
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID REINFORCEMENT:
WHEN REWARD IS SPARSE, BETTER TO BE DENSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training for reasoning of Large language models (LLMs) increasingly rely
on verifiable rewards: deterministic checkers that provide 0–1 correctness signals.
While reliable, such binary feedback is brittle—many tasks admit partially correct
or alternative answers that verifiers under-credit, and the resulting all-or-nothing
supervision limits learning. Reward models offer richer, continuous feedback,
which can serve as a complementary supervisory signal to verifiers. We intro-
duce HERO (Hybrid Ensemble Reward Optimization), a reinforcement learning
framework that integrates verifier signals with reward-model scores in a struc-
tured way. HERO employs stratified normalization to bound reward-model scores
within verifier-defined groups, preserving correctness while refining quality dis-
tinctions, and variance-aware weighting to emphasize challenging prompts where
dense signals matter most. Across diverse mathematical reasoning benchmarks,
HERO consistently outperforms RM-only and verifier-only baselines, with strong
gains on both verifiable and hard-to-verify tasks. Our results show that hybrid re-
ward design retains the stability of verifiers while leveraging the nuance of reward
models to advance reasoning.

1 INTRODUCTION

Reasoning lies at the heart of human intelligence, and increasingly, at the frontier of large language
model (LLM) capabilities (Zhang et al., 2025b). In tasks such as mathematical problems or gener-
ating proofs, reliable reasoning requires models not only to produce fluent text but also to generate
logically consistent multi-step solutions that culminate in a verifiably correct outcome. Verifiable re-
wards operationalize this by running a deterministic checker—e.g., exact numeric/string match, unit
tests, or symbolic equivalence—on a candidate solution y for input x; the checker accepts or rejects
the output, yielding a sparse but unambiguous signal r(x, y) ∈ {0, 1} that reinforcement learning
can broadcast to the whole trajectory. Building on this principle, reinforcement learning from verifi-
able rewards (RLVR) (Chen et al., 2025b) uses these binary signals to train policies toward solutions
that pass the checker. Recent systems—including OpenAI o1 and DeepSeek-R1—have advanced
this paradigm at scale, leveraging verifier-grounded feedback to improve reasoning (Jaech et al.,
2024; Guo et al., 2025; Zeng et al., 2025; Luo et al., 2025; Yang et al., 2024a).

However, strict 0–1 verification is inherently coarse and brittle: many reasoning tasks allow for par-
tially correct solutions, equivalent answers in alternative formats, or open-ended outputs that resist
exact matching. In such cases, symbolic verifiers may under-credit valid solutions (false negatives)
or fail to provide any useful signal. Even when applicable, binary rewards induce sparsity: if all roll-
outs for a prompt receive the same label (all 0s or 1s), group-relative methods such as GRPO (Shao
et al., 2024) yield zero relative advantage and thus no useful policy gradient, stalling policy im-
provement. Our motivating analysis in Section 3.1 further highlights this limitation: on samples
where answers are hard to verify, rule-based verifiers frequently fail to capture correctness. Figure 1
illustrates this tradeoff: while reward models offer smooth but misaligned signals, rule-based veri-
fiers enforce correctness but lack nuance. HERO integrates both to provide reliable yet informative
supervision. This brittleness not only reduces sample efficiency but also skews optimization toward
easier, strictly verifiable cases—leaving the hardest and most informative prompts underutilized.

Reward-based models, in contrast, offer dense supervision by scoring responses on a contin-
uum (Yang et al., 2024b; Liu et al., 2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

response quality
20

10

0

10

20

30

y

Reward Model

response quality

0.0

0.2

0.4

0.6

0.8

1.0

y

Rule based Rewards

response quality

0.0

0.2

0.4

0.6

0.8

1.0

Hybrid Reinforcement
alpha=0.2, beta=0.2

Figure 1: Comparison of reward signals from different supervision sources. Green dots rep-
resent correct responses and red dots represent incorrect ones. The Reward Model (left) provides
smooth but sometimes misaligned scores, as it can assign high values to incorrect responses. The
Rule-based Rewards (middle) give strict binary signals but lack nuance and introduce true negative
sometimes. HERO (right) integrates both, leveraging the verifier’s correctness guarantees while re-
fining gradients with reward model scores. This combination corrects for cases where the reward
model alone may be wrong, leading to more reliable and informative supervision.

Rather than collapsing all incorrect answers into the same category, they can capture nuanced qual-
ity differences such as partial correctness, clarity of reasoning steps, or proximity to the ground
truth. This graded feedback enriches training signals, helping policies learn from partially correct
reasoning paths and better allocate credit across diverse rollouts. However, naively combining these
dense reward model signals with a binary verifier output often destabilizes training. Specifically,
when the reward model’s continuous signals are naively blended with binary correctness checks,
the resulting reward can become noisy or misaligned with the expected semantics of correctness.
Thus, it remains an open question of how to design an effective hybrid framework that preserves the
reliability of verifiers while harnessing the richness of reward models?

To address this challenge, we propose HERO (Hybrid Ensemble Reward Optimization), a reinforce-
ment learning framework that integrates verifier-anchored and dense reward-model signals in a struc-
tured way. HERO tackles the instability of naive blending through two key innovations. First, it in-
troduces a stratified normalization scheme that bounds reward-model scores within verifier-defined
correctness groups. This ensures that dense feedback refines learning only within the set of re-
sponses deemed correct by the verifier, preserving correctness guarantees while exploiting nuanced
distinctions. Second, HERO employs a difficulty-aware weighting mechanism that adaptively adjusts
the contribution of different prompts during training. Easy prompts, where most responses are uni-
formly correct or incorrect, contribute little additional learning signal and are down-weighted. In
contrast, harder prompts—where candidate responses vary widely and reward-model scores provide
valuable discrimination—are emphasized. These components allow HERO to overcome the brittleness
of purely binary rewards and the noisiness of dense signals.

We evaluate HERO on diverse math reasoning benchmarks that span three regimes: verifiable tasks
where exact final-answer checking is possible, hard-to-verify tasks with partially correct or format-
sensitive solutions, and mixed settings combining both. Across different LLM backbones, HERO
consistently outperforms both RM-only and verifier-only baselines, in all three regimes. Notably,
on hard-to-verify tasks, HERO achieves 66.3, which surpasses RM-only (54.6) by +11.7 points and
verifier-only (57.1) by a dramatic +9.2 points. Ablations further confirm that anchoring dense signals
to verifiable correctness and adaptively reweighting difficult prompts are both critical for stability
and efficiency.

2 PRELIMINARIES

Dense reward via reward modeling. Reward modeling learns a scalar function r(x, y) that eval-
uates the quality of a response y given a prompt x. Based on the Bradley–Terry model (Bradley &
Terry, 1952), the reward function is trained on pairwise preference data by minimizing

LR = −E(x,yc,yr)∈D[log σ(r(x, yc)− r(x, yr))], (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where σ denotes the sigmoid function, yc is the response that is considered preferred in a compar-
ison, and yr is the response considered less preferred. Once learned, r can guide reinforcement
learning to align the model with human preferences.

Sparse reward via verifier. Reinforcement learning with verifiable rewards (RLVR) leverages a
deterministic function r(x, y) to assess correctness, assigning a sparse reward (e.g., +1 for correct,
−1 for incorrect). All tokens in a response share the same reward, providing unambiguous supervi-
sion for tasks with objective ground truth. In mathematical problem solving, the reward function is
based on a verifier that checks whether the model’s solution matches the ground-truth reference un-
der equivalence transformations. Specifically, a math verifier typically parses the predicted solution
into a structured form (e.g., a symbolic expression, final numeric answer, or proof step), simplifies
it, and compares it against the reference solution using symbolic algebra tools or logical equivalence
checks. The reward function is based on the verifier:

ψ
(
x, yi, yref

)
=

{
1, if yi is equivalent to yref given x,
0, otherwise.

(2)

Group Relative Policy Optimization. GRPO (Shao et al., 2024) extends RLVR by optimizing
over multiple responses per prompt rather than treating them independently. Instead of relying on
a single trajectory, GRPO compares groups of candidate solutions and assigns relative advantages,
which stabilizes learning and improves exploration. It also incorporates clipping (as in PPO) to
prevent unstable updates and adds a KL penalty to keep the policy close to a reference model. This
group-based formulation alleviates the gradient sparsity problem of pure verifier rewards and makes
optimization more sample-efficient than standard PPO (Yu et al., 2025).

3 METHODOLOGY

3.1 MOTIVATION: DELVING INTO RULE-BASED VS. RM-BASED VERIFIERS

Building on the preliminaries, we now examine how the two supervision paradigms – rule-based
verifiers that provide sparse but precise correctness signals, and reward models that offer dense but
potentially noisy preferences – behave on tasks where correctness is difficult to verify. Since the
reliability of training hinges on the quality of supervision, understanding their respective strengths
and weaknesses is crucial. To this end, we use the HardVerify Math benchmark (Xu et al., 2025) as
prompts, generate three responses per problem from Llama3.1-8B, Llama3.3-70B, and Qwen3-8B,
and then evaluate verifier and reward model performance on these samples.

Limitations of rule-based verifiers. To better understand the trade-offs among different ver-
ification approaches, we compare several representative verifiers. For rule-based verifiers, we
consider math reward.py from the verl library, math verify module from verl, and the parse
and verify functions from the Math-Verify library. In addition, we include more general ver-
ifiers that utilize a binary classifier trained to judge the correctness of answers, such as the
TIGER-Lab/general-verifier (Ma et al., 2025).

Results in Table 1 highlight clear precision–recall trade-offs. Function-based rules offer high pre-
cision but low recall. For example, the math reward.py checker is highly conservative: it almost
never produces false positives (FPR=0.3%) but fails to recognize many correct answers, resulting
in very low recall (10.1%). A more advanced variant, math verify.py (in verl), achieves the best
balance—near-zero false positives with substantially higher recall. The math verify library extends
coverage with normalization heuristics (e.g., handling formatting differences or units) but remains
brittle for mismatched orderings such as lists vs. sets, yielding only 38.6% recall.

Reward modeling can generalize to hard-to-verify samples. We further examine how reward
models behave on hard-to-verify samples. Since correctness is directly checkable, most reward
models for mathematical reasoning are trained on verifiable samples (Yang et al., 2024b; Liu et al.,
2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025). This raises the question: to what
extent can such models generalize to tasks where correctness cannot be directly verified? Here, we
investigate this issue by analyzing the performance of a math-focused reward model (AceMath-7B-
RM) on hard-to-verify tasks. We evaluate the model under varying thresholds of scores produced

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Rule-based vs. RM-based verification performance.
Type Verifier Recall ↑ Precision ↑ FPR ↓ Acc. ↑

Rule-based

math reward (verl) 10.1 97.5 0.3 53.6
math verify (verl) 68.4 100.0 0.0 83.7
math verify (library) 38.6 96.1 1.6 67.6
general-verifier 49.5 89.3 6.3 70.9

RM-based

AceMath-7B-RM w threshold 1 91.7 67.7 46.4 73.2
AceMath-7B-RM w threshold 3 84.2 72.7 33.5 75.6
AceMath-7B-RM w threshold 5 73.8 76.6 23.9 74.9
AceMath-7B-RM w threshold 7 62.4 78.5 18.1 71.9

by the reward model. As shown in Table 1, at RM ≥ 1, the model achieves a high recall of 91.7%,
and stronger overall coverage, significantly outperforming the rule-based verifiers. However, the
precision is notably lower. Higher thresholds improve precision but reduce recall.

The need for hybrid reward design. Our analysis underscores a key tension: neither rule-based
verification nor reward models alone is sufficient. Purely binary verifiable rewards can be brittle
and overly conservative, especially on hard-to-verify samples. This not only reduces sample effi-
ciency but also skews optimization toward easier, strictly verifiable cases—leaving the hardest and
most informative prompts underutilized. Reward-based models, in contrast, offer dense supervision
by scoring responses on a continuum and can capture nuanced quality differences such as partial
correctness or proximity to the ground truth. These complementary strengths and weaknesses mo-
tivate a hybrid approach: anchoring supervision in symbolic verifiers to preserve correctness, while
enriching it with the dense signal of reward models to drive effective policy learning. In the next
subsection, we describe our proposed approach in detail.

3.2 HERO: HYBRID ENSEMBLE REWARD OPTIMIZATION

Motivated by these findings, our design principle is that rule-based rewards should continue to guide
the overall reasoning dynamics, while reward models serve as supplementary signals to enrich train-
ing. We therefore propose a hybrid reward framework that (i) augments binary correctness with
dense reward-model scores and (ii) scales supervision according to prompt difficulty. We describe
both components in detail below.

Dense signals anchored to verifiable correctness. As argued in the motivation, binary verifiers
alone provide stable but overly coarse supervision, while reward models offer nuanced distinctions
that are easily corrupted if left unconstrained. However, we found that a naive combination of
rule-based verification and reward modeling signals tends to undermine the stability of training and
render the hybrid approach ineffective (see Appendix A.3). Specifically, when the reward model’s
continuous signals are naively blended with binary correctness checks, the resulting reward can
become misaligned with the expected semantics of correctness.

To address this, we propose stratified normalization, which explicitly bounds the continuous scores
of RM within the symbolic structure imposed by the verifier. Formally, let rrule ∈ {0, 1} denote
the verifier output and rRM ∈ R the reward-model score. We partition responses by rrule and apply
group-wise min–max normalization to rRM, yielding:

r̂(x, y) =


−α+ 2α · rRM −min rRM

max rRM −min rRM + ϵ
, rrule = 0,

(1− β) + 2β · rRM −min rRM

max rRM −min rRM + ϵ
, rrule = 1.

(3)

Here α, β ∈ (0, 1] control the allowable ranges for incorrect and correct groups, with ϵ > 0 pre-
venting division by zero. Technically, we set this value relatively small so that the training dynamic

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is primarily led by rule-based rewards, and the reward from reward modeling is only supplemen-
tary. This design differs from traditional pure verifiable reward in the hard-to-verify samples and
all-positive and all-negative groups, which do not provide the advantage over different rollouts.

This stratified normalization effectively embodies the hybrid approach: verifiers ensure the preser-
vation of correctness semantics by constraining the score ranges, while reward models enhance the
supervision by introducing gradations within each group. Incorrect responses are clearly distin-
guished from correct ones, and correct responses are prioritized based on their relative quality. In
this manner, dense signals are anchored to symbolic correctness, mitigating the sparsity observed in
pure RLVR.

Variance-aware advantage reweighting. In the motivation, we argued that not all prompts are
equally informative: trivial ones provide little learning signal, while challenging prompts better
reveal differences across candidate solutions. A shortcoming of the original GRPO algorithm is that
it treats all prompts uniformly, ignoring this variability. The consequence is inefficient use of training
capacity—easy prompts dominate optimization even though they provide little additional guidance,
while difficult prompts that expose meaningful distinctions are underutilized. To realign training
effort with informativeness, we introduce a variance-aware weighting scheme. For each prompt, let
σu denote the standard deviation of reward-model scores across candidate responses, with σ̄ as a
running mean. This variance reflects uncertainty: higher values suggest greater disagreement and
thus a richer training signal. We define a bounded monotone weighting function:

wdifficulty(σu) = wmin + (wmax − wmin) ·
1

1 + exp
(
− k(σu − σ̄)

) , (4)

where wmin and wmax set the minimum and maximum weights, and k controls the slope of the
transition. In practice, we treat these as tunable hyperparameters; unless otherwise stated, we use
wmin = 0.5, wmax = 2.0, and k = 5, ensuring that difficult prompts are up-weighted by at most 2×
while trivial prompts retain at least half weight. The final shaped reward is

rfinal(x, y) = wdifficulty(σu) · r̂(x, y). (5)

This design operationalizes our intuition: ambiguous, high-variance prompts are emphasized be-
cause they reveal more about model weaknesses and reward-model sensitivity, while trivial, low-
variance prompts are down-weighted to avoid wasting capacity. In doing so, the training process not
only remains anchored to verifiable correctness through r̂, but also allocates learning effort to the
most challenging and informative parts of the data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training datasets. A central question raised is whether reasoning skills acquired through RLVR
on verifiable data can generalize to tasks whose correctness cannot be mechanically checked. To
empirically examine this, we design three evaluation regimes: verifiable-only, hard-to-verify-only,
and mixed. To evaluate learning under different types of supervision, we construct three training
regimes based on subsets of the OPENMATHREASONING (Moshkov et al., 2025) benchmark. For
the verifiable-only regime, we sample 2,000 problems whose final answers can be deterministically
validated using a rule-based math verifier. For the hard-to-verify-only regime, we likewise sample
2,000 problems from OPENMATHREASONING, which consists of the correct answer whose format
is very complex (see Appendix A.2.2 for how do we filter as well as some qualitative examples).
These tasks supply dense preference signals and model-based verifier scores, but lack reliable binary
labels from exact checking. Finally, in the mixed regime, we combine 1,000 verifiable and 1,000
hard-to-verify problems per epoch, enabling the policy to benefit simultaneously from robust exact-
check supervision and nuanced feedback from unverifiable cases. Unless otherwise stated, mini-
batches are stratified so that each epoch preserves the designated regime’s composition, and variants
or prompts are randomly resampled to reduce overfitting to a single rendition.

Model. To evaluate the generalizability of our method across different backbone models, we con-
duct experiments using the following models of various model families and sizes: we use Qwen3-
4B-Base (Yang et al., 2025) and Octothinker Hybrid 8B base mode (Wang et al., 2025). Motivated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: The results of Qwen-3-4B-Base on both verifiable and hard-to-verify reasoning tasks.
The first block shows results on verifiable tasks (MATH500, AMC, Minerva, Olympiad; with Avg.),
and the second block shows results on hard-to-verify tasks (HVM, TBR).

Verifiable tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

Qwen3-4B-Base 67.5 44.1 29.4 32.1 43.3 45.2 40.2 42.7
SFT model 69.1 50.3 39.1 34.3 48.2 50.8 43.3 47.1

Training with verifiable samples
Reward model 80.2 61.6 40.6 43.3 56.4 57.2 52.0 54.6
math verify (verl) 82.3 61.3 44.0 45.5 58.3 61.0 53.1 57.1
General Reasoner 82.8 62.8 43.8 45.0 58.6 62.8 54.0 58.4
Qwen2.5-7B-It 83.7 58.1 43.1 47.4 58.1 68.0 57.1 62.5
HERO (Ours) 85.4 69.4 44.5 48.9 62.0 73.2 59.3 66.3

Training with hard-to-verify samples
Reward model 79.6 58.8 39.9 42.1 54.1 59.2 48.2 53.7
math verify (verl) 81.3 61.3 38.0 43.9 42.6 58.4 50 54.2
General Reasoner 78.6 56.3 38.7 41.5 53.8 59.6 48.4 54
Qwen2.5-7B-It 78.2 60.5 41.8 41.7 55.6 57.2 51.7 54.5
HERO (Ours) 80.0 63.4 40.7 43.1 56.8 59.0 54 56.5

Training with mixed samples
Reward model 79.6 58.8 39.9 42.1 55.0 58.4 49.6 54.0
math verify (verl) 81.3 61.3 38.0 43.9 56.1 62.4 55.3 58.9
General Reasoner 81.4 61.2 43.2 46.5 58.1 64.0 54.0 59.0
Qwen2.5-7B-It 80.4 63.1 40.5 48.0 58.0 68.8 57.7 63.3
HERO (Ours) 81.6 64.4 42.1 47.0 58.8 71.4 56.7 64.1

by stabilizing the RL training dynamic, we perform the cold start SFT on the base model (see Ap-
pendix A.2.1). All of the experiments of RL training start from the same SFT model.

Baselines. To provide a comprehensive comparison, we benchmark our hybrid-reward framework
against both standard RL paradigms and stronger model-based references. As preliminary points
of reference, we also report the performance of the base model and a cold-start SFT model, which
serve to contextualize the impact of reinforcement learning itself. The main baselines are: (1)
Reward model (RM)-only RL, which uses the AceMath-RM-7B reward model (Liu et al., 2024) to
provide dense supervision; (2) Math verifier, which relies on binary, rule-based rewards, marking
a sample as correct only if the normalized final answer matches the ground truth via math verifier
in the VERL repo—this emphasizes stability and reliability (3) General Reasoner, a frozen, well-
trained 1.5B verifier model (Ma et al., 2025) that delivers binary correctness judgments, illustrating
the potential of lightweight, task-agnostic model-based evaluation; and (4) Qwen2.5-7B-IT, which
uses the Qwen2.5-7B-instruct verifier (Yang et al., 2024b). The proposed HERO combines rule-based
verification when exact correctness is checkable with continuous reward-model signals otherwise,
further enhanced by variance-aware advantage reweighting.

Evaluation for verifiable tasks. We report pass@1 averaged over 8 seeds in Table 2. Following
a standard decoding protocol, we use temperature 0.6 and top-p 0.95, generate N = 8 candidates
per problem, and evaluate the first decoded output (pass@1). Reported numbers are means over
seeds. Correctness is decided by math verifier (normalized numeric/string match with task-specific
post-processing). Benchmarks include MATH500 (Hendrycks et al., 2021), AMC (Li et al., 2024),
Minerva (Lewkowycz et al., 2022), and Olympiad (He et al., 2024).

Evaluation for hard-to-verify tasks. Since symbolic checkers cannot reliably provide binary la-
bels for open-ended solutions, we adopt an LLM-as-a-judge protocol. Specifically, we use GPT-4o
to compare model outputs against ground-truth answers. We evaluate using the HardVerify-Math
benchmark (Xu et al., 2025), which consists of 250 samples. Based on the results in Section 3.1,
we find that HardVerify-Math is not a particularly challenging filter, as using math verify yields rel-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: The results of OctoThinker-8B-Hybrid-Base on both verifiable and hard-to-verify rea-
soning tasks. We report pass@1 averaged over 8 seeds. The first block shows results on verifiable
tasks (MATH500, AMC, Minerva, Olympiad; with Avg.), and the second block shows results on
hard-to-verify tasks (HVM, TBR).

Verifiable tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

OctoThinker-8B-Hybrid-Base 32.0 15.3 9.10 11.0 16.9 26.0 21.1 23.6
SFT cold start model 56.0 35.9 19.7 21.6 33.3 27.6 26.4 27.0

Verifiable only
Reward model 62.3 38.4 26.2 25.5 38.1 29.6 27.8 28.7
math verify (verl) 60.1 39.4 26.7 24.1 37.6 31.6 28.9 30.3
HERO (Ours) 63.0 40.6 30.1 26.7 40.1 28.4 36.7 32.6

Hard-to-verify only
Reward model 60.7 33.8 22.4 24.9 35.4 32.0 29.8 30.9
math verify (verl) 60.0 29.7 23.9 24.8 34.6 28.8 26.7 27.8
HERO (Ours) 64.9 41.6 27.9 29.6 41.0 32.4 36.7 34.6

Mixed samples
Reward model 60.2 34.4 24.0 23.8 35.6 30.8 29.3 30.1
math verify (verl) 59.3 33.7 24.7 24.0 35.4 27.6 28.7 28.2
HERO (Ours) 65.2 38.1 28.1 29.3 40.2 34.8 31.6 33.2

atively good results. Therefore, to further evaluate performance on hard-to-verify reasoning tasks,
we additionally collect the TextBookReasoning dataset (Fan et al., 2025) (see Appendix A.2.3 for
more details).

4.2 MAIN RESULTS

Hybrid reward consistently improves performance across all regimes. Table 2 shows that HERO
outperforms all baselines—including RM-only, rule-based verifiers, and LLM-as-verifiers—across
verifiable, hard-to-verify, and mixed settings. On verifiable tasks, HERO achieves the best average
(62.0), exceeding RM-only (56.4) and rule-based training (58.3). The key advantage is that stratified
normalization allows HERO to fully exploit both positive and negative groups: while verifier-only
training collapses all-correct or all-incorrect batches (yielding zero relative advantage), HERO pre-
serves learning signal within each group via dense intra-group rewards. Model-based verifiers such
as Qwen2.5-7B-IT and General Reasoner further expand coverage, achieving around 58.4–62.5, but
still lag behind HERO since they provide only coarse binary labels and miss the fine-grained calibra-
tion offered by hybrid reward and could still not handle with the zero advantage for all positive/neg-
ative rollouts. On hard-to-verify tasks, HERO shows the largest margin, reaching 73.2 compared to
59.2 for RM-only and 42.6 for verifier-only. Here, rule-based verifiers fail because most responses
collapse into the same label, while RM-only suffers from noise and reward drift. By anchoring
dense signals to correctness groups, HERO achieves both stability and stronger supervision than
either signal alone. In the mixed regime, HERO again secures the best average (58.8), surpassing
RM-only (55.0) and rule-based verifiers (56.1). It is also worth noting that although LLM-as-verifier
approaches can improve coverage, they are computationally expensive; in contrast, reward models
are lightweight to deploy and far more efficient. HERO thus achieves superior accuracy while retain-
ing the efficiency advantages of reward modeling, explaining why it consistently generalizes better
than both symbolic and LLM-based verifier baselines.

Hybrid reward generalizes across backbones. A key observation is that hybrid training scales
across models of very different capacities and starting strengths. Qwen3-4B already shows strong
SFT results (48.2 on verifiable tasks) but gains large boosts from HERO, particularly on more chal-
lenging benchmarks such as AMC (+7.8 points over RM-only) and Olympiad (+3.4 points over
verifier-only). In contrast, OctoThinker-8B begins with very low base performance (16.9 on verifi-
able and 23.6 on hard-to-verify), yet hybrid training raises its averages to 40.1/32.6 (verifiable-only)
and 41.0/34.6 (hard-to-verify-only). The relative improvement is most pronounced in difficult set-
tings, showing that hybrid reward is not tailored to a single architecture but rather captures a general

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

None Pos Only Neg Only Pos+Neg
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

59.4 60.3 61.4 62.062.2

65.2

68.4

73.2

(a) Positive vs Negative
Verifiable
Hard-to-verify

0.05 0.1 0.2 0.05 0.1 0.2
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Verifiable Mixed

62.0
60.3 59.4

73.2

69.8
68.6

56.4
58.8 58.1

68.8
71.4

69.6

(b) Range Ablation

Figure 2: (a)Impact of using positive and negative dense ranges. (b)Effect of varying reward ranges
under different training regimes. Left: Verifiable setting. Right: Mixed setting.

principle: exploiting the verifier’s precision while refining gradients with reward-model scores pro-
duces robust supervision independent of scale.

Verifier-only training struggles on hard-to-verify tasks. The limitations of symbolic supervi-
sion become clear in the hard-to-verify regime. On Qwen3-4B, verifier-only training achieves just
42.6, far below both RM-only (59.2) and HERO (56.5) and is even worse than the cold start SFT
model. OctoThinker-8B shows the same failure mode, with verifier-only reaching 34.6 compared to
HERO’s 41.0. The underlying issue is structural: group-relative optimization collapses when all can-
didate responses receive the same binary 0 label, producing no gradient. As a result, verifier-only
approaches cannot differentiate between nearly correct and completely incorrect reasoning paths.
Hybrid reward avoids this collapse by anchoring dense reward-model signals within correctness
groups. This ensures that progress continues even when binary labels saturate, while still retaining
the verifier’s strict guarantees. Consequently, HERO is able to generalize better in precisely those
regimes where purely symbolic feedback is least reliable.

4.3 ADDITIONAL ABLATIONS

Dense negative ranges are more important than positive samples. We found that dense negative
rewards play a more critical role in stabilizing training and improving learning efficiency than posi-
tive samples. While positives signal correctness, negatives provide richer supervision by penalizing
diverse reasoning errors. Notably, using only negative rewards boosts performance on verifiable
tasks from 59.4 to 61.4, and even more on hard-to-verify tasks from 62.2 to 68.4. This demonstrates
that well-calibrated negative ranges are essential: they provide broader feedback, enabling the model
to detect subtle errors and generalize better on complex cases.

Table 4: Variance-aware reweighting improves perfor-
mance on both verifiable and hard-to-verify samples.

Methods Verifiable Hard-to-verify

w/o reweighting 60.8 69.4
w reweighting 62.0 73.2

Variance-aware reweighting improves
model’s reasoning ability. We evalu-
ated variance-aware reweighting based
on reward-model score variance, which
emphasizes ambiguous, high-variance
prompts while down-weighting trivial
ones to reduce overfitting. This dynamic
adjustment yields consistent gains, par-
ticularly on hard-to-verify tasks where dense signals are most informative. As shown in Table 4,
reweighting improves accuracy on both verifiable and hard-to-verify benchmarks, with larger gains
in the latter (+3.8), confirming that focusing capacity on uncertain samples leads to more robust and
generalizable improvements.

Reward range selection is crucial for balancing stability and performance. We conducted ab-
lation studies to investigate the impact of varying reward ranges on model performance, as shown
in Figure 2(b). For verifiable tasks, smaller reward ranges (e.g., α = 0.05) yielded the best results,
as the rule-based verifier’s precision benefits from a tighter range that minimizes noise and main-
tains stability. Expanding the range beyond this threshold led to diminishing returns and increased

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

noise. In contrast, for mixed tasks, where many samples fail the rule-based verifier, the learned
reward model plays a larger role. Here, larger reward ranges (e.g., α = 0.1 or α = 0.2) provided
richer signals, allowing the model to learn more effectively from harder tasks. However, expanding
the range beyond a certain point caused a slight performance drop due to overfitting or excessive
noise. Overall, careful tuning of the reward range, particularly for the negative rewards, is crucial to
balancing stability and performance, depending on the task type.

5 RELATED WORK

Reinforcement learning from verifiable rewards. Reinforcement learning from verifiable re-
wards (RLVR) leverages deterministic correctness checks—such as passing unit tests or matching
reference answers—to enhance model learning (Shao et al., 2024). Early program synthesis work
demonstrated that agent-generated trajectories validated against ground truth outperform supervised
approaches (Bunel et al., 2018; Chen et al., 2021). In the context of LLMs, rule-based verifica-
tion plays a crucial role in filtering, providing training signals, and supporting benchmark evalua-
tions (Xiong et al., 2025; Yu et al., 2025; Shao et al., 2024). Recent extensions include: outcome-
driven RL (GRPO) for grounding and citation fidelity in QA tasks (Sim et al., 2025); rubric-anchored
RL, which introduces structured rubrics for open-ended response evaluation (Huang et al., 2025b);
verifier-free RL strategies like VeriFree, which bypass explicit checking while achieving perfor-
mance on par with verifier-based methods (Zhou et al., 2025); and cross-domain RLVR, which em-
ploys LLM-derived scoring for domains lacking clear reference answers (Su et al., 2025). Despite
these advancements, rule-based methods still struggle with semantically correct but textually diver-
gent outputs, motivating the use of model-based verifiers (Chen et al., 2025a; Ma et al., 2025; Huang
et al., 2025a; Xu et al., 2025). However, the coverage of LLM-based verifiers remains limited for
the generalization (Li et al., 2025), and the rewards they provide are still sparse, often consisting of
binary labels. In contrast to previous work, we propose a hybrid approach that combines rule-based
verification with continuous, dense reward signals from learned models, allowing us to maintain the
stability of verifiers while addressing their sparsity. By anchoring dense signals to symbolic correct-
ness and introducing a variance-aware weighting mechanism, our method enables more informative,
stable, and sample-efficient learning on both verifiable and hard-to-verify tasks.

Reasoning on hard-to-verify tasks. As the reasoning capabilities of large language models
(LLMs) have reached new heights, increasingly challenging reasoning benchmarks have been pro-
posed (Phan et al., 2025; Zhang et al., 2025a). These problems often involve complex outputs, such
as natural language representations and intricate mathematical or physical formulas. In such cases,
rule-based verification methods, while effective for well-defined problems, struggle to capture the
nuances of these tasks. Recent work has focused on the use of LLMs as judges, where LLMs assess
the quality of generated responses (Chen et al., 2025a; Ma et al., 2025; Huang et al., 2025a; Xu et al.,
2025; Li et al., 2025), enabling more nuanced evaluations. However, despite its conceptual simplic-
ity, LLM-as-judge may not always produce reliable assessments for domain-specific or long-form
data. Some recent work proposes going beyond binary labels from verifiers for hard-to-verify tasks.
For example, Gurung & Lapata (2025) applies reasoning traces in Next-Chapter Prediction (NCP)
for long-form story generation via likelihood estimation, while Tang et al. (2025) uses Jensen’s ev-
idence lower bound to treat chain-of-thought reasoning steps as latent variables in the generative
process. They directly get rid of the verifier component. In contrast, our work retains the use of
verifiable rewards, but enhances supervision through the introduction of a reward model.

6 CONCLUSION

We introduced HERO, which anchors reward-model signals to verifier-defined correctness via strati-
fied normalization and emphasizes informative prompts with variance-aware weighting. This hybrid
design preserves the stability of verifiers while supplying dense, trajectory-sensitive feedback, mit-
igating gradient sparsity and RM-only drift. Empirically, HERO consistently outperforms RM-only
and verifier-only baselines across verifiable, hard-to-verify, and mixed regimes and across back-
bones. Future work includes stronger difficulty estimators, process-level rewards, and extension
beyond math reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In ICLR, 2018.

Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi Li,
Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evalua-
tions. arXiv preprint arXiv:2504.10481, 2025a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025b.

Run-Ze Fan, Zengzhi Wang, and Pengfei Liu. Megascience: Pushing the frontiers of post-training
datasets for science reasoning. arXiv preprint arXiv:2507.16812, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Alexander Gurung and Mirella Lapata. Learning to reason for long-form story generation. arXiv
preprint arXiv:2503.22828, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yuzhen Huang, Weihao Zeng, Xingshan Zeng, Qi Zhu, and Junxian He. Pitfalls of rule-and model-
based verifiers–a case study on mathematical reasoning. arXiv preprint arXiv:2505.22203, 2025a.

Zenan Huang, Yihong Zhuang, Guoshan Lu, Zeyu Qin, Haokai Xu, Tianyu Zhao, Ru Peng, Xi-
aomeng Hu, Yanmei Gu, Yuanyuan Wang, Zhengkai Yang, Jianguo Li, and Junbo Zhao. Rein-
forcement learning with rubric anchors. arXiv preprint, 2025b. arXiv:2508.12790.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Xuzhao Li, Xuchen Li, Shiyu Hu, Yongzhen Guo, and Wentao Zhang. Verifybench: A systematic
benchmark for evaluating reasoning verifiers across domains. arXiv preprint arXiv:2507.09884,
2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,
Fuxiang Zhang, Jiacheng Xu, et al. Skywork-reward-v2: Scaling preference data curation via
human-ai synergy. arXiv preprint arXiv:2507.01352, 2025.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Ad-
vancing frontier math reasoning with post-training and reward modeling. arXiv preprint
arXiv:2412.15084, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025. Notion Blog.

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv preprint arXiv:2502.06781, 2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art math-
ematical reasoning models with openmathreasoning dataset. arXiv preprint arXiv:2504.16891,
2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Shang Hong Sim, Tej Deep Pala, Vernon Toh, Hai Leong Chieu, Amir Zadeh, Chuan Li, Navonil
Majumder, and Soujanya Poria. Lessons from training grounded llms with verifiable rewards.
arXiv preprint, 2025. arXiv:2506.15522.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong
Yu. Expanding rl with verifiable rewards across diverse domains. arXiv preprint, 2025.
arXiv:2503.23829.

Yunhao Tang, Sid Wang, Lovish Madaan, and Rémi Munos. Beyond verifiable rewards: Scaling re-
inforcement learning for language models to unverifiable data. arXiv preprint arXiv:2503.19618,
2025.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
to reinforce. arXiv preprint arXiv:2504.11343, 2025.

Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
Lin, and Radha Poovendran. Tinyv: Reducing false negatives in verification improves rl for llm
reasoning. arXiv preprint arXiv:2505.14625, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.

Jie Zhang, Cezara Petrui, Kristina Nikolić, and Florian Tramèr. Realmath: A continuous benchmark
for evaluating language models on research-level mathematics. arXiv preprint arXiv:2505.12575,
2025a.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025b.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025c.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang Wang,
Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint, 2025.
arXiv:2505.21493.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A Experiments 13

A.1 Experimental setup . 13

A.2 Data preparation . 15

A.3 More experiments . 17

B Qualitative analysis 18

B.1 Reward model qualification ability . 18

B.2 Qualitative analysis of rule-based verifiers . 19

C Limitations and Future Work 19

D The Use of Large Language Models(LLM) 20

A EXPERIMENTS

A.1 EXPERIMENTAL SETUP

Category Hyperparameter Value

Data

Train file OPENMATHREASONING

Max prompt length 1024
Max response length 8192
Filter overlong prompts True

Actor Model

Base model 1 Qwen3-4B-Base

LR 1× 10−6

KL loss coefficient β 0
Entropy loss 0
Use dynamic batch size True

Rollout

Rollout engine vllm
GPU mem utilization 0.6
Train rollout n 8
Temperature 1.0

Reward Rule Based Math Verify

Reward Model Based AceMath-RM-7B

Trainer

Mini Batch size 128
Full Batch size 512 (4 step off-policy)
Critic Warmup 0
GPUs/node 4
Nodes 8
Total epochs 20
Clip Ratio (0.2, 0.28)

Table 5: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al.,
2025) in the verl (Sheng et al., 2025) framework for the Qwen-4B-Base.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Category Hyperparameter Value

Data

Train file OPENMATHREASONING

Max prompt length 1024
Max response length 4096
Filter overlong prompts True

Actor Model

Base model 1 OctoThinker-8B

LR 1× 10−6

KL loss coefficient β 0.001
Entropy loss 0
Use dynamic batch size True

Rollout

Rollout engine vllm
GPU mem utilization 0.6
Train rollout n 16
Temperature 1.0

Reward Rule Based Math Verify

Reward Model Based AceMath-RM-7B

Trainer

Mini Batch size 128
Full Batch size 512 (4 step off-policy)
Critic Warmup 0
GPUs/node 4
Nodes 8
Total epochs 20
Clip Ratio (0.2, 0.28)

Table 6: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al.,
2025) in the verl (Sheng et al., 2025) framework for the OctoThinker-8B.

HERO hyper-parameters. For hybrid reward training for both Qwen-4B-Base and OctoThinker-8B-
Base, we set the range parameters α and β depending on the task type. For verifiable tasks, we adopt
a tighter setting α = β = 0.05 to exploit the high precision of rule-based verifiers while minimizing
noise. For mixed and hard-to-verify tasks, where the reward model contributes more substantially
to supervision, we relax the range to α = β = 0.1 to provide richer feedback. For variance-
aware reweighting, we fix the weighting bounds as wmin = 0.4 and wmax = 3.0, with a steepness
parameter k = 6 in the logistic weighting function. These values ensure that trivial prompts are
down-weighted, while highly uncertain prompts—where reward-model scores vary widely—receive
stronger emphasis without destabilizing training.

Training hyper-parameters. ables 5 and 6 provide an overview of the hyperparameter config-
urations used in our GRPO training runs with Qwen3-4B-Base and OctoThinker-8B. The tables
cover settings across data preparation, actor model optimization, rollout generation, reward specifi-
cation, and trainer configuration. They highlight the consistent use of OPENMATHREASONING as
the training corpus, the integration of both rule-based and reward-model signals, and the adoption
of scalable rollout and training strategies within the verl framework. Together, these summaries
document the experimental setup and ensure reproducibility across different backbone models. In
addition, we employ the HuggingFace math verify library to provide standardized rule-based ver-
ification of responses against ground-truth answers, which guarantees consistency in supervision
across all experiments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 DATA PREPARATION

A.2.1 SUPERVISED FINE-TUNING DATASET PREPARATION

We found that initiating RL training directly from the base model often resulted in instability, par-
ticularly in the absence of a cold start. For instance, the qwen3-4b-base model frequently produced
mixed-language outputs and generated irrelevant content during the early stages of training. Sim-
ilarly, the octothinker base model demonstrated multi-turn behavior, leading to highly variable re-
sponse lengths. To mitigate these issues and enhance the stability of RL training, we first conducted
two epochs of cold-start supervised fine-tuning (SFT) before beginning RL. To avoid unintentional
distillation from more capable models, we used the base model itself to generate responses. These
outputs were then filtered, retaining only samples that satisfied the following criteria: the response
contained the correct final answer, was entirely in English, and did not exhibit any unstop issues.
For cold start training, we ultimately used only 2,000 SFT samples.

A.2.2 TRAINING DATA FILTER FROM OPENMATHREASONING

In this paper, we focus on reasoning questions that have extractable answers. To this end, we exclu-
sively utilize data from the OpenMathReasoning dataset, selecting only those examples where the
problem type is set to has answer extracted. From the CoT split, we extracted 40k examples. For
each example, we generated solutions and extracted the predicted answers, which were then verified
using math verifier (verl). We randomly sampled 2k examples that passed the verifier to serve as
verifiable training data, and another 2k examples that failed verification as hard-to-verify training
samples. These two sets were combined to create a mixed training dataset for reinforcement learning
(RL) training. We use math verifier (verl) to filter all the samples

A.2.3 HARD-TO-VERIFY EVALUATION BENCHMARK FROM TEXTBOOKREASONING

GPT-4o filter prompt for TextBookReasoning.

"I am looking for math questions that are suitable for evaluating a math model. Please
help me select questions that meet the following criteria:

1. The question must be clear and unambiguous.

2. The question must have a specific, factual, and answerable solution (not open-ended or
subjective).

3. The question must NOT require a proof or explanation of reasoning.

4. The question must NOT be a statement; it should be a direct question.

For each question I provide, please respond with:
- \"Conclusion: Suitable\" in the end if the question meets all the criteria above.

- \"Conclusion: Not Suitable\"

if the question does not meet the criteria, and briefly explain why."

Figure 3: GPT-4o filter prompt for TextBookReasoning.

To construct a more challenging and reliable benchmark for hard-to-verify tasks, we employ the
TextBookReasoning benchmark. The following criteria were used to filter and refine the dataset for
the evaluation:

1. Pass-through Math Verification Filter
The initial step in filtering was to ensure that the answers in the dataset did not pass the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt Template for hard-to-verify tasks evaluation via GPT-4o.

User: ### Question: {question}

Ground Truth Answer: {ground_truth}

Student Answer: {student_answer}

For the above question, please verify if the student's answer is equivalent to the ground
truth answer.

Do not solve the question by yourself; just check if the student's answer is equivalent to
the ground truth answer.

If the student's answer is correct, output "Final Decision: Yes". If the student's answer
is incorrect, output "Final Decision: No".

Assistant:

Figure 4: Prompt Template for hard-to-verify tasks evaluation via GPT-4o.

math verify check, ensuring that the questions and answers involved a certain level of
complexity or ambiguity that would make them challenging for standard verifiers.

2. Llama 3.3 70B Instruct Model for Natural Reasoning
The dataset was further refined by using the Llama 3.3 70b instruct model to answer
natural reasoning prompts. Only the prompts for which Llama could not provide an answer
were kept for further evaluation. This step ensured that the dataset included questions that
required more advanced reasoning abilities, beyond the capabilities of standard models.

3. GPT-4 as the Final Filter
Finally, GPT-4 was used to filter out questions that still met the criteria of being complex
and hard-to-verify. GPT-4’s ability to handle nuanced reasoning ensured that only the most
challenging prompts remained. The prompt is shown as Figure 3

This process ultimately resulted in a refined set of approximately 750 prompts suitable for hard-to-
verify task evaluation.

Prompt Template for Hard-to-Verify Tasks Evaluation The evaluation of student answers to
these prompts is based on the following template, which uses GPT-4 to compare the student’s answer
against the ground truth:

Math Question Selection Criteria The following prompt was used to select math questions suit-
able for evaluating a math model. The criteria for question selection are outlined below:

A.2.4 HARD-TO-VERIFY PROMPT

We set the hard-to-verify evaluation prompt as shown in Figure 4. This template is designed to
assess whether a student’s response matches the reference answer without re-solving the question.
By explicitly instructing GPT-4o to perform equivalence checking rather than problem solving, the
protocol minimizes leakage of additional reasoning and focuses purely on correctness judgment.
The structured format, including the question, ground truth, and student answer, ensures consistency
across evaluations and reduces prompt sensitivity, making it suitable for benchmarking performance
on hard-to-verify tasks.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 MORE EXPERIMENTS

Table 7: α represents the weight of the rule-based re-
ward.

Methods Verifiable Hard-to-verify

Reward combine (α=0.1) 57.6 60.2
Reward combine (α=0.5) 58.7 61.4
Reward combine (α=0.9) 55.9 60.4

HERO (Ours) 62.0 73.2

Naively combining rule-based rewards
and reward signals from reward model-
ing does not perform well. A direct in-
tegration of rule-based verification and re-
ward signals from reward modeling, with-
out proper structural alignment, often dis-
rupts the stability of training. As shown in
Table 7, when the weight of the rule-based
reward is varied (α = 0.1, 0.5, and 0.9),
the combined reward performance remains
suboptimal, with scores ranging from 55.9
to 58.7 for verifiable tasks and 60.2 to 61.4
for hard-to-verify tasks. Specifically, when the continuous signals from the reward model are naively
combined with binary correctness checks, the resulting reward can become noisy or misaligned with
the intended notion of correctness. Without explicitly constraining the continuous scores within the
rigid framework of the verifier’s correctness criteria, reward-model outputs can be distorted by im-
perfections in the model, diminishing both interpretability and precision in the feedback. Moreover,
the lack of a safeguard to differentiate true positives from noisy results can lead the model to exploit
unintended patterns, which may not align with human expectations. As a result, an unrefined fusion
of these two reward signals can dilute the benefits of both approaches, destabilizing the learning
process.

0 25 50 75 100 125 150 175 200
Training Steps

0

5

10

15

20

25

30

35

40

R
ew

ar
d

M
ea

n

(a) Reward Mean

0 50 100 150 200 250 300 350
Training Steps

0.0

0.2

0.4

0.6

0.8

M
AT

H
50

0
A

cc
ur

ac
y

(b) MATH500 Accuracy
OpenMath Mix Verifiable OpenMath Non-Verifiable DAPO OpenMath Verifiable

Figure 5: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b)
AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

Reward models hack faster on hard-to-verify samples. Since the reward model (RM) is trained
on outcome-based verifiable samples (Liu et al., 2024), it is important to examine its behavior across
datasets with varying levels of verifiability. We evaluate four datasets: DAPO (Yu et al., 2025),
which is easy to verify; OpenMath Verifiable, which passes the math verifier; OpenMath Non-
Verifiable, which is harder to verify; and OpenMath Mix Verifiable, which combines both. As
shown in Figure 5, the RM rapidly increases the reward mean across all datasets, with the sharpest
gains on OpenMath Non-Verifiable and OpenMath Mix Verifiable. For example, on Non-Verifiable
data, the reward mean climbs steeply from below 5 to over 30 within the first 100 training steps, and
peaks above 40 by step 150. However, MATH500 accuracy collapses shortly after, dropping from
around 0.75 at step 50 to below 0.2 by step 100, and effectively to zero by step 150. A similar trend
appears on Mix Verifiable: accuracy initially rises to about 0.8 at step 100 but then crashes to nearly
zero by step 150, despite the reward mean continuing to rise steadily past 35. In contrast, OpenMath
Verifiable shows slower but steadier progress: rewards grow more gradually, and accuracy improves
to about 0.8 by step 120 before stabilizing without collapse. DAPO also exhibits stable optimization,
with accuracy consistently around 0.75–0.78 as rewards increase moderately. These results highlight
a clear mismatch: rapid reward gains on hard-to-verify tasks are not evidence of genuine reasoning
improvement, but rather reward hacking that leads to catastrophic accuracy collapse. This illustrates

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b)
AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

s

the brittleness of relying solely on dense reward models and motivates hybrid reward frameworks
that combine verifier-anchored reliability with the nuance of dense signals.

Table 8: Impact of reward model size: a larger RM
(72B) provides no remarkable gain over the smaller
RM (7B).

Reward model Verifiable Hard-to-verify

AceMath-RM-7B 62.0 73.2
AceMath-RM-72B 62.8 71.4

The proposed method does not rely on
large reward models. A natural ques-
tion is whether stronger supervision re-
quires scaling up the reward model it-
self. To test this, we compare HERO with
AceMath-RM-7B against a much larger
variant, AceMath-RM-72B. As shown in
Table 8, the larger reward model does not
provide meaningful gains: while it slightly
improves performance on verifiable tasks (62.8 vs. 62.0), it underperforms on hard-to-verify tasks
(71.4 vs. 73.2). This result suggests that the benefits of our framework stem primarily from hybrid
design—stratified normalization and variance-aware weighting—rather than from simply scaling the
reward model. In practice, this means HERO can achieve strong results with compact reward models,
offering better efficiency and deployability without sacrificing accuracy.

B QUALITATIVE ANALYSIS

B.1 REWARD MODEL QUALIFICATION ABILITY

To better understand the reliability of reward-model supervision, we analyze its ability to approxi-
mate the verifier signal as a binary classification task. We random take all the rollout from one step
(the 250 for the verifiable samples training) during the training. Specifically, we treat the reward
model’s raw scores as logits and the verifier’s outputs as ground-truth binary labels, then compute
AUROC statistics to measure discriminative power.

Figure 6 shows four complementary views. The histogram (top-left) reveals a strong skew toward
high AUROC values, with a mean of 0.79 and median of 0.92, indicating that the reward model
often ranks correct responses above incorrect ones. The box plot (top-right) highlights robustness
but also exposes several low outliers where the model fails to separate classes. The cumulative dis-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Ground truth Model Prediction math.py math verify.py(verl) Math verify library o3

f(x) = 2x \boxed {f(x) = 2x} ✗ ✓ ✓ ✓

(6, 3), (9, 3), (9, 5), (54, 5) \boxed {(6,3)}, \boxed {(9,3)},

\boxed {(9,5)}, \boxed {(54,5)}

✗ ✓ ✓ ✓

(0, 1, 1), (0,−1,−1), (1, 0, 1),

(−1, 0,−1), (1, 1, 0), (−1,−1, 0),(
1√
3
, 1√

3
, 1√

3

)
,(

− 1√
3
,− 1√

3
,− 1√

3

)
, . . .

Final Answer: \boxed {(1,1,0)},

\boxed {(-1,-1,0)}, \boxed

{(1/\sqrt {3},1/\sqrt {3},1/\sqrt

{3})}, \boxed {(-1/\sqrt

{3},-1/\sqrt {3},-1/\sqrt {3})},

✗ ✗ ✗ ✓

10, 11, 12, 13, 14, −2, −1, 0, 1, 2 Final Answer: \boxed

{-2,-1,0,1,2} and \boxed

{10,11,12,13,14}

✗ ✓ ✗ ✓

(1, 7, 103, 105), (3, 5, 101, 107) Final Answer: Two possible lists

are \boxed {(3,5,101,107)} and

\boxed {(1,7,103,105)}

✗ ✓ ✗ ✓

f(x) = ax + b (where b is an
arbitrary integer, and a is an arbitrary
positive integer with mho(a)=0)

Final Answer: \boxed {f(n)=cn+d},

where c has no prime factors >

10ˆ{100} and d is any integer

✗ ✓ ✗ ✓

Table 9: Examples demonstrating agreement between different math verification tools.

tribution (bottom-left) confirms that roughly 80% of groups achieve AUROC above 0.7. Finally, the
performance categorization (bottom-right) shows that 56.8% of groups reach “excellent” AUROC
(≥ 0.9), while only 13.7% fall into the “random/poor” range (0.4–0.6).

These results suggest that although the reward model is not perfect, it provides reliable ranking
signals in the majority of cases. Importantly, this supports the use of dense reward signals to refine
learning within verifier-defined groups: while the verifier anchors correctness, the reward model
adds discriminative power that helps differentiate among responses of varying quality. The presence
of failure cases further justifies our hybrid framework, which uses stratified normalization to bound
reward-model signals within verifier groups, ensuring stability even when AUROC is low.

B.2 QUALITATIVE ANALYSIS OF RULE-BASED VERIFIERS

Table 9 highlights representative behaviors of rule-based and model-based verifiers. math.py is
overly strict, failing on minor formatting variations such as boxing or punctuation (Rows 1–2), while
math verify.py improves recall through normalization. The Math-Verify library handles simple sur-
face mismatches but struggles with structural differences like disjoint ranges or multiple valid tuples
(Rows 4–5). In contrast, o3 is the most permissive: it credits partially correct sets (Row 3) and para-
metric families with renamed symbols (Row 6), which increases coverage but risks over-crediting.
These cases illustrate the precision–recall trade-off: rule-based verifiers enforce exact symbolic cor-
rectness but miss semantically equivalent or partially correct answers, whereas model judges offer
flexibility at the cost of reliability. This motivates our hybrid design: HERO anchors dense reward
signals to rule-based correctness, ensuring robustness to format variance, while leveraging model-
or RM-derived scores to provide graded feedback on harder cases involving subsets, orderings, or
parametric equivalence.

C LIMITATIONS AND FUTURE WORK

While HERO demonstrates clear advantages over RM-only and verifier-only training, several limi-
tations remain. First, the method depends on the availability and reliability of rule-based verifiers:
when these are brittle or domain-mismatched, the partitioning into correctness groups may be bi-
ased, weakening the benefits of stratified normalization. Second, because the reward model is trained
primarily on outcome-based, verifiable data, it can become miscalibrated on harder, non-verifiable
formats, and although our framework constrains its scores, residual bias or spurious correlations
may still be exploited. Third, HERO introduces sensitivity to hyperparameters such as (α, β) and
the weighting slope k, and increases training overhead due to concurrent verifier and RM calls. Fi-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

nally, evaluation on non-verifiable tasks often relies on LLM-as-judge protocols, which introduce
prompt sensitivity and annotation noise. Future work will focus on improving verifier coverage with
hybrid symbolic–learned approaches, incorporating process-level supervision to capture reasoning
quality beyond final answers, and developing adaptive range and weighting schemes that calibrate
dense signals online. These directions can further strengthen the stability and generality of hybrid
reward frameworks for reasoning.

D THE USE OF LARGE LANGUAGE MODELS(LLM)

In our project, we use LLM for writing polishing.

20

	Introduction
	Preliminaries
	Methodology
	Motivation: Delving into Rule-based vs. RM-based Verifiers
	HERO: Hybrid Ensemble Reward Optimization

	Experiments
	Experimental setup
	Main results
	Additional ablations

	Related Work
	Conclusion
	Experiments
	Experimental setup
	Data preparation
	More experiments

	Qualitative analysis
	Reward model qualification ability
	Qualitative analysis of rule-based verifiers

	Limitations and Future Work
	The Use of Large Language Models(LLM)

