
2δAη2(N − 1−m)

)2
≲ η4N2K log d when η = o(

1√
T
).

Combining all the arguments above, we derive that∣∣∣R̃var(K,N ; η)− R̄var(K,N ; η)
∣∣∣

≤ I11 + I12 + I21 + I22

≤ C
η2σ2ND2tr(H)

2

K∑
i,j=1

(
4K
√
δAη2NK +

(
2K
√
δAη2NK

)2)
+O(η3K2

√
N log d+ η4K2N2 log d) +O(η4N2K log d)

= O(η3N
3
2K

7
2

√
log d) when η = o(

1√
T
).

The above equation completes the proof.

G.2.2 BIAS TERM ANALYSIS: PROOF OF LEMMA G.3

For simplicity, and as we did in the proof of Lemma G.2, in this section we omit the superscript
"bias" for all the training paramters θbias. Analogous to the proof of Lemma G.2, we can derive the
parameter recursion as

θkN = (I − ηxπk(N−1)x
⊤
πk(N−1))θkN−1

= · · ·
= (I − ηxπk(N−1)x

⊤
πk(N−1)) · · · (I − ηxπk(0)x

⊤
πk(0)

)θ(k−1)N

= A(k)θ(k−1)N .

For the parameter after K-epochs updates, we have

θKN = A(K) · · ·A(1)θ0 =

1∏
l=K

A(l)θ0.

We also have the approximation for the bias term

R̄bias(K,N ; η) =
1

2

〈
H,Eθ2

KN

〉
= E

1

2
θ⊤
KNHθKN

= E
1

2
θ⊤
0

(
1∏

l=K

A(l)

)⊤

H

(
1∏

l=K

A(l)

)
θ0

≈ 1

2
θ⊤
0

(
1∏

l=K

EA(l)

)⊤

H

(
1∏

l=K

EA(l)

)
θ0

=
1

2
θ⊤
0

(
(I − ηH)KN

)
H
(
(I − ηH)KN

)
θ0︸ ︷︷ ︸

=:R̃var(K,N ;η)

.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

The estimate error can be given as∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)
∣∣∣

=

∣∣∣∣∣∣E1

2
θ⊤
0

(
1∏

l=K

A(l)

)⊤

H

(
1∏

l=K

A(l)

)
θ0 −

1

2
θ⊤
0

(
1∏

l=K

EA(l)

)⊤

H

(
1∏

l=K

EA(l)

)
θ0

∣∣∣∣∣∣
=

∣∣∣∣∣∣E1

2
θ⊤
0

(
1∏

l=K

A(l) − ∥EA∥K
)⊤

H

(
1∏

l=K

A(l) − ∥EA∥K
)
θ0

∣∣∣∣∣∣
+ 2

∣∣∣∣∣E1

2
θ⊤
0 ∥EA∥KH

(
1∏

l=K

A(l) − ∥EA∥K
)
θ0

∣∣∣∣∣
≤ E

1

2
∥H∥∥θ0∥2

(∥∥∥AK − (EA)
K
∥∥∥2 + 2∥EA∥K

∥∥∥AK − (EA)
K
∥∥∥) . (10)

where the last equation uses the fact that ∥EA∥ ≤ 1. Next, we discuss the approximation error bound
for the bias term in Equation (10), with different categorizations based on the range of K.

1. Under Assumption 4.1 and K = o

(
N

1
5

(logN)
6
5

)
:

(a) η ≤ 2 log T
3λdT

. We now verify that K = o
(

∥EA∥
η
√
T

)
under given conditions. We have

∥EA∥ = (1− ηλd)
N

= (1− ηλd)
T
K ≥ (1− ηλd)

T
2

≥
(
1− 2 log T

3T

)T
2

= e
T
2 log(1− 2 log T

3T)

= e−
log T

3 +O(2 log2 T
9T) = Θ(

1

T
1
3

).

thus

∥EA∥
η
√
T

= Ω(
T

1
6

log T
).

Also, given K = o

(
N

1
5

(logN)
6
5

)
, we obtain that

K = o

(
T

1
6

logN

)
= o

(
T

1
6

log T

)
.

The second equality uses log T = logN + logK = Θ(logN). Now we use the results in
Lemma J.5 and Lemma J.6, and then the estimated distance can be given as∣∣∣R̃bias(K,N ; η)− R̄bias(K,N ; η)

∣∣∣
≤ 1

2
∥H∥∥θ0∥2∥EA∥2K

((√2δAη2NK

∥EA∥
+ 1)K − 1

)2

+ 2

(
(

√
2δAη2NK

∥EA∥
+ 1)K − 1

)
≤ 1

2
∥H∥∥θ0∥2∥EA∥2K

(
8K2δAη

2NK

∥EA∥2
+ 4K

√
2δAη2NK

∥EA∥

)
= O

(
∥EA∥2K−1K

√
η2NK

)
,

where the second inequality is by Lemma J.2.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(b) η ≥ 2 log T
3λdT

. We have∣∣∣R̃bias(k,N ; η)− R̄bias(k,N ; η)
∣∣∣ ≤ R̃bias(k,N ; η) + R̄bias(k,N ; η)

≤
[
R̃bias(k,N ; η) + R̄bias(k,N ; η)

]∣∣∣
η= 2 log T

3λdT

≤
[∣∣∣R̄bias(k,N ; η)− R̃bias(k,N ; η)

∣∣∣+ 2R̃bias(k,N ; η)
]∣∣∣
η= 2 log T

3λdT

≤
[
O
(
∥EA∥2K−1K

√
η2KN

)
+ 2× 1

2
∥H∥∥θ0∥2∥EA∥2K

]∣∣∣∣
η= 2 log T

3λdT

= O
(
∥EA∥2K

)∣∣
η= 2 log T

3λdT

= O

((
1− 2 log T

3T

)2KN
)

= O(
1

T
4
3

) when K = o

(
N

1
5

(logN)
6
5

)
,

where the first equality uses the fact that K = o
(

∥EA∥
η
√
T

)
when η = 2 log T

3λdT
.

2. For the K = 1 case, which is equivalent to one-pass (OP) SGD, we derive a different upper bound
for bias term error. In this scenario, we have the update rule as

θt = (I − ηxtx
⊤
t)θt−1.

We can denote the covariance as Bt, which is

Bt := Eθtθ⊤
t

= E(I − ηxtx
⊤
t)θt−1θ

⊤
t−1(I − ηxtx

⊤
t)

= Bt−1 − ηHBt−1 − ηBt−1H + η2Extx⊤
t θt−1θ

⊤
t−1xtx

⊤
t

= (I − ηH)Bt−1(I − ηH) + η2E(xtx⊤
t −H)θt−1θ

⊤
t−1(xtx

⊤
t −H). (11)

Since the bias term in the excess risk can be represented as

R̄bias(1, T ; η) =
1

2
⟨H,BT ⟩ .

We then get the lower and upper bounds for Bt, and derive the corresponding lower and upper
bounds for the bias term in the excess risk.

Lower bound. By Equation (11), we get a lower bound of Bt

BT ⪰ (I − ηH)BT−1(I − ηH)

⪰ · · · ⪰ (I − ηH)TB0(I − ηH)T

and

R̄bias(1, T ; η) =
1

2
⟨H,BT ⟩

≥ 1

2

〈
H, (I − ηH)TB0(I − ηH)T

〉
=

1

2
θ⊤
0

(
(I − ηH)T

)
H
(
(I − ηH)T

)
θ0.

Upper bound. By the recursion of Bt, we have

Bt ⪯ (I − ηH)Bt−1(I − ηH) + η2ExT−1,···x0
ExT

(xtx
⊤
t −H)θt−1θ

⊤
t−1(xtx

⊤
t −H)

= (I − ηH)Bt−1(I − ηH) + η2ExT−1,···x0

[
ExT

[
xTx

⊤
T θT−1θ

⊤
T−1xTx

⊤
T

]
−HθT−1θ

⊤
T−1H

]
⪯ (I − ηH)Bt−1(I − ηH) + η2ExT−1,···x0

ExT

[
xTx

⊤
T θT−1θ

⊤
T−1xTx

⊤
T

]
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Then, combining Assumption 4.1 and Lemma J.9 gives

BT ⪯ (I − ηH)BT−1(I − ηH) + η2αExT−1,···x0 tr(HθT−1θ
⊤
T−1)H

= (I − ηH)BT−1(I − ηH) + η2α ⟨H,BT−1⟩H
⪯ · · ·

⪯ (I − ηH)TB0(I − ηH)T + η2α

T−1∑
i=0

⟨Bi,H⟩ (I − ηH)2(T−i−1)H,

and

⟨H,BT ⟩ ≤
〈
H, (I − ηH)TB0(I − ηH)T

〉
+η2α

T−1∑
i=0

⟨H,Bi⟩
〈
(I − ηH)2(T−i−1)H,H

〉
.

We also have

⟨H,Bi⟩ ≤ ⟨H, (I − ηH)Bi−1(I − ηH)⟩+ η2αtr(H2) ⟨H,Bi−1⟩
≤ (1− ηλd)

2 ⟨H,Bi−1⟩+ η2αtr(H2) ⟨H,Bi−1⟩
≤ · · ·
≤ [(λ2d + αtr(H2))η2 − 2λdη + 1]i ⟨H,B0⟩

≤ eT log[(λ2
d+αtr(H2))η2−2λdη+1] ⟨H,B0⟩

= e−2λdηi+O(η2i) ⟨H,B0⟩
≤ C1e

−2λdηi ⟨H,B0⟩
and 〈

(I − ηH)2(T−i−1)H,H
〉
=
〈
(I − ηH)2(T−i−1),H2

〉
≤ tr

(
H2
)
(1− ηλd)

2(T−1−i)

≤ tr
(
H2
)
e2(T−1−i) log(1−ηλd)

= tr
(
H2
)
e−2(T−1−i)ηλd+O(η2(T−1−i))

≤ C2e
−2(T−1−i)ηλd

So

⟨H,Bi⟩ ≤
〈
H, (I − ηH)TB0(I − ηH)T

〉
+ η2α

T−1∑
i=0

C1e
−2λdηi ⟨H,B0⟩C2e

−2λdη(T−1−i)tr
(
H2
)

=
〈
H, (I − ηH)TB0(I − ηH)T

〉
+ C3η

2Te−2λdηT

And finally we get∣∣∣∣R̄bias(1, T ; η)− 1

2

〈
H, (I − ηH)⊤B0(I − ηH)

〉∣∣∣∣ = O(η2Te−2λdηT).

G.3 STEP III: NARROWING THE RANGE FOR OPTIMAL LEARNING RATE

We recap that our goal to get the scaling law formula for strongly convex linear regression with multi
epoch SGD, and the formula of the effective reuse rate. Before we start our proof, we first give a
technical lemma below.

Lemma G.4. Given η ∈
[
ω
(
1
T

)
, o
(

1√
T

)]
, and define nd to be the number of the minimal eigenvalue

λd in H , then it holds that
d∑
i=1

(Pθ0)
2
iλi(1− ηλi)

2T = θ̃2dλd exp(−2λdηT)(1 + o(1)),

d∑
i=1

λi(1− ηλi)
2T = ndλd exp(−2λdηT)(1 + o(1)).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Proof of Lemma G.4. For the first equation, for any λi > λd, we define ρi = λi

λd
> 1, then we have

(1− ηλi)
2T = exp (2T log(1− ηλi)) = exp

(
2T (−ηλi +O(η2λ2i))

)
= exp(−2λiηT) exp(O(η2)) = exp(−2λdρiηT)(1 + o(1))

= (exp(−2λdηT))
ρi (1 + o(1)) = o(exp(−2λdηT)). (12)

Since λi ≤ D2, we have
d−nd∑
i=1

(Pθ0)
2
iλi(1− ηλi)

2T = o(exp(−2λdηT)),

From Equation (12), we can also directly get the second equation, which completes the proof of
Lemma G.4.

G.3.1 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, SMALL-K CASE

Lemma G.5. Under the conditions in Lemma 4.4, and when K = o (logN), we have η∗ ∈
[log T3λdT

, α log T
T], where the constant α := D2tr(H)

λdtr(H2) .

Proof. We first prove the upper bound. Given a learning rate η, Equation (6) gives

R̄(K,N ; η) ≥ R̄var(K,N ; η) =

η2σ2

2
E

〈
H,

1

(N !)K

K∑
i̸=j
i,j=1

∑
π1···πK

except πi,πj

T (i)
∑
πi,πj

(
N−1∑
l=0

S
(ij)
l

)(
T (j)

)⊤〉
︸ ︷︷ ︸

=:ψ1

+
η2σ2

2
E

〈
H,

1

(N !)K

K∑
i=1

∑
π1···πK
except πi

T (i)
∑
πi

(
N−1∑
l=0

S
(ii)
l

)(
T (i)

)⊤〉
︸ ︷︷ ︸

=:ψ2

.

For ψ1, using the fact that (I − ηxx⊤) ⪰ (I − ηD2I), we replace all the terms (I − ηxx⊤) with
(I − ηD2I) thus we have a lower bound for ψ1

ψ1 ≥ η2σ2

2

〈
H,

N((N − 1)!)2

(N !)K

K∑
i̸=j
i,j=1

∑
{π1···πK}
\{πi,πj}

(1− ηD2)(2K−i−j)N

(
N−1∑
m,n=0

(1− ηD2)2N−2−m−nE[xx⊤]

)〉

=
η2σ2

2ND4

〈
H,

∑
i̸=j
i,j=1

(1− ηD2)(K−i)N (1− ηD2)(K−j)N (1− (1− ηD2)N
)2

H

〉

=
σ2

2ND4
tr
(
H2

(
1− (1− ηD2)KN

)2)− σ2

2ND4
tr

(
H2 1−

(
1− (1− ηD2)N

)2KN
1− (1− ηD2)2N

)

=
σ2

ND4
tr

(
H2 1− (1− ηD2)KN

1 + (1− ηD2)N
(
(1− ηD2)N − (1− ηD2)KN

))
.

For ψ, we use a similar argument to get its lower bound

ψ2 ≥ η2σ2

2

〈
H,

K∑
i=1

(1− ηD2)2N(K−i) 1− (1− ηD2)2N

1− (1− ηD2)2
H

〉

=
ησ2

2D2

〈
H,

1− (1− ηD2)2KN

1− (1− ηD2)2N
1− (1− ηD2)2N

1− (1− ηD2)2
H

〉
=
ησ2tr(H2)

4D2
(1 + o(1)) .

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Notice that from the above lower bound, when K = o(logN), we have

R̄(K,N ; η) ≥ ψ1 + ψ2

≥ O(
1

N
) +

ησ2tr(H2)

4D2
(1 + o(1))

=
ησ2tr(H2)

4D2
(1 + o(1)) . (13)

Taking η > α log T
T , and α = D2tr(H)

λdtr(H2) gives

R̄(K,N ; η) ≥ σ2tr(H) log T

4λdT
(1 + o(1)) .

Now we recall that

R̄∗(K,N) ≤ R̄(K,N ; η′) =M(K,N ; η′) (1 + o(1))

=
σ2tr(H) log T

8λdT
(1 + o(1)) <

σ2tr(H) log T

4λdT
(1 + o(1))

Thus we have that η∗ ≤ α log T
T . Next, we give the lower bound of η∗.

When η < log T
3λdT

, we have that

exp(−2λdT) =
1

T 2/3
= ω(

log T

T
) = ω(R̄(K,N ; η′)) = ω(R̄∗(K,N)).

The above equation shows η∗ > log T
3λdT

, which completes the proof.

G.3.2 A DESCRIPTION OF THE RANGE OF OPTIMAL LEARNING RATE, LARGE-K CASE

Lemma G.6. Under the conditions in Lemma 4.4, and when K = ω (logN), we have η∗ ∈
[log T3λdT

, o
(

1
N

)
].

Proof. The proof comprises of three parts. First, we prove that η∗ ≥ log T
3λdT

when T is large. Second,
we verify that η∗ ≤ c

N for sufficiently large N . Finally, we refine the proof in the second step and
justify that η∗ = o

(
1
N

)
. All proofs are carried out by contradiction. The method proceeds as follows:

we take a specific η = η′ and compute its loss, then prove that R̄∗(K,N) > R̄(K,N ; η′) when N is
sufficiently large if η∗ does not fall into some interval.

First, by Equation (15), we have

R̄(K,N ; η′) =
σ2d

2N
(1 + o(1)).

Then we begin our main part of the proof.

Proof Step I: η∗ ≥ log T
3λdT

.

We assume that η∗ < log T
3λdT

. Observe that R̄bias(K,N ; η) decreases with η. So

R̄∗(K,N) ≥ R̄bias(K,N ; η∗) ≥ R̄bias(K,N ; η =
log T

3λdT
)

=
1

2
(w0 −w∗)⊤(I − ηH)2TH(w0 −w∗)(1 + o(1))

∣∣∣∣
η= log T

3λdT

=

(
1

2
θ̃2dλd exp(−2λdηT)

)
(1 + o(1))

∣∣∣∣
η= log T

3λdT

= Θ

(
1

T
2
3

)
= ω

(
1

N

)
,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

where the first equality is due to Lemma G.3, the second equality is due to Lemma G.4, and the last
equality is due to Assumption 4.1.

Proof Step II: η∗ ≤ 4D2d
σ2tr(H2)N . We assume that η∗ > 4D2d

σ2tr(H2)N By Equation (13), we have

R̂(K,N ; η) ≥ ησ2tr(H2)

4D2
(1 + o(1)) >

σ2d

N
(1 + o(1)) >

σ2d

2N
(1 + o(1)),

which is a contradiction.

A direct corollary is that

R̄∗(K,N) = R̂(K,N ; η∗)(1 + o(1))

R̂(K,N ; η∗) =
1

2
(w0 −w∗)⊤(I − η∗H)2TH(w0 −w∗)

+
σ2

N
tr

((
I − (I − η∗H)KN

) (
(I − η∗H)N − (I − η∗H)KN

)
I + (I − η∗H)N

)

+
η∗σ2

2

〈
H,
(
I − (I − η∗H)2T

)
(2I − η∗H)−1

〉
=

1

2

d∑
i=1

(Pθ0)
2
l λi(1− η∗λi)

2T +

d∑
i=1

σ2

N

(1− η∗λi)
N

1 + (1− η∗λi)N

+
η∗σ2

4
tr(H)− η∗σ2

4

d∑
i=1

λi(1− η∗λi)
2T +O

(
(η∗)2

)
=

(
1

2
θ̃2dλd exp(−2λdη

∗T) +

d∑
i=1

σ2

N

e−Nη
∗λi

1 + e−Nη∗λi
+
η∗σ2

4
tr(H)

)
(1 + o(1)) .

Proof Step III: η∗ = o
(

1
N

)
.

We assume that there exists a constant ϵ > 0 and a sequence (Ni)
∞
i=1 that satisfies Ni → ∞ when

i → ∞ and η∗(Ni) ≥ ϵ
Ni

for all i. As we only conduct our analysis on the sequence (Ni)
∞
i=1,

without loss of generality, we take (Ni)
∞
i=1 = N.

We define f(δ) =
∑d
i=1 σ

2 e−δλi

1+e−δλi
+ δσ2

4 tr(H). Then we have

f ′(δ) =
σ2

4

d∑
i=1

λi −
d∑
i=1

σ2 λie
−δλi

(1 + e−δλi)2
=
σ2

4

d∑
i=1

λi
(1− e−δλi)2

(1 + e−δλi)2
> 0 when δ > 0.

So

f(ϵ) > f(0) =
σ2d

2N
,

and

R̄∗(K,N) ≥ 1

N
f(η∗N)(1 + o(1)) ≥ 1

N
f(ϵ)(1 + o(1)) >

σ2d

2N
(1 + o(1)) = R̄(K,N ; η′),

which is a contradiction.

G.3.3 AN APPROXIMATION OF THE EXCESS RISK, SMALL-K CASE

Lemma G.7. Let θ̃2d =
∑d
l=d−nd+1(Pθ0)

2
l , H = PDP⊤ to be the canonical form under similarity

of H . Under the conditions in Lemma 4.4, for learning rate η ∈
[
logKN
3λdKN

, α logKN
KN

]
for constant

α = D2tr(H)
λdtr(H2) and K = o(logN), then we have the approximation of R̄(K,N ; η) as

R̄(K,N ; η) =M(K,N ; η)(1 + o(1)),

M(K,N ; η) :=
1

2
θ̃2dλd exp(−2λdηT) +

ηtr(H)σ2

4
,

where steps T = KN .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Proof. From Lemma G.1, we have that R̄(K,N ; η) = R̂(K,N ; η)(1 + o(1)), where R̂(K,N ; η)
can be written as

R̂(K,N ; η) =
1

2
(w0 −w∗)⊤(I − ηH)2TH(w0 −w∗)

+
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)

+
ησ2

2

〈
H,
(
I − (I − ηH)2T

)
(2I − ηH)−1

〉
=

1

2

d∑
i=1

(Pθ0)
2
l λi(1− ηλi)

2T +

d∑
i=1

σ2

N

(1− ηλi)
N

1 + (1− ηλi)N

+
ησ2

4
tr(H)− ησ2

4

d∑
i=1

λi(1− ηλi)
2T +O

(
η2
)

=

(
1

2
θ̃2dλd exp(−2λdηT) +

ησ2

4
tr(H)

)
︸ ︷︷ ︸

M(K,N ;η)

(1 + o(1)) +O(
1

N
)

=

(
1

2
θ̃2dλd exp(−2λdηT) +

ησ2

4
tr(H)

)
︸ ︷︷ ︸

M(K,N ;η)

(1 + o(1)) , (14)

where the second to last equation uses Lemma G.4 and the fact that η(1−ηλd)2T = o (M(K,N, ; η))

for η ∈ [log T3λdT
, α log T

T], and the last equation uses the fact that when K = o(logN), O
(

1
N

)
=

o
(

log(N)
K,N

)
= o (M(T ; η)).

G.3.4 AN APPROXIMATION OF THE EXCESS RISK, LARGE-K CASE

Lemma G.8. Under the conditions in Lemma 4.4, for η ∈ [log T3λdT
, o
(

1
N

)
], and K = ω (logN), we

have

E[R̄(K,N ; η)] =M(K,N ; η)(1 + o(1)),

M(K,N ; η) =
1

2
θ̃2dλd exp(−2λdηT) +

ηtr(H)σ2

4
+
σ2d

2N
,

where θ̃2d :=
∑d
l=d−nd+1(Pθ0)

2
l , and PDP⊤ is the canonical form under similarity of H .

Proof. Given K = O(N0.1), one can verify that

lim
N→∞

KηT
3
4 = lim

N→∞

K
7
4N

3
4

N
ηN = 0.

So condition K = o
(
η−1T− 3

4

)
is satisfied, thus by invoking Lemma G.1, we have R̄(K,N ; η) =

R̂(K,N ; η)(1 + o(1)).

Note that when η = o
(

1
N

)
, for any i ∈ [1, d], we have

(1− λiη)
N = e−λiηN+O(η2N) = 1 + o(1).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Combining this with Lemma G.4, we have

R̂(K,N ; η) =
1

2
(w0 −w∗)⊤(I − ηH)2TH(w0 −w∗)

+
σ2

N
tr

((
I − (I − ηH)KN

) (
(I − ηH)N − (I − ηH)KN

)
I + (I − ηH)N

)

+
ησ2

2

〈
H,
(
I − (I − ηH)2T

)
(2I − ηH)−1

〉
=

1

2

d∑
i=1

(Pθ0)
2
l λi(1− ηλi)

2T +

d∑
i=1

σ2

N

(1− ηλi)
N

1 + (1− ηλi)N

+
ησ2

4
tr(H)− ησ2

4

d∑
i=1

λi(1− ηλi)
2T +O

(
η2
)

=

(
1

2
θ̃2dλd exp(−2λdηT) +

ησ2

4
tr(H)

)
+
σ2d

2N︸ ︷︷ ︸
M(K,N ;η)

(1 + o(1)) , (15)

which concludes the proof.

G.4 STEP IV: DERIVING THE APPROXIMATELY OPTIMAL LEARNING RATE, PROOF OF
LEMMA 4.4

The proof of Lemma 4.4 for the small-K case and large-K case follows a similar pattern. First, we
minimize the aproximate excess risk obtained in Section G.3.3 and Section G.3.4. Then we conduct
an error bound analysis and complete the proof.

G.4.1 PROOF OF LEMMA 4.4, SMALL K

Part I: Minimizing the Approximation of the Excess Risk
Lemma G.9. Under Assumption 4.1 and 4.3, we consider K-epoch SGD with N fresh data and
learning rate η satisfying η ∈ [log T3λdT

, α log T
T], where steps T := KN and α is some constant

independent of T , but can depend on D and λ1, λ2, . . . , λd. Then when K = o (logN), the chosen
learning rate η′ = log ρT

2λdT
= argminη∈[log T

3λdT ,
α log T

T]M(K,N ; η).

Proof. Given Lemma G.7, we take the derivative of M(K,N ; η) with respect to η

∂M

∂η
= −θ̃2dλ2dT exp(−2λdηT) +

tr(H)σ2

4
.

Define ρ :=
4θ̃2dλd

tr(H)σ2 , and we let ∂M∂η = 0, then we get

0 = −ρT exp(−2λdηT) + 1

ρT = exp(2λdηT)

η =
log ρT

2λdT
.

The above equation completes the proof.

Part II: Error Bound Analysis
Lemma G.10. ConsiderK-epoch SGD withN fresh data and learning rate η. Given a set of learning
rate values Γ, and an excess risk estimate that satisfies R̄(K,N ; η) =M(K,N ; η)(1 + o(1)) when
η ∈ Γ. Assume that η′ = argminΓM(K,N ; η) and η∗ ∈ Γ. Then we have R̄(K,N ; η′(K,N)) =
R̄∗(K,N) (1 + o(1)).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Proof. According to the optimality of η∗, it holds that

R̄∗(K,N) ≤ R̄(K,N ; η′) =M(K,N ; η)(1 + o(1)).

Also, according to the optimality of η′, it holds that

M(K,N ; η′)(1 + o(1)) ≤M(K,N ; η∗)(1 + o(1)) = R̄∗(K,N)

Combining the above two equations gives

R̄(K,N ; η′) = R̄∗(K,N)(1 + o(1)).

Combine the above two lemmas and we finish the whole proof.

G.4.2 PROOF OF LEMMA 4.4, LARGE K

Part I: Minimizing the Approximation of the Excess Risk
Lemma G.11. Under Assumption 4.1 and 4.3, we consider K-epoch SGD with N fresh data and
learning rate η satisfying η ∈ [log T3λdT

, o
(

1
N

)
]. Then when K = ω (logN), the chosen learning rate

η′ = log ρT
2λdT

= argmin[log T
3λdT ,o(

1
N)]M(K,N ; η).

Proof. Given Lemma G.8, we compute the global minima of M(K,N ; η), we have η′ = log T
2λdT

+

O
(
1
T

)
= argminη∈RM(K,N ; η), which lies in the regime [log T3λdT

, o
(

1
N

)
] when N is sufficiently

large.

Part II: Error Bound Analysis The proof of Lemma 4.4 concludes directly by applying Lem-
mas G.6, G.8, G.10 and G.11.

Combine the above two parts and we finish the whole proof.

G.5 PROOF OF THEOREM 4.1

Proof. Notice from Lemma G.1 and Lemma G.4, we have that

R̄(K,N ; η) =
1

2
θ̃2dλd(1− ηλd)

2KN (1 + o(1))︸ ︷︷ ︸
R̂1(K,N,η)

+

d∑
i=1

σ2

N

(1− ηλi)
N

1 + (1− ηλi)N︸ ︷︷ ︸
R̂2(K,N,η)

+
ησ2

4
tr(H)− ndησ

2

4
λd(1− ηλd)

2KN (1 + o(1))︸ ︷︷ ︸
R̂3(K,N,η)

when η ∈
[
ω

(
1

T

)
, o

(
1

T
3
4

)]
.

Next, we carefully analyze the magnitude of R̂1(K,N, η), R̂2(K,N, η), and R̂3(K,N, η), and
using these results, we can simplify the excess risk expression.

Now, We take η = log ρT
2λdT

= logKN
2λdKN

+O
(
1
T

)
in Lemma 4.4, then

(1− λdη)
2KN

= exp

(
2KN log

(
1− logKN

2KN
−O

(
1

T

)))
= exp (− logKN +O(1))

= O

(
1

T

)
.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Thus

R̂1(K,N, η) =
1

2
θ̃2dλd (1− λdη)

2KN

= O

(
1

T

)
,

and

R̂3(K,N, η) =
σ2tr(H) log T

8λdT
− ndσ

2 log T

8λdT
λd (1− λdη)

2KN
(1 + o(1))

=
σ2tr(H) log T

8λdT

(
1 +O

(
1

T

))
=
σ2tr(H) log T

8λdT
(1 + o(1))

= ω(R̂1(K,N, η)).

Next, we discuss two scenarios where K is relatively small and K is relatively large, to be specific,
K = o(logN) and K = ω(logN).

When K = o(logN), We have

(1− λiη)
N =

(
1− logKN

2KN
ρi +O

(
1

KN

))N
= exp

(
N log

(
1− logKN

2KN
ρi +O

(
1

KN

)))
= exp

(
− logKN

2K
ρi(1 + o(1))

)
= o(1).

As a consequence,

R̂2(K,N, η) =

d∑
i=1

σ2

N

o(1)

1 + o(1)

= o

(
1

N

)
.

Meanwhile,

R̂3(K,N, η) = O

(
logKN

KN

)
= O

(
1

N

)
= ω

(
R̂2(K,N, η)

)
.

So

R̄∗(K,N) = R̂(K,N ; η)(1 + o(1)) =
σ2tr(H) log T

8λdT
(1 + o(1)).

When K = ω (logN), we have

(1− λiη)
N =

(
1− logKN

2KN
ρi +O

(
1

KN

))N
= exp

(
N log

(
1− logKN

2KN
ρi +O

(
1

KN

)))
= exp

(
− logKN

2K
ρi +O

(
1

K

))
= exp (o(1))

= 1 + o(1).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

So

R̂2(K,N, η) =

d∑
i=1

σ2

N

1 + o(1)

2 + o(1)
=
σ2d

2N
(1 + o(1))

= O

(
1

N

)
.

R̂3(K,N, η) = O

(
logKN

KN

)
= o

(
1

N

)
= o

(
R̂2(K,N, η)

)
.

As a result, we have

R̄∗(K,N) = R̂(K,N ; η)(1 + o(1)) =
σ2d

2N
(1 + oN (1)).

G.6 PROOF OF THEOREM 4.2

Now we establish the formulation of E(K,N) by solving the equation R̄∗(1, T ′) = R̄∗(K,N).

When K = o(logN), solving R̄∗(1, T ′) = R̄∗(K,N), we get

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) =
σ2tr(H) log T

8λdT
(1 + oT (1))

log T ′

T ′ (1 + oT ′(1)) =
log T

T
(1 + oT (1)). (16)

According to the definition of the small o notation, there exists a constant T̃0 such that when T > T̃0,
the right hand side is smaller than maxT ′∈1,2,3

log T ′

T ′ (1 + oT ′(1)). So W.L.O.G, we could assume
that T ′ ≥ 3 in the following and use the fact that the function log x

x is monotonously decreasing when
x > 3.

Lemma G.12. Given T ′ and N satisfying Equation (16), it holds that T ′ ≂ T when T > T0 for
some constant T0.

Proof. Notice that there exists T1 such that |oT (1)| < 1
2 when T > T1, and oT ′(1) is bounded.

Furthermore, oT ′(1) > −1, because the left hand side is strictly greater than zero due to the fact that
η < 1

D2 . So when T > T1, we have

c4
log T ′

T ′ ≤ 3

2

log T

T
(17)

c5
log T ′

T ′ ≥ 1

2

log T

T
(18)

for two constants c4 ≤ 1 ≤ c5. We claim that T ′ ≥ c4
3 T =: αT when T ≥ 1

α2 ; otherwise,

c4
log T ′

T ′ ≥ c4
logαT

αT

=
3 logαT

T

≥ 3 log T

2T
when T ≥ 1

α2
,

which contradicts Equation (17). We also have T ′ ≤ 3c5T =: βT when T ≥ β2 by a similar
argument; otherwise,

c5
log T ′

T ′ ≤ c5
log βT

βT

=
log βT

3T

≤ log T

2T
when T ≥ β2,

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

which contradicts Equation (18). So T ′ ≂ T when T ≥ min(T1,
1
α2 , β

2, T̃0) = T0.

Next, we prove the first part in Theorem 4.2, which is E(K,N) = K(1+ o(1)) when K = o(logN).
We define F (T) = log T

T , δ(T) = |oT (1)|, and ϵ(T ′) = |oT ′(1)|, so

F (T ′)(1− ϵ(T ′)) ≤ F (T)(1 + δ(T))

F (T ′)(1 + ϵ(T ′)) ≥ F (T)(1− δ(T))

Consequently, we have

−F (T)δ(T)− F (T ′)ϵ(T ′) ≤ F (T ′)− F (T) ≤ F (T)δ(T) + F (T ′)ϵ(T ′). (19)

So due to the convexity of F (T),

− log T − 1

T 2
(T ′ − T) ≤ F ′(T)(T ′ − T) ≤ F (T ′)− F (T) ≤ F (T)δ(T) + F (T ′)ϵ(T ′) =

log T

T
|o(1)|.

Thus we have

T ′ ≥ T (1− o(1)).

The above equation completes the proof.

Combining Equation (16) and Lemma G.12 gets

− log T − 1

T 2
(T − T ′) ≂ − log T ′ − 1

T ′2 (T − T ′). (20)

Further using Equation (19),

F ′(T ′)(T − T ′) ≤ F (T)− F (T ′) ≤ F (T)δ(T) + F (T ′)ϵ(T ′) (21)

Combining Equation (20) and Equation (21) gives

T ′ ≤ T (1 + o(1)).

Substituding the definition of E(K,N) and we get the first part in Theorem 4.2.

When K = ω(logN), solving R̄∗(1, T ′) = R̄∗(K,N), we get

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) =
σ2d

2N
(1 + oN (1)). (22)

There exists a constant Ñ0 such that when N > Ñ0, the right hand side is smaller than the minimal
value of R̄∗(1, T ′) when T ′ is finite, that is, minT ′∈1,2,3

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)). So W.L.O.G,
we could assume that T ′ ≥ 3 in the following and use the fact that the function log x

x is monotonously
decreasing when x > 3.

Now we provide a lemma to give a loose bound of T ′ fisrt, and then we apply the lemma to get the
formula of E(K,N).

Lemma G.13. Given T ′ andN satisfying Equation (22). It holds thatN ≤ T ′ ≤ N
3
2 whenN ≥ N0

for some constant N0.

Proof. Notice that there exists N1 such that |oN (1)| < 1
2 when N > N1, and oT ′(1) is bounded.

Furthermore, oT ′(1) > −1, because the left hand side is strictly greater than zero due to the fact that
η < 1

D2 . So when N > N1, for the left side in Equation (22), we have

c6
log T ′

T ′ ≤ σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) ≤ c7
log T ′

T ′ ,

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

where c6 < c7 are two positive constants. And for the right side,

c8
N

≤ σ2d

2N
(1 + oN (1)) ≤ c9

N
,

where c8 < c9 are two positive constants. Then we prove that T ′ ≥ N when N ≥ max
(
e

c9
c6 , 3

)
.

Otherwise, we have

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) ≥ c6
log T ′

T ′ ≥ c6
logN

N
≥ c9
N

≥ σ2d

2N
(1 + oN (1)),

which is a contradiction. Then we prove that T ′ ≤ N
3
2 when N ≥

(
c10
c8

)4
for some constant c10.

Otherwise, we have

σ2tr(H) log T ′

8λdT ′ (1 + oT ′(1)) ≤ c7
log T ′

T ′ ≤ c7
logN

3
2

N
3
2

=
3c7
2

logN

N
3
2

≤ c10

N
5
4

≤ c8
N

≤ σ2d

2N
(1 + oN (1)),

which is another contradiction. The third inequality uses the fact that logN

N
1
4

is bounded. We take

N0 = max

(
N1, e

c9
c6 ,
(
c10
c8

)4
, Ñ0

)
and we prove the claim.

Combining Equation (22) and Lemma G.13 gives

T ′ = Θ(N log T ′) = Θ(N logN). (23)

Again, combining Equation (23) and Equation (22), and we get

T ′ =
tr(H)N log T ′

4λdd
(1 + oN (1)) =

tr(H)N logN

4λdd
(1 + oN (1)),

and

E(K,N) =
T ′

N
=

tr(H) logN

4λdd
(1 + oN (1))

as a direct corollary.

The above equation immediately finish the proof.

H PROOF OUTLINE FOR THE SOLVABLE CASE WITH ZIPF-DISTRIBUTED DATA

In this section, we give the proof sketch of Lemma I.1 and Theorem 5.2-5.3. Lemma I.1 gives a
general expression of the excess risk, Theorem 5.2 and Theorem 5.3 characterise the behavior of
E(K,N) respectively under power spectrum and logarithm power spectrum assumption. Their proof
outlines are given separately as follows.

1. Proof sketch of Lemma I.1. We exploit the properties that the sequantial updates are commuta-
tive and all finite-order moments of data are computable, and we obtain the result through a direct
calculation.

2. Proof sketch of Theorem 5.2 and Theorem 5.3. For Theorem 5.2, we consider two cases
when K is relatively small and K is relatively large. As a special case, one-pass senario belongs to
the small-K case. We first derive matching upper bounds and lower bounds for high-dimensional
cases for both the two regimes. The core of the proof lies in determining E(K,N) by solving
ER(wT ′) = ER(wK,N), which requires an asymptotic analysis. We tackle this issue with two
steps. First we prove a loose bound for T ′ for N beyond a threshold, then we refine the obtained
results and utilize the convexity of loss approximation to derive more precise estimates. The proof of
Theorem 5.3 is similar to that of Theorem 5.2.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

I PROOF OF MAIN RESULTS FOR THE SOLVABLE CASE WITH
ZIPF-DISTRIBUTED DATA

Similar to the proof insights in Section 4, the first move to get the formula of the effective reuse rate
is to get an accurate proxy of the excess risk. Here, leveraging the simplicity of the setting, we can
derive a general closed formula for the excess risk.
Lemma I.1. Under Assumption 5.1, the excesss risk for K-epoch training over N fresh data , with
learning rate η can be given by

R̄(K,N ; η) =
1

2

〈
PΛ,

(
I − P + P (I − ηΛ)

2K
)N〉

,

where the expectation is over the randomness of w∗ and training datasets {xi, yi}N−1
i=0 .

The above lemma states that we can explicitly write out the exact expression for the excess risk.
From the above expression for the excess risk, we can observe that, in the absence of label noise
interference, and under the condition that the absolute values of all elements of the diagonal matrix
I − ηΛ are less than 1, the optimal learning rate can be of the constant order. Therefore, in the
subsequent study of the effective reuse rate, we consider using the same learning rate η = Θ(1) for
both multi-epoch and one-pass SGD.

It is worth noting that here we are actually describing a more general problem setting than the Zipf
law, as we only impose constraints on the power spectrum of the Hessian matrix H . In contrast, the
probability matrix P can follow Zipf’s law or any other law. In the remainder of this section, we
first consider the classic Zipf’s law setting, where P follows a power law, and the data matrix Λ also
follows a power law, which is consistent with the previous power law analysis. In Section 5.2, we
explore the case where P follows a log-power spectrum (Lin et al., 2024), and investigate the impact
of changing the spectrum’s properties on the resulting effective reuse rate formula.

I.1 A CLOSED FORMULA FOR THE EXCESS RISK: PROOF OF LEMMA I.1

We first write out the update of parameter after K epochs

θKN = A(K) · · ·A(1)θ0 =

1∏
l=K

A(l)θ0

=
(
I − ηxN−1x

⊤
N−1

)K · · ·
(
I − ηx0x

⊤
0

)K
θ0.

Then we get the excess risk expression as

R̄(K,N ; η) = E
1

2
θ⊤
K,NHθK,N

= E
1

2
θT0 PΛ

(
I − ηxN−1x

⊤
N−1

)2K · · ·
(
I − ηx0x

⊤
0

)2K
θ0.

Assumption 5.1 gives

R̄(K,N ; η) = E
1

2

〈
θ0θ

T
0 ,PΛ

(
I − ηxN−1x

⊤
N−1

)2K · · ·
(
I − ηx0x

⊤
0

)2K〉
=

1

2

〈
I,PΛ

(
E
(
I − ηxx⊤)2K)N〉 .

Direct calculation gives

E
(
xx⊤)j = d∑

i=1

µ2j−2
i piµ

2
i eie

⊤
i = PΛj ,

and

E
[(
I − ηxx⊤)2K] = I +

2K∑
j=1

(
2K

j

)
(−1)jηjPΛj = I − P + P (I − ηΛ)2K .

Then we can write out the excess risk as

R̄(K,N ; η) =
1

2

〈
PΛ,

(
I − P + P (I − ηΛ)2K

)N〉
.

The above equation completes the proof.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

I.2 SCALING LAWS FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.1

Before we begin our main part of the proof, note that for all η = Θ(1) and η ≤ 2, there exists
d1 = Θ(1) > 0 such that 1− η

ib
> 0 when i > d1. Then we divide the expected excess risk into two

parts:

R̄(K,N ; η) =
1

2

d∑
i=1

c

ia

(
1− c

ia−b

(
1−

(
1− η

ib

)2K))N

=
1

2

d1∑
i=1

c

ia

(
1− c

ia−b

(
1−

(
1− η

ib

)2K))N
︸ ︷︷ ︸

S1(K,N ;η)

+
1

2

d∑
i=d1+1

c

ia

(
1− c

ia−b

(
1−

(
1− η

ib

)2K))N
︸ ︷︷ ︸

S2(K,N ;η)

.

The intuition behind our proof here is quite similar to what we do in Appendix G.5. We first separately
simplify the expression of the excess risk when K = o(N

b
a−b) and K = ω(N

b
a−b). The proofs for

both the small-K and large-K regimes proceed in parallel. We first control S2(K,N ; η) over a broad
range of learning rates and identify a near-optimal η′ for which S1 is negligible compared to S2. This
allows us to approximate R̄∗(K,N) via R̄(K,N ; η′) and S2(K,N ; η∗).

I.2.1 PROOF OF THEOREM 5.1: SMALL-K CASE

The Expected Excess Risk Approximation.

Lemma I.2. Suppose the assumptions in Theorem 5.2 hold. When K = o(N
b

a−b) and η = Θ(1), we
define the estimator of S2(K,N ; η) as

S̃2(K,N ; η) :=
1

2

d∑
i=d1+1

c

ia
e

−2KNcη
ia .

Then we have S2(K,N ; η) = S̃2(K,N ; η)(1 + o(1)), and S̃2(K,N ; η) ≂ 1

(KN)
a−1
a

.

Proof. By the fact that K = o(N
b

a−b), there exists a constant N2 such that when N ≥ N2, K ≤

N
b

a−b . And we define F (x) := c
xa

(
1− c

xa−b

(
1−

(
1− η

xb

)2K))N
. Direct observation gives us

that under Assumption 5.2, R̄(K,N ; η) ∝
∑d
i=1 F (i). Next we take the derivative of F and analyze

its maximizer.

F ′(x) = − ac

xa+1

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N
+
cN

xa

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N−1

· Φ(x)

=
c

xa

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N−1

(
−a
x

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)
+NΦ(x)

)
=

c

x2a−b+1

(
1− c

xa−b
+

c

xa−b

(
1− η

xb

)2K)N−1

·G(x).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

where we define

G(x) := −a
(
xa−b − c+ c

(
1− η

xb

)2K)
+N

(
(a− b)c− (a− b)c

(
1− η

xb

)2K
+

2cKbη

xb

(
1− η

xb

)2K−1
)
,

and

Φ(x) :=

(
(a− b)c

xa−b+1
− (a− b)c

xa−b+1

(
1− η

xb

)2K
+

2cKbη

xa+1

(
1− η

xb

)2K−1
)
.

We denote the maximizer of F (x) by x0, so G(x0) = 0. We claim that:

when N ≥ N2, x0 ≥ min

((
KN(a−b)cη

2a

) 1
a

, 6
1
b (KN)

1
a

)
=: x1.

Proof of the claim. Notice that when N ≥ N2,

η

xb
≤ 1

6(KN)
b
a

≤ 1

6K
.

We assume that the claim is wrong, then

G(x0) ≥ N

(
(a− b)c− (a− b)c

(
1− η

xb

)2K)
− axa−b

≥ KN(a− b)cη − axa

xb

≥ KN(a− b)cη

2xb1
> 0,

which is a contradiction. The third inequality comes from Lemma J.3.

So x0 = Ω
(
(KN)

1
a

)
. Further pluging this into G(x0) = 0 that

G(x0) = −axa−b0 (1 + o(1)) +N

(
2K(a− b)cη

xb0
(1 + o(1)) +

2K(a− b)cη

xb0
(1 + o(1))

)
= 0.

gives

x0 = Θ
(
(KN)

1
a

)
, F (x0) = Θ

(
1

KN

)
.

Then we have

S2(K,N ; η) =
1

2

K
0.5

a+0.5b (KN)
1

a+0.5b∑
i=d1+1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N

+
1

2

d∑
K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N
:= J1 + J2.

Furthermore, we have

J1 ≲ K
0.5

a+0.5b (KN)
1

a+0.5bF (x0) ≲
K

0.5
a+0.5b (KN)

1
a+0.5b

KN
,

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

and

J2 =
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N

=
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia

(
1− 2Kcη

ia
+O

(
K2

ia+b

))N

=
1

2

d∑
K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e
N log

(
1− 2Kcη

ia +O
(

K2

ia+b

))

=
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e

−2KNcη
ia +O

(
K2N

ia+b

)

=
1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e

−2KNcη
ia (1 + o(1)).

We define K1(x) = c
xa e

−2KNcη
xa . We can derive that argmaxK1(x) = Θ

(
(KN)

1
a

)
, and

maxK1(x) = Θ
(

1
KN

)
. So when d ≥ 3(KN)

1
a , we have

J2 ≥ 1

2

3(KN)
1
a∑

i=(KN)
1
a

c

ia
e

−2KNcη
ia (1 + o(1))

≳ (KN)
1
a × ce−2cη

KN
≳

(KN)
1
a

KN
.

We can verify that J1 = o(J2) as a direct consequence. We define

S̃2(K,N ; η) =
1

2

d∑
i=d1+1

c

ia
e

−2KNcη
ia

=
1

2

K
0.5

a+0.5b (KN)
1

a+0.5b∑
i=d1+1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=K

0.5
a+0.5b (KN)

1
a+0.5b +1

c

ia
e

−2KNcη
ia

:= J̃1 + J̃2.

We have J2 = J̃2(1 + o(1)), and

J̃1 ≤ K
0.5

a+0.5b (KN)
1

a+0.5b ×maxK1(x) ≲
K

0.5
a+0.5b (KN)

1
a+0.5b

KN
= o(J̃2).

So S2(K,N ; η) = S̃2(K,N ; η)(1 + o(1)).

The matching upper and lower bounds for S̃2(K,N ; η) comes directly from Lemma J.7.

By combining the expression of S̃2(K,N ; η) with Lemma J.7, we get another lemma:

Lemma I.3. Suppose the assumptions in Theorem 5.2 hold, and the expression of S̃2(K,N ; η) is
given in Lemma I.2. Then we have ∂

∂η S̃2(K,N ; η) ≂ − 1

(KN)
a−1
a

.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Proof.

∂

∂η
S̃2(K,N ; η) = −KN

d∑
i=d1+1

c

i2a
e

−2KNcη
ia

≂ − 1

(KN)
a−1
a

,

where the second line comes from Lemma J.7.

Lemma I.4. Suppose the assumptions in Theorem 5.2 hold, and the expression of S̃2(K,N ; η) is
given in Lemma I.2. Consider two learning rate options η, η′ = Θ(1)that satisfy η− η′ = o(1). Then
we have S̃2(K,N ; η) = S̃2(K,N ; η′)(1 + o(1)).

Proof. ∣∣∣S̃2(K,N ; η)− S̃2(K,N ; η′)
∣∣∣ = ∣∣∣∣ ∂∂η S̃2(K,N ; η̃)

∣∣∣∣ |(η − η′)|

≂
1

(KN)
a−1
a

|(η − η′)|

= S̃2(K,N ; η′)o(1),

where η̃ ∈ [min(η, η′),max(η, η′)] = Θ(1), and the first line comes from Lagrange’s Mean Value
Theorem. The secome line comes from Lemma I.3, and the last line comes from Lemma I.2.

The Range of Optimal Learning Rate. First, take η′ = 2− (a−1)da−b
1

ac
logKN
KN , and we have

S1(K,N ; η′) ≤ d1c

2

1− c

da−b1

+
c

da−b1

(
1− (a− 1)da−b1

ac

logKN

KN

)2K
N

.

By a Taylor expansion argument, we have

S1(K,N ; η′) =
d1c

2

(
1− 2Kc

da−b1

× (a− 1)da−b1

ac

logKN

KN
(1 + o(1))

)N

=
d1c

2

(
1− 2(a− 1)

a

logKN

N
(1 + o(1))

)N
=
d1c

2
eN log(1− 2(a−1)

a
log KN

N (1+o(1)))

≂
1

(KN)
2(a−1)

a

= o(S2(K,N ; η′)),

where the last inequality comes from Lemma I.2. Then we have

R̄(K,N ; η′) = S1(K,N ; η′) + S2(K,N ; η′)

= S̃2(K,N ; η′)(1 + o(1))

= S̃2(K,N ; 2)(1 + o(1))

=

(
1

2

d∑
i=d1+1

c

ia
e

−4KNc
ia

)
(1 + o(1)).

Then we prove that η∗ ∈ [2 − o(1), 2]. We prove by contradiction, and assume that there exist a
constant ϵ > 0 and a sequence (Ni)

∞
i=1 → ∞ such that η∗(Ni) ≤ 2 − ϵ for all i ≥ 1. As we only

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

analyze with respect to the sequence (Ni)
∞
i=1, without loss of generality, we take (Ni)

∞
i=1 = N. By

Lemma I.2, we have
R̄∗(K,N) ≥ S2(K,N ; η∗) = S̃2(K,N ; η∗)(1 + o(1))

≥
[
S̃2(K,N ; 2) + ϵ

∂

∂η
S̃2(K,N ; 2)

]
(1 + o(1)) > R̄(K,N ; η′)

when N is sufficiently large, which is a contradiction. So
R̄∗(K,N) = S1(K,N ; η∗) + S2(K,N ; η∗)

= S1(K,N ; η∗) + S̃2(K,N ; η∗)(1 + o(1))

= S1(K,N ; η∗) + S̃2(K,N ; 2)(1 + o(1)) ≤ R̄(K,N ; η′).

Thus, S1(K,N ; η∗) = o
(
S̃2(K,N ; 2)

)
, and R̄∗(K,N) = S̃2(K,N ; 2)(1 + o(1)).

By Lemma I.2 and Lemma J.7, there exist two constants C1 and C2 such that R̄∗(K,N) ≤ C1

(KN)
a−1
a

and R̄∗(K,N) ≥ C2

(KN)
a−1
a

when the condition d = Ω(T
1
a) holds. For one-pass case, by Lemma I.2

and Lemma J.7, we have
R̄∗(1, T ′) = R̄(1, T ′; η∗(1, T ′)|d=d)

≤ R̄(1, T ′; η∗(1, T ′)|d=∞)

= R̄∗(1, T ′)
∣∣
d=∞ =

1

2

∞∑
i=d1+1

c

ia
e−

4KNc
ia (1 + o(1)) ≤ C3

T ′ a−1
a

(24)

and

R̄∗(1, T ′) =
1

2

d∑
i=d1+1

c

ia
e−

4KNc
ia (1 + o(1)) ≥ C4

T ′ a−1
a

when d = Ω
(
T ′ 1a

)
. (25)

I.2.2 PROOF OF THEOREM 5.1: LARGE-K CASE

The Expected Excess Risk Approximation.

Lemma I.5. Suppose the assumptions in Theorem 5.2 hold. When K = ω(N
b

a−b) and η = Θ(1),
we have S2(K,N ; η) ≂ 1

N
a−1
a−b

.

Proof. There exists N3 such that when N ≥ N3, we have K ≥ N
b

a−b . Then when d ≥ 3(KN)
1
a ≥

3N
1

a−b , we give the lower bound of the loss:

S2(K,N ; η) ≥ 1

2

3N
1

a−b∑
i=N

1
a−b

c

ia

(
1− c

ia−b

)N

≥ 1

2

2N
1

a−b

(3N
1

a−b)a
(1− c

N
)N

≳
1

N
a−1
a−b

.

Then we derive the upper bound of the loss:

S2(K,N ; η) ≤ 1

2

∞∑
i=1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N

≤ 1

2

N
1

a−b∑
i=1

c

ia

(
1− c

ia−b
+

c

ia−b

(
1− η

ib

)2K)N
+

1

2

∞∑
i=N

1
a−b +1

c

ia
.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

When K = ω(N
b

a−b) and i ≤ N
1

a−b ,

(
1− η

ib

)2K
≤
(
1− η

N
b

a−b

)2K

= e
2K log

(
1− η

N
b

a−b

)

≤ e
−2K η

N
b

a−b = o(1).

Then there exists N4 such that
(
1− η

ib

)2K ≤ 1
2 when N ≥ N4. So when N ≥ max(N3, N4), we

have

S2(K,N ; η) ≤ 1

2

N
1

a−b∑
i=1

c

ia

(
1− c

2ia−b

)N
+

1

2

∞∑
i=N

1
a−b +1

c

ia
.

One can derive that max c
ia

(
1− c

2ia−b

)N
= Θ

(
1

N
a

a−b

)
. So

R̄∗(K,N) ≲
1

N
a−1
a−b

+
1

N
a−1
a−b

≲
1

N
a−1
a−b

.

And we complete the proof.

The Range of Optimal Learning Rate. First, take η′ = 1.5, and we have

S1(K,N ; η′) ≤ d1c

2

(
1− c

da−b1

+
c

da−b1

(
max

(
0.5, 1− 1.5

db1

))2K
)N

=
d1c

2
(1−Θ(1))

N

= o(S2(K,N ; η′)),

where the last inequality comes from Lemma I.5. Then we have

R̄(K,N ; η′) = S1(K,N ; η′) + S2(K,N ; η′)

= S2(K,N ; η′)(1 + o(1))

It is obvious that η∗ ∈ [1, 2]. We know that

R̄∗(K,N) = S1(K,N ; η∗) + S2(K,N ; η∗) ≤ R̄(K,N ; η′) = S2(K,N, η
′)(1 + o(1)).

By Lemma I.5, we have

S2(K,N ; η∗) = Θ
(
N− a−1

a−b

)
and S2(K,N ; η′) = Θ

(
N− a−1

a−b

)
,

which directly implies that

S1(K,N ; η∗) = O
(
N− a−1

a−b

)
, R̄∗(K,N) = Θ

(
N− a−1

a−b

)
.

I.3 E(K,N) FOR POWER-LAW SPECTRUM: PROOF OF THEOREM 5.2

I.3.1 PROOF OF THEOREM 5.2, SMALL-K CASE

Let T ′ be defined implicitly by equating the averaged risks at their optimal step sizes:

R̄∗(1, T ′) = R̄∗(K,N). (26)

We claim that (
C4

C1

) a
a−1

T ≤ T ′ ≤
(
C3

C2

) a
a−1

T. (27)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Proof. We argue by contradiction, considering two exclusive violations of Equation (27).

1. Case 1: T ′ >
(
C3

C2

) a
a−1T . By the risk bounds encoded by (C2, C3) for one-pass training

with T ′ fresh data and by (C1, C4) for K-epoch training with N fresh data, this inequality
forces

R̄∗(1, T ′) < R̄∗(K,N),

which contradicts the defining equality Equation (26).

2. Case 2: T ′ <
(
C4

C1

) a
a−1T . given d = Ω(T

1
a) we still have d = Ω

(
(T ′)1/a

)
. The same risk

comparisons then yield
R̄∗(1, T ′) > R̄∗(K,N),

again contradicting Equation (26).

Both contradictions rule out violations; hence Equation (27) holds.

Therefore, the desired characterization of E(K,N) follows directly from Lemma J.8.

I.3.2 PROOF OF THEOREM 5.2, LARGE-K CASE

By Theorem 5.1, there exist constants C5, C6 > 0 such that, given d = Ω(T
1
a),

C6

N
a−1
a−b

≤ R̄∗(K,N) ≤ C5

N
a−1
a−b

. (28)

Let T ′ be defined by equating the averaged risks at their optimal step sizes:

R̄∗(K,N) = R̄∗(1, T ′). (29)

Combining Equation (28), Equation (29) with Equation (24), Equation (25), we claim that(
C4

C5

) a
a−1

N
a

a−b ≤ T ′ ≤
(
C3

C6

) a
a−1

N
a

a−b . (30)

Proof of the claim. We argue by contradiction.

1. Upper violation. If T ′ >
(
C3

C6

) a
a−1N

a
a−b , then by Equation (24) and Equation (28) (lower

bound),

R̄∗(1, T ′) ≤ C3

(T ′)
a−1
a

<
C6

N
a−1
a−b

≤ R̄∗(K,N),

which contradicts Equation (29).

2. Lower violation. If T ′ <
(
C4

C5

) a
a−1N

a
a−b , then the condition d = Ω(T

1
a) gives

d = Ω
(
N

1
a−b

)
= Ω

(
(T ′)

1
a

)
.

Using Equation (25) and Equation (28) (upper bound),

R̄∗(1, T ′) ≥ C4

(T ′)
a−1
a

>
C5

N
a−1
a−b

≥ R̄∗(K,N),

again contradicting Equation (29).

Both contradictions are impossible; hence Equation (30) holds.

The characterization of E(K,N) follows directly by the claim.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

I.4 SCALING LAWS FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM D.1

Similar to the proof of Theorem 5.1, the proof of Theorem 5.3 consists of two parts: First part is the
case when K = o(logbN), and the second part is the case when K = ω(logbN).

Before we begin our main part of the proof, note that for all η = Θ(1) and η ≤ 2, there exists
d2 = Θ(1) > 0 such that 1− η

logb(i+1)
> 0 when i > d2. Then we divide the loss into two parts:

R̄(K,N ; η) =
1

2

d∑
i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

=
1

2

d2∑
i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

︸ ︷︷ ︸
V1(K,N ;η)

+

d∑
d2+1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

︸ ︷︷ ︸
V2(K,N ;η)

.

I.4.1 PROOF OF THEOREM D.1: SMALL-K CASE

The Expected Excess Risk Approximization.
Lemma I.6. Suppose the assumptions in Theorem 5.3 hold. When K = o(logbN), we define the
estimate of V (K,N ; η) as

Ṽ2(K,N ; η) :=
1

2

d∑
i=1

c

ia
e

−2KNcη
ia .

Then we have V2(K,N ; η) = Ṽ (K,N ; η)(1 + o(1)), and Ṽ2(K,N ; η) ≂ 1

(KN)
a−1
a

.

Proof of Lemma I.6. We first define a function

W (x) :=
c

xa

(
1− c logb(x+ 1)

xa

(
1−

(
1− η

logb(x+ 1)

)2K
))N

.

Direct observation gives us that under Assumption 5.3, R̄(K,N ; η) ∝
∑d
i=1W (i). Simliarly we

take the derivative of W .

W ′(x) = − ac

xa+1

(
1− c logb(x+ 1)

xa
+
c logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K
)N

+
cN

xa

(
1− c logb(x+ 1)

xa
+
c logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K
)N−1

((
ac logb(x+ 1)

xa+1
− bc logb−1(x+ 1)

xa(x+ 1)

)(
1−

(
1− η

logb(x+ 1)

)2K
)

+
2cK logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K−1
bη

(x+ 1) logb+1(x+ 1)

)

=
c

x2a+1

(
1− c logb(x+ 1)

xa
+
c logb(x+ 1)

xa

(
1− η

logb(x+ 1)

)2K
)N−1

(
−a

(
xa − c logb(x+ 1) + c logb(x+ 1)

(
1− η

logb(x+ 1)

)2K
)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

+N

((
ac logb(x+ 1)− bc logb−1(x+ 1)

x

x+ 1

)(
1−

(
1− η

logb(x+ 1)

)2K
)

+
2cKbη

log(x+ 1)

(
1− η

logb(x+ 1)

)2K−1
x

x+ 1

))
.

We define

G(x) = −a

(
xa − c logb(x+ 1) + c logb(x+ 1)

(
1− η

logb(x+ 1)

)2K
)

+N

((
ac logb(x+ 1)− bc logb−1(x+ 1)

x

x+ 1

)(
1−

(
1− η

logb(x+ 1)

)2K
)

+
2cKbη

log(x+ 1)

(
1− η

logb(x+ 1)

)2K−1
x

x+ 1

)
,

and x0 is defined to be the maximum of W (x), so G(x0) = 0.

G(x) ≥ N logb(x+ 1)

(
ac− bc

log(x+ 1)

x

x+ 1

)(
1−

(
1− η

logb x

)2K
)

− axa

≥ N(a− b)c logb(x+ 1)

(
1−

(
1− η

logb(x+ 1)

)2K
)

− axa

= N(a− b)c logb(x+ 1)× η

logb(x+ 1)

(
2K−1∑
i=0

(
1− η

logb(x+ 1)

)i)
− axa

≥ N(a− b)cη − axa.

So x0 = Ω
(
N

1
a

)
is an direct conclusion by G(x0) = 0. Also , by solving G(x0) = 0, we can get

the approximation of x0 as

G(x0) = −axa0(1 + o(1))

+N

(
ac logb(x0 + 1)(1 + o(1))× 2Kη

logb(x0 + 1)
(1 + o(1)) +O

(
K

logN

))
= −axa0(1 + o(1)) + 2KNacη(1 + o(1)) = 0,

thus we have

x0 = Θ
(
(KN)

1
a

)
, W (x0) = Θ

(
1

KN

)
.

There exists a constant N5 such that K ≤ logbN when N ≥ N5. So when N ≥ N5 and d ≥

3(KN)
1
a ≥ 3(KN)

1
a

(
K

logbN

) 1
2a

, we have

V2(K,N ; η) =
1

2

(KN)
1
a

(
K

logb N

) 1
2a∑

i=d2+1

c

ia

(
1− c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

+
1

2

d∑
(KN)

1
a

(
K

logb N

) 1
2a

c

ia

(
1− c logb(i+ 1)

ia

(
1−

(
1− η

logb(i+ 1)

)2K
))N

:= ψ1 + ψ2.

Furthermore,

ψ1 ≲ (KN)
1
a

(
K

logbN

) 1
2a

×W (x0) ≲
(KN)

1
a

(
K

logbN

) 1
2a

KN
,

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

and

ψ2 =
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1− η

logb(i+ 1)

)2K
)N

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia

(
1− 2Kcη

ia
+O

(
K2

ia logb(i+ 1)

))N

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e
N log

(
1− 2Kcη

ia +O
(

K2

ia logb(i+1)

))

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e

−2KNcη
ia +O

(
K2N
i2a

)
+O
(

K2N

ia logb(i+1)

)

=
1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e

−2KNcη
ia (1 + o(1)).

We recall K1(x) = c
xa e

−2KNcη
xa . We can verify that argmaxK1(x) = Θ

(
(KN)

1
a

)
and

maxK1(x) = Θ
(

1
KN

)
through a direct calculation. So for ψ2 we have

ψ2 ≥ 1

2

3(KN)
1
a∑

i=(KN)
1
a

c

ia
e

−2KNcη
ia (1 + o(1))

≳
(KN)

1
a

KN
.

We can verify that ψ1 = o(ψ2) as a direct consequence. We define

Ṽ2(K,N ; η) =
1

2

d∑
i=d2+1

c

ia
e

−2KNcη
ia

=
1

2

(KN)
1
a

(
K

logb N

) 1
2a∑

i=d2+1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=(KN)

1
a

(
K

logb N

) 1
2a

c

ia
e

−2KNcη
ia

:= ψ̃1 + ψ̃2.

We have ψ2 = ψ̃2(1 + o(1)), and

ψ̃1 ≲
(KN)

1
a

(
K

logbN

) 1
2a

KN
= o(ψ̃2).

So V2(K,N ; η) = Ṽ2(K,N ; η)(1 + o(1)).

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Finally, we derive a matching upper and lower bound for Ṽ2(K,N ; η) and conclude the proof:

Ṽ2(K,N ; η) ≥ J̃2 ≳ J2 ≳
1

(KN)
a−1
a

.

Ṽ2(K,N ; η) =
1

2

(KN)
1
a∑

i=d2+1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=(KN)

1
a +1

c

ia
e

−2KNcη
ia

≤ 1

2

(KN)
1
a∑

i=1

c

ia
e

−2KNcη
ia +

1

2

d∑
i=(KN)

1
a +1

c

ia

≲
(KN)

1
a

KN
+

1

(KN)
a−1
a

≲
1

(KN)
a−1
a

.

Then we complete the proof.

Notice that Ṽ2(K,N ; η) and V2(K,N ; η) are identical to each other, so we can directly apply
Lemma I.3 and Lemma I.4 in the remainding proof of Theorem 5.3.

The Range of Optimal Learning Rate. First, take η′ = 2 logb(2)− ϵ, where ϵ := (a−1)da2
ac

logKN
KN ,

and we have

V1(K,N ; η′) ≤ d2c

2

(
1− c logb(2)

da2
+
c logb(2)

da2

(
1− ϵ

logb(2)

)2K
)N

=
d2c

2

(
1− 2Kc logb(2)

da2
× ϵ

logb(2)
(1 + o(1))

)N

=
d2c

2

(
1− 2(a− 1)

a

logKN

N
(1 + o(1))

)N
=
d2c

2
eN log(1− 2(a−1)

a
log KN

N (1+o(1)))

≂
1

(KN)
2(a−1)

a

= o(V2(K,N ; η′)),

where the last inequality comes from Lemma I.6. Then we have

R̄(K,N ; η′) = V1(K,N ; η′) + V2(K,N ; η′)

= Ṽ2(K,N ; η′)(1 + o(1))

= Ṽ2(K,N ; 2)(1 + o(1))

=

(
1

2

d∑
i=d1+1

c

ia
e

−4 logb(2)KNc
ia

)
(1 + o(1)).

Then we prove that η∗ ∈ [2 logb(2)− o(1), 2 logb(2)]. We prove by contradiction, and assume that
there exist a constant ϵ > 0 and a sequence (Ni)

∞
i=1 → ∞ such that η∗(Ni) ≤ 2 logb(2)− ϵ for all

i ≥ 1. As we only analyze with respect to the sequence (Ni)
∞
i=1, without loss of generality, we take

(Ni)
∞
i=1 = N. By Lemma I.2, we have

R̄∗(K,N) ≥ V2(K,N ; η∗) = Ṽ2(K,N ; η∗)(1 + o(1))

≥
[
Ṽ2(K,N ; 2) + ϵ

∂

∂η
Ṽ2

(
K,N ; 2 logb(2)

)]
(1 + o(1)) > R̄(K,N ; η′)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

when N is sufficiently large, which is a contradiction. So

R̄∗(K,N) = V1(K,N ; η∗) + V2(K,N ; η∗)

= V1(K,N ; η∗) + Ṽ2(K,N ; η∗)(1 + o(1))

= V1(K,N ; η∗) + Ṽ2

(
K,N ; 2 logb(2)

)
(1 + o(1)) ≤ R̄(K,N ; η′).

So V1(K,N ; η∗) = o
(
Ṽ2

(
K,N ; 2 logb(2)

))
, and R̄∗(K,N) = Ṽ2(K,N ; 2 logb(2))(1+ o(1)) ≂

1

(KN)
a−1
a

.

I.4.2 PROOF OF THEOREM D.1, LARGE-K CASE

The Expected Excess Risk Approximation.

Lemma I.7. Suppose the assumptions Theorem 5.3 hold. When K = ω(logbN), we have
V2(K,N ; η) ≂ 1

(N logbN)
a−1
a

.

Proof of Lemma I.7. By K = ω(logbN), there exists a constant N6 > 0 such that K > logbN

when N ≥ N6. We notice that when i = Θ

((
N logbN

) 1
a

)
, log(i+ 1) = Θ(logN). Then, when

N ≥ N6 and d ≥ 3(KN)
1
a ≥ 3

(
N logbN

) 1
a

, we have

V2(K,N ; η) ≥ 1

2

3(N logbN)
1
a∑

i=(N logbN)
1
a

c

ia

(
1− c logb(i+ 1)

ia

)N

≥ 1

2

2
(
N logbN

) 1
a

3aN logbN
(1− c11

N
)N

≳
1(

N logbN
) a−1

a

.

For the upper bound, we have

R̄(K,N ; η) ≤ 1

2

∞∑
i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1− η

logb(i+ 1)

)2K
)N

≤ 1

2

(N logbN)
1
a∑

i=1

c

ia

(
1− c logb(i+ 1)

ia
+
c logb(i+ 1)

ia

(
1− η

logb(i+ 1)

)2K
)N

+
1

2

∞∑
i=(N logbN)

1
a +1

c

ia
.

When K = ω(logbN) and i ≤
(
N logbN

) 1
a

,

(
1− η

logb(i+ 1)

)K
≤
(
1− c12

logbN

)K
= e

K log
(
1− c12

logb N

)

≤ e
−K c12

logb N = o(1).

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

So there exists N7 such that when N ≥ N7,
(
1− η

logb(i+1)

)K
≤ 1

2 , and when N ≥ max(N6, N7),

R̄(K,N ; η) ≤ 1

2

(N logbN)
1
a∑

i=1

c

ia

(
1− c logb(i+ 1)

2ia

)N
+

1

2

∞∑
i=(N logbN)

1
a +1

c

ia
.

One can derive that maxx
c
xa

(
1− c logb(x+1)

2xa

)N
= Θ

(
1

N logbN

)
.

So finally, we have

V2(K,N ; η) ≤ R̄(K,N ; η) ≲
1(

N logbN
) a−1

a

+
1(

N logbN
) a−1

a

≲
1(

N logbN
) a−1

a

,

and we get the result.

The Range of Optimal Learning Rate. First, take η′ = 1.5 logb(2), and we have

V1(K,N ; η′) ≤ d2c

2

1− c logb(2)

da2
+
c logb(2)

da2
max

(
0.5, 1− 1.5 logb(2)

logb(d2 + 1)

)2K
N

=
d1c

2
(1−Θ(1))

N

= o(V2(K,N ; η′)),

where the last inequality comes from Lemma I.5. Then we have

R̄(K,N ; η′) = V1(K,N ; η′) + V2(K,N ; η′)

= Ṽ2(K,N ; η′)(1 + o(1))

It is obvious that η∗ ∈
[
logb(2), 2 logb(2)

]
. We know that

R̄∗(K,N) = V1(K,N ; η∗) + V2(K,N ; η∗) ≤ R̄(K,N ; η′) = V2(K,N, η
′)(1 + o(1))

≂
1(

N logbN
) a−1

a

.

I.5 E(K,N) FOR LOGARITHMIC POWER-LAW SPECTRUM: PROOF OF THEOREM 5.3

I.5.1 PROOF OF THEOREM 5.3, SMALL-K CASE

The proof here is almost a reproduction of the proof in Appendix I.2.1.

I.5.2 PROOF OF THEOREM 5.3, LARGE-K CASE

Consider the multi-epoch training setting with d = Ω
(
(KN)

1
a+b

)
. By Lemmas I.7 and J.7, there

exist constants C7, C8 > 0 such that

C8

N(logN)b
≤ R̄∗(K,N) ≤ C7

N(logN)b
. (31)

Let T ′ be defined by matching the expected risks:

R̄∗(K,N) = R̄∗(1, T ′). (32)

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

In the one-pass case, we use the constants C3, C4 > 0 (as defined in the proof of Theorem 5.2) to
control R̄∗(1, T ′).

We claim that (
C4

C7

) a
a−1

N(logN)b ≤ T ′ ≤
(
C3

C8

) a
a−1

N(logN)b. (33)

Proof of the claim. We argue by contradiction.

1. Upper bound violation. If T ′ >
(
C3

C8

) a
a−1 N(logN)b, then the one-pass upper bound

together with Equation (31) (multi-epoch lower bound) imply

R̄∗(K,N) < R̄∗(1, T ′),

which contradicts the defining equality Equation (32).

2. Lower bound violation. If T ′ <
(
C4

C7

) a
a−1 N(logN)b, then d = Ω

(
(KN)

1
a+b

)
yields

d = Ω
(
(N(logN)b)1/a

)
= Ω

(
(T ′)1/a

)
,

so the one-pass lower bound together with Equation (31) (multi-epoch upper bound) give

R̄∗(K,N) > R̄∗(1, T ′),

again contradicting Equation (32).

Both violations are impossible; hence Equation (33) holds.

Thus, in the large-K multi-epoch regime, the matched one-epoch training time satisfies T ′ =
Θ
(
N(logN)b

)
up to fixed constants. Therefore, the desired characterization of E(K,N) follows

directly.

J ADDITIONAL TECHNICAL LEMMAS

Lemma J.1. For any PSD matrix A, it holds that

⟨H,A⟩ ≤ tr(H)∥A∥.

Proof. We denote the PSD decomposition of H by

H =
d∑
i=1

λiqiq
⊤
i

where λi and qi are the eigenvalues and corresponding eigenvectors of H . So we get

⟨H,A⟩ =

〈
d∑
i=1

λiqiq
⊤
i ,A

〉

=

d∑
i=1

λiq
⊤
i Aqi

≤
d∑
i=1

λi∥A∥

= tr(H)∥A∥,
which completes the proof.

Lemma J.2. When l ≥ 1, we have

(1 + x)l ≤ 1 + 2lx, x ∈ [0,
log 2

l
]

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Proof. We define f(x) := (1 + x)l − (1 + 2lx). Calculating the derivative and notice the fact that
2x − 1 ≥ (log 2)x, we obtain

f
′
(x) = l(1 + x)l−1 − 2l

≤ l(1 + 2
1
l − 1)l−1 − 2l

≤ l × 2
l−1
l − 2l ≤ 0.

The above equation completes the proof.

Lemma J.3. When l ≥ 1, we have

(1− x)2l ≤ 1− lx, x ∈ [0,
1

6l
]

.

Proof. We define g(x) := (1− x)2l − (1− lx). Calculating the derivative, we obtain

g′(x) = −2l(1− x)2l−1 + l ≤ 0 when x ∈ [0, 1− 2−
1

2l−1].

Notice that h(x) = 2x is convex, so for x ∈ [0, 1], we have

h(−x+ 0× (1− x)) ≤ xh(−1) + (1− x)h(0),

that is

2−x ≤ 1− x

2
when x ∈ [0, 1].

So

1− 2−
1

2l−1 ≥ 1−
(
1− 1

2(2l − 1)

)
=

1

2(2l − 1)
≥ 1

6l
when l ≥ 1,

which concludes the proof.

Lemma J.4. Given N data points such that x0, · · ·xn−1
i.i.d∼ N (0,H), and define A = (I −

ηxN−1x
⊤
N−1) · · · (I − ηx0x

⊤
0). Then we have

E∥A− EA∥l ≤
(√

δAη2Nl
)l
,

where δA := C̃8eD4 log d for some absolute constant C̃ > 0.

Proof. We define Q := A− EA for convenience. We can obtain a concentration inequality for ∥Q∥
due to the boundedness of x according to Theorem 7.1 in Huang et al. (2022).

We define
Yi := I − ηxix

⊤
i

For any 1 ≤ i ≤ N , we can choose mi = 1, and we have

∥Yi − EYi∥ = ∥η(H − xix
⊤
i)∥ ≤ 2D2η := σi

So we know that MA = 1, vA = 4D4η2N , and

P{∥Q∥ ≥ t} ≤ de
− t2

2evA = de
− t2

8eD4η2N when t2 ≥ 8eD4η2N.

Furthermore, we have

P{∥Q∥ ≥ t} ≤ e
− t2

16eD4η2N when t2 ≥ 16eD4η2N log d.

So there exists a non-negative sub-Gaussian random variable Z, s.t

P{∥Q∥ ≥ t} ≤ P{Z ≥ t} ≤ e
− t2

16eD4η2N when t2 ≥ 16eD4η2N log d.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Then for all l ≥ 1, we can get

E∥Q∥l = E∥Q∥l(1{∥Q∥≤
√

16eD4η2N log d} + 1{∥Q∥>
√

16eD4η2N log d})

≤
(√

16eD4η2N log d
)l

+ E∥Q∥l1{∥Q∥>
√

16eD4η2N log d}

≤
(√

16eD4η2N log d
)l

+

∫ +∞

√
16eD4η2N log d

P{∥Q∥ ≥ t}ltl−1 dt

≤
(√

16eD4η2N log d
)l

+

∫ +∞

0

P{Z ≥ t}ltl−1 dt

≤
(√

16eD4η2N log d
)l

+ EZl

≤
(√

16eD4η2N log d
)l

+ (
√
C16eD4η2Nl log d)l

≤
(√

C̃8eD4η2Nl log d

)l
.

where C and C̃ are absolute constants, the fifth inequality is due to Proposition 2.5.2 in (Vershynin,
2018).

Lemma J.5. For any l ≤ K, we have

E

∥∥∥∥∥
l∏

k=1

A(k) − (EA)l

∥∥∥∥∥ ≤
(√

δAη2Nl + ∥EA∥
)l

− ∥EA∥l,

where δA is the same positive constant appearing in Lemma J.4.

Proof. Let a = ∥EA∥ and cl =
√
C̃8eD4η2Nl log d. Define the perturbation Q(k) = A(k) − EA.

Expanding the product as

l∏
k=1

A(k) =

l∏
k=1

(
Q(k) + EA

)
=

l∑
m=0

∑
S∈([l]m)

PS ,

where PS is the matrix product with Q(k) at positions k ∈ S and EA elsewhere, preserving order.
The difference is

l∏
k=1

A(k) − (EA)l =

l∑
m=1

∑
S∈([l]m)

PS .

By the triangle inequality and linearity of expectation:

E

∥∥∥∥∥
l∏

k=1

A(k) − (EA)l

∥∥∥∥∥ ≤
l∑

m=1

∑
S∈([l]m)

E∥PS∥.

For each S , decompose into t maximal consecutive blocks B1, . . . ,Bt with sizes s1, . . . , st (
∑
si =

m). By Folland’s Hölder inequality and Lemma J.4:

E∥PS∥ ≤ al−mE
t∏
i=1

∏
j∈Bi

∥∥∥Q(j)
∥∥∥ ≤ al−m

t∏
i=1

∏
j∈Bi

(
E
∥∥∥Q(j)

∥∥∥si) 1
si ≤ al−m

t∏
i=1

csisi .

Since css =
(√

C̃8eD4η2Ns log d

)s
is increasing in s and si ≤ l:

csisi ≤ csil ⇒ E∥PS∥ ≤ al−mcml .

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Summing over all S with |S| = m:∑
S∈([l]m)

E∥PS∥ ≤
(
l

m

)
al−mcml .

Thus the total bound is:
l∑

m=1

(
l

m

)
al−mcml = (a+ cl)

l − al,

completing the proof.

Lemma J.6. For any l ≤ K, it holds that

E

∥∥∥∥∥
l∏

k=1

A(k) − (EA)l

∥∥∥∥∥
2

≤
[(√

2δAη2Nl + ∥EA∥
)l

− ∥EA∥l
]2
,

where δA is the same positive constant appearing in Lemma J.4.

Proof. Set a = ∥EA∥2 and cl =
√
C̃16eD4η2Nl log d. Define the perturbation Q(k) = A(k)−EA.

Expand the matrix product as:

l∏
k=1

A(k) =

l∏
k=1

(
Q(k) + EA

)
=

l∑
m=0

∑
S∈([l]m)

PS ,

where PS denotes the ordered matrix product with Q(k) at positions k ∈ S and EA elsewhere. The
target difference is:

l∏
k=1

A(k) − (EA)l =

l∑
m=1

∑
S∈([l]m)

PS .

For the squared spectral norm, we have:

E

∥∥∥∥∥
l∑

m=1

∑
S

PS

∥∥∥∥∥
2

≤ E

(
l∑

m=1

∑
S

∥PS∥

)2

=

l∑
m=1

l∑
n=1

∑
Sm

∑
Sn

E [∥PSm
∥∥PSn

∥] ,

where Sm and Sn range over all subsets of [l] with sizes m and n, respectively. For each pair
(Sm,Sn), decompose the union U = Sm ∪ Sn into t maximal consecutive blocks B1, . . . ,Bt with
sizes si = |Bi| (

∑t
i=1 si = |U| = m+ n). By Folland’s Hölder inequality and Lemma J.4:

E [∥PSm
∥∥PSn

∥] ≤ a2l−m−nE
t∏
i=1

∏
j∈Bi

∥Qj∥

≤ a2l−m−n
t∏
i=1

∏
j∈Bi

E
(
∥Qj∥m+n

) 1
m+n

≤ a2l−m−n
(√

C̃8eD4η2N(m+ n) log d

)m+n

≤ a2l−m−ncm+n
l .

The combinatorial count satisfies: ∑
Sm

∑
Sn

1 =

(
l

m

)(
l

n

)
.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Combining all terms:

E

∥∥∥∥∥
l∏

k=1

A(k) − al

∥∥∥∥∥
2

≤
l∑

m=1

l∑
n=1

(
l

m

)(
l

n

)
a2l−m−ncm+n

l =
[
(a+ cl)

l − al
]2
,

where the last equality follows from the binomial theorem applied to (a+ cl)
2l.

Lemma J.7. Consider a function of training time T given by

L(T) = 1

2

d∑
i=d1+1

c

il
e−

2Tcη
ia ,

where c, l are some absolute constants, d1 = Θ(1), and l > 1. Then we have:

1. L(T) ≲ 1

T
l−1
a

;

2. Given d = Θ
(
(KN)

1
a

)
, L(T) ≳ 1

T
l−1
a

.

Proof. Computing the derivative of f(x) = c
xl e

− 2Tcη
xa , we have

argmax
x

f(x) = Θ
(
(KN)

1
a

)
,

max
x

f(x) = Θ

(
1

(KN)
l
a

)
.

Then

1. For the upper bound, we have

L(T) ≤ 1

2

∞∑
i=d1+1

c

il
e−

2Tcη
ia ≤ 1

2

(KN)
1
a∑

i=d1+1

c

il
e−

2Tcη
ia +

1

2

∞∑
i=(KN)

1
a +1

c

il

≲ (KN)
1
a × 1

(KN)
l
a

+
1

(KN)
l−1
a

≲
1

(KN)
l−1
a

.

2. For the lower bound, when d ≥ 3T
1
a , we have

L(T) ≥ 1

2

3(KN)
1
a∑

i=(KN)
1
a

c

il
e−

2Tcη
ia ≥ 1

2

c

3l(KN)
l
a

e−2cη × 2(KN)
1
a ≳

1

(KN)
l−1
a

.

The above equation comletes the proof.

Lemma J.8. Given an estimator of the excess risk for ME and OP cases

S̃2(K,N ; η) =
1

2

d∑
i=d1+1

c

ia
e

−2KNcη
ia ,

and

S̃2(1, T
′; η) =

1

2

d∑
i=d1+1

c

ia
e

−2T ′cη
ia

for some d1 = Θ(1). If the ME excess risk and OP excess risk satisfy that

R̄(K,N ; η) = S̃2(K,N ; η)(1 + o(1))

R̄(1, T ′; η) = S̃2(1, T
′; η)(1 + o(1)),

then give d = Ω(T
1
a) and when T ′ ≂ T , it holds that

E(K,N) ∈ [K(1− o(1)),K(1 + o(1))] .

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Proof. We define H(T) = S̃2(K,N ; η) and α = T ′

T . By definition of E(K,N), we have T ′ =
E(K,N)N . Our goal is to prove that α ∈ [1− o(1), 1 + o(1)].

Solving R̄(K,N ; η) = R̄(1, T ′; η), we can get H(T)(1+ oN (1)) = H(T ′)(1+ oT ′(1)). We define
δ(K,N) = R̄(K,N ;η)−S̃2(K,N ;η)

S̃2(K,N ;η)
= o(1), and δ(1, T ′)) = R̄(1,T ′;η)−S̃2(1,T

′;η)

S̃2(1,T ′;η)
= o(1). Then we

can derive that

H(T ′)(1− δ(1, T ′)) ≤ H(T)(1 + δ(K,N))

H(T ′)(1 + δ(1, T ′)) ≥ H(T)(1− δ(K,N))

which indicates that

−δ(1, T ′)H(T ′)− δ(K,N)H(T) ≤ H(T ′)−H(T) ≤ δ(1, T ′)H(T ′) + δ(K,N)H(T).

Notice that H(T) is strongly convex, and we have H(T) ≂ 1

(KN)
a−1
a

and H ′(T) =

1
2

∑d
i=1

c
i2a e

−2KNcη
ia ≂ 1

(KN)
2a−1

a

by Lemma J.7. We are now ready to prove that α ∈ [1 −

o(1), 1 + o(1)].

− 1

T (2− 1
a)
(T ′ − T) ≲ H ′(T)(T ′ − T) ≤ H(T ′)−H(T) ≤ H ′(T ′)(T ′ − T) ≲ − 1

T ′(2− 1
a)
(T ′ − T)

δ(1, T ′)H(T ′) + δ(K,N)H(T) ≲
δ(1, T ′)

T ′(1− 1
a)

+
δ(K,N)

T (1− 1
a)

≲
o(1)

T (1− 1
a)
.

So

T − T ′

T (1− 1
a)

≲
o(1)

T (1− 1
a)

− o(1)

T (1− 1
a)

≲ − 1

T ′(1− 1
a)
(T ′ − T).

Direct calculation yields the result.

Lemma J.9 (Hyper-Contractivity). Given d-dimension random vector x ∼ D satisfying that ∥x∥ ≤
D for some constant D, and the covariance matrix H := Ex∼D

[
xx⊤] = diag(λ1, λ2, . . . , λd),

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ c for some constant c > 0, then the following holds:

E
[
xx⊤Pxx⊤] ≤ α tr(HP)H

for some constant α > 0 independent of P .

Proof. By Dieuleveut et al. (2017), the above lemma holds for data distributions with a bounded
kurtosis along every direction, i.e., there exists a constant κ > 0 such that

for every v ∈ Rd, E
[
⟨v,x⟩4

]
≤ κ ⟨v,Hv⟩2 .

So that it suffices to verify the above inequality. Since λd ≥ c, we have

⟨v,Hv⟩2 ≥ c2∥v∥4.

For the left side, by the triangle inequality and that ∥x∥ is bounded

⟨v,x⟩4 ≤ ∥v∥4∥x∥4 ≤ D4∥v∥4.

Combining the above two inequalities gives

E
[
⟨v,x⟩4

]
≤ D4

c2
⟨v,Hv⟩2 .

Now setting κ = D4

c2 completes the proof.

63

	Introduction
	Related Work
	Preliminaries
	Multi-Epoch Scaling in Strongly Convex Linear Regression
	Main Results
	Proof Sketch

	A Solvable Case with Zipf-distributed Data
	Results on Power-Law Spectrum
	Results on Logarithmic Power-law Spectrum

	Experiments
	Simulations in sec:stronglyconvex
	Simulations in sec:power-spectrum
	Empirical Verification in Large Language Models

	Conclusion
	The Use of Large Language Models (LLMs)
	Additional Related Works
	Additional Experimental Details for LLM Training
	Pretraining Setup
	Fitting Experiments
	Experiments with WSD Learning Rate Schedule

	Additional Results and Simulations for Logarithmic Power-Law Spectrum
	Scaling Law for Logarithmic Power-Law Spectrum
	Simulations in sec:log-power-spectrum

	Additional Notations
	Proof Outline in Strongly Convex Linear Regression
	Proof of Main Results in Strongly Convex Linear Regression
	Step I: A Concrete Version of Bias-Variance Decomposition
	Step II: Risk Approximation and Error Bound Analysis
	Variance Term Analysis: Proof of lem:variance-estimate
	Bias Term Analysis: Proof of lem:bias-estimate

	Step III: Narrowing the Range for Optimal Learning Rate
	A description of the Range of Optimal Learning Rate, Small-K Case
	A description of the Range of Optimal Learning Rate, Large-K Case
	An Approximation of the Excess Risk, Small-K Case
	An Approximation of the Excess Risk, Large-K Case

	Step IV: Deriving the Approximately Optimal Learning Rate, Proof of thm:convex-opt-lr
	Proof of thm:convex-opt-lr, small K
	Proof of thm:convex-opt-lr, large K

	Proof of thm:strongly-convex-scaling-law
	Proof of thm:convex-EK

	Proof Outline for the Solvable Case with Zipf-distributed Data
	Proof of Main Results for the Solvable Case with Zipf-distributed Data
	A Closed Formula for the Excess Risk: Proof of thm:one-hot-loss-estimate
	Scaling Laws for Power-Law Spectrum: Proof of thm:one-hot-scaling-law
	Proof of thm:one-hot-scaling-law: Small-K Case
	Proof of thm:one-hot-scaling-law: Large-K Case

	E(K,N) for Power-Law Spectrum: Proof of thm:one-hot-EK-v2
	Proof of thm:one-hot-EK-v2, small-K case
	Proof of thm:one-hot-EK-v2, Large-K Case

	Scaling Laws for Logarithmic Power-Law Spectrum: Proof of thm:one-hot-log-scaling-law
	Proof of thm:one-hot-log-scaling-law: Small-K Case
	Proof of thm:one-hot-log-scaling-law, Large-K case

	E(K,N) for Logarithmic Power-Law Spectrum: Proof of thm:one-hot-EK-log-spectrum
	Proof of thm:one-hot-EK-log-spectrum, Small-K Case
	Proof of thm:one-hot-EK-log-spectrum, Large-K Case

	Additional Technical lemmas

