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Abstract

A standard model of a security game assumes a
one-off assault during which the attacker cannot up-
date their strategy even if new actionable insights
are gained in the process. In this paper, we propose
a version of a security game that takes into account
a possibility of a two-phase attack. Specifically, in
the first phase, the attacker makes a preliminary
move to gain extra information about this particu-
lar instance of the game. Based on this information,
the attacker chooses an optimal concluding move.
We derive a compact-form mixed-integer linear
program that computes an optimal strategy of the
defender. Our simulation shows that this strategy
mitigates serious losses incurred to the defender
by a two-phase attack while still protecting well
against less sophisticated attackers.

1 INTRODUCTION

In a classic economic model of a Stackelberg
game [Von Stackelberg, 1934], the leader chooses
his strategy first, and while doing this, he is observed by
the followers, who can adjust their response accordingly.
In the last two decades, this model has received significant
attention in the context of security applications, where a
defender (the leader in the Stackelberg game) distributes
limited security resources to guard a set of targets against
an attacker (the follower in the Stackelberg game). For
instance, Stackelberg games were applied in such domains
as infrastructure security (ARMOR [Pita et al., 2009],
IRIS [Tsai et al., 2009], PROTECT [Shieh et al., 2012]),
green security (PAWS [Yang et al., 2014], MIDAS [Haskell
et al., 2014]), opportunistic crimes (TRUSTS [Yin et al.,
2012]), as well as cybersecurity [Zhang and Malacaria,
2021]. In all these contexts, Stackelberg games are often
called security games.

The attack in security games is typically modeled as a one-
off assault during which the attacker has no chance to update
their strategy even if new valuable information is gained in
the process. This, however, does not cover certain tactics
that can be applied by ever more agile covert organizations.
In particular, given the improvements in border control tech-
nologies that result in significant quantities of cocaine being
seized in Latin America and Europe, drug cartels have to
look for more innovative smuggling methods and routes.
Unfortunately, according to a report by the European Mon-
itoring Center for Drugs and Drug Addiction [European
Monitoring Center for Drugs and Drug Addiction, 2016, p.
4]: “These groups are innovative and skilled in switching
and modifying both trafficking routes and modi operandi
to circumvent law enforcement activities. They are quick to
identify and exploit new opportunities for cocaine traffick-
ing (...) shift transit routes and storage points to capitalize
on the presence of ineffective border controls.” To look for
such new routes and access points, in the first phase of an
operation, drug cartels can send “low-profile” couriers that
carry small amounts of drugs whose key goal is to gain
information. In the second phase, given the extra insight,
the decision is made on which routes should be chosen for
transports of much larger quantities and value. This paper
stems from an observation that most of the existing models
are vulnerable to such two-phase attacks which may have
significant security repercussions.

Against this background, we propose a security game that
takes into account a possibility of a two-phase attack. Specif-
ically, in the first phase, the attacker makes a preliminary
move designed to gain extra information on the defender’s
activities in this particular instance of the game. Next, in
the second phase, this insight is used to choose an optimal
concluding move. Given this new model we characterize
optimal strategies and expected payoffs of both the defender
and the attackers. We also derive a compact-form quadratic
programming optimization problem to compute optimal
strategies, with an exponential reduction in size compared
to a possible reduction to a standard Bayesian Stackelberg

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<amn@mimuw.edu.pl>?Subject=Two-phase Attacks in Security Games (UAI 2023)
mailto:<pawel.ciosmak@ideas-ncbr.pl>?Subject=Two-phase Attacks in Security Games (UAI 2023)
mailto:<tomasz.michalak@ideas-ncbr.pl>?Subject=Two-phase Attacks in Security Games (UAI 2023)


game. We derive an effective mixed integer linearization of
the quadratic formulation. Moreover we show that a strategy
computed with our model mitigates serious losses of the
defender from a two-phase attack while still protecting well
against less sophisticated attackers. Finally we experimen-
tally compare the time complexity of the three solutions of
two-phase Bayesian Stackelberg games discussed in this
paper: a mixed quadratic linear program, a mixed integer
linear program and a ”normal-form” transformation to a
single-phase Bayesian Stackelberg game.

2 MOTIVATION: PROBING UKRAINIAN
BORDER BY BELARUS

A recent real-world example of the tactics that are explic-
itly modeled in our two-phase game are the actions of
Lukashenko’s regime in Belarus which exploits immigrants
to probe the border with Ukraine. According to Special Op-
erations Forces of the Ukraine’s National Resistance Cen-
ter Romanenko [2022]: ”Belarusian border guards delib-
erately send refugees from Iran and Pakistan to Ukrainian
borders in order to search for vulnerable areas. In this
way, the Belarusians check vulnerable and insufficiently
protected areas of the border with Ukraine, which can be
used for the passage of enemy armed forces. The enemy
uses similar tactics on the border with Latvia.” This callus
behaviour puts the lives of the immigrants in extreme dan-
ger both due to very difficult terrain and the on-going war.
In more details, Ukraine’s northwestern border of nearly
900 km is a heavily forested area full of forbidding wet-
lands and the Chernobyl Exclusion Zone. On top of that,
the border—that was crossed by the Russian army in Febru-
ary 2022 and then subsequently restored by the Ukrainian
counteroffensive—is now heavily fortified with trenches,
walls and mine fields.

Unfortunately, despite that the border is now one of the most
dangerous in the world, the Belarusian border guards orga-
nize and coordinate the groups of immigrants to attempt to
cross it. The aim is to uncover and disorganise Ukrainian
defences that have to react to any such attempt due to the
threat from Russian saboteurs. Given the sophisticated elec-
tronic protection measures, most of such border crossing
are detected. However, this does not mean that the border
is impenetrable as detection does not mean that there is a
patrol close enough to prevent the entry. Nevertheless, even
if this particular section of the border is unmanned at the
moment of entry, the Ukrainian headquarters send a team to
the area. This means that a follow-up entry attempt at the
same section of the border is hardly possible.

Let us consider a scaled-down version of the problem, with
four sections of the Belarus-Ukraine border (S1, S2, S3,
and S4) and two patrol units. This setting can be modelled
as a standard security game in the spirit of the one used
at the Los Angeles World Airport [Pita et al., 2009]. Pure

strategies (moves) of the Ukrainian defenders are possible
assignments of patrols to the sections of the border, I =
{S1S2, S1S3, S1S4, S2S3, S2S4, S3S4}.

We assume two possible types of the attacker: low- and
high-profile human traffickers (type 1 and 2, respectively).
The high-profile type of the attacker inflicts a much larger
loss upon the defender as they organize much bigger groups.
Both types have the same strategy space, i.e., an attacker
of each type can either choose one of the four sections of
the border or back off, i.e., J1 = J2 = {S1, S2, S3, S4, ∅}.
The payoffs of both parties, depending on the attacker type,
increase linearly with Si: for a high-profile attackers payoffs
for successful attack are 50, 100, 150 and 200 respectively
and for a low-profile attacker the payoffs are five times
smaller. Attacker payoffs for unsuccessful attack are nega-
tive at the same scale. The defender payoffs are opposite,
with small random noise added uniformly from interval
[−5, 5].

Assuming that probabilities of attacks by these two types
are p1 = 0.8 for the low-profile attacker and p2 = 0.2 for
the high-profile one, an optimal strategy for the defender is:

(xS1S2
, xS1S3

, xS1S4
,xS2S3

, xS2S4
, xS3S4

) =

(0%, 50%, 0%, 0%, 50%, 0%).

According to this strategy, border sections S1 and S2 are
never protected simultaneously. Such a situation is typical
for Stackelberg equilibria in one-phase games and can be
easily exploited by performing a two-phase attack.

A two-phase attack: Let us now assume that, unknown
to the defender, the attacker has the resources and the ca-
pabilities of both the low-profile human trafficker and the
high-profile one, and they are able to try two sections of
the border sequentially, in phases. Given the optimal strat-
egy derived above, let us assume that, in the first phase, a
low-profile human trafficker tries to breach the border at
section S1. This provides valuable information to the at-
tacker, irrespective of how the defender is positioned. This
is because the attacker knows now a conditional probability
distribution of defender’s resources.

In our computation we assumed that the attacker could not
attack the same target twice (which was modeled by setting
second-phase payoffs for repeating the same attack to mi-
nus infinity). This was motivated by the border-patrolling
scenario: a small-scale attack (provocation) elicits border
patrol’s response; the information gained by the attacker is
the response time (they learn whether patrol was close by
or not) and they could not attack safely at the same place
again.

Let t ∈ {0%, 17%, 33%, 50%, 67%, 83%, 100%} be a
chance of encountering a two-phase attacker, (1− t) · 80%
be a probability of encountering a low-profile single-phase
attacker and (1− t) · 20% be a likelihood of encountering
a high-profile single-phase attacker. For t = 0% this is the
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Figure 1: Each row presents an optimal mixed strategy of
the defender against a group of attackers with a given chance
of encountering a two-phase attack. As we can see in the
last row, without presence of two-phase attackers the Stack-
elberg equilibrium heavily over-fits to the random noise in
payoff matrices.

standard one-phase model, while t = 100% describes a pure
two-phase attack.

Figure 1 shows that presence of two-phase attackers sig-
nificantly alters the Stackelberg equilibrium of the game.
For example, for 33% probability of a two-phase attack
(with 53% chance of a single-phase low-profile attack and
13% chance of a single-phase high-profile attack, keeping
the 4 : 1 low- to high-profile ratio), the optimal defender
strategy becomes

(xS1S2
, xS1S3

, xS1S4
,xS2S3

, xS2S4
, xS3S4

) =

(12%, 15%, 17%, 17%, 18%, 21%).

As we see in Figure 1, two-phase Stackelberg equilibria are
much more robust against changes of attacker profiles.

Figure 2 shows how defender payoffs change against dif-
ferent compositions of attacker groups. For example, the
expected payoff of the defender E(R) = 0.7 against a
single-phase attack drops to −175 when single-phase strat-
egy is pitted against a two-phase attacker.

In order to fix this flaw, we propose a new model which
allows for considering one-phase and two-phase attackers si-
multaneously. With our security model, the expected payoff
against coordinated attackers jumps from -175 to -16.2 (the
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Figure 2: Expected defender payoff when playing a strategy
from Figure 1 against a given chance of a two-phase attack.
As we can see in the last column, the loss incurred by play-
ing a strategy that ignores the possibility of a two-phase
attack is an order of magnitude larger than over-cautious
protection against such attacks.

defender is still at a disadvantage). The optimal strategy:

(xS1S2
, xS1S3

, xS1S4
, xS2S3

, xS2S4
, xS3S4

) =

(8.5%, 11%, 12%, 20%, 25%, 23%)

forces the low-profile attacker to attack S1 and the high-
profile attacker to back off if S1 was not patrolled. Note
that this comes at a cost: for the uncoordinated (one-phase)
attack, when low- and high-profile attackers act indepen-
dently, this strategy brings payoff -7.89 to the defender (a
drop from 0.7).

3 PRELIMINARIES

In the Bayesian Stackelberg game, the defender plays
against a group of attackers of n distinct types. In each
round, the defender plays against a single attacker and en-
counters the attacker of type 1 ≤ t ≤ n randomly, with
probability pt. Attackers may have different sets of moves
at their disposal that inflict different damage to the defender.

Let I denote the set of defender’s moves. In the Bayesian
Stackelberg game, the defender picks his mixed strategy
x first. Here x = {xi}i∈I is a probability measure on
I , which we denote by x ∈ Prob(I) with Prob(I) ={
x : I → R :

∑
i∈I xi = 1, x ≥ 0

}
. Strategy x does not de-

pend on t as the defender doesn’t know the type of at-
tacker he will encounter. Let Jt denote the set of moves



of attacker of type t. Attacker t picks his strategy yt =
yt(x) ∈ Prob(Jt) second, with the knowledge of the de-
fender’s strategy x. In each round of the game, both players
move independently, according to strategies x and yt(x)
they picked prior. Let ri,t,j denote the defender’s payoff if
he played move i ∈ I against the attacker of type 1 ≤ t ≤ n
who played a move j ∈ Jt. Let ci,t,j denote attacker’s
payoff (which may be different from −ri,t,j). Attacker
t picks an optimal strategy yt = yt(x) that depends on
strategy x known by him and that maximizes his expected
payoff c =

∑
i∈I

∑
j∈Jt

xiy
t
jci,t,j . This payoff is maxi-

mized by a pure strategy, i.e., yt is optimal if and only if
c ≥

∑
i∈I xici,t,j for each j ∈ Jt. The defender acts to

maximize his expected payoff against the optimal strategies
of the attackers, i.e. he picks an optimal strategy x that maxi-
mizes his expected payoff

∑
i∈I

∑n
t=1

∑
j∈Jt

ptxiy
t
jri,t,j .

These observations coupled with a linearization technique
lead to a mixed integer linear programming formulation of
Bayesian Stackelberg games published in [Paruchuri et al.,
2008] as the celebrated DOBSS algorithm.

4 OUR MODEL

Let us now describe our model of a two-phase security game,
which is an extension of the model of Bayesian Stackelberg
games specified above in Section 3.

In a two-phase Bayesian Stackelberg game the defender
picks his mixed strategy x ∈ Prob I , where I denotes the
set of possible defender’s moves. Then the attacker of type t
(encountered with probability pt) picks his first-phase mixed
strategy yt(x) ∈ Prob Jt with the knowledge of defender’s
strategy x, where Jt denotes the set of possible first-phase
moves of attacker of type t. After both the defender and
the attacker make their moves i ∈ I and j ∈ Jt indepen-
dently according to probability distributions x and yt(x)
the attacker learns his first-phase payoff ci,t,j . This narrows
a possible range of moves that the defender played. With
this information the attacker picks his second-phase mixed
strategy zt,j,ci,t,j (x) ∈ Prob(Kt), where Kt denotes the
set of possible second-phase moves of attacker of type t
and makes his second-phase move k ∈ Kt according to this
probability distribution. The outcome of the game for the
defender is ri,t,j + r′i,t,j,k, where r denotes the first-phase
defender’s payoff and r′ denotes the second-phase one. The
outcome for the attacker is ci,t,j + c′i,t,j,k, where c′ is the
second phase payoff.

In the above scenario, we assume that the attacker is much
more agile than the defender, who picked his move (e.g.,
patrolling routes) for a period of time. Still, the defender
wishes to maximize his expected payoff E(r+r′) even if the
attacker can gain partial information about the defender’s
position i with a small-scale attack.

4.1 EXPECTED PAYOFFS

The set of all possible play-outs in a two-phase game is

Ω = {(i, t, j, k) : i ∈ I, 1 ≤ t ≤ n, j ∈ Jt, k ∈ Kt} .

Let us introduce following random variables on Ω: X - the
defender’s move; T - the attacker’s type; Y - the attacker’s
first move; Z - the attacker’s second move; C - the attacker’s
first-phase payoff; C ′ - the attacker’s second-phase payoff;
R - the defender’s first-phase payoff; R′ - the defender’s
second-phase payoff. Note that variables are defined on Ω
so, for example, R is evaluated on (i, t, j, k) but it is equal
to ri,t,j and is independent of k. We have

P (X = i) = xi, P (T = t) = pt,

P (Y = j|T = t) = ytj(x),

P (Z = k|T = t, Y = j, C = c) = zt,j,ck (x, y).

The functional dependency yt(x) of yt on x means that y
is picked with the knowledge of strategy x. Similarly for
dependency zt,j,c(x, y) of zt,j,c on x and y. From now on,
for simplicity, we will write yt and zt,j,c.

Using this notation, we can write the expected payoff of the
defender:

E(R+R′) = (1)∑
(i,t,j,k)∈Ω

xipty
t
jz

j,ci,t,j
k (R(i, t, j, k) +R′(i, t, j, k)) ,

as well as the expected payoff of the attacker:

E(C + C ′) = (2)∑
(i,t,j,k)∈Ω

xipty
t
jz

j,ci,t,j
k (C(i, t, j, k) + C ′(i, t, j, k)) .

Let Ct,j = {ci,t,j : i ∈ I}. Given the defender’s strategy x,
the attacker’s of type t best response maximizes his payoff:

(yt, zt,j,c : j ∈ Jt, c ∈ Ct,j) ∈
argmax

yt∈Prob(Jt),zt,j,c∈Prob(Kt)

{E(C + C ′|T = t)} .

Note that there is a single first-phase strategy yt for attacker
of type t and multiple second-phase strategies zt,j,c that
depend on first-phase move j ∈ Jt and first-phase reward
c ∈ Ct,j obtained by the attacker. Assuming perfect ratio-
nality of the attacker, the defender adjusts his strategy to
maximize his own payoff:

x ∈ argmax
x∈Prob(I)

{
n∑

t=1

pt E(R+R′|T = t) : (yt, zt,j,c) ∈

argmax
y,z

{E(C + C ′|T = t)}
}
.



4.2 OPTIMAL STRATEGIES

Let It,j,c = {i ∈ I : ci,t,j = c} and Ct,j = {ci,t,j : i ∈ I}.

Proposition 4.1. Assume that attacker of type 1 ≤ t ≤ n
played a first-phase move j ∈ Jt against defender’s strategy
x ∈ Prob(I) and learned his first-phase payoff c ∈ Ct,j .
His second move strategy zt,j,c is optimal if and only if it
maximizes

E(C ′|T = t, Y = j, C = c) =

=
1∑

i∈It,j,c
xi

∑
k∈Kt

zt,j,ck ·

 ∑
i∈It,j,c

xic
′
i,t,j,k

 .

Hence any strategy zt,j,c that distributes probability among
moves k ∈ K with maximal

∑
i∈It,j,c

xic
′
i,t,j,k is optimal.

There always exists an optimal pure strategy zt,j,c, i. e.
without a loss of generality, we may assume that an optimal
attacker’s strategy satisfies zt,j,ck ∈ {0, 1} for each k ∈ Kt.

Proof. We have

P (C = c|T = t, Y = j) =
∑

i∈It,j,c

xi,

P (X = i, Z = k,C = c|T = t, Y = j)

=

{
xiz

t,j,c
k if ci,t,j = c

0 otherwise .

Therefore we have

E(C ′|T = t, Y = j, C = c) =∑
i∈I

∑
k∈Kt

c′i,t,j,kP (X = i, Z = k|T = t, Y = j, C = c) =

∑
k∈Kt

∑
i∈I c

′
i,t,j,kP (X = i, Z = k,C = c|T = t, Y = j)

P (C = c|T = t, Y = j)

=
1∑

i∈It,j,c
xi

∑
k∈Kt

∑
i∈It,j,c

c′i,t,j,kxiz
t,j,c
k ,

as claimed.

Corollary 4.1. Assume that attacker of type 1 ≤ t ≤ n
played a fist-phase move j ∈ Jt against defender’s strategy
x ∈ Prob(I). The expected defender’s second-phase payoff
against an optimal attacker’s strategy is

E(R′|T = t, Y = j) =
∑

c∈Ct,j

∑
i∈It,j,c

xir
′
i,t,j,kt,j,c

,

where
kt,j,c ∈ argmax

k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k.

Proposition 4.2. Assume that in the first-phase attacker
of type 1 ≤ t ≤ n plays against the defender’s strategy

x ∈ Prob(I). His first move strategy yt is optimal if and
only if it maximizes

E(C + C ′|T = t) =∑
j∈Jt

ytj

∑
i∈I

xici,t,j +
∑

c∈Ct,j

max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k

 .

Hence any strategy yt that distributes probability among
moves j ∈ Jt with maximal∑

i∈I

xici,t,j +
∑

c∈Ct,j

max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k

is optimal. There always exists a pure optimal strategy yt,
i.e., without a loss of generality, we may assume that an
optimal attacker’s first-phase strategy satisfies ytj ∈ {0, 1}
for each j ∈ Jt.

Proof. We have

E(C|T = t) =
∑
i∈I

∑
j∈Jt

xiy
t
jci,t,j .

On the other hand

E(C ′|T = t) =
∑
j∈Jt

∑
i∈I

ytjxi E(C
′|T = t, Y = j,X = i) =

=
∑
j∈Jt

ytj

(∑
i∈I

xi

(∑
k∈Kt

z
t,j,ci,t,j
k c′i,t,j,k

))
=

=
∑
j∈Jt

ytj

 ∑
c∈Ct,j

∑
i∈It,j,c

∑
k∈Kt

zt,j,ck xic
′
i,t,j,k

 =

=
∑
j∈Jt

ytj

 ∑
c∈Ct,j

∑
k∈Kt

zt,j,ck

 ∑
i∈It,j,c

xic
′
i,t,j,k

 .

Since E(C|T = t) does not depend on zt,j,c, optimal strate-
gies zt,j,c should be chosen as to maximize E(C ′|T = t).
Since each value zt,j,ck appears exactly once in the formula,
it is enough if we set zt,j,ck = 1 next to the largest coefficient
for each j and c. Hence with optimal attacker’s response,
we have

E(C ′|T = t) =
∑
j∈Jt

ytj

 ∑
c∈Ct,j

max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k


We are done, since E(C + C ′|T = t) = E(C|T = t) +
E(C ′|T = t).

Corollary 4.2. Assume that the defender’s strategy x ∈
Prob(I) is played against an attacker of type 1 ≤ t ≤ n.
Then the expected defender’s payoff against an optimal
attacker’s strategy is

E(R+R′|T = t) =

(∑
i∈I

xiri,t,jt

)
+E(R′|T = t, Y = jt),



where

jt ∈ argmax
j∈Jt

∑
i∈I

xici,t,j +
∑

c∈Ct,j

max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k


and E(R′|T = t, Y = jt) is the payoff computed in the
statement of Corollary 4.1.

Remark 4.1. The defender’s payoffs computed in Corol-
laries 4.2 and 4.1 depend on the choices of jt’s and kt,j,c,
respectively. If a multiple choices are possible, we assume,
following the existing literature, a choice that maximizes
the defender’s payoff.

4.3 SOLVING TWO-PHASE GAMES

Using Proposition 4.2 and Proposition 4.1 we can derive
the following quadratic programming solution of two-phase
security games.

maximize
xi, y

t
j , z

t,j,c
k , γt,j,c

n∑
t=1

∑
i∈I

∑
j∈Jt

ptxiy
t
j×(

ri,t,j +
∑
k∈Kt

z
t,j,ci,t,j
k r′i,t,j,k

)
(4a)

subject to∑
i∈I

xi = 1, (4b)∑
j∈Jt

ytj = 1 for each 1 ≤ t ≤ n, (4c)

∑
k∈Kt

zt,j,ck = 1 for each 1 ≤ t ≤ n, j ∈ Jt, c ∈ Ct,j ,

(4d)

γt,j,c ≥
∑

i∈It,j,c

xic
′
i,t,j,k

for each 1 ≤ t ≤ n, j ∈ Jt, c ∈ Ct,j , k ∈ Kt,

(4e)

∑
k∈Kt

∑
i∈I

z
t,j,ci,t,j
k xic

′
i,t,j,k ≥

∑
c∈Ct,j

γt,j,c

for each 1 ≤ t ≤ n, j ∈ Jt,

(4f)

∑
j∈Jt

ytj

∑
i∈I

xici,t,j +
∑

c∈Ct,j

γt,j,c

 ≥
∑
i∈I

xici,t,j

+
∑

c∈Ct,j

γt,j,c for each 1 ≤ t ≤ n, j ∈ Jt,

(4g)

xi, y
t
j , z

t,j,c
k ≥ 0, γt,j,c ∈ R. (4h)

Using a linearization technique we derive a mixed integer
linear programming solution (3a) listed in Figure 3. The

details of the derivation of quadratic programming formu-
lation (4a) and mixed integer linear programming formu-
lation (3a) are published in the appendix. Note that a two-
phase security game may be expressed in extensive form and
technique from [Bosansky and Cermak, 2015] may be used
to derive a mixed-integer linear programming formulation
of similar size.

5 COMPARISON TO THE STANDARD
BAYESIAN STACKELBERG GAMES

In this section, we show that it is possible to reduce a two-
phase Bayesian Stackelberg game to a one-phase Bayesian
Stackelberg game using a transformation that is similar
to a Harsanyi normal-form transformation. However, this
reduction results in an exponential explosion of the problem
size. Using equations (2) and (1) and the observation that
the attackers have optimal pure strategies, we can write
the following mixed quadratic linear problem that solves
two-phase Bayesian Stackelberg games.

maximize E(R+R′) (5a)

subject to

x ∈ Prob(I), yt ∈ Prob(Jt), z
t,j,c ∈ Prob(Kt) (5b)

E(C + C ′) ≥
∑
i∈I

xici,t,j +
∑
i∈I

xic
′
i,t,j,kj,ci,j

for each 1 ≤ t ≤ n, j ∈ Jt, {kj,c}c∈Ct,j
⊂ Kt

(5c)

Note the possibly exponential number of conditions of
type (5c), as we have to consider all possible combinations
of first-phase move j and second-phase moves kc depending
on the first-phase outcome c.

Note that the set of attacker moves in a regular (single-phase)
Bayesian Stackelberg game is: J ′

t =
⋃

j∈Jt
{j} × K

Ct,j

t ,

where K
Ct,j

t is a set of all maps from Ct,j to Kt, i. e.
a choice of a move kc from Kt for each possible first-
phase outcome c ∈ Ct,j . The size of the set of follower’s
moves grows exponentially, |J ′| =

∑
j∈J |K||Cj |, and so

does the number of constraints (5c). Compare this to the
MIQP formulation (4a), where we have a polynomial num-
ber |J ||K| + 2|J | =

∑
j∈J(|K| + 2) of constraints that

correspond to the optimality of the follower’s actions.

6 EXPERIMENTAL EVALUATION

We evaluated performance of the three algorithms consid-
ered in the paper: mixed quadratic linear program (MQLP),
mixed integer linear program (MILP) and DOBSS applied
to a single-phase problem transformed from a two-phase
form. We also verified that observation of Section 2 (Fig-
ures 1 and 2) that a defensive strategy computed against a
single-phase attack is vulnerable to a two-phase attack is
universal.



maximize
xi, y

t
j , z

t,j,c
k , γt,j,c, si,t,j,k, ut,j,c, wi,t,j,k

∑
1≤t≤n,i∈I,
j∈Jt,k∈Kt

pt
(
ri,t,j + r′i,t,j,k

)
wi,t,j,k (3a)

subject to∑
i∈I

xi = 1, (3b)∑
j∈Jt

ytj = 1 for each 1 ≤ t ≤ n, (3c)

∑
k∈Kt

zt,j,ck = 1 for each 1 ≤ t ≤ n, j ∈ Jt, c ∈ Ct,j , (3d)

γt,j,c ≥
∑

i∈It,j,c

xic
′
i,t,j,k

for each 1 ≤ t ≤ n, j ∈ Jt,

c ∈ Ct,j , k ∈ Kt,
(3e)

∑
k∈Kt

∑
i∈I

si,t,j,kc
′
i,t,j,k ≥

∑
c∈Ct,j

γt,j,c for each 1 ≤ t ≤ n, j ∈ Jt, (3f)

∑
m∈Jt

(∑
i∈I

(∑
k∈Kt

wi,t,m,k

)
ci,t,m

)
+

∑
c∈Ct,m

ut,m,c


≥
∑
i∈I

xici,t,j +
∑

c∈Ct,j

γt,j,c

for each 1 ≤ t ≤ n, j ∈ Jt, (3g)

si,t,j,k ≤ z
t,j,ci,t,j
k for each i ∈ I, 1 ≤ t ≤ n, j ∈ Jt, k ∈ Kt, (3h)∑

k∈Kt

si,t,j,k = xi for each i ∈ I, 1 ≤ t ≤ n, j ∈ Jt, (3i)

−M(1− ytj) ≤ ut,j,c − γt,j,c ≤ M(1− ytj) for each 1 ≤ t ≤ n, j ∈ Jt, c ∈ Ct,j , (3j)

−Mytj ≤ ut,j,c ≤ Mytj for each 1 ≤ t ≤ n, j ∈ Jt, c ∈ Ct,j , (3k)∑
j∈Jt

∑
k∈Kt

wi,t,j,k = xi for each i ∈ I, 1 ≤ t ≤ n, (3l)

wi,t,j,k ≤ ytj for each i ∈ I, 1 ≤ t ≤ n, j ∈ Jt, k ∈ Kt, (3m)

wi,t,j,k ≤ z
t,j,ci,t,j
k for each i ∈ I, 1 ≤ t ≤ n, j ∈ Jt, k ∈ Kt, (3n)

xi, si,t,j,k, wi,t,j,k ≥ 0, γt,j,c, ut,j,c ∈ R, ytj , z
t,j,c
k ∈ {0, 1}. (3o)

Figure 3: A mixed-integer linear programming formulation of two-phase security games.



1 2 3 4 5 6 7

1 0.009 0.012 0.013 0.013 0.015 0.019 0.023
2 0.010 0.015 0.062 0.777 0.897 1.015 1.816
3 0.015 0.023 0.584 0.621 1.959 1.232 1.693
4 0.014 0.037 0.297 1.343 1.248 1.454 2.698
5 0.009 0.028 0.162 0.605 1.450 2.166 2.501
6 0.010 0.031 0.320 0.744 1.503 7.702 13.679
7 0.113 0.107 0.430 1.115 1.907 3.627 7.968

(a) Performance of the MILP formulation, in sec.

1 2 3 4 5 6 7

1 0.008 0.009 0.009 0.010 0.012 0.015 0.019
2 0.007 0.023 0.235 1.044 2.139 3.958 6.003
3 0.013 0.072 0.968 2.845 4.910 10.309 30.679
4 0.014 0.102 1.124 6.962 14.434 - -
5 0.008 0.076 1.099 9.569 23.458 - -
6 0.013 0.183 1.401 34.405 - - -
7 0.034 0.339 1.967 40.175 - - -

(b) Performance of the MQLP formulation, in sec.

1 2 3 4 5 6 7

1 0.007 0.009 0.009 0.012 0.018 0.031 0.041
2 0.006 0.012 0.055 0.352 1.627 6.524 20.422
3 0.012 0.043 1.567 - - - -
4 0.006 0.173 - - - - -
5 0.007 0.743 - - - - -
6 0.007 3.024 - - - - -
7 0.024 - - - - - -

(c) Performance of the DOBSS formulation, in sec.

Table 1: Performance of MQLP, MILP and DOBSS. Row
and column headers display number of defender and attacker
moves. Averaged over 4 runs. Time limit 60 seconds.
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Figure 4: Running time (averaged over 20 runs) for random
problems with 3 defender’s moves against a number of
attacker’s moves marked on the x axis. Two-phase attack
with 2 attacker types. Time limit 600 seconds.

(3, 1) (3, 2) (4, 2) (5, 2)

Constant 33%, 33% 50%, 0% 100%, 0% 100%, 0%
Linear 41%, 32% 50%, 30% 100%, 0% 46%, 0%

Exponential 43%, 32% 50%, 30% 100%, 0% 48%, 0%

Table 2: Chance that defender’s optimal strategy is vul-
nerable to two-phase attack. In each column, number on
the left shows chance for mixed strategy computed against
one-phase attack with DOBSS. Number on the right shows
chance for mixed strategy with model proposed in the paper.
Lower is better.

6.1 TIME COMPLEXITY OF OPTIMAL
STRATEGY COMPUTATIONS IN TWO-PHASE
MODELS

Table 1 shows comparison of three algorithms that compute
optimal strategies in two-phase Bayesian Stackelberg games.
Table 1a shows solution times for mixed quadratic linear
programming (MQLP) formulation (4a). Table 1b shows
solution times for mixed integer linear programming (MILP)
formulation (3a). Finally, Table 1c shows solution times
for DOBSS applied to one-phase problem obtained with a
transformation described in Section 5.

In each table, the row number is the number of defender’s
moves and the column number is the number of attacker’s
moves. The time is measured in seconds and was averaged
over 4 independent runs. Cases where time limit of 60 sec-
onds was reached are marked with ’-’.

Table 4 shows analogous comparison for larger numbers
of attacker moves and two attacker types. The computation
was performed with SCIP solver on a single core of Intel
Xeon 3.60GHz processor.

6.2 COMPARISON OF STRATEGIES AGAINST
TWO-PHASE ATTACKS

Example from Section 2 shows that a defensive strategy
computed against a single-phase attack is vulnerable to a
two-phase attack is universal. Table 2 shows that this is uni-
versal (i.e. the example is not cherry-picked). In particular,
we checked that this pattern (severe loss against a two-phase
attack) always emerges for different value profiles (con-
stant, linear, exponential) of the defended targets and over
different ranges of random noise.

A defender’s mixed strategy is vulnerable to two-phase
attack if it permits a phase-one attack such that knowledge
of the outcome guarantees that the second-phase attack will
be successful. We considered border patrolling game with
3, 4 or 5 border segments and 1 or 2 patrols We considered
three payoff profiles for the attacker: constant (successful
attack of each segment of the border is of equal value to the



attacker), linear (the value grows linearly) and exponential.
Results are averaged over 4 runs.

7 RELATED WORK

The literature on security games is vast and continuously
growing (the surveys can be found in Sinha et al. [2018] and
Fang and Nguyen [2016]). The first related body of works is
on multi-stage Stackelberg games in which the attacker and
defender interact in stages. In Luh et al. [1984], the authors
analysed systems where players choose among pure strate-
gies. In [Żychowski and Mańdziuk, 2022], an evolutionary
algorithm for solving multi-stage Stackelberg games was
proposed, whereas in [Guzman et al., 2022], an inspection
game is formalized as a multiple-stage Stackelberg game.
Two-stage (but not two-phase) Stackelberg games were con-
sidered in the literature, e.g., in [Anand et al., 2008, Gray
et al., 2009, Kabul and Parlaktürk, 2019, Wang et al., 2022].

Our model can also be understood as a method to prevent
a deception attack (see [Kar et al., 2015] for an example).
To this end, let us assume that the attacker, aware that the
defender relies on the DOBSS algorithm (against a one-
phase attack), chooses an appropriate two-phase strategy for
which the defender is unprepared. Now, if the defender uses
our algorithm, the situation changes accordingly.

8 CONCLUSIONS

We introduced an extension of a standard Bayesian Stack-
elberg game that takes into account the possibility that an
attack can consist of two phases. In our model, the attacker
makes a preliminary strike in the first phase in order to
gain extra intelligence about the defense. Next, the attacker
is able to make a more informed choice of the conclud-
ing move. The model is motivated by a pattern of attacks
observed on the Belarus-Ukraine border.

The usual setting of Stackelberg games assumes a large
asymmetry between the defender and the attacker: on one
hand, it is assumed that the attacker has the perfect knowl-
edge of the defender’s past actions; on the other hand, it
is assumed that the attacker has zero knowledge of the de-
fender’s current defensive position. The model proposed
in the paper reduces this asymmetry: it considers scenar-
ios where the attacker may undertake some actions to gain
knowledge about the defender’s current defensive position.

For this new model, we derived a compact-form MILP for-
mulation and we showed analytically that the reduction
in problem size compared to a standard approach is expo-
nential. Our results also revealed that using the standard
approach to defend against a two-phase attack can lead to
severe losses on the defender’s side.
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