
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID REINFORCEMENT:
WHEN REWARD IS SPARSE, BETTER TO BE DENSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training for reasoning in large language models has increasingly relied on
verifiable rewards: deterministic checkers that provide 0–1 correctness signals.
While reliable, such binary feedback is brittle—many tasks admit partially correct
or alternative answers that verifiers under-credit, and the resulting all-or-nothing
supervision limits learning. Reward models offer richer, continuous feedback,
which can serve as a complementary supervisory signal to verifiers. We introduce
HERO (Hybrid Ensemble Reward Optimization), a reinforcement learning frame-
work that integrates sparse verifier signals with dense reward model scores in
a structured way. HERO employs stratified normalization to bound reward-model
scores within verifier-defined groups, preserving correctness while refining qual-
ity distinctions, and variance-aware weighting to emphasize challenging prompts
where dense signals matter most. Across diverse mathematical reasoning bench-
marks, HERO consistently outperforms reward model-only and verifier-only base-
lines, with strong gains on both verifiable and hard-to-verify tasks. Our results
show that hybrid reward design retains the stability of verifiers while leveraging
the nuance of reward models to advance reasoning.

False
Positive

False
Negative

False
Negative

Figure 1: Comparison of reward signals from different supervision sources. Reward Models (a)
provide smooth but sometimes misaligned scores, occasionally assigning high values to incorrect
responses and low values to correct ones. Rule-based rewards (b) enforce a strict binary (0–1)
boundary: they rarely give false positives, but due to their stringent criteria, many predictions that
are actually correct receive a reward of 0 simply because they fail to pass the rule. HERO (c) uses
the rule as a gate, which significantly reduces false positives. At the same time, by integrating the
reward model signal, HERO assigns higher reward scores to those cases that would have been false
negatives under (b), resulting in more accurate and informative supervision.

1 INTRODUCTION

Reasoning lies at the heart of human intelligence, and increasingly, at the frontier of large language
model (LLM) capabilities (Jaech et al., 2024; Guo et al., 2025; Zhang et al., 2025b). In tasks such as
mathematical problems or generating proofs, reliable reasoning requires models to generate logically
consistent multi-step solutions that culminate in a verifiably correct outcome. Verifiable rewards im-
plement this idea by running a deterministic checker—such as an exact numeric or string match,
a unit test, or a symbolic equivalence check—on a candidate solution y for input x. The checker
either accepts or rejects the output, producing a sparse but unambiguous signal r(x, y) ∈ {0, 1},

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

which reinforcement learning can propagate through the entire trajectory. Building on this prin-
ciple, reinforcement learning from verifiable rewards (RLVR) (Chen et al., 2025b) uses these bi-
nary signals to train policies toward solutions that pass the checker. Recent systems—including
DeepSeek-R1—have advanced this paradigm at scale, leveraging verifier-grounded feedback to im-
prove reasoning (Guo et al., 2025; Zeng et al., 2025; Luo et al., 2025; Yang et al., 2024a).

However, strict 0–1 verification is coarse and brittle: many reasoning tasks allow for partially correct
solutions, equivalent answers in alternative formats, or open-ended outputs that resist exact match-
ing. In such cases, symbolic verifiers may under-credit valid solutions (false negatives) or fail to
provide any useful signal (Ma et al., 2025; Huang et al., 2025a). Even when applicable, binary re-
wards induce sparsity: if all rollouts for a prompt receive the same label (all 0s or 1s), group-relative
methods such as GRPO (Shao et al., 2024) yield zero relative advantage and thus no useful policy
gradient, stalling policy improvement. This brittleness not only reduces sample efficiency but also
skews optimization toward easier, strictly verifiable cases–leaving the hardest and most informa-
tive prompts underutilized. Our motivating analysis in Section 3.1 further highlights this limitation:
on samples where answers are hard to verify, rule-based verifiers frequently fail with correctness.
Reward models, in contrast, offer dense supervision by scoring responses on a continuum (Yang
et al., 2024b; Liu et al., 2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025). Rather than
collapsing all incorrect answers into the same category, they capture nuanced quality differences
such as partial correctness, clarity of reasoning steps, or proximity to the ground truth. This graded
feedback enriches training signals, helping policies learn from partially correct reasoning paths and
better allocate credit across diverse rollouts. However, naively combining these dense reward CT
model signals with a binary verifier output often destabilizes training. Specifically, when the reward
model’s continuous signals are naively blended with binary correctness checks, the resulting reward
can become noisy or misaligned with the expected semantics of correctness. Figure 1 illustrates
this tradeoff: while reward models offer smooth but misaligned signals, rule-based verifiers enforce
correctness but lack nuance. Thus, it remains an open question how to design an effective hybrid
framework that preserves the reliability of verifiers while harnessing the richness of reward models.

To address this challenge, we propose HERO (Hybrid Ensemble Reward Optimization), a reinforce-
ment learning framework that integrates verifier-anchored and dense reward-model signals to pro-
vide reliable yet informative supervision. HERO tackles the instability of naive blending through two
key innovations. First, it introduces a stratified normalization scheme that bounds reward-model
scores within verifier-defined correctness groups. This ensures that dense feedback refines learning
only within the set of responses deemed correct by the verifier, preserving correctness guarantees
while exploiting nuanced distinctions. Second, HERO employs a variance-aware weighting mecha-
nism that adaptively adjusts the contribution of different prompts during training. Easy prompts,
where most responses are uniformly correct or incorrect, contribute little additional learning signal
and are down-weighted. In contrast, harder prompts—where candidate responses vary widely and
reward-model scores provide valuable discrimination—are emphasized. These components allow
HERO to overcome the brittleness of purely binary rewards and the noisiness of dense signals.

We evaluate HERO on diverse math reasoning benchmarks that training with three regimes: training
with easy-to-verify samples where exact final-answer checking is possible, hard-to-verify samples
with partially correct or format-sensitive solutions, and mixed settings combining both. Across dif-
ferent LLM backbones, HERO consistently outperforms both RM-only and verifier-only baselines,
in all three regimes. Notably, on hard-to-verify tasks evaluation based on Qwen-4B-Base, HERO
achieves 66.3, which surpasses RM-only training (54.6) by +11.7 points and verifier-only training
(57.1) by +9.2 points. Ablations further confirm that anchoring dense signals to verifiable correct-
ness and adaptively reweighting difficult prompts are both critical for stability and efficiency.

2 PRELIMINARIES

Dense reward via reward modeling. Reward modeling learns a scalar function r(x, y) that eval-
uates the quality of a response y given a prompt x. Based on the Bradley–Terry model (Bradley &
Terry, 1952), the reward function is typically trained on pairwise preference data by minimizing

LR = −E(x,yc,yr)∈D[log σ(r(x, yc)− r(x, yr))], (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where σ denotes the sigmoid function, yc is the response that is considered preferred in a compar-
ison, and yr is the response considered less preferred. Once learned, r can guide reinforcement
learning to align the model with human preferences.

Sparse reward via verifier. Reinforcement learning with verifiable rewards (RLVR) leverages a
deterministic function r(x, y) to assess correctness, assigning a sparse reward (e.g., 1 for correct, 0
for incorrect). All tokens in a response share the same reward, providing unambiguous supervision
for tasks with objective ground truth. In mathematical problem solving, the reward function is based
on a verifier that checks whether the model’s solution matches the ground-truth reference under
equivalence transformations. Specifically, a math verifier typically parses the predicted solution into
a structured form (e.g., a symbolic expression, final numeric answer, or proof step), simplifies it,
and compares it against the reference solution using symbolic algebra tools or logical equivalence
checks. The reward function is based on the verifier:

ψ
(
x, yi, yref

)
=

{
1, if yi is equivalent to yref given x,
0, otherwise.

(2)

Group Relative Policy Optimization. GRPO (Shao et al., 2024) extends RLVR by optimizing
over multiple responses per prompt rather than treating them independently. Instead of relying on
a single trajectory, GRPO compares groups of candidate solutions and assigns relative advantages,
which stabilizes learning and improves exploration. It also incorporates clipping (as in PPO) to
prevent unstable updates and adds a KL penalty to keep the policy close to a reference model. This
group-based formulation helps alleviate the gradient sparsity problem of pure verifier rewards and
makes optimization more sample-efficient than standard PPO (Yu et al., 2025).

3 METHODOLOGY

3.1 MOTIVATION: DELVING INTO RULE-BASED VS. RM-BASED VERIFIERS

Building on the preliminaries, we now examine how the two supervision paradigms – rule-based
verifiers that provide sparse but precise correctness signals, and reward models that offer dense but
potentially noisy preferences – behave on tasks where correctness is difficult to verify. Since the
reliability of training hinges on the quality of supervision, understanding their respective strengths
and weaknesses is crucial. To this end, we use the HardVerify Math benchmark (Xu et al., 2025),
which focuses on challenging verification scenarios. This benchmark consists of 250 hard-to-verify
math problems, including 115 manually selected Olympiad questions (He et al., 2024) and 10 MATH
test set questions (Hendrycks et al., 2021) that are prone to false negatives due to complex answer
formats, as well as 125 Big-Math questions (Albalak et al., 2025) with a Llama-3.1-8B (Dubey et al.,
2024) pass rate below 0.05 and identified as difficult by human experts. To ensure a diverse range
of response qualities, for each problem we generate answers using three different models: Llama-
3.1-8B, Llama-3.3-70B, and Qwen3-8B. This results in a total of 750 responses, which we use to
conduct the verifier analysis presented in Table 1.

Limitations of rule-based verifiers. To better understand the trade-offs among different verifi-
cation approaches, we compare several representative verifiers. For rule-based verifiers, we con-
sider math reward.py from the verl library, the math verify module from verl, and the parse and
verify functions from the Math-Verify library. In addition, we include a generative model-based
verifier (TIGER-Lab/general-verifier (Ma et al., 2025)), which is specifically trained for chain-of-
thought answer verification. This model has demonstrated strong performance and serves as an
effective alternative to traditional rule-based methods.

Results in Table 1 highlight clear precision–recall trade-offs. Function-based rules offer high pre-
cision but low recall. For example, the math reward.py checker is highly conservative: it almost
never produces false positives (FPR=0.3%) but fails to recognize many correct answers, resulting
in very low recall (10.1%). A more advanced variant, math verify.py (in verl), achieves the best
balance—near-zero false positives with substantially higher recall. The math verify library extends
coverage with normalization heuristics (e.g., handling formatting differences or units) but remains
brittle for mismatched orderings such as lists vs. sets, yielding only 38.6% recall.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison of Rule-based Verifier, LLM-as-Verifier, and Reward Models.

Type Verifier Recall ↑ Precision ↑ FPR ↓ Acc. ↑

Rule-based

math reward (verl) 10.1 97.5 0.3 53.6
math verify (verl) 68.4 100.0 0.0 83.7
math verify (library) 38.6 96.1 1.6 67.6

Generative Model-based TIGER-Lab/general-verifier 49.5 89.3 6.3 70.9

RM-based

AceMath-7B-RM w threshold 1 91.7 67.7 46.4 73.2
AceMath-7B-RM w threshold 3 84.2 72.7 33.5 75.6
AceMath-7B-RM w threshold 5 73.8 76.6 23.9 74.9
AceMath-7B-RM w threshold 7 62.4 78.5 18.1 71.9

Reward modeling can generalize to hard-to-verify samples. We further examine how reward
models behave on hard-to-verify samples. Since correctness is directly checkable for verifiable data,
most reward models for mathematical reasoning are trained on these verifiable samples (Yang et al.,
2024b; Liu et al., 2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025). This raises the
question: to what extent can such models generalize to tasks where correctness cannot be directly
verified?

Here, we investigate this issue by analyzing the performance of a math-focused reward model
(AceMath-7B-RM) on the same hard-to-verify tasks. We assess the model using different score
thresholds given the scores generated. As shown in Table 1, setting the threshold to 1 (i.e., consid-
ering predictions with RM ≥ 1 as correct) yields a high recall of 91.7% and broad overall coverage,
substantially surpassing rule-based verifiers. However, this comes at the cost of lower precision.
Increasing the threshold enhances precision but leads to a decrease in recall.

The need for hybrid reward design. Our analysis underscores a key tension: neither rule-based
verification nor reward models alone is sufficient. Purely binary verifiable rewards can be brittle and
overly conservative, especially on hard-to-verify samples. This not only reduces sample efficiency
but also skews optimization toward easier, strictly verifiable cases—leaving the hardest and most
informative prompts underutilized. Reward models, in contrast, offer dense supervision by scoring
responses on a continuum and can capture nuanced quality differences such as partial correctness
or proximity to the ground truth. These complementary strengths and weaknesses motivate a hybrid
approach: anchoring supervision in symbolic verifiers to preserve correctness, while enriching it
with the dense signal of reward models to drive effective policy learning. In the next subsection, we
describe our proposed approach in detail.

3.2 HERO: HYBRID ENSEMBLE REWARD OPTIMIZATION

Motivated by these findings, our design principle is that rule-based rewards should continue to guide
the overall reasoning dynamics, while reward models serve as supplementary signals to enrich train-
ing. We therefore propose a hybrid reward framework that (i) augments binary correctness with
dense reward-model scores and (ii) scales supervision according to prompt difficulty. We describe
both components in detail below.

Dense signals anchored to verifiable correctness. As argued in the motivation, binary verifiers
alone provide stable but overly coarse supervision, while reward models offer nuanced distinctions
that are easily corrupted if left unconstrained. However, we find that a naive combination of rule-
based verification and reward modeling signals tends to undermine the stability of training and
render the hybrid approach ineffective (see Appendix A.3). Specifically, when the reward model’s
continuous signals are naively blended with binary correctness checks, the resulting reward can
become misaligned with the expected semantics of correctness.

To address this, we propose stratified normalization, which rescales the continuous scores of the re-
ward model (RM) to align with the range used by traditional binary rule-based methods. Specifically,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

let {r(i)rule}Ni=1 ⊆ {0, 1} denote the rule-based verifier outputs and {r(i)RM}Ni=1 ⊆ R the corresponding
reward-model scores for a group of N rollouts. We first partition the responses according to rrule,
and then apply min–max normalization within each group to rRM resulting in::

r̂(x, y) =


−α+ 2α · rRM −min rRM

max rRM −min rRM + ϵ
, rrule = 0,

(1− β) + 2β · rRM −min rRM

max rRM −min rRM + ϵ
, rrule = 1.

(3)

Here α, β ∈ (0, 1] control the allowable ranges for incorrect and correct groups, with ϵ > 0 prevent-
ing division by zero. In practice, we set ϵ to relatively small value so that the training dynamics are
primarily led by rule-based rewards, with the reward model’s contribution serving as a supplemen-
tary signal. Figure 1 (c) illustrates the effect of our hybrid reward design compared to rRM (a) and
rrule (b) alone. This design notably differs from traditional pure verifiable rewards, especially for
hard-to-verify samples and for groups where all responses are either positive or negative. In such
cases, pure rule-based methods do not distinguish between different rollouts, providing no learn-
ing signal. As illustrated in Figure 1(c), HERO introduces reward differences within regions where
the rule-based rewards are all 0 or all 1, thereby enabling meaningful gradient flow even when the
rule-based verifier assigns the same outcome to all rollouts.

The stratified normalization in our hybrid approach is designed to provide the best of both worlds:
verifiers ensure the preservation of correctness semantics by constraining the score ranges, while
reward models enhance the supervision by introducing gradations within each group. Incorrect
responses are clearly distinguished from correct ones, and correct responses are prioritized based on
their relative quality. In this manner, dense signals are anchored to symbolic correctness, mitigating
the sparsity observed in pure RLVR.

Variance-aware advantage reweighting. In the motivation, we argued that not all prompts are
equally informative: trivial ones provide little learning signal, while challenging prompts better
reveal differences across candidate solutions. A shortcoming of the original GRPO algorithm is that
it treats all prompts uniformly, ignoring this variability. The consequence is inefficient use of training
capacity—easy prompts dominate optimization even though they provide little additional guidance,
while difficult prompts that expose meaningful distinctions are underutilized. To realign training
effort with informativeness, we introduce a variance-aware weighting scheme. For each prompt, let
σu denote the standard deviation of reward-model scores across candidate responses, with σ̄ as a
running mean. This variance reflects uncertainty: higher values suggest greater disagreement and
thus a richer training signal. We define a bounded monotone weighting function:

wdifficulty(σu) = wmin + (wmax − wmin) ·
1

1 + exp
(
− k(σu − σ̄)

) , (4)

where wmin and wmax set the minimum and maximum weights, and k controls the slope of the
transition. In practice, we treat these as tunable hyperparameters; unless otherwise stated, we use
wmin = 0.5, wmax = 2.0, and k = 5, ensuring that difficult prompts are up-weighted by at most
2×, while trivial prompts retain at least half weight. The final shaped reward is

rfinal(x, y) = wdifficulty(σu) · r̂(x, y). (5)

This design operationalizes our intuition: ambiguous, high-variance prompts are emphasized be-
cause they reveal more about model weaknesses and reward-model sensitivity, while trivial, low-
variance prompts are downweighted to avoid wasting capacity. In doing so, the training process not
only remains anchored to verifiable correctness through r̂, but also allocates learning effort to the
most challenging and informative parts of the data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training datasets. A central question is whether reasoning skills acquired through RLVR on ver-
ifiable data can generalize to tasks whose correctness cannot be mechanically checked. To empiri-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

cally examine this, we construct three distinct training datasets based on subsets of the OPENMATH-
REASONING (Moshkov et al., 2025) benchmark: (1). easy-to-verify examples, (2). hard-to-verify
examples, and (3). a mixture of the two. For easy-to-verify training data, we sample 2,000 problems
whose final answers can be deterministically validated using a rule-based math verifier (verl). For
the hard-to-verify-only regime, we likewise sample 2,000 problems from OPENMATHREASONING,
where the correct answers have more flexible formats that make rule-based verification challenging
(see Appendix A.2.2 for how we filter as well as some qualitative examples). For the mixed set,
we combine 1,000 easy-to-verify and 1,000 hard-to-verify problems, allowing the policy to benefit
from both robust exact-check supervision and nuanced feedback from unverifiable cases.

Models. To evaluate the generalizability of our method across different backbone models, we
conduct experiments using the following models: we use Qwen3-4B-Base (Yang et al., 2025) and
OctoThinker-8B-Hybrid-Base base (Wang et al., 2025). To stabilize RL training dynamics, we first
perform supervised fine-tuning (SFT) on each base model as a cold start (see Appendix A.2.1 for
details). All RL experiments are initialized from the same SFT checkpoint.

Baselines. As preliminary points of reference, we also report the performance of the base model
and a cold-start SFT model. The main baselines are: (1) Reward model, which uses the AceMath-
RM-7B reward model (Liu et al., 2024); (2) Rule-based verifier, which relies on binary, rule-based
rewards, marking a sample as correct only if the normalized final answer matches the ground
truth via math verify (library) in the VERL repo (Sheng et al., 2025). Our method, HERO,
is a hybrid approach that combines (1) and (2) into a single reward, making them the most ap-
propriate baselines for comparison. We also compare HERO with a generative model-based veri-
fier—TIGER-Lab/general-verifier—and with a large language model (Qwen2.5-7B-Instruct) di-
rectly prompted to act as a verifier, as detailed in the Appendix (see Table 7).

Evaluation. Since our training data contains both easy-to-verify and hard-to-verify samples, we
aim to evaluate whether the model can acquire generalizable reasoning abilities. To this end, we se-
lect six test sets: four in which all answers are easy to verify, and two in which the answers are hard
to verify.(1). Easy-to-verify testsets includes 4 benchmarks: MATH500 (Hendrycks et al., 2021),
AMC (Li et al., 2024), Minerva (Lewkowycz et al., 2022), and Olympiad (He et al., 2024). We
report pass@1 averaged over 8 seeds in Table 2. Following (Yang et al., 2024b), we use temperature
0.6 and top-p 0.95, generate N = 8 candidates per problem, and evaluate the first decoded output
(pass@1). Reported numbers are means over seeds.Correctness is decided by math verifier (normal-
ized numeric/string match with task-specific post-processing).(2). Hard-to-verify testsets: We use
temperature 0.6 and top-p 0.95, generate N = 1 candidate per problem. Since symbolic checkers
cannot reliably provide binary labels for open-ended solutions, we adopt an LLM-as-a-judge pro-
tocol. Specifically, we use GPT-4o to compare model outputs against ground-truth answers. We
evaluate using the HardVerify-Math benchmark (Xu et al., 2025), which consists of 250 samples.
Based on the results in Section 3.1, we find that HardVerify-Math is not a particularly challenging
filter, as using math verify yields relatively good results. Therefore, to further evaluate performance
on hard-to-verify reasoning tasks, we additionally collect the TextBookReasoning dataset (Fan et al.,
2025) (see Appendix A.2.3 for more details).

4.2 MAIN RESULTS

Performance of HERO on the Qwen-based Model Table 2 shows that HERO consistently outper-
forms both the reward-model-only and rule-based verifier baselines across all three training data
settings: (1) easy-to-verify data, (2) hard-to-verify data, and (3) a mixture of the two. For each
training setting, we evaluate on four datasets where the targets are easy-to-verify tasks, as well as
two datasets where the targets are hard-to-verify tasks. When trained on easy-to-verify data and
evaluated on four easy-to-verify test sets, HERO achieves an average score of 62.0, outperforming
both RM-only (56.4) and rule-based training (58.3). We attribute this improvement to our strati-
fied normalization, which allows hybrid training to exploit both positive and negative correctness
groups: while verifier-only training collapses all-correct or all-incorrect batches (yielding zero rel-
ative advantage), HERO preserves meaningful gradients within each group through dense intra-group
rewards. The advantage of our approach becomes even more pronounced when training on hard-
to-verify samples, where rule-based verifiers are brittle and reward models tend to be noisy. Here,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance of HERO trained with Qwen3-4B-Base on both easy-to-verify and hard-
to-verify reasoning tasks. The first block reports results on verifiable tasks (MATH500, AMC,
Minerva, Olympiad; with average), while the second block presents results on hard-to-verify tasks
(HVM, TBR). We compare our approach HERO —which combines two reward signals—with two
baselines corresponding to the two signals: AceMath-7B-RM (a reward model) and math verify
(verl), which uses a 0/1 rule as the reward.

Easy-to-verify tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

Qwen3-4B-Base 67.5 44.1 29.4 32.1 43.3 45.2 40.2 42.7
SFT Cold Start Model 69.1 50.3 39.1 34.3 48.2 50.8 43.3 47.1

Training with easy-to-verify samples
AceMath-7B-RM 80.2 61.6 40.6 43.3 56.4 57.2 52.0 54.6
math verify (verl) 82.3 61.3 44.0 45.5 58.3 61.0 53.1 57.1
HERO (Ours) 85.4 69.4 44.5 48.9 62.0 73.2 59.3 66.3

Training with hard-to-verify samples
AceMath-7B-RM 79.6 58.8 39.9 42.1 55.1 59.2 48.2 53.7
math verify (verl) 76.2 46.6 28.7 38.2 47.4 58.4 50.0 54.2
HERO (Ours) 80.0 63.4 40.7 43.1 56.8 59.0 54.0 56.5

Training with mixed samples
AceMath-7B-RM 79.6 58.8 39.9 42.1 55.1 58.4 49.6 54.0
math verify (verl) 81.3 61.3 38.0 43.9 56.1 62.4 55.3 58.9
HERO (Ours) 81.6 64.4 42.1 47.0 58.8 71.4 56.7 64.1

HERO attains 56.8, surpassing RM-only (55.1) by +1.7 points and rule-based verifiers (47.4) by a sub-
stantial +9.4 points. This improvement is due to anchoring continuous reward-model scores within
verifier correctness groups, which prevents reward drift and ensures stable learning even when binary
labels saturate. By combining the precision of rule-based verifiers with the smooth discrimination
of reward models, HERO is able to leverage partially correct reasoning paths that would otherwise
be discarded by rule-based systems, thereby improving both stability and coverage. When trained
on mixed data, which combines easy-to-verify and hard-to-verify samples, HERO again achieves the
average (58.8), outperforming RM-only (55.1) and rule-based verifier (56.1) on verifiable tasks.

The advantage becomes even clearer on hard-to-verify evaluations (HVM, TBR), where rule-based
verifiers fail to capture partial correctness and reward models are prone to drift. Here, HERO attains
66.3 when trained on easy-to-verify data, outperforming RM-only (54.6) by +11.7 points and rule-
based training (57.1) by +9.2 points. When trained on hard-to-verify samples, it still leads with 56.5
compared to 53.7 (RM-only) and 54.2 (rule-based). Under mixed training, HERO reaches 64.1, sur-
passing both baselines by large margins on hard-to-verify tasks. These results highlight that hybrid
reward design generalizes robustly across both verifiable and hard-to-verify tasks, yielding stable
improvements regardless of whether evaluation relies on symbolic checking or model judgment.
Overall, hybrid reward learning delivers consistent improvements across all settings, demonstrating
that structured reward integration is critical for reasoning tasks that go beyond strict verifiability.
We note that the magnitude of gains in Table 2 naturally varies across training regimes due to differ-
ences in reward quality, rather than instability of HERO. With easy-to-verify training data, the verifier
is accurate and often positive, so HERO can fully exploit its hybrid design and achieve large im-
provements; with hard-to-verify data, the verifier rarely fires and many prompts receive all-0 labels,
so the learning signal is weaker and gains are necessarily smaller. In the mixed regime, easy-to-
verify samples provide a strong verifier anchor while hard-to-verify samples reduce the domain gap
to difficult test sets, which explains why improvements are modest on verifiable tasks but large again
on hard-to-verify evaluations.

Performance of HERO on the OctoThinker-based Model On Qwen3-4B-Base (Table 2), which
already shows strong performance, HERO consistently delivers clear improvements across all evalua-
tion settings. On OctoThinker-8B-Hybrid-Base (Table 3), which starts from a much weaker baseline
of 16.9 on verifiable and 23.6 on hard-to-verify tasks, HERO achieves substantial absolute and relative
gains. When trained on easy-to-verify samples, it reaches 40.1 on verifiable and 32.6 on hard-to-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of HERO trained with OctoThinker-8B-Hybrid-Base on both easy-to-verify
and hard-to-verify reasoning tasks. The first block shows results on four easy-to-verify tasks,
which reported pass@1 averaged over 8 seeds. The second block show results on two hard-to-verify
testsets, which reported GPT4.1 judges results.

Easy-to-verify tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

OctoThinker-8B-Hybrid-Base 32.0 15.3 9.1 11.0 16.9 26.0 21.1 23.6
SFT Cold Start Model 56.0 35.9 19.7 21.6 33.3 27.6 26.4 27.0

Training with easy-to-verify samples
AceMath-7B-RM 62.3 38.4 26.2 25.5 38.1 29.6 27.8 28.7
math verify (verl) 60.1 39.4 26.7 24.1 37.6 31.6 28.9 30.3
HERO (Ours) 63.0 40.6 30.1 26.7 40.1 28.4 36.7 32.6

Training with hard-to-verify samples
AceMath-7B-RM 60.7 33.8 22.4 24.9 35.4 32.0 29.8 30.9
math verify (verl) 60.0 29.7 23.9 24.8 34.6 28.8 26.7 27.8
HERO (Ours) 64.9 41.6 27.9 29.6 41.0 32.4 36.7 34.6

Training with mixed samples
AceMath-7B-RM 60.2 34.4 24.0 23.8 35.6 30.8 29.3 30.1
math verify (verl) 59.3 33.7 24.7 24.0 35.4 27.6 28.7 28.2
HERO (Ours) 65.2 38.1 28.1 29.3 40.2 34.8 31.6 33.2

verify evaluations, surpassing both the reward-model baseline (38.1/28.7) and the rule-based verifier
(37.6/30.3). Training on hard-to-verify samples yields similar improvements, achieving 41.0/34.6
compared to 35.4/30.9 (RM-only) and 34.6/27.8 (verifier-only). Training on mixed training sam-
ples, it maintains the highest averages of 40.2 and 33.2, outperforming all baselines by 4–6 points.
These results show that hybrid reward design generalizes robustly across model scales—preserving
the verifier’s stability for stronger models like Qwen3-4B-Base while bringing large relative gains
to weaker ones such as OctoThinker-8B-Hybrid-Base.

Verifier-only training struggles on hard-to-verify tasks. Symbolic verifiers, while precise, per-
form poorly on open-ended or format-sensitive reasoning. On Qwen3-4B-Base (Table 2), verifier-
only training reaches only 47.4 on hard-to-verify tasks—worse than HERO (56.5), RM-only (53.7),
and even slightly below the SFT baseline (47.1). Similar degradation appears on OctoThinker-8B-
Hybrid-Base (Table 3), where verifier-only supervision lags far behind HERO. The core issue is that
weaker models often produce rollouts that are uniformly labeled 0 or 1, causing group-relative ob-
jectives such as GRPO to yield zero gradients. In contrast, HERO adds dense intra-group variation via
reward-model refinement, preserving gradient flow even when binary labels saturate and allowing
the policy to separate partially correct from entirely incorrect solutions.

4.3 ADDITIONAL ABLATIONS

Dense negative ranges are more important than positive samples. We evaluate the role of dense
negative and positive reward on the setting of training with easy-to-verify samples based on Qwen-
4B-Base. We found dense reward in the negative group play a more criticak role in stabilizing
training and improving learning efficiency than dense reward in the positive group devided by HERO..
While positives signal correctness, negatives provide richer supervision by penalizing diverse rea-
soning errors. Notably, dense negative rewards but maintaining sparse verifier positive rewards
boosts performance on verifiable tasks from 59.4 to 61.4, and even more on hard-to-verify tasks
from 62.2 to 68.4 (see Figure 2). This demonstrates that well-calibrated negative ranges are essen-
tial: they provide broader feedback, enabling the model to detect subtle errors and generalize better
on complex cases.

Reward range selection is crucial for balancing stability and performance. We conducted ab-
lation studies to investigate the impact of varying reward ranges on model performance by training
with easy-to-verify samples based on Qwen-4B-Base, as shown in Figure 2(b). For verifiable tasks,
smaller reward ranges (e.g., α = 0.05) yielded the best results, as the rule-based verifier’s preci-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

None Pos Only Neg Only Pos+Neg
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

59.4 60.3 61.4 62.062.2

65.2

68.4

73.2

(a) Positive vs Negative
Verifiable
Hard-to-verify

0.05 0.1 0.2 0.05 0.1 0.2
50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Verifiable Mixed

62.0
60.3 59.4

73.2

69.8
68.6

56.4
58.8 58.1

68.8
71.4

69.6

(b) Range Ablation

Figure 2: (a) Impact of using positive and negative dense ranges. Dense negative rewards con-
tribute more to stable learning than positive samples. (b) Effect of varying reward ranges under
different training regimes. Smaller ranges perform best on verifiable tasks, while larger ranges
benefit mixed settings by providing denser feedback.

sion benefits from a tighter range that minimizes noise and maintains stability. Expanding the range
beyond this threshold led to diminishing returns and increased noise. In contrast, for mixed tasks,
where many samples fail the rule-based verifier, the learned reward model plays a larger role. Here,
larger reward ranges (e.g., α = 0.1 or α = 0.2) provided richer signals, allowing the model to learn
more effectively from harder tasks. However, expanding the range beyond a certain point caused
a slight performance drop due to overfitting or excessive noise. Overall, careful tuning of the re-
ward range, particularly for the negative rewards, is crucial to balancing stability and performance:
datasets with relatively dense informative rewards and few all-positive/all-negative groups tend to
benefit from smaller ranges, whereas datasets with many all-positive/all-negative groups are better
served by slightly larger ranges that inject more intra-group variation.

Table 4: Variance-aware reweighting improves perfor-
mance on both verifiable and hard-to-verify samples.

Methods Easy-to-verify Hard-to-verify

w/o reweighting 60.8 69.4
w reweighting 62.0 73.2

Variance-aware reweighting in HERO im-
proves the model’s reasoning ability.
We evaluated variance-aware reweight-
ing based on reward-model score vari-
ance, which emphasizes ambiguous, high-
variance prompts while down-weighting
trivial ones to reduce overfitting with the
setting of training with easy-to-verify sam-
ples based on Qwen-4B-Base. This dynamic adjustment yields consistent gains, particularly on
hard-to-verify tasks where dense signals are most informative. As shown in Table 4, reweighting
improves accuracy on both verifiable and hard-to-verify benchmarks, with larger gains in the latter
(+3.8), confirming that focusing capacity on uncertain samples leads to more robust and generaliz-
able improvements.

5 RELATED WORK

Reinforcement learning from verifiable rewards. Reinforcement learning from verifiable re-
wards (RLVR) leverages deterministic correctness checks—such as passing unit tests or matching
reference answers—to enhance learning (Shao et al., 2024). Early program synthesis work demon-
strated that agent-generated trajectories validated against ground truth outperform supervised ap-
proaches (Bunel et al., 2018; Chen et al., 2021). For LLMs, rule-based verification plays a crucial
role in filtering, providing training signals, and supporting benchmark evaluations (Xiong et al.,
2025; Yu et al., 2025; Shao et al., 2024). Recent extensions include: outcome-driven RL (GRPO)
for grounding and rubric-anchored RL which introduces structured rubrics for open-ended response
evaluation (Huang et al., 2025b); verifier-free RL strategies like VeriFree, which bypass explicit
checking by directly maximizing the probability of generating the reference answer while achiev-
ing performance on par with verifier-based methods (Zhou et al., 2025); and cross-domain RLVR,
which employs LLM-derived scoring for domains lacking reference answers (Su et al., 2025). De-
spite these advances, function-based rule verifiers remain high-precision but low-recall: they often
assign zero reward to semantically correct yet textually divergent outputs (Huang et al., 2025a),
which has motivated the use of learned, model-based verifiers (Huang et al., 2025a; Chen et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2025a; Ma et al., 2025; Xu et al., 2025). However, the coverage and generalization of LLM-based
verifiers are still limited (Li et al., 2025), and in many existing “hybrid” schemes they are invoked
only to relabel a subset of failures, ultimately producing binary 0/1 signals. As a result, these ap-
proaches continue to suffer from sparse outcome-level rewards and the classical RLVR issue that
all-positive or all-negative rollouts yield vanishing advantages, limiting data efficiency. In contrast
to previous work, we propose a hybrid approach that combines rule-based verification with contin-
uous, dense reward signals from learned models, allowing us to maintain the stability of verifiers
while addressing their sparsity. By anchoring dense signals to symbolic correctness and introducing
a variance-aware weighting mechanism, our method enables more informative, stable, and sample-
efficient learning on both verifiable and hard-to-verify tasks.

Reasoning on hard-to-verify tasks. As the reasoning capabilities of LLMs have reached new
heights, increasingly challenging reasoning benchmarks have been proposed (Phan et al., 2025;
Zhang et al., 2025a). These problems often involve complex outputs, such as natural language
representations and intricate mathematical or physical formulas. In such cases, rule-based verifi-
cation methods, while effective for well-defined problems, struggle to capture the nuances of these
tasks. Recent work focused on the LLMs as judges, where LLMs assess the quality of generated
responses (Chen et al., 2025a; Ma et al., 2025; Huang et al., 2025a; Xu et al., 2025; Li et al., 2025),
enabling more nuanced evaluations. However, despite its conceptual simplicity, LLM-as-judge may
not always produce reliable assessments for domain-specific or long-form data. Some recent work
proposes going beyond binary labels from verifiers for hard-to-verify tasks. For example, Gurung &
Lapata (2025) applies reasoning traces in Next-Chapter Prediction (NCP) for long-form story gener-
ation via likelihood estimation, while Tang et al. (2025) uses Jensen’s evidence lower bound to treat
chain-of-thought reasoning steps as latent variables in the generative process. They directly discard
the verifier component. In contrast, our work retains the use of verifiable rewards but enhances su-
pervision through the introduction of a reward model. Peng et al. (2025) directly add the verifiable
correctness signals and the human preferences for agentic tasks.

6 CONCLUSION

We introduced HERO (Hybrid Ensemble Reward Optimization), which combines a rule-based verifier
rrule ∈ {0, 1} with a dense reward model via stratified normalization and variance-aware weight-
ing. By anchoring reward-model scores to verifier-defined correctness groups and emphasizing
informative prompts, HERO preserves the precision and stability of verifiers while supplying dense,
trajectory-sensitive feedback, mitigating gradient sparsity and RM-only drift. Empirically, HERO
consistently outperforms RM-only and verifier-only baselines across verifiable, hard-to-verify, and
mixed regimes and across two backbones, showing that structured hybrid reward design is effective
for math reasoning. HERO is a first step toward more general hybrid reward frameworks: it currently
relies on reasonably accurate rule-based signals in math domains, and extends naturally to richer
verifiers, process-level supervision, and adaptive weighting schemes. We hope these results and
analyses provide a useful foundation for future work on combining symbolic and learned feedback
for reasoning beyond strictly verifiable settings.

REFERENCES

Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
Singh, Chase Blagden, Violet Xiang, Dakota Mahan, et al. Big-math: A large-scale, high-quality
math dataset for reinforcement learning in language models. arXiv preprint arXiv:2502.17387,
2025.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In ICLR, 2018.

Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi Li,
Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evalua-
tions. arXiv preprint arXiv:2504.10481, 2025a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Run-Ze Fan, Zengzhi Wang, and Pengfei Liu. Megascience: Pushing the frontiers of post-training
datasets for science reasoning. arXiv preprint arXiv:2507.16812, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Alexander Gurung and Mirella Lapata. Learning to reason for long-form story generation. arXiv
preprint arXiv:2503.22828, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yuzhen Huang, Weihao Zeng, Xingshan Zeng, Qi Zhu, and Junxian He. Pitfalls of rule-and model-
based verifiers–a case study on mathematical reasoning. arXiv preprint arXiv:2505.22203, 2025a.

Zenan Huang, Yihong Zhuang, Guoshan Lu, Zeyu Qin, Haokai Xu, Tianyu Zhao, Ru Peng, Xi-
aomeng Hu, Yanmei Gu, Yuanyuan Wang, Zhengkai Yang, Jianguo Li, and Junbo Zhao. Rein-
forcement learning with rubric anchors. arXiv preprint, 2025b. arXiv:2508.12790.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Xuzhao Li, Xuchen Li, Shiyu Hu, Yongzhen Guo, and Wentao Zhang. Verifybench: A systematic
benchmark for evaluating reasoning verifiers across domains. arXiv preprint arXiv:2507.09884,
2025.

Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,
Fuxiang Zhang, Jiacheng Xu, et al. Skywork-reward-v2: Scaling preference data curation via
human-ai synergy. arXiv preprint arXiv:2507.01352, 2025.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Ad-
vancing frontier math reasoning with post-training and reward modeling. arXiv preprint
arXiv:2412.15084, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025. Notion Blog.

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv preprint arXiv:2502.06781, 2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art math-
ematical reasoning models with openmathreasoning dataset. arXiv preprint arXiv:2504.16891,
2025.

Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, and Juanzi Li. Agentic reward
modeling: Integrating human preferences with verifiable correctness signals for reliable reward
systems. arXiv preprint arXiv:2502.19328, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong
Yu. Expanding rl with verifiable rewards across diverse domains. arXiv preprint, 2025.
arXiv:2503.23829.

Yunhao Tang, Sid Wang, Lovish Madaan, and Rémi Munos. Beyond verifiable rewards: Scaling re-
inforcement learning for language models to unverifiable data. arXiv preprint arXiv:2503.19618,
2025.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
to reinforce. arXiv preprint arXiv:2504.11343, 2025.

Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
Lin, and Radha Poovendran. Tinyv: Reducing false negatives in verification improves rl for llm
reasoning. arXiv preprint arXiv:2505.14625, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.

Jie Zhang, Cezara Petrui, Kristina Nikolić, and Florian Tramèr. Realmath: A continuous benchmark
for evaluating language models on research-level mathematics. arXiv preprint arXiv:2505.12575,
2025a.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025b.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025c.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang Wang,
Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint, 2025.
arXiv:2505.21493.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Experiments 14

A.1 Experimental setup . 14

A.2 Data preparation . 16

A.3 More experiments . 18

B Qualitative analysis 20

B.1 Reward model qualification ability . 20

B.2 Qualitative analysis of rule-based verifiers . 21

C Limitations and Future Work 21

D The Use of Large Language Models(LLM) 22

A EXPERIMENTS

A.1 EXPERIMENTAL SETUP

Category Hyperparameter Value

Data

Train file OPENMATHREASONING

Max prompt length 1024
Max response length 8192
Filter overlong prompts True

Actor Model

Base model 1 Qwen3-4B-Base

LR 1× 10−6

KL loss coefficient β 0
Entropy loss 0
Use dynamic batch size True

Rollout

Rollout engine vllm
GPU mem utilization 0.6
Train rollout n 8
Temperature 1.0

Reward Rule Based Math Verify

Reward Model Based AceMath-RM-7B

Trainer

Mini Batch size 128
Full Batch size 512 (4 step off-policy)
Critic Warmup 0
GPUs/node 4
Nodes 8
Total epochs 20
Clip Ratio (0.2, 0.28)

Table 5: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al.,
2025) in the verl (Sheng et al., 2025) framework for the Qwen-4B-Base.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Category Hyperparameter Value

Data

Train file OPENMATHREASONING

Max prompt length 1024
Max response length 4096
Filter overlong prompts True

Actor Model

Base model 1 OctoThinker-8B-Hybrid-Base

LR 1× 10−6

KL loss coefficient β 0.001
Entropy loss 0
Use dynamic batch size True

Rollout

Rollout engine vllm
GPU mem utilization 0.6
Train rollout n 16
Temperature 1.0

Reward Rule Based Math Verify

Reward Model Based AceMath-RM-7B

Trainer

Mini Batch size 128
Full Batch size 512 (4 step off-policy)
Critic Warmup 0
GPUs/node 4
Nodes 8
Total epochs 20
Clip Ratio (0.2, 0.28)

Table 6: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al.,
2025) in the verl (Sheng et al., 2025) framework for the OctoThinker-8B-Hybrid-Base.

HERO hyper-parameters. For hybrid reward training for both Qwen-4B-Base and OctoThinker-8B-
Hybrid-Base, we set the range parameters α and β depending on the task type. For easy-to-verify
tasks, we adopt a tighter setting α = β = 0.05 to exploit the high precision of rule-based verifiers
while minimizing noise. For mixed and hard-to-verify tasks, where the reward model contributes
more substantially to supervision, we relax the range to α = β = 0.1 to provide richer feedback.
For variance-aware reweighting, we fix the weighting bounds as wmin = 0.4 and wmax = 3.0,
with a steepness parameter k = 6 in the logistic weighting function. These values ensure that
trivial prompts are down-weighted, while highly uncertain prompts—where reward-model scores
vary widely—receive stronger emphasis without destabilizing training.

Training hyper-parameters. Tables 5 and 6 provide an overview of the hyperparameter configu-
rations used in our GRPO training runs with Qwen3-4B-Base and OctoThinker-8B-Base. The tables
cover settings across data preparation, actor model optimization, rollout generation, reward specifi-
cation, and trainer configuration. They highlight the consistent use of OPENMATHREASONING as
the training corpus, the integration of both rule-based and reward-model signals, and the adoption
of scalable rollout and training strategies within the verl framework. Together, these summaries
document the experimental setup and ensure reproducibility across different backbone models. In
addition, we employ the HuggingFace math verify library to provide standardized rule-based ver-
ification of responses against ground-truth answers, which guarantees consistency in supervision
across all experiments.

Evaluation details. For easy-to-verify test sets, we follow Yang et al. (2024b): we use temperature
0.6 and top-p = 0.95, generate N = 8 candidates per problem, and report pass@1 (first decoded
output) averaged over 8 seeds (Table 2). Correctness is determined by math verifier (normalized
numeric/string match with task-specific post-processing). For hard-to-verify test sets, we use the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

same temperature and top-p but generate N = 1 sample per problem, and rely on GPT-4o as a judge
to compare model outputs with ground-truth answers. HardVerify-Math (Xu et al., 2025) contains
250 samples and, as discussed in Section 3.1, is not a particularly strict filter, since math verifier
already achieves relatively good performance. To further stress-test hard-to-verify reasoning, we
additionally evaluate on the TextBookReasoning dataset (Fan et al., 2025); see Appendix A.2.3 for
construction details.

A.2 DATA PREPARATION

A.2.1 SUPERVISED FINE-TUNING DATASET PREPARATION

We found that initiating RL training directly from the base model often resulted in instability, partic-
ularly in the absence of a cold start. For instance, the Qwen3-4B-Base model frequently produced
mixed-language outputs and generated irrelevant content during the early stages of training. Sim-
ilarly, the octothinker base model demonstrated multi-turn behavior, leading to highly variable re-
sponse lengths. To mitigate these issues and enhance the stability of RL training, we first conducted
two epochs of cold-start supervised fine-tuning (SFT) before beginning RL. To avoid unintentional
distillation from more capable models, we used the base model itself to generate responses. These
outputs were then filtered, retaining only samples that satisfied the following criteria: the response
contained the correct final answer, was entirely in English, and did not exhibit any unstop issues.
For cold start training, we ultimately used only 2,000 SFT samples.

A.2.2 TRAINING DATA FILTER FROM OPENMATHREASONING

In this paper, we focus on reasoning questions that have extractable answers. To this end, we exclu-
sively utilize data from the OpenMathReasoning dataset, selecting only those examples where the
problem type is set to has answer extracted. From the CoT split, we extracted 40k examples. For
each example, we generated solutions and extracted the predicted answers, which were then verified
using math verifier (verl). We randomly sampled 2k examples that passed the verifier to serve as
verifiable training data, and another 2k examples that failed verification as hard-to-verify training
samples. These two sets were combined to create a mixed training dataset for reinforcement learning
(RL) training. We use math verifier (verl) to filter all the samples.

A.2.3 HARD-TO-VERIFY EVALUATION BENCHMARK FROM TEXTBOOKREASONING

GPT-4o filter prompt for TextBookReasoning.

"I am looking for math questions that are suitable for evaluating a math model. Please
help me select questions that meet the following criteria:

1. The question must be clear and unambiguous.

2. The question must have a specific, factual, and answerable solution (not open-ended or
subjective).

3. The question must NOT require a proof or explanation of reasoning.

4. The question must NOT be a statement; it should be a direct question.

For each question I provide, please respond with:
- \"Conclusion: Suitable\" in the end if the question meets all the criteria above.

- \"Conclusion: Not Suitable\"

If the question does not meet the criteria, briefly explain why."

Figure 3: GPT-4o filter prompt for TextBookReasoning.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

To construct a more challenging and reliable benchmark for hard-to-verify tasks, we employ the
TextBookReasoning benchmark. The following criteria were used to filter and refine the dataset for
the evaluation:

1. Pass-through Math Verification Filter
The initial step in filtering was to ensure that the answers in the dataset did not pass the
math verify check, ensuring that the questions and answers involved a certain level of
complexity or ambiguity that would make them challenging for standard verifiers.

2. Llama 3.3 70B Instruct Model for Natural Reasoning
The dataset was further refined by using the Llama 3.3 70b instruct model to answer
natural reasoning prompts. Only the prompts for which Llama could not provide an answer
were kept for further evaluation. This step ensured that the dataset included questions that
required more advanced reasoning abilities, beyond the capabilities of standard models.

3. GPT-4 as the Final Filter
Finally, GPT-4 was used to filter out questions that still met the criteria of being complex
and hard-to-verify. GPT-4’s ability to handle nuanced reasoning ensured that only the most
challenging prompts remained. The prompt is shown as Figure 3

This process ultimately resulted in a refined set of approximately 750 prompts suitable for hard-to-
verify task evaluation.

Prompt Template for Hard-to-Verify Tasks Evaluation The evaluation of student answers to
these prompts is based on the following template, which uses GPT-4 to compare the student’s answer
against the ground truth:

Math Question Selection Criteria The following prompt was used to select math questions suit-
able for evaluating a math model. The criteria for question selection are outlined below:

A.2.4 HARD-TO-VERIFY PROMPT

We set the hard-to-verify evaluation prompt as shown in Figure 4. This template is designed to
assess whether a student’s response matches the reference answer without re-solving the question.
By explicitly instructing GPT-4o to perform equivalence checking rather than problem solving, the
protocol minimizes leakage of additional reasoning and focuses purely on correctness judgment.
The structured format, including the question, ground truth, and student answer, ensures consistency
across evaluations and reduces prompt sensitivity, making it suitable for benchmarking performance
on hard-to-verify tasks.

Prompt Template for hard-to-verify tasks evaluation via GPT-4o.

User: ### Question: {question}

Ground Truth Answer: {ground_truth}

Student Answer: {student_answer}

For the above question, please verify if the student’s answer is equivalent to the ground
truth answer.

Do not solve the question by yourself; just check if the student’s answer is equivalent to
the ground truth answer.

If the student’s answer is correct, output "Final Decision: Yes". If the student’s answer
is incorrect, output "Final Decision: No".

Assistant:

Figure 4: Prompt Template for hard-to-verify tasks evaluation via GPT-4o.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Comparison with model-based verifiers on Qwen-3-4B-Base. Results are pass@1 aver-
aged over 8 seeds across verifiable and hard-to-verify reasoning tasks. HERO consistently outperforms
both General Reasoner and Qwen2.5-7B-Instruct under all regimes.

Easy-to-verify tasks Hard-to-verify tasks

MATH500 AMC Minerva Olympiad Avg. ↑ HVM TBR Avg. ↑

Training with easy-to-verify samples
General Reasoner 82.8 62.8 43.8 45.0 58.6 62.8 54.0 58.4
Qwen2.5-7B-Instruct 83.7 58.1 43.1 47.4 58.1 68.0 57.1 62.5
HERO (Ours) 85.4 69.4 44.5 48.9 62.0 73.2 59.3 66.3

Training with hard-to-verify samples
General Reasoner 78.6 56.3 38.7 41.5 53.8 59.6 48.4 54.0
Qwen2.5-7B-Instruct 78.2 60.5 41.8 41.7 55.6 57.2 51.7 54.5
HERO (Ours) 80.0 63.4 40.7 43.1 56.8 59.0 54.0 56.5

Training with mixed samples
General Reasoner 81.4 61.2 43.2 46.5 58.1 64.0 54.0 59.0
Qwen2.5-7B-Instruct 80.4 63.1 40.5 48.0 58.0 68.8 57.7 63.3
HERO (Ours) 81.6 64.4 42.1 47.0 58.8 71.4 56.7 64.1

A.3 MORE EXPERIMENTS

0 50 100 150 200 250 300
Step

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Ru

le
-b

as
ed

 R
ew

ar
d

Training Rewards
rule-based reward
HERO

0 50 100 150 200 250 300
Step

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy
rule-based reward
HERO

Figure 5: RL training curves on MATH500 (easy-to-verify training). Left: mean rule-based
reward computed by math verifier. Right: validation accuracy on MATH500.

RL training curves comparison between HERO and baseline. Figure 5 compares the RL dy-
namics of the rule-based baseline and HERO when both are trained only on easy-to-verify samples
and evaluated on MATH500. On the left, we plot the mean rule-based reward (computed by
math verifier) over training steps. The rule-based baseline starts with a relatively low reward and
increases slowly, ending around 0.63 after 300 steps. In contrast, HERO climbs much faster and
reaches a substantially higher plateau (around 0.75–0.78), consistently staying above the baseline
throughout training. On the right, we show the corresponding validation accuracy on MATH500.
The rule-based baseline improves from 0.692 at step 0 to 0.802 at step 300, following a gradual up-
ward trend. HERO starts slightly higher at 0.728, quickly jumps above 0.80 by step 30, peaks around
0.852 at step 120, and then fluctuates in the 0.84–0.86 range (e.g., 0.864 at step 240 and 0.842 at
step 300). Overall, HERO not only achieves a higher final accuracy, but also maintains a persistent
4–8 point advantage over the rule-based baseline across most of training, indicating that the hybrid
reward improves both convergence speed and the entire training trajectory on easy-to-verify data.

Hybrid reward surpasses model-based verifiers across all the three regimes. To further assess
whether hybrid reward learning can outperform existing model-based verifiers, we compare HERO
against two representative systems: General Reasoner, a frozen 1.5B verifier model that provides
binary correctness judgments (Ma et al., 2025), and Qwen2.5-7B-Instruct , a large instruction-tuned

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

verifier (Yang et al., 2024b). As shown in Table 2, HERO consistently achieves higher accuracy than
both model-based verifiers under all training regimes. When trained with verifiable samples, HERO
attains an average score of 62.0, outperforming General Reasoner (58.4) and Qwen2.5-7B-Instruct
(62.5) while maintaining greater stability across datasets such as MATH500 (85.4 versus 82.8 and
83.7) and AMC (69.4 versus 62.8 and 58.1). In the hard-to-verify regime, the advantage becomes
more pronounced: HERO reaches 56.5, exceeding General Reasoner (54.0) and Qwen2.5-7B-Instruct
(54.5), demonstrating that hybrid reward learning provides more reliable supervision even when
symbolic verification is unreliable and model-based signals are uncertain. In the mixed setting,
which combines both verifiable and open-ended samples, HERO again leads with 64.1, surpassing
General Reasoner (59.0) and Qwen2.5-7B-Instruct (63.3). These results highlight that integrating
verifier-anchored and reward-model signals yields not only better accuracy but also more consistent
generalization across regimes, outperforming larger model-based verifiers despite using no addi-
tional model parameters or external training data. The improvement underscores that structured
reward integration, rather than sheer verifier scale, is the key to effective and robust reasoning opti-
mization.

Table 8: Impact of reward model size: a larger RM
provides in HERO no remarkable gain over the HERO with
smaller RM .

Reward model Easy-to-verify Hard-to-verify

AceMath-RM-7B 62.0 73.2
AceMath-RM-72B 62.8 71.4

The proposed method does not rely on
large reward models. A natural ques-
tion is whether stronger supervision re-
quires scaling up the reward model itself.
To isolate this factor, we replace the 7B
reward model in HERO with a much larger
72B reward model, keeping the verifier
and all training configurations fixed. As
shown in Table 8, the larger reward model
yields only a marginal improvement on verifiable tasks (62.8 vs. 62.0) and even slightly underper-
forms on hard-to-verify tasks (71.4 vs. 73.2). This confirms that the gains of HERO primarily come
from its hybrid reward formulation—through stratified normalization and variance-aware weight-
ing—rather than from reward model scaling. Practically, this means that HERO can achieve strong
results with compact reward models, offering better efficiency and deployability without sacrificing
accuracy.

Table 9: α represents the weight of the rule-based re-
ward.

Methods Easy-to-verify Hard-to-verify

Reward combine (α=0.1) 57.6 60.2
Reward combine (α=0.5) 58.7 61.4
Reward combine (α=0.9) 55.9 60.4

HERO (Ours) 62.0 73.2

Naively combining rule-based rewards
and reward signals from reward model-
ing does not perform well. A direct in-
tegration of rule-based verification and re-
ward signals from reward modeling, with-
out proper structural alignment, often dis-
rupts the stability of training. As shown in
Table 9, when the weight of the rule-based
reward is varied (α = 0.1, 0.5, and 0.9),
the combined reward performance remains
suboptimal, with scores ranging from 55.9
to 58.7 for verifiable tasks and 60.2 to 61.4
for hard-to-verify tasks. Specifically, when the continuous signals from the reward model are naively
combined with binary correctness checks, the resulting reward can become noisy or misaligned with
the intended notion of correctness. Without explicitly constraining the continuous scores within the
rigid framework of the verifier’s correctness criteria, reward-model outputs can be distorted by im-
perfections in the model, diminishing both interpretability and precision in the feedback. Moreover,
the lack of a safeguard to differentiate true positives from noisy results can lead the model to exploit
unintended patterns, which may not align with human expectations. As a result, an unrefined fusion
of these two reward signals can dilute the benefits of both approaches, destabilizing the learning
process.

Reward models hack faster on hard-to-verify samples. Since the reward model (RM) is trained
on outcome-based verifiable samples (Liu et al., 2024), it is important to examine its behavior across
datasets with varying levels of verifiability. We evaluate four datasets: DAPO (Yu et al., 2025),
which is easy to verify; OpenMath Verifiable, which passes the math verifier; OpenMath Non-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Training Steps

0

5

10

15

20

25

30

35

40
R

ew
ar

d
M

ea
n

(a) Reward Mean

0 50 100 150 200 250 300 350
Training Steps

0.0

0.2

0.4

0.6

0.8

M
AT

H
50

0
A

cc
ur

ac
y

(b) MATH500 Accuracy
OpenMath Mix Verifiable OpenMath Non-Verifiable DAPO OpenMath Verifiable

Figure 6: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b)
AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

Verifiable, which is harder to verify; and OpenMath Mix Verifiable, which combines both. As
shown in Figure 6, the RM rapidly increases the reward mean across all datasets, with the sharpest
gains on OpenMath Non-Verifiable and OpenMath Mix Verifiable. For example, on Non-Verifiable
data, the reward mean climbs steeply from below 5 to over 30 within the first 100 training steps, and
peaks above 40 by step 150. However, MATH500 accuracy collapses shortly after, dropping from
around 0.75 at step 50 to below 0.2 by step 100, and effectively to zero by step 150. A similar trend
appears on Mix Verifiable: accuracy initially rises to about 0.8 at step 100 but then crashes to nearly
zero by step 150, despite the reward mean continuing to rise steadily past 35. In contrast, OpenMath
Verifiable shows slower but steadier progress: rewards grow more gradually, and accuracy improves
to about 0.8 by step 120 before stabilizing without collapse. DAPO also exhibits stable optimization,
with accuracy consistently around 0.75–0.78 as rewards increase moderately. These results highlight
a clear mismatch: rapid reward gains on hard-to-verify tasks are not evidence of genuine reasoning
improvement, but rather reward hacking that leads to catastrophic accuracy collapse. This illustrates
the brittleness of relying solely on dense reward models and motivates hybrid reward frameworks
that combine verifier-anchored reliability with the nuance of dense signals.

B QUALITATIVE ANALYSIS

B.1 REWARD MODEL QUALIFICATION ABILITY

To better understand the reliability of reward-model supervision, we analyze its ability to approxi-
mate the verifier signal as a binary classification task. We randomly take all the rollouts from one
step (the 250 for the verifiable samples training) during the training. Specifically, we treat the reward
model’s raw scores as logits and the verifier’s outputs as ground-truth binary labels, then compute
AUROC statistics to measure discriminative power.

Figure 7 shows four complementary views. The histogram (top-left) reveals a strong skew toward
high AUROC values, with a mean of 0.79 and a median of 0.92, indicating that the reward model
often ranks correct responses above incorrect ones. The box plot (top-right) highlights robustness
but also exposes several low outliers where the model fails to separate classes. The cumulative dis-
tribution (bottom-left) confirms that roughly 80% of groups achieve AUROC above 0.7. Finally, the
performance categorization (bottom-right) shows that 56.8% of groups reach “excellent” AUROC
(≥ 0.9), while only 13.7% fall into the “random/poor” range (0.4–0.6).

These results suggest that although the reward model is not perfect, it provides reliable ranking
signals in the majority of cases. Importantly, this supports the use of dense reward signals to refine
learning within verifier-defined groups: while the verifier anchors correctness, the reward model
adds discriminative power that helps differentiate among responses of varying quality. The presence
of failure cases further justifies our hybrid framework, which uses stratified normalization to bound
reward-model signals within verifier groups, ensuring stability even when AUROC is low.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 7: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b)
AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

s

B.2 QUALITATIVE ANALYSIS OF RULE-BASED VERIFIERS

Table 10 highlights representative behaviors of rule-based and model-based verifiers. math.py is
overly strict, failing on minor formatting variations such as boxing or punctuation (Rows 1–2), while
math verify.py improves recall through normalization. The Math-Verify library handles simple sur-
face mismatches but struggles with structural differences like disjoint ranges or multiple valid tuples
(Rows 4–5). In contrast, o3 is the most permissive: it credits partially correct sets (Row 3) and para-
metric families with renamed symbols (Row 6), which increases coverage but risks over-crediting.
These cases illustrate the precision–recall trade-off: rule-based verifiers enforce exact symbolic cor-
rectness but miss semantically equivalent or partially correct answers, whereas model judges offer
flexibility at the cost of reliability. This motivates our hybrid design: HERO anchors dense reward
signals to rule-based correctness, ensuring robustness to format variance, while leveraging model-
or RM-derived scores to provide graded feedback on harder cases involving subsets, orderings, or
parametric equivalence.

C LIMITATIONS AND FUTURE WORK

While HERO demonstrates clear advantages over RM-only and verifier-only training, several limi-
tations remain. First, the method depends on the availability and reliability of rule-based verifiers:
when these are brittle or domain-mismatched, the partitioning into correctness groups may be biased,
weakening the benefits of stratified normalization. More broadly, our method is explicitly designed
for settings where a rule-based signal and a dense reward-model signal can be combined; when such
a verifier is unavailable or highly unreliable, the current HERO formulation is not directly appli-
cable. Second, because the reward model is trained primarily on outcome-based, verifiable data, it
can become miscalibrated on harder, non-verifiable formats, and although our framework constrains
its scores, residual bias or spurious correlations may still be exploited. Third, HERO introduces
sensitivity to hyperparameters such as (α, β) and the weighting slope k, and increases training over-
head due to concurrent verifier and RM calls. Finally, evaluation on non-verifiable tasks often relies
on LLM-as-judge protocols, which introduce prompt sensitivity and annotation noise. Future work
will focus on improving verifier coverage with hybrid symbolic–learned approaches, incorporating
process-level supervision to capture reasoning quality beyond final answers, and developing adap-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Ground truth Model Prediction math.py math verify.py(verl) Math verify library o3

f(x) = 2x \boxed {f(x) = 2x} ✗ ✓ ✓ ✓

(6, 3), (9, 3), (9, 5), (54, 5) \boxed {(6,3)}, \boxed {(9,3)},

\boxed {(9,5)}, \boxed {(54,5)}

✗ ✓ ✓ ✓

(0, 1, 1), (0,−1,−1), (1, 0, 1),

(−1, 0,−1), (1, 1, 0), (−1,−1, 0),(
1√
3
, 1√

3
, 1√

3

)
,(

− 1√
3
,− 1√

3
,− 1√

3

)
, . . .

Final Answer: \boxed {(1,1,0)},

\boxed {(-1,-1,0)}, \boxed

{(1/\sqrt {3},1/\sqrt {3},1/\sqrt

{3})}, \boxed {(-1/\sqrt

{3},-1/\sqrt {3},-1/\sqrt {3})},

✗ ✗ ✗ ✓

10, 11, 12, 13, 14, −2, −1, 0, 1, 2 Final Answer: \boxed

{-2,-1,0,1,2} and \boxed

{10,11,12,13,14}

✗ ✓ ✗ ✓

(1, 7, 103, 105), (3, 5, 101, 107) Final Answer: Two possible lists

are \boxed {(3,5,101,107)} and

\boxed {(1,7,103,105)}

✗ ✓ ✗ ✓

f(x) = ax + b (where b is an
arbitrary integer, and a is an arbitrary
positive integer with mho(a)=0)

Final Answer: \boxed {f(n)=cn+d},

where c has no prime factors >

10ˆ{100} and d is any integer

✗ ✓ ✗ ✓

Table 10: Examples demonstrating agreement between different math verification tools.

tive range and weighting schemes that calibrate dense signals online. These directions can further
strengthen the stability and generality of hybrid reward frameworks for reasoning.

Mathematical reasoning benchmarks are a natural first testbed for HERO, as they provide mature,
high-precision verifiable rewards (e.g., programmatic checks for final answers) and are widely used
in recent RLVR systems such as DeepSeek-R1. For this reason, we intentionally restrict our em-
pirical study to math reasoning, where HERO’s assumptions are well satisfied and comparisons to
existing verifier-based RL methods are most meaningful.In contrast, many non-mathematical, open-
ended, or multimodal tasks currently lack clear, high-precision rule-based verifiers, making them
less aligned with our present problem setting. We therefore do not claim that HERO, as instantiated
in this paper, already solves open-ended generation; instead, these tasks remain outside the scope of
our experiments. Nonetheless, HERO itself is agnostic to the specific form of rrule: in principle, any
structured checker (such as code-execution tests, safety or formatting constraints, or even rubric-
guided LLM-as-judge signals) could play this role. Systematically extending HERO to such “soft”
verifiers for open-ended and multimodal reasoning, and studying the resulting trade-offs between
stability, coverage, and bias, is an important direction for future work.

D THE USE OF LARGE LANGUAGE MODELS(LLM)

In our project, we use LLM for writing polishing.

22

	Introduction
	Preliminaries
	Methodology
	Motivation: Delving into Rule-based vs. RM-based Verifiers
	HERO: Hybrid Ensemble Reward Optimization

	Experiments
	Experimental setup
	Main results
	Additional ablations

	Related Work
	Conclusion
	Experiments
	Experimental setup
	Data preparation
	More experiments

	Qualitative analysis
	Reward model qualification ability
	Qualitative analysis of rule-based verifiers

	Limitations and Future Work
	The Use of Large Language Models(LLM)

