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ABSTRACT

Post-training for reasoning in large language models has increasingly relied on
verifiable rewards: deterministic checkers that provide 0–1 correctness signals.
While reliable, such binary feedback is brittle—many tasks admit partially correct
or alternative answers that verifiers under-credit, and the resulting all-or-nothing
supervision limits learning. Reward models offer richer, continuous feedback,
which can serve as a complementary supervisory signal to verifiers. We introduce
HERO (Hybrid Ensemble Reward Optimization), a reinforcement learning frame-
work that integrates sparse verifier signals with dense reward model scores in
a structured way. HERO employs stratified normalization to bound reward-model
scores within verifier-defined groups, preserving correctness while refining qual-
ity distinctions, and variance-aware weighting to emphasize challenging prompts
where dense signals matter most. Across diverse mathematical reasoning bench-
marks, HERO consistently outperforms reward model-only and verifier-only base-
lines, with strong gains on both verifiable and hard-to-verify tasks. Our results
show that hybrid reward design retains the stability of verifiers while leveraging
the nuance of reward models to advance reasoning.

False 
Positive

False 
Negative

False 
Negative

Figure 1: Comparison of reward signals from different supervision sources. Reward Models (a)
provide smooth but sometimes misaligned scores, occasionally assigning high values to incorrect
responses and low values to correct ones. Rule-based rewards (b) enforce a strict binary (0–1)
boundary: they rarely give false positives, but due to their stringent criteria, many predictions that
are actually correct receive a reward of 0 simply because they fail to pass the rule. HERO (c) uses
the rule as a gate, which significantly reduces false positives. At the same time, by integrating the
reward model signal, HERO assigns higher reward scores to those cases that would have been false
negatives under (b), resulting in more accurate and informative supervision.

1 INTRODUCTION

Reasoning lies at the heart of human intelligence, and increasingly, at the frontier of large language
model (LLM) capabilities (Jaech et al., 2024; Guo et al., 2025; Zhang et al., 2025b). In tasks such as
mathematical problems or generating proofs, reliable reasoning requires models to generate logically
consistent multi-step solutions that culminate in a verifiably correct outcome. Verifiable rewards im-
plement this idea by running a deterministic checker—such as an exact numeric or string match,
a unit test, or a symbolic equivalence check—on a candidate solution y for input x. The checker
either accepts or rejects the output, producing a sparse but unambiguous signal r(x, y) ∈ {0, 1},
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which reinforcement learning can propagate through the entire trajectory. Building on this prin-
ciple, reinforcement learning from verifiable rewards (RLVR) (Chen et al., 2025b) uses these bi-
nary signals to train policies toward solutions that pass the checker. Recent systems—including
DeepSeek-R1—have advanced this paradigm at scale, leveraging verifier-grounded feedback to im-
prove reasoning (Guo et al., 2025; Zeng et al., 2025; Luo et al., 2025; Yang et al., 2024a).

However, strict 0–1 verification is coarse and brittle: many reasoning tasks allow for partially correct
solutions, equivalent answers in alternative formats, or open-ended outputs that resist exact match-
ing. In such cases, symbolic verifiers may under-credit valid solutions (false negatives) or fail to
provide any useful signal (Ma et al., 2025; Huang et al., 2025a). Even when applicable, binary re-
wards induce sparsity: if all rollouts for a prompt receive the same label (all 0s or 1s), group-relative
methods such as GRPO (Shao et al., 2024) yield zero relative advantage and thus no useful policy
gradient, stalling policy improvement. This brittleness not only reduces sample efficiency but also
skews optimization toward easier, strictly verifiable cases–leaving the hardest and most informa-
tive prompts underutilized. Our motivating analysis in Section 3.1 further highlights this limitation:
on samples where answers are hard to verify, rule-based verifiers frequently fail with correctness.
Reward models, in contrast, offer dense supervision by scoring responses on a continuum (Yang
et al., 2024b; Liu et al., 2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025). Rather than
collapsing all incorrect answers into the same category, they capture nuanced quality differences
such as partial correctness, clarity of reasoning steps, or proximity to the ground truth. This graded
feedback enriches training signals, helping policies learn from partially correct reasoning paths and
better allocate credit across diverse rollouts. However, naively combining these dense reward CT
model signals with a binary verifier output often destabilizes training. Specifically, when the reward
model’s continuous signals are naively blended with binary correctness checks, the resulting reward
can become noisy or misaligned with the expected semantics of correctness. Figure 1 illustrates
this tradeoff: while reward models offer smooth but misaligned signals, rule-based verifiers enforce
correctness but lack nuance. Thus, it remains an open question how to design an effective hybrid
framework that preserves the reliability of verifiers while harnessing the richness of reward models.

To address this challenge, we propose HERO (Hybrid Ensemble Reward Optimization), a reinforce-
ment learning framework that integrates verifier-anchored and dense reward-model signals to pro-
vide reliable yet informative supervision. HERO tackles the instability of naive blending through two
key innovations. First, it introduces a stratified normalization scheme that bounds reward-model
scores within verifier-defined correctness groups. This ensures that dense feedback refines learning
only within the set of responses deemed correct by the verifier, preserving correctness guarantees
while exploiting nuanced distinctions. Second, HERO employs a variance-aware weighting mecha-
nism that adaptively adjusts the contribution of different prompts during training. Easy prompts,
where most responses are uniformly correct or incorrect, contribute little additional learning signal
and are down-weighted. In contrast, harder prompts—where candidate responses vary widely and
reward-model scores provide valuable discrimination—are emphasized. These components allow
HERO to overcome the brittleness of purely binary rewards and the noisiness of dense signals.

We evaluate HERO on diverse math reasoning benchmarks that training with three regimes: training
with easy-to-verify samples where exact final-answer checking is possible, hard-to-verify samples
with partially correct or format-sensitive solutions, and mixed settings combining both. Across dif-
ferent LLM backbones, HERO consistently outperforms both RM-only and verifier-only baselines,
in all three regimes. Notably, on hard-to-verify tasks evaluation based on Qwen-4B-Base, HERO
achieves 66.3, which surpasses RM-only training (54.6) by +11.7 points and verifier-only training
(57.1) by +9.2 points. Ablations further confirm that anchoring dense signals to verifiable correct-
ness and adaptively reweighting difficult prompts are both critical for stability and efficiency.

2 PRELIMINARIES

Dense reward via reward modeling. Reward modeling learns a scalar function r(x, y) that eval-
uates the quality of a response y given a prompt x. Based on the Bradley–Terry model (Bradley &
Terry, 1952), the reward function is typically trained on pairwise preference data by minimizing

LR = −E(x,yc,yr)∈D[log σ(r(x, yc)− r(x, yr))], (1)
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where σ denotes the sigmoid function, yc is the response that is considered preferred in a compar-
ison, and yr is the response considered less preferred. Once learned, r can guide reinforcement
learning to align the model with human preferences.

Sparse reward via verifier. Reinforcement learning with verifiable rewards (RLVR) leverages a
deterministic function r(x, y) to assess correctness, assigning a sparse reward (e.g., 1 for correct, 0
for incorrect). All tokens in a response share the same reward, providing unambiguous supervision
for tasks with objective ground truth. In mathematical problem solving, the reward function is based
on a verifier that checks whether the model’s solution matches the ground-truth reference under
equivalence transformations. Specifically, a math verifier typically parses the predicted solution into
a structured form (e.g., a symbolic expression, final numeric answer, or proof step), simplifies it,
and compares it against the reference solution using symbolic algebra tools or logical equivalence
checks. The reward function is based on the verifier:

ψ
(
x, yi, yref

)
=

{
1, if yi is equivalent to yref given x,
0, otherwise.

(2)

Group Relative Policy Optimization. GRPO (Shao et al., 2024) extends RLVR by optimizing
over multiple responses per prompt rather than treating them independently. Instead of relying on
a single trajectory, GRPO compares groups of candidate solutions and assigns relative advantages,
which stabilizes learning and improves exploration. It also incorporates clipping (as in PPO) to
prevent unstable updates and adds a KL penalty to keep the policy close to a reference model. This
group-based formulation helps alleviate the gradient sparsity problem of pure verifier rewards and
makes optimization more sample-efficient than standard PPO (Yu et al., 2025).

3 METHODOLOGY

3.1 MOTIVATION: DELVING INTO RULE-BASED VS. RM-BASED VERIFIERS

Building on the preliminaries, we now examine how the two supervision paradigms – rule-based
verifiers that provide sparse but precise correctness signals, and reward models that offer dense but
potentially noisy preferences – behave on tasks where correctness is difficult to verify. Since the
reliability of training hinges on the quality of supervision, understanding their respective strengths
and weaknesses is crucial. To this end, we use the HardVerify Math benchmark (Xu et al., 2025),
which focuses on challenging verification scenarios. This benchmark consists of 250 hard-to-verify
math problems, including 115 manually selected Olympiad questions (He et al., 2024) and 10 MATH
test set questions (Hendrycks et al., 2021) that are prone to false negatives due to complex answer
formats, as well as 125 Big-Math questions (Albalak et al., 2025) with a Llama-3.1-8B (Dubey et al.,
2024) pass rate below 0.05 and identified as difficult by human experts. To ensure a diverse range
of response qualities, for each problem we generate answers using three different models: Llama-
3.1-8B, Llama-3.3-70B, and Qwen3-8B. This results in a total of 750 responses, which we use to
conduct the verifier analysis presented in Table 1.

Limitations of rule-based verifiers. To better understand the trade-offs among different verifi-
cation approaches, we compare several representative verifiers. For rule-based verifiers, we con-
sider math reward.py from the verl library, the math verify module from verl, and the parse and
verify functions from the Math-Verify library. In addition, we include a generative model-based
verifier (TIGER-Lab/general-verifier (Ma et al., 2025)), which is specifically trained for chain-of-
thought answer verification. This model has demonstrated strong performance and serves as an
effective alternative to traditional rule-based methods.

Results in Table 1 highlight clear precision–recall trade-offs. Function-based rules offer high pre-
cision but low recall. For example, the math reward.py checker is highly conservative: it almost
never produces false positives (FPR=0.3%) but fails to recognize many correct answers, resulting
in very low recall (10.1%). A more advanced variant, math verify.py (in verl), achieves the best
balance—near-zero false positives with substantially higher recall. The math verify library extends
coverage with normalization heuristics (e.g., handling formatting differences or units) but remains
brittle for mismatched orderings such as lists vs. sets, yielding only 38.6% recall.
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Table 1: Performance Comparison of Rule-based Verifier, LLM-as-Verifier, and Reward Models.

Type Verifier Recall ↑ Precision ↑ FPR ↓ Acc. ↑

Rule-based

math reward (verl) 10.1 97.5 0.3 53.6
math verify (verl) 68.4 100.0 0.0 83.7
math verify (library) 38.6 96.1 1.6 67.6

Generative Model-based TIGER-Lab/general-verifier 49.5 89.3 6.3 70.9

RM-based

AceMath-7B-RM w threshold 1 91.7 67.7 46.4 73.2
AceMath-7B-RM w threshold 3 84.2 72.7 33.5 75.6
AceMath-7B-RM w threshold 5 73.8 76.6 23.9 74.9
AceMath-7B-RM w threshold 7 62.4 78.5 18.1 71.9

Reward modeling can generalize to hard-to-verify samples. We further examine how reward
models behave on hard-to-verify samples. Since correctness is directly checkable for verifiable data,
most reward models for mathematical reasoning are trained on these verifiable samples (Yang et al.,
2024b; Liu et al., 2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025). This raises the
question: to what extent can such models generalize to tasks where correctness cannot be directly
verified?

Here, we investigate this issue by analyzing the performance of a math-focused reward model
(AceMath-7B-RM) on the same hard-to-verify tasks. We assess the model using different score
thresholds given the scores generated. As shown in Table 1, setting the threshold to 1 (i.e., consid-
ering predictions with RM ≥ 1 as correct) yields a high recall of 91.7% and broad overall coverage,
substantially surpassing rule-based verifiers. However, this comes at the cost of lower precision.
Increasing the threshold enhances precision but leads to a decrease in recall.

The need for hybrid reward design. Our analysis underscores a key tension: neither rule-based
verification nor reward models alone is sufficient. Purely binary verifiable rewards can be brittle and
overly conservative, especially on hard-to-verify samples. This not only reduces sample efficiency
but also skews optimization toward easier, strictly verifiable cases—leaving the hardest and most
informative prompts underutilized. Reward models, in contrast, offer dense supervision by scoring
responses on a continuum and can capture nuanced quality differences such as partial correctness
or proximity to the ground truth. These complementary strengths and weaknesses motivate a hybrid
approach: anchoring supervision in symbolic verifiers to preserve correctness, while enriching it
with the dense signal of reward models to drive effective policy learning. In the next subsection, we
describe our proposed approach in detail.

3.2 HERO: HYBRID ENSEMBLE REWARD OPTIMIZATION

Motivated by these findings, our design principle is that rule-based rewards should continue to guide
the overall reasoning dynamics, while reward models serve as supplementary signals to enrich train-
ing. We therefore propose a hybrid reward framework that (i) augments binary correctness with
dense reward-model scores and (ii) scales supervision according to prompt difficulty. We describe
both components in detail below.

Dense signals anchored to verifiable correctness. As argued in the motivation, binary verifiers
alone provide stable but overly coarse supervision, while reward models offer nuanced distinctions
that are easily corrupted if left unconstrained. However, we find that a naive combination of rule-
based verification and reward modeling signals tends to undermine the stability of training and
render the hybrid approach ineffective (see Appendix A.3). Specifically, when the reward model’s
continuous signals are naively blended with binary correctness checks, the resulting reward can
become misaligned with the expected semantics of correctness.

To address this, we propose stratified normalization, which rescales the continuous scores of the re-
ward model (RM) to align with the range used by traditional binary rule-based methods. Specifically,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

let {r(i)rule}Ni=1 ⊆ {0, 1} denote the rule-based verifier outputs and {r(i)RM}Ni=1 ⊆ R the corresponding
reward-model scores for a group of N rollouts. We first partition the responses according to rrule,
and then apply min–max normalization within each group to rRM resulting in::

r̂(x, y) =


−α+ 2α · rRM −min rRM

max rRM −min rRM + ϵ
, rrule = 0,

(1− β) + 2β · rRM −min rRM

max rRM −min rRM + ϵ
, rrule = 1.

(3)

Here α, β ∈ (0, 1] control the allowable ranges for incorrect and correct groups, with ϵ > 0 prevent-
ing division by zero. In practice, we set ϵ to relatively small value so that the training dynamics are
primarily led by rule-based rewards, with the reward model’s contribution serving as a supplemen-
tary signal. Figure 1 (c) illustrates the effect of our hybrid reward design compared to rRM (a) and
rrule (b) alone. This design notably differs from traditional pure verifiable rewards, especially for
hard-to-verify samples and for groups where all responses are either positive or negative. In such
cases, pure rule-based methods do not distinguish between different rollouts, providing no learn-
ing signal. As illustrated in Figure 1(c), HERO introduces reward differences within regions where
the rule-based rewards are all 0 or all 1, thereby enabling meaningful gradient flow even when the
rule-based verifier assigns the same outcome to all rollouts.

The stratified normalization in our hybrid approach is designed to provide the best of both worlds:
verifiers ensure the preservation of correctness semantics by constraining the score ranges, while
reward models enhance the supervision by introducing gradations within each group. Incorrect
responses are clearly distinguished from correct ones, and correct responses are prioritized based on
their relative quality. In this manner, dense signals are anchored to symbolic correctness, mitigating
the sparsity observed in pure RLVR.

Variance-aware advantage reweighting. In the motivation, we argued that not all prompts are
equally informative: trivial ones provide little learning signal, while challenging prompts better
reveal differences across candidate solutions. A shortcoming of the original GRPO algorithm is that
it treats all prompts uniformly, ignoring this variability. The consequence is inefficient use of training
capacity—easy prompts dominate optimization even though they provide little additional guidance,
while difficult prompts that expose meaningful distinctions are underutilized. To realign training
effort with informativeness, we introduce a variance-aware weighting scheme. For each prompt, let
σu denote the standard deviation of reward-model scores across candidate responses, with σ̄ as a
running mean. This variance reflects uncertainty: higher values suggest greater disagreement and
thus a richer training signal. We define a bounded monotone weighting function:

wdifficulty(σu) = wmin + (wmax − wmin) ·
1

1 + exp
(
− k(σu − σ̄)

) , (4)

where wmin and wmax set the minimum and maximum weights, and k controls the slope of the
transition. In practice, we treat these as tunable hyperparameters; unless otherwise stated, we use
wmin = 0.5, wmax = 2.0, and k = 5, ensuring that difficult prompts are up-weighted by at most
2×, while trivial prompts retain at least half weight. The final shaped reward is

rfinal(x, y) = wdifficulty(σu) · r̂(x, y). (5)

This design operationalizes our intuition: ambiguous, high-variance prompts are emphasized be-
cause they reveal more about model weaknesses and reward-model sensitivity, while trivial, low-
variance prompts are downweighted to avoid wasting capacity. In doing so, the training process not
only remains anchored to verifiable correctness through r̂, but also allocates learning effort to the
most challenging and informative parts of the data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training datasets. A central question is whether reasoning skills acquired through RLVR on ver-
ifiable data can generalize to tasks whose correctness cannot be mechanically checked. To empiri-
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cally examine this, we construct three distinct training datasets based on subsets of the OPENMATH-
REASONING (Moshkov et al., 2025) benchmark: (1). easy-to-verify examples, (2). hard-to-verify
examples, and (3). a mixture of the two. For easy-to-verify training data, we sample 2,000 problems
whose final answers can be deterministically validated using a rule-based math verifier (verl). For
the hard-to-verify-only regime, we likewise sample 2,000 problems from OPENMATHREASONING,
where the correct answers have more flexible formats that make rule-based verification challenging
(see Appendix A.2.2 for how we filter as well as some qualitative examples). For the mixed set,
we combine 1,000 easy-to-verify and 1,000 hard-to-verify problems, allowing the policy to benefit
from both robust exact-check supervision and nuanced feedback from unverifiable cases.

Models. To evaluate the generalizability of our method across different backbone models, we
conduct experiments using the following models: we use Qwen3-4B-Base (Yang et al., 2025) and
OctoThinker-8B-Hybrid-Base base (Wang et al., 2025). To stabilize RL training dynamics, we first
perform supervised fine-tuning (SFT) on each base model as a cold start (see Appendix A.2.1 for
details). All RL experiments are initialized from the same SFT checkpoint.

Baselines. As preliminary points of reference, we also report the performance of the base model
and a cold-start SFT model. The main baselines are: (1) Reward model, which uses the AceMath-
RM-7B reward model (Liu et al., 2024); (2) Rule-based verifier, which relies on binary, rule-based
rewards, marking a sample as correct only if the normalized final answer matches the ground
truth via math verify (library) in the VERL repo (Sheng et al., 2025). Our method, HERO,
is a hybrid approach that combines (1) and (2) into a single reward, making them the most ap-
propriate baselines for comparison. We also compare HERO with a generative model-based veri-
fier—TIGER-Lab/general-verifier—and with a large language model (Qwen2.5-7B-Instruct) di-
rectly prompted to act as a verifier, as detailed in the Appendix (see Table 7).

Evaluation. Since our training data contains both easy-to-verify and hard-to-verify samples, we
aim to evaluate whether the model can acquire generalizable reasoning abilities. To this end, we se-
lect six test sets: four in which all answers are easy to verify, and two in which the answers are hard
to verify.(1). Easy-to-verify testsets includes 4 benchmarks: MATH500 (Hendrycks et al., 2021),
AMC (Li et al., 2024), Minerva (Lewkowycz et al., 2022), and Olympiad (He et al., 2024). We
report pass@1 averaged over 8 seeds in Table 2. Following (Yang et al., 2024b), we use temperature
0.6 and top-p 0.95, generate N = 8 candidates per problem, and evaluate the first decoded output
(pass@1). Reported numbers are means over seeds.Correctness is decided by math verifier (normal-
ized numeric/string match with task-specific post-processing).(2). Hard-to-verify testsets: We use
temperature 0.6 and top-p 0.95, generate N = 1 candidate per problem. Since symbolic checkers
cannot reliably provide binary labels for open-ended solutions, we adopt an LLM-as-a-judge pro-
tocol. Specifically, we use GPT-4o to compare model outputs against ground-truth answers. We
evaluate using the HardVerify-Math benchmark (Xu et al., 2025), which consists of 250 samples.
Based on the results in Section 3.1, we find that HardVerify-Math is not a particularly challenging
filter, as using math verify yields relatively good results. Therefore, to further evaluate performance
on hard-to-verify reasoning tasks, we additionally collect the TextBookReasoning dataset (Fan et al.,
2025) (see Appendix A.2.3 for more details).

4.2 MAIN RESULTS

Performance of HERO on the Qwen-based Model Table 2 shows that HERO consistently outper-
forms both the reward-model-only and rule-based verifier baselines across all three training data
settings: (1) easy-to-verify data, (2) hard-to-verify data, and (3) a mixture of the two. For each
training setting, we evaluate on four datasets where the targets are easy-to-verify tasks, as well as
two datasets where the targets are hard-to-verify tasks. When trained on easy-to-verify data and
evaluated on four easy-to-verify test sets, HERO achieves an average score of 62.0, outperforming
both RM-only (56.4) and rule-based training (58.3). We attribute this improvement to our strati-
fied normalization, which allows hybrid training to exploit both positive and negative correctness
groups: while verifier-only training collapses all-correct or all-incorrect batches (yielding zero rel-
ative advantage), HERO preserves meaningful gradients within each group through dense intra-group
rewards. The advantage of our approach becomes even more pronounced when training on hard-
to-verify samples, where rule-based verifiers are brittle and reward models tend to be noisy. Here,
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Table 2: Performance of HERO trained with Qwen3-4B-Base on both easy-to-verify and hard-
to-verify reasoning tasks. The first block reports results on verifiable tasks (MATH500, AMC,
Minerva, Olympiad; with average), while the second block presents results on hard-to-verify tasks
(HVM, TBR). We compare our approach HERO —which combines two reward signals—with two
baselines corresponding to the two signals: AceMath-7B-RM (a reward model) and math verify
(verl), which uses a 0/1 rule as the reward.

Easy-to-verify tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

Qwen3-4B-Base 67.5 44.1 29.4 32.1 43.3 45.2 40.2 42.7
SFT Cold Start Model 69.1 50.3 39.1 34.3 48.2 50.8 43.3 47.1

Training with easy-to-verify samples
AceMath-7B-RM 80.2 61.6 40.6 43.3 56.4 57.2 52.0 54.6
math verify (verl) 82.3 61.3 44.0 45.5 58.3 61.0 53.1 57.1
HERO (Ours) 85.4 69.4 44.5 48.9 62.0 73.2 59.3 66.3

Training with hard-to-verify samples
AceMath-7B-RM 79.6 58.8 39.9 42.1 55.1 59.2 48.2 53.7
math verify (verl) 76.2 46.6 28.7 38.2 47.4 58.4 50.0 54.2
HERO (Ours) 80.0 63.4 40.7 43.1 56.8 59.0 54.0 56.5

Training with mixed samples
AceMath-7B-RM 79.6 58.8 39.9 42.1 55.1 58.4 49.6 54.0
math verify (verl) 81.3 61.3 38.0 43.9 56.1 62.4 55.3 58.9
HERO (Ours) 81.6 64.4 42.1 47.0 58.8 71.4 56.7 64.1

HERO attains 56.8, surpassing RM-only (55.1) by +1.7 points and rule-based verifiers (47.4) by a sub-
stantial +9.4 points. This improvement is due to anchoring continuous reward-model scores within
verifier correctness groups, which prevents reward drift and ensures stable learning even when binary
labels saturate. By combining the precision of rule-based verifiers with the smooth discrimination
of reward models, HERO is able to leverage partially correct reasoning paths that would otherwise
be discarded by rule-based systems, thereby improving both stability and coverage. When trained
on mixed data, which combines easy-to-verify and hard-to-verify samples, HERO again achieves the
average (58.8), outperforming RM-only (55.1) and rule-based verifier (56.1) on verifiable tasks.

The advantage becomes even clearer on hard-to-verify evaluations (HVM, TBR), where rule-based
verifiers fail to capture partial correctness and reward models are prone to drift. Here, HERO attains
66.3 when trained on easy-to-verify data, outperforming RM-only (54.6) by +11.7 points and rule-
based training (57.1) by +9.2 points. When trained on hard-to-verify samples, it still leads with 56.5
compared to 53.7 (RM-only) and 54.2 (rule-based). Under mixed training, HERO reaches 64.1, sur-
passing both baselines by large margins on hard-to-verify tasks. These results highlight that hybrid
reward design generalizes robustly across both verifiable and hard-to-verify tasks, yielding stable
improvements regardless of whether evaluation relies on symbolic checking or model judgment.
Overall, hybrid reward learning delivers consistent improvements across all settings, demonstrating
that structured reward integration is critical for reasoning tasks that go beyond strict verifiability.
We note that the magnitude of gains in Table 2 naturally varies across training regimes due to differ-
ences in reward quality, rather than instability of HERO. With easy-to-verify training data, the verifier
is accurate and often positive, so HERO can fully exploit its hybrid design and achieve large im-
provements; with hard-to-verify data, the verifier rarely fires and many prompts receive all-0 labels,
so the learning signal is weaker and gains are necessarily smaller. In the mixed regime, easy-to-
verify samples provide a strong verifier anchor while hard-to-verify samples reduce the domain gap
to difficult test sets, which explains why improvements are modest on verifiable tasks but large again
on hard-to-verify evaluations.

Performance of HERO on the OctoThinker-based Model On Qwen3-4B-Base (Table 2), which
already shows strong performance, HERO consistently delivers clear improvements across all evalua-
tion settings. On OctoThinker-8B-Hybrid-Base (Table 3), which starts from a much weaker baseline
of 16.9 on verifiable and 23.6 on hard-to-verify tasks, HERO achieves substantial absolute and relative
gains. When trained on easy-to-verify samples, it reaches 40.1 on verifiable and 32.6 on hard-to-
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Table 3: Performance of HERO trained with OctoThinker-8B-Hybrid-Base on both easy-to-verify
and hard-to-verify reasoning tasks. The first block shows results on four easy-to-verify tasks,
which reported pass@1 averaged over 8 seeds. The second block show results on two hard-to-verify
testsets, which reported GPT4.1 judges results.

Easy-to-verify tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

OctoThinker-8B-Hybrid-Base 32.0 15.3 9.1 11.0 16.9 26.0 21.1 23.6
SFT Cold Start Model 56.0 35.9 19.7 21.6 33.3 27.6 26.4 27.0

Training with easy-to-verify samples
AceMath-7B-RM 62.3 38.4 26.2 25.5 38.1 29.6 27.8 28.7
math verify (verl) 60.1 39.4 26.7 24.1 37.6 31.6 28.9 30.3
HERO (Ours) 63.0 40.6 30.1 26.7 40.1 28.4 36.7 32.6

Training with hard-to-verify samples
AceMath-7B-RM 60.7 33.8 22.4 24.9 35.4 32.0 29.8 30.9
math verify (verl) 60.0 29.7 23.9 24.8 34.6 28.8 26.7 27.8
HERO (Ours) 64.9 41.6 27.9 29.6 41.0 32.4 36.7 34.6

Training with mixed samples
AceMath-7B-RM 60.2 34.4 24.0 23.8 35.6 30.8 29.3 30.1
math verify (verl) 59.3 33.7 24.7 24.0 35.4 27.6 28.7 28.2
HERO (Ours) 65.2 38.1 28.1 29.3 40.2 34.8 31.6 33.2

verify evaluations, surpassing both the reward-model baseline (38.1/28.7) and the rule-based verifier
(37.6/30.3). Training on hard-to-verify samples yields similar improvements, achieving 41.0/34.6
compared to 35.4/30.9 (RM-only) and 34.6/27.8 (verifier-only). Training on mixed training sam-
ples, it maintains the highest averages of 40.2 and 33.2, outperforming all baselines by 4–6 points.
These results show that hybrid reward design generalizes robustly across model scales—preserving
the verifier’s stability for stronger models like Qwen3-4B-Base while bringing large relative gains
to weaker ones such as OctoThinker-8B-Hybrid-Base.

Verifier-only training struggles on hard-to-verify tasks. Symbolic verifiers, while precise, per-
form poorly on open-ended or format-sensitive reasoning. On Qwen3-4B-Base (Table 2), verifier-
only training reaches only 47.4 on hard-to-verify tasks—worse than HERO (56.5), RM-only (53.7),
and even slightly below the SFT baseline (47.1). Similar degradation appears on OctoThinker-8B-
Hybrid-Base (Table 3), where verifier-only supervision lags far behind HERO. The core issue is that
weaker models often produce rollouts that are uniformly labeled 0 or 1, causing group-relative ob-
jectives such as GRPO to yield zero gradients. In contrast, HERO adds dense intra-group variation via
reward-model refinement, preserving gradient flow even when binary labels saturate and allowing
the policy to separate partially correct from entirely incorrect solutions.

4.3 ADDITIONAL ABLATIONS

Dense negative ranges are more important than positive samples. We evaluate the role of dense
negative and positive reward on the setting of training with easy-to-verify samples based on Qwen-
4B-Base. We found dense reward in the negative group play a more criticak role in stabilizing
training and improving learning efficiency than dense reward in the positive group devided by HERO..
While positives signal correctness, negatives provide richer supervision by penalizing diverse rea-
soning errors. Notably, dense negative rewards but maintaining sparse verifier positive rewards
boosts performance on verifiable tasks from 59.4 to 61.4, and even more on hard-to-verify tasks
from 62.2 to 68.4 (see Figure 2). This demonstrates that well-calibrated negative ranges are essen-
tial: they provide broader feedback, enabling the model to detect subtle errors and generalize better
on complex cases.

Reward range selection is crucial for balancing stability and performance. We conducted ab-
lation studies to investigate the impact of varying reward ranges on model performance by training
with easy-to-verify samples based on Qwen-4B-Base, as shown in Figure 2(b). For verifiable tasks,
smaller reward ranges (e.g., α = 0.05) yielded the best results, as the rule-based verifier’s preci-
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Figure 2: (a) Impact of using positive and negative dense ranges. Dense negative rewards con-
tribute more to stable learning than positive samples. (b) Effect of varying reward ranges under
different training regimes. Smaller ranges perform best on verifiable tasks, while larger ranges
benefit mixed settings by providing denser feedback.

sion benefits from a tighter range that minimizes noise and maintains stability. Expanding the range
beyond this threshold led to diminishing returns and increased noise. In contrast, for mixed tasks,
where many samples fail the rule-based verifier, the learned reward model plays a larger role. Here,
larger reward ranges (e.g., α = 0.1 or α = 0.2) provided richer signals, allowing the model to learn
more effectively from harder tasks. However, expanding the range beyond a certain point caused
a slight performance drop due to overfitting or excessive noise. Overall, careful tuning of the re-
ward range, particularly for the negative rewards, is crucial to balancing stability and performance:
datasets with relatively dense informative rewards and few all-positive/all-negative groups tend to
benefit from smaller ranges, whereas datasets with many all-positive/all-negative groups are better
served by slightly larger ranges that inject more intra-group variation.

Table 4: Variance-aware reweighting improves perfor-
mance on both verifiable and hard-to-verify samples.

Methods Easy-to-verify Hard-to-verify

w/o reweighting 60.8 69.4
w reweighting 62.0 73.2

Variance-aware reweighting in HERO im-
proves the model’s reasoning ability.
We evaluated variance-aware reweight-
ing based on reward-model score vari-
ance, which emphasizes ambiguous, high-
variance prompts while down-weighting
trivial ones to reduce overfitting with the
setting of training with easy-to-verify sam-
ples based on Qwen-4B-Base. This dynamic adjustment yields consistent gains, particularly on
hard-to-verify tasks where dense signals are most informative. As shown in Table 4, reweighting
improves accuracy on both verifiable and hard-to-verify benchmarks, with larger gains in the latter
(+3.8), confirming that focusing capacity on uncertain samples leads to more robust and generaliz-
able improvements.

5 RELATED WORK

Reinforcement learning from verifiable rewards. Reinforcement learning from verifiable re-
wards (RLVR) leverages deterministic correctness checks—such as passing unit tests or matching
reference answers—to enhance learning (Shao et al., 2024). Early program synthesis work demon-
strated that agent-generated trajectories validated against ground truth outperform supervised ap-
proaches (Bunel et al., 2018; Chen et al., 2021). For LLMs, rule-based verification plays a crucial
role in filtering, providing training signals, and supporting benchmark evaluations (Xiong et al.,
2025; Yu et al., 2025; Shao et al., 2024). Recent extensions include: outcome-driven RL (GRPO)
for grounding and rubric-anchored RL which introduces structured rubrics for open-ended response
evaluation (Huang et al., 2025b); verifier-free RL strategies like VeriFree, which bypass explicit
checking by directly maximizing the probability of generating the reference answer while achiev-
ing performance on par with verifier-based methods (Zhou et al., 2025); and cross-domain RLVR,
which employs LLM-derived scoring for domains lacking reference answers (Su et al., 2025). De-
spite these advances, function-based rule verifiers remain high-precision but low-recall: they often
assign zero reward to semantically correct yet textually divergent outputs (Huang et al., 2025a),
which has motivated the use of learned, model-based verifiers (Huang et al., 2025a; Chen et al.,
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2025a; Ma et al., 2025; Xu et al., 2025). However, the coverage and generalization of LLM-based
verifiers are still limited (Li et al., 2025), and in many existing “hybrid” schemes they are invoked
only to relabel a subset of failures, ultimately producing binary 0/1 signals. As a result, these ap-
proaches continue to suffer from sparse outcome-level rewards and the classical RLVR issue that
all-positive or all-negative rollouts yield vanishing advantages, limiting data efficiency. In contrast
to previous work, we propose a hybrid approach that combines rule-based verification with contin-
uous, dense reward signals from learned models, allowing us to maintain the stability of verifiers
while addressing their sparsity. By anchoring dense signals to symbolic correctness and introducing
a variance-aware weighting mechanism, our method enables more informative, stable, and sample-
efficient learning on both verifiable and hard-to-verify tasks.

Reasoning on hard-to-verify tasks. As the reasoning capabilities of LLMs have reached new
heights, increasingly challenging reasoning benchmarks have been proposed (Phan et al., 2025;
Zhang et al., 2025a). These problems often involve complex outputs, such as natural language
representations and intricate mathematical or physical formulas. In such cases, rule-based verifi-
cation methods, while effective for well-defined problems, struggle to capture the nuances of these
tasks. Recent work focused on the LLMs as judges, where LLMs assess the quality of generated
responses (Chen et al., 2025a; Ma et al., 2025; Huang et al., 2025a; Xu et al., 2025; Li et al., 2025),
enabling more nuanced evaluations. However, despite its conceptual simplicity, LLM-as-judge may
not always produce reliable assessments for domain-specific or long-form data. Some recent work
proposes going beyond binary labels from verifiers for hard-to-verify tasks. For example, Gurung &
Lapata (2025) applies reasoning traces in Next-Chapter Prediction (NCP) for long-form story gener-
ation via likelihood estimation, while Tang et al. (2025) uses Jensen’s evidence lower bound to treat
chain-of-thought reasoning steps as latent variables in the generative process. They directly discard
the verifier component. In contrast, our work retains the use of verifiable rewards but enhances su-
pervision through the introduction of a reward model. Peng et al. (2025) directly add the verifiable
correctness signals and the human preferences for agentic tasks.

6 CONCLUSION

We introduced HERO (Hybrid Ensemble Reward Optimization), which combines a rule-based verifier
rrule ∈ {0, 1} with a dense reward model via stratified normalization and variance-aware weight-
ing. By anchoring reward-model scores to verifier-defined correctness groups and emphasizing
informative prompts, HERO preserves the precision and stability of verifiers while supplying dense,
trajectory-sensitive feedback, mitigating gradient sparsity and RM-only drift. Empirically, HERO
consistently outperforms RM-only and verifier-only baselines across verifiable, hard-to-verify, and
mixed regimes and across two backbones, showing that structured hybrid reward design is effective
for math reasoning. HERO is a first step toward more general hybrid reward frameworks: it currently
relies on reasonably accurate rule-based signals in math domains, and extends naturally to richer
verifiers, process-level supervision, and adaptive weighting schemes. We hope these results and
analyses provide a useful foundation for future work on combining symbolic and learned feedback
for reasoning beyond strictly verifiable settings.
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A EXPERIMENTS

A.1 EXPERIMENTAL SETUP

Category Hyperparameter Value

Data

Train file OPENMATHREASONING

Max prompt length 1024
Max response length 8192
Filter overlong prompts True

Actor Model

Base model 1 Qwen3-4B-Base

LR 1× 10−6

KL loss coefficient β 0
Entropy loss 0
Use dynamic batch size True

Rollout

Rollout engine vllm
GPU mem utilization 0.6
Train rollout n 8
Temperature 1.0

Reward Rule Based Math Verify

Reward Model Based AceMath-RM-7B

Trainer

Mini Batch size 128
Full Batch size 512 (4 step off-policy)
Critic Warmup 0
GPUs/node 4
Nodes 8
Total epochs 20
Clip Ratio (0.2, 0.28)

Table 5: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al.,
2025) in the verl (Sheng et al., 2025) framework for the Qwen-4B-Base.
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Category Hyperparameter Value

Data

Train file OPENMATHREASONING

Max prompt length 1024
Max response length 4096
Filter overlong prompts True

Actor Model

Base model 1 OctoThinker-8B-Hybrid-Base

LR 1× 10−6

KL loss coefficient β 0.001
Entropy loss 0
Use dynamic batch size True

Rollout

Rollout engine vllm
GPU mem utilization 0.6
Train rollout n 16
Temperature 1.0

Reward Rule Based Math Verify

Reward Model Based AceMath-RM-7B

Trainer

Mini Batch size 128
Full Batch size 512 (4 step off-policy)
Critic Warmup 0
GPUs/node 4
Nodes 8
Total epochs 20
Clip Ratio (0.2, 0.28)

Table 6: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al.,
2025) in the verl (Sheng et al., 2025) framework for the OctoThinker-8B-Hybrid-Base.

HERO hyper-parameters. For hybrid reward training for both Qwen-4B-Base and OctoThinker-8B-
Hybrid-Base, we set the range parameters α and β depending on the task type. For easy-to-verify
tasks, we adopt a tighter setting α = β = 0.05 to exploit the high precision of rule-based verifiers
while minimizing noise. For mixed and hard-to-verify tasks, where the reward model contributes
more substantially to supervision, we relax the range to α = β = 0.1 to provide richer feedback.
For variance-aware reweighting, we fix the weighting bounds as wmin = 0.4 and wmax = 3.0,
with a steepness parameter k = 6 in the logistic weighting function. These values ensure that
trivial prompts are down-weighted, while highly uncertain prompts—where reward-model scores
vary widely—receive stronger emphasis without destabilizing training.

Training hyper-parameters. Tables 5 and 6 provide an overview of the hyperparameter configu-
rations used in our GRPO training runs with Qwen3-4B-Base and OctoThinker-8B-Base. The tables
cover settings across data preparation, actor model optimization, rollout generation, reward specifi-
cation, and trainer configuration. They highlight the consistent use of OPENMATHREASONING as
the training corpus, the integration of both rule-based and reward-model signals, and the adoption
of scalable rollout and training strategies within the verl framework. Together, these summaries
document the experimental setup and ensure reproducibility across different backbone models. In
addition, we employ the HuggingFace math verify library to provide standardized rule-based ver-
ification of responses against ground-truth answers, which guarantees consistency in supervision
across all experiments.

Evaluation details. For easy-to-verify test sets, we follow Yang et al. (2024b): we use temperature
0.6 and top-p = 0.95, generate N = 8 candidates per problem, and report pass@1 (first decoded
output) averaged over 8 seeds (Table 2). Correctness is determined by math verifier (normalized
numeric/string match with task-specific post-processing). For hard-to-verify test sets, we use the
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same temperature and top-p but generate N = 1 sample per problem, and rely on GPT-4o as a judge
to compare model outputs with ground-truth answers. HardVerify-Math (Xu et al., 2025) contains
250 samples and, as discussed in Section 3.1, is not a particularly strict filter, since math verifier
already achieves relatively good performance. To further stress-test hard-to-verify reasoning, we
additionally evaluate on the TextBookReasoning dataset (Fan et al., 2025); see Appendix A.2.3 for
construction details.

A.2 DATA PREPARATION

A.2.1 SUPERVISED FINE-TUNING DATASET PREPARATION

We found that initiating RL training directly from the base model often resulted in instability, partic-
ularly in the absence of a cold start. For instance, the Qwen3-4B-Base model frequently produced
mixed-language outputs and generated irrelevant content during the early stages of training. Sim-
ilarly, the octothinker base model demonstrated multi-turn behavior, leading to highly variable re-
sponse lengths. To mitigate these issues and enhance the stability of RL training, we first conducted
two epochs of cold-start supervised fine-tuning (SFT) before beginning RL. To avoid unintentional
distillation from more capable models, we used the base model itself to generate responses. These
outputs were then filtered, retaining only samples that satisfied the following criteria: the response
contained the correct final answer, was entirely in English, and did not exhibit any unstop issues.
For cold start training, we ultimately used only 2,000 SFT samples.

A.2.2 TRAINING DATA FILTER FROM OPENMATHREASONING

In this paper, we focus on reasoning questions that have extractable answers. To this end, we exclu-
sively utilize data from the OpenMathReasoning dataset, selecting only those examples where the
problem type is set to has answer extracted. From the CoT split, we extracted 40k examples. For
each example, we generated solutions and extracted the predicted answers, which were then verified
using math verifier (verl). We randomly sampled 2k examples that passed the verifier to serve as
verifiable training data, and another 2k examples that failed verification as hard-to-verify training
samples. These two sets were combined to create a mixed training dataset for reinforcement learning
(RL) training. We use math verifier (verl) to filter all the samples.

A.2.3 HARD-TO-VERIFY EVALUATION BENCHMARK FROM TEXTBOOKREASONING

GPT-4o filter prompt for TextBookReasoning.

"I am looking for math questions that are suitable for evaluating a math model. Please
help me select questions that meet the following criteria:

1. The question must be clear and unambiguous.

2. The question must have a specific, factual, and answerable solution (not open-ended or
subjective).

3. The question must NOT require a proof or explanation of reasoning.

4. The question must NOT be a statement; it should be a direct question.

For each question I provide, please respond with:
- \"Conclusion: Suitable\" in the end if the question meets all the criteria above.

- \"Conclusion: Not Suitable\"

If the question does not meet the criteria, briefly explain why."

Figure 3: GPT-4o filter prompt for TextBookReasoning.
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To construct a more challenging and reliable benchmark for hard-to-verify tasks, we employ the
TextBookReasoning benchmark. The following criteria were used to filter and refine the dataset for
the evaluation:

1. Pass-through Math Verification Filter
The initial step in filtering was to ensure that the answers in the dataset did not pass the
math verify check, ensuring that the questions and answers involved a certain level of
complexity or ambiguity that would make them challenging for standard verifiers.

2. Llama 3.3 70B Instruct Model for Natural Reasoning
The dataset was further refined by using the Llama 3.3 70b instruct model to answer
natural reasoning prompts. Only the prompts for which Llama could not provide an answer
were kept for further evaluation. This step ensured that the dataset included questions that
required more advanced reasoning abilities, beyond the capabilities of standard models.

3. GPT-4 as the Final Filter
Finally, GPT-4 was used to filter out questions that still met the criteria of being complex
and hard-to-verify. GPT-4’s ability to handle nuanced reasoning ensured that only the most
challenging prompts remained. The prompt is shown as Figure 3

This process ultimately resulted in a refined set of approximately 750 prompts suitable for hard-to-
verify task evaluation.

Prompt Template for Hard-to-Verify Tasks Evaluation The evaluation of student answers to
these prompts is based on the following template, which uses GPT-4 to compare the student’s answer
against the ground truth:

Math Question Selection Criteria The following prompt was used to select math questions suit-
able for evaluating a math model. The criteria for question selection are outlined below:

A.2.4 HARD-TO-VERIFY PROMPT

We set the hard-to-verify evaluation prompt as shown in Figure 4. This template is designed to
assess whether a student’s response matches the reference answer without re-solving the question.
By explicitly instructing GPT-4o to perform equivalence checking rather than problem solving, the
protocol minimizes leakage of additional reasoning and focuses purely on correctness judgment.
The structured format, including the question, ground truth, and student answer, ensures consistency
across evaluations and reduces prompt sensitivity, making it suitable for benchmarking performance
on hard-to-verify tasks.

Prompt Template for hard-to-verify tasks evaluation via GPT-4o.

User: ### Question: {question}

### Ground Truth Answer: {ground_truth}

### Student Answer: {student_answer}

For the above question, please verify if the student’s answer is equivalent to the ground
truth answer.

Do not solve the question by yourself; just check if the student’s answer is equivalent to
the ground truth answer.

If the student’s answer is correct, output "Final Decision: Yes". If the student’s answer
is incorrect, output "Final Decision: No".

Assistant:

Figure 4: Prompt Template for hard-to-verify tasks evaluation via GPT-4o.
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Table 7: Comparison with model-based verifiers on Qwen-3-4B-Base. Results are pass@1 aver-
aged over 8 seeds across verifiable and hard-to-verify reasoning tasks. HERO consistently outperforms
both General Reasoner and Qwen2.5-7B-Instruct under all regimes.

Easy-to-verify tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

Training with easy-to-verify samples
General Reasoner 82.8 62.8 43.8 45.0 58.6 62.8 54.0 58.4
Qwen2.5-7B-Instruct 83.7 58.1 43.1 47.4 58.1 68.0 57.1 62.5
HERO (Ours) 85.4 69.4 44.5 48.9 62.0 73.2 59.3 66.3

Training with hard-to-verify samples
General Reasoner 78.6 56.3 38.7 41.5 53.8 59.6 48.4 54.0
Qwen2.5-7B-Instruct 78.2 60.5 41.8 41.7 55.6 57.2 51.7 54.5
HERO (Ours) 80.0 63.4 40.7 43.1 56.8 59.0 54.0 56.5

Training with mixed samples
General Reasoner 81.4 61.2 43.2 46.5 58.1 64.0 54.0 59.0
Qwen2.5-7B-Instruct 80.4 63.1 40.5 48.0 58.0 68.8 57.7 63.3
HERO (Ours) 81.6 64.4 42.1 47.0 58.8 71.4 56.7 64.1

A.3 MORE EXPERIMENTS
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Figure 5: RL training curves on MATH500 (easy-to-verify training). Left: mean rule-based
reward computed by math verifier. Right: validation accuracy on MATH500.

RL training curves comparison between HERO and baseline. Figure 5 compares the RL dy-
namics of the rule-based baseline and HERO when both are trained only on easy-to-verify samples
and evaluated on MATH500. On the left, we plot the mean rule-based reward (computed by
math verifier) over training steps. The rule-based baseline starts with a relatively low reward and
increases slowly, ending around 0.63 after 300 steps. In contrast, HERO climbs much faster and
reaches a substantially higher plateau (around 0.75–0.78), consistently staying above the baseline
throughout training. On the right, we show the corresponding validation accuracy on MATH500.
The rule-based baseline improves from 0.692 at step 0 to 0.802 at step 300, following a gradual up-
ward trend. HERO starts slightly higher at 0.728, quickly jumps above 0.80 by step 30, peaks around
0.852 at step 120, and then fluctuates in the 0.84–0.86 range (e.g., 0.864 at step 240 and 0.842 at
step 300). Overall, HERO not only achieves a higher final accuracy, but also maintains a persistent
4–8 point advantage over the rule-based baseline across most of training, indicating that the hybrid
reward improves both convergence speed and the entire training trajectory on easy-to-verify data.

Hybrid reward surpasses model-based verifiers across all the three regimes. To further assess
whether hybrid reward learning can outperform existing model-based verifiers, we compare HERO
against two representative systems: General Reasoner, a frozen 1.5B verifier model that provides
binary correctness judgments (Ma et al., 2025), and Qwen2.5-7B-Instruct , a large instruction-tuned
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verifier (Yang et al., 2024b). As shown in Table 2, HERO consistently achieves higher accuracy than
both model-based verifiers under all training regimes. When trained with verifiable samples, HERO
attains an average score of 62.0, outperforming General Reasoner (58.4) and Qwen2.5-7B-Instruct
(62.5) while maintaining greater stability across datasets such as MATH500 (85.4 versus 82.8 and
83.7) and AMC (69.4 versus 62.8 and 58.1). In the hard-to-verify regime, the advantage becomes
more pronounced: HERO reaches 56.5, exceeding General Reasoner (54.0) and Qwen2.5-7B-Instruct
(54.5), demonstrating that hybrid reward learning provides more reliable supervision even when
symbolic verification is unreliable and model-based signals are uncertain. In the mixed setting,
which combines both verifiable and open-ended samples, HERO again leads with 64.1, surpassing
General Reasoner (59.0) and Qwen2.5-7B-Instruct (63.3). These results highlight that integrating
verifier-anchored and reward-model signals yields not only better accuracy but also more consistent
generalization across regimes, outperforming larger model-based verifiers despite using no addi-
tional model parameters or external training data. The improvement underscores that structured
reward integration, rather than sheer verifier scale, is the key to effective and robust reasoning opti-
mization.

Table 8: Impact of reward model size: a larger RM
provides in HERO no remarkable gain over the HERO with
smaller RM .

Reward model Easy-to-verify Hard-to-verify

AceMath-RM-7B 62.0 73.2
AceMath-RM-72B 62.8 71.4

The proposed method does not rely on
large reward models. A natural ques-
tion is whether stronger supervision re-
quires scaling up the reward model itself.
To isolate this factor, we replace the 7B
reward model in HERO with a much larger
72B reward model, keeping the verifier
and all training configurations fixed. As
shown in Table 8, the larger reward model
yields only a marginal improvement on verifiable tasks (62.8 vs. 62.0) and even slightly underper-
forms on hard-to-verify tasks (71.4 vs. 73.2). This confirms that the gains of HERO primarily come
from its hybrid reward formulation—through stratified normalization and variance-aware weight-
ing—rather than from reward model scaling. Practically, this means that HERO can achieve strong
results with compact reward models, offering better efficiency and deployability without sacrificing
accuracy.

Table 9: α represents the weight of the rule-based re-
ward.

Methods Easy-to-verify Hard-to-verify

Reward combine (α=0.1) 57.6 60.2
Reward combine (α=0.5) 58.7 61.4
Reward combine (α=0.9) 55.9 60.4

HERO (Ours) 62.0 73.2

Naively combining rule-based rewards
and reward signals from reward model-
ing does not perform well. A direct in-
tegration of rule-based verification and re-
ward signals from reward modeling, with-
out proper structural alignment, often dis-
rupts the stability of training. As shown in
Table 9, when the weight of the rule-based
reward is varied (α = 0.1, 0.5, and 0.9),
the combined reward performance remains
suboptimal, with scores ranging from 55.9
to 58.7 for verifiable tasks and 60.2 to 61.4
for hard-to-verify tasks. Specifically, when the continuous signals from the reward model are naively
combined with binary correctness checks, the resulting reward can become noisy or misaligned with
the intended notion of correctness. Without explicitly constraining the continuous scores within the
rigid framework of the verifier’s correctness criteria, reward-model outputs can be distorted by im-
perfections in the model, diminishing both interpretability and precision in the feedback. Moreover,
the lack of a safeguard to differentiate true positives from noisy results can lead the model to exploit
unintended patterns, which may not align with human expectations. As a result, an unrefined fusion
of these two reward signals can dilute the benefits of both approaches, destabilizing the learning
process.

Reward models hack faster on hard-to-verify samples. Since the reward model (RM) is trained
on outcome-based verifiable samples (Liu et al., 2024), it is important to examine its behavior across
datasets with varying levels of verifiability. We evaluate four datasets: DAPO (Yu et al., 2025),
which is easy to verify; OpenMath Verifiable, which passes the math verifier; OpenMath Non-
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Figure 6: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b)
AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

Verifiable, which is harder to verify; and OpenMath Mix Verifiable, which combines both. As
shown in Figure 6, the RM rapidly increases the reward mean across all datasets, with the sharpest
gains on OpenMath Non-Verifiable and OpenMath Mix Verifiable. For example, on Non-Verifiable
data, the reward mean climbs steeply from below 5 to over 30 within the first 100 training steps, and
peaks above 40 by step 150. However, MATH500 accuracy collapses shortly after, dropping from
around 0.75 at step 50 to below 0.2 by step 100, and effectively to zero by step 150. A similar trend
appears on Mix Verifiable: accuracy initially rises to about 0.8 at step 100 but then crashes to nearly
zero by step 150, despite the reward mean continuing to rise steadily past 35. In contrast, OpenMath
Verifiable shows slower but steadier progress: rewards grow more gradually, and accuracy improves
to about 0.8 by step 120 before stabilizing without collapse. DAPO also exhibits stable optimization,
with accuracy consistently around 0.75–0.78 as rewards increase moderately. These results highlight
a clear mismatch: rapid reward gains on hard-to-verify tasks are not evidence of genuine reasoning
improvement, but rather reward hacking that leads to catastrophic accuracy collapse. This illustrates
the brittleness of relying solely on dense reward models and motivates hybrid reward frameworks
that combine verifier-anchored reliability with the nuance of dense signals.

B QUALITATIVE ANALYSIS

B.1 REWARD MODEL QUALIFICATION ABILITY

To better understand the reliability of reward-model supervision, we analyze its ability to approxi-
mate the verifier signal as a binary classification task. We randomly take all the rollouts from one
step (the 250 for the verifiable samples training) during the training. Specifically, we treat the reward
model’s raw scores as logits and the verifier’s outputs as ground-truth binary labels, then compute
AUROC statistics to measure discriminative power.

Figure 7 shows four complementary views. The histogram (top-left) reveals a strong skew toward
high AUROC values, with a mean of 0.79 and a median of 0.92, indicating that the reward model
often ranks correct responses above incorrect ones. The box plot (top-right) highlights robustness
but also exposes several low outliers where the model fails to separate classes. The cumulative dis-
tribution (bottom-left) confirms that roughly 80% of groups achieve AUROC above 0.7. Finally, the
performance categorization (bottom-right) shows that 56.8% of groups reach “excellent” AUROC
(≥ 0.9), while only 13.7% fall into the “random/poor” range (0.4–0.6).

These results suggest that although the reward model is not perfect, it provides reliable ranking
signals in the majority of cases. Importantly, this supports the use of dense reward signals to refine
learning within verifier-defined groups: while the verifier anchors correctness, the reward model
adds discriminative power that helps differentiate among responses of varying quality. The presence
of failure cases further justifies our hybrid framework, which uses stratified normalization to bound
reward-model signals within verifier groups, ensuring stability even when AUROC is low.
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Figure 7: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b)
AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

s

B.2 QUALITATIVE ANALYSIS OF RULE-BASED VERIFIERS

Table 10 highlights representative behaviors of rule-based and model-based verifiers. math.py is
overly strict, failing on minor formatting variations such as boxing or punctuation (Rows 1–2), while
math verify.py improves recall through normalization. The Math-Verify library handles simple sur-
face mismatches but struggles with structural differences like disjoint ranges or multiple valid tuples
(Rows 4–5). In contrast, o3 is the most permissive: it credits partially correct sets (Row 3) and para-
metric families with renamed symbols (Row 6), which increases coverage but risks over-crediting.
These cases illustrate the precision–recall trade-off: rule-based verifiers enforce exact symbolic cor-
rectness but miss semantically equivalent or partially correct answers, whereas model judges offer
flexibility at the cost of reliability. This motivates our hybrid design: HERO anchors dense reward
signals to rule-based correctness, ensuring robustness to format variance, while leveraging model-
or RM-derived scores to provide graded feedback on harder cases involving subsets, orderings, or
parametric equivalence.

C LIMITATIONS AND FUTURE WORK

While HERO demonstrates clear advantages over RM-only and verifier-only training, several limi-
tations remain. First, the method depends on the availability and reliability of rule-based verifiers:
when these are brittle or domain-mismatched, the partitioning into correctness groups may be biased,
weakening the benefits of stratified normalization. More broadly, our method is explicitly designed
for settings where a rule-based signal and a dense reward-model signal can be combined; when such
a verifier is unavailable or highly unreliable, the current HERO formulation is not directly appli-
cable. Second, because the reward model is trained primarily on outcome-based, verifiable data, it
can become miscalibrated on harder, non-verifiable formats, and although our framework constrains
its scores, residual bias or spurious correlations may still be exploited. Third, HERO introduces
sensitivity to hyperparameters such as (α, β) and the weighting slope k, and increases training over-
head due to concurrent verifier and RM calls. Finally, evaluation on non-verifiable tasks often relies
on LLM-as-judge protocols, which introduce prompt sensitivity and annotation noise. Future work
will focus on improving verifier coverage with hybrid symbolic–learned approaches, incorporating
process-level supervision to capture reasoning quality beyond final answers, and developing adap-
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Ground truth Model Prediction math.py math verify.py(verl) Math verify library o3

f(x) = 2x \boxed {f(x) = 2x} ✗ ✓ ✓ ✓

(6, 3), (9, 3), (9, 5), (54, 5) \boxed {(6,3)}, \boxed {(9,3)},

\boxed {(9,5)}, \boxed {(54,5)}

✗ ✓ ✓ ✓

(0, 1, 1), (0,−1,−1), (1, 0, 1),

(−1, 0,−1), (1, 1, 0), (−1,−1, 0),(
1√
3
, 1√

3
, 1√

3

)
,(

− 1√
3
,− 1√

3
,− 1√

3

)
, . . .

Final Answer: \boxed {(1,1,0)},

\boxed {(-1,-1,0)}, \boxed

{(1/\sqrt {3},1/\sqrt {3},1/\sqrt

{3})}, \boxed {(-1/\sqrt

{3},-1/\sqrt {3},-1/\sqrt {3})},

✗ ✗ ✗ ✓

10, 11, 12, 13, 14, −2, −1, 0, 1, 2 Final Answer: \boxed

{-2,-1,0,1,2} and \boxed

{10,11,12,13,14}

✗ ✓ ✗ ✓

(1, 7, 103, 105), (3, 5, 101, 107) Final Answer: Two possible lists

are \boxed {(3,5,101,107)} and

\boxed {(1,7,103,105)}

✗ ✓ ✗ ✓

f(x) = ax + b (where b is an
arbitrary integer, and a is an arbitrary
positive integer with mho(a)=0)

Final Answer: \boxed {f(n)=cn+d},

where c has no prime factors >

10ˆ{100} and d is any integer

✗ ✓ ✗ ✓

Table 10: Examples demonstrating agreement between different math verification tools.

tive range and weighting schemes that calibrate dense signals online. These directions can further
strengthen the stability and generality of hybrid reward frameworks for reasoning.

Mathematical reasoning benchmarks are a natural first testbed for HERO, as they provide mature,
high-precision verifiable rewards (e.g., programmatic checks for final answers) and are widely used
in recent RLVR systems such as DeepSeek-R1. For this reason, we intentionally restrict our em-
pirical study to math reasoning, where HERO’s assumptions are well satisfied and comparisons to
existing verifier-based RL methods are most meaningful.In contrast, many non-mathematical, open-
ended, or multimodal tasks currently lack clear, high-precision rule-based verifiers, making them
less aligned with our present problem setting. We therefore do not claim that HERO, as instantiated
in this paper, already solves open-ended generation; instead, these tasks remain outside the scope of
our experiments. Nonetheless, HERO itself is agnostic to the specific form of rrule: in principle, any
structured checker (such as code-execution tests, safety or formatting constraints, or even rubric-
guided LLM-as-judge signals) could play this role. Systematically extending HERO to such “soft”
verifiers for open-ended and multimodal reasoning, and studying the resulting trade-offs between
stability, coverage, and bias, is an important direction for future work.

D THE USE OF LARGE LANGUAGE MODELS(LLM)

In our project, we use LLM for writing polishing.
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