

000 HYBRID REINFORCEMENT: 001 002 WHEN REWARD IS SPARSE, BETTER TO BE DENSE 003 004

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Post-training for reasoning in large language models has increasingly relied on
012 verifiable rewards: deterministic checkers that provide 0–1 correctness signals.
013 While reliable, such binary feedback is brittle—many tasks admit partially correct
014 or alternative answers that verifiers under-credit, and the resulting all-or-nothing
015 supervision limits learning. Reward models offer richer, continuous feedback,
016 which can serve as a complementary supervisory signal to verifiers. We introduce
017 HERO (Hybrid Ensemble Reward Optimization), a reinforcement learning frame-
018 work that integrates sparse verifier signals with dense reward model scores in
019 a structured way. HERO employs stratified normalization to bound reward-model
020 scores within verifier-defined groups, preserving correctness while refining quality
021 distinctions, and variance-aware weighting to emphasize challenging prompts
022 where dense signals matter most. Across diverse mathematical reasoning bench-
023 marks, HERO consistently outperforms reward model-only and verifier-only base-
024 lines, with strong gains on both verifiable and hard-to-verify tasks. Our results
025 show that hybrid reward design retains the stability of verifiers while leveraging
026 the nuance of reward models to advance reasoning.

037 **Figure 1: Comparison of reward signals from different supervision sources.** Reward Models (a)
038 provide smooth but sometimes misaligned scores, occasionally assigning high values to incorrect
039 responses and low values to correct ones. Rule-based rewards (b) enforce a strict binary (0–1)
040 boundary: they rarely give false positives, but due to their stringent criteria, many predictions that
041 are actually correct receive a reward of 0 simply because they fail to pass the rule. HERO (c) uses
042 the rule as a gate, which significantly reduces false positives. At the same time, by integrating the
043 reward model signal, HERO assigns higher reward scores to those cases that would have been false
044 negatives under (b), resulting in more accurate and informative supervision.

045 1 INTRODUCTION

048 Reasoning lies at the heart of human intelligence, and increasingly, at the frontier of large language
049 model (LLM) capabilities (Jaech et al., 2024; Guo et al., 2025; Zhang et al., 2025b). In tasks such as
050 mathematical problems or generating proofs, reliable reasoning requires models to generate logically
051 consistent multi-step solutions that culminate in a verifiably correct outcome. Verifiable rewards im-
052 plement this idea by running a deterministic checker—such as an exact numeric or string match,
053 a unit test, or a symbolic equivalence check—on a candidate solution y for input x . The checker
either accepts or rejects the output, producing a sparse but unambiguous signal $r(x, y) \in \{0, 1\}$,

which reinforcement learning can propagate through the entire trajectory. Building on this principle, reinforcement learning from verifiable rewards (RLVR) (Chen et al., 2025b) uses these binary signals to train policies toward solutions that pass the checker. Recent systems—including DeepSeek-R1—have advanced this paradigm at scale, leveraging verifier-grounded feedback to improve reasoning (Guo et al., 2025; Zeng et al., 2025; Luo et al., 2025; Yang et al., 2024a).

However, strict 0–1 verification is coarse and brittle: many reasoning tasks allow for partially correct solutions, equivalent answers in alternative formats, or open-ended outputs that resist exact matching. In such cases, symbolic verifiers may under-credit valid solutions (false negatives) or fail to provide any useful signal (Ma et al., 2025; Huang et al., 2025a). Even when applicable, binary rewards induce sparsity: if all rollouts for a prompt receive the same label (all 0s or 1s), group-relative methods such as GRPO (Shao et al., 2024) yield zero relative advantage and thus no useful policy gradient, stalling policy improvement. This brittleness not only reduces sample efficiency but also skews optimization toward easier, strictly verifiable cases—leaving the hardest and most informative prompts underutilized. Our motivating analysis in Section 3.1 further highlights this limitation: on samples where answers are hard to verify, rule-based verifiers frequently fail with correctness. Reward models, in contrast, offer dense supervision by scoring responses on a continuum (Yang et al., 2024b; Liu et al., 2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025). Rather than collapsing all incorrect answers into the same category, they capture nuanced quality differences such as partial correctness, clarity of reasoning steps, or proximity to the ground truth. This graded feedback enriches training signals, helping policies learn from partially correct reasoning paths and better allocate credit across diverse rollouts. However, naively combining these dense reward CT model signals with a binary verifier output often destabilizes training. Specifically, when the reward model’s continuous signals are naively blended with binary correctness checks, the resulting reward can become noisy or misaligned with the expected semantics of correctness. Figure 1 illustrates this tradeoff: while reward models offer smooth but misaligned signals, rule-based verifiers enforce correctness but lack nuance. Thus, it remains an open question *how to design an effective hybrid framework that preserves the reliability of verifiers while harnessing the richness of reward models.*

To address this challenge, we propose **HERO** (**H**ybrid **E**nsemble **RO**ptimization), a reinforcement learning framework that integrates verifier-anchored and dense reward-model signals to provide reliable yet informative supervision. HERO tackles the instability of naive blending through two key innovations. First, it introduces a stratified normalization scheme that bounds reward-model scores within verifier-defined correctness groups. This ensures that dense feedback refines learning only within the set of responses deemed correct by the verifier, preserving correctness guarantees while exploiting nuanced distinctions. Second, HERO employs a variance-aware weighting mechanism that adaptively adjusts the contribution of different prompts during training. Easy prompts, where most responses are uniformly correct or incorrect, contribute little additional learning signal and are down-weighted. In contrast, harder prompts—where candidate responses vary widely and reward-model scores provide valuable discrimination—are emphasized. These components allow HERO to overcome the brittleness of purely binary rewards and the noisiness of dense signals.

We evaluate HERO on diverse math reasoning benchmarks that training with three regimes: training with easy-to-verify samples where exact final-answer checking is possible, hard-to-verify samples with partially correct or format-sensitive solutions, and mixed settings combining both. Across different LLM backbones, HERO consistently outperforms both RM-only and verifier-only baselines, in all three regimes. Notably, on hard-to-verify tasks evaluation based on Qwen-4B-Base, HERO achieves 66.3, which surpasses RM-only training (54.6) by +11.7 points and verifier-only training (57.1) by +9.2 points. Ablations further confirm that anchoring dense signals to verifiable correctness and adaptively reweighting difficult prompts are both critical for stability and efficiency.

2 PRELIMINARIES

Dense reward via reward modeling. Reward modeling learns a scalar function $r(x, y)$ that evaluates the quality of a response y given a prompt x . Based on the Bradley–Terry model (Bradley & Terry, 1952), the reward function is typically trained on pairwise preference data by minimizing

$$\mathcal{L}_R = -\mathbb{E}_{(x, y_c, y_r) \in \mathcal{D}} [\log \sigma(r(x, y_c) - r(x, y_r))], \quad (1)$$

108 where σ denotes the sigmoid function, y_c is the response that is considered preferred in a comparison,
 109 and y_r is the response considered less preferred. Once learned, r can guide reinforcement
 110 learning to align the model with human preferences.
 111

112 **Sparse reward via verifier.** Reinforcement learning with verifiable rewards (RLVR) leverages a
 113 deterministic function $r(x, y)$ to assess correctness, assigning a sparse reward (e.g., 1 for correct, 0
 114 for incorrect). All tokens in a response share the same reward, providing unambiguous supervision
 115 for tasks with objective ground truth. In mathematical problem solving, the reward function is based
 116 on a verifier that checks whether the model’s solution matches the ground-truth reference under
 117 equivalence transformations. Specifically, a math verifier typically parses the predicted solution into
 118 a structured form (e.g., a symbolic expression, final numeric answer, or proof step), simplifies it,
 119 and compares it against the reference solution using symbolic algebra tools or logical equivalence
 120 checks. The reward function is based on the verifier:

$$\psi(x, y_i, y_{\text{ref}}) = \begin{cases} 1, & \text{if } y_i \text{ is equivalent to } y_{\text{ref}} \text{ given } x, \\ 0, & \text{otherwise.} \end{cases} \quad (2)$$

124 **Group Relative Policy Optimization.** GRPO (Shao et al., 2024) extends RLVR by optimizing
 125 over multiple responses per prompt rather than treating them independently. Instead of relying on
 126 a single trajectory, GRPO compares groups of candidate solutions and assigns relative advantages,
 127 which stabilizes learning and improves exploration. It also incorporates clipping (as in PPO) to
 128 prevent unstable updates and adds a KL penalty to keep the policy close to a reference model. This
 129 group-based formulation helps alleviate the gradient sparsity problem of pure verifier rewards and
 130 makes optimization more sample-efficient than standard PPO (Yu et al., 2025).
 131

132 3 METHODOLOGY

133 3.1 MOTIVATION: DELVING INTO RULE-BASED VS. RM-BASED VERIFIERS

136 Building on the preliminaries, we now examine how the two supervision paradigms – rule-based
 137 verifiers that provide sparse but precise correctness signals, and reward models that offer dense but
 138 potentially noisy preferences – behave on tasks where correctness is difficult to verify. Since the
 139 reliability of training hinges on the quality of supervision, understanding their respective strengths
 140 and weaknesses is crucial. To this end, we use the HardVerify_Math benchmark (Xu et al., 2025),
 141 which focuses on challenging verification scenarios. This benchmark consists of 250 hard-to-verify
 142 math problems, including 115 manually selected Olympiad questions (He et al., 2024) and 10 MATH
 143 test set questions (Hendrycks et al., 2021) that are prone to false negatives due to complex answer
 144 formats, as well as 125 Big-Math questions (Albalak et al., 2025) with a Llama-3.1-8B (Dubey et al.,
 145 2024) pass rate below 0.05 and identified as difficult by human experts. To ensure a diverse range
 146 of response qualities, for each problem we generate answers using three different models: Llama-
 147 3.1-8B, Llama-3.3-70B, and Qwen3-8B. This results in a total of 750 responses, which we use to
 148 conduct the verifier analysis presented in Table 1.

149 **Limitations of rule-based verifiers.** To better understand the trade-offs among different verifica-
 150 tion approaches, we compare several representative verifiers. For rule-based verifiers, we con-
 151 sider `math_reward.py` from the `verl` library, the `math_verify` module from `verl`, and the `parse` and
 152 `verify` functions from the `Math-Verify` library. In addition, we include a generative model-based
 153 verifier (`TIGER-Lab/general-verifier` (Ma et al., 2025)), which is specifically trained for chain-of-
 154 thought answer verification. This model has demonstrated strong performance and serves as an
 155 effective alternative to traditional rule-based methods.

156 Results in Table 1 highlight clear precision–recall trade-offs. *Function-based rules offer high pre-
 157 cision but low recall.* For example, the `math_reward.py` checker is highly conservative: it almost
 158 never produces false positives (FPR=0.3%) but fails to recognize many correct answers, resulting
 159 in very low recall (10.1%). A more advanced variant, `math_verify.py` (in `verl`), achieves the best
 160 balance—near-zero false positives with substantially higher recall. The `math_verify` library extends
 161 coverage with normalization heuristics (e.g., handling formatting differences or units) but remains
 brittle for mismatched orderings such as lists vs. sets, yielding only 38.6% recall.

162 Table 1: Performance Comparison of Rule-based Verifier, LLM-as-Verifier, and Reward Models.
163

Type	Verifier	Recall \uparrow	Precision \uparrow	FPR \downarrow	Acc. \uparrow
Rule-based	math_reward (ver1)	10.1	97.5	0.3	53.6
	math_verify (ver1)	68.4	100.0	0.0	83.7
	math_verify (library)	38.6	96.1	1.6	67.6
Generative Model-based	TIGER-Lab/general-verifier	49.5	89.3	6.3	70.9
RM-based	AceMath-7B-RM w threshold 1	91.7	67.7	46.4	73.2
	AceMath-7B-RM w threshold 3	84.2	72.7	33.5	75.6
	AceMath-7B-RM w threshold 5	73.8	76.6	23.9	74.9
	AceMath-7B-RM w threshold 7	62.4	78.5	18.1	71.9

177 **Reward modeling can generalize to hard-to-verify samples.** We further examine how reward
178 models behave on hard-to-verify samples. Since correctness is directly checkable for verifiable data,
179 most reward models for mathematical reasoning are trained on these verifiable samples (Yang et al.,
180 2024b; Liu et al., 2024; Zhang et al., 2025c; Lyu et al., 2025; Liu et al., 2025). This raises the
181 question: to what extent can such models generalize to tasks where correctness cannot be directly
182 verified?

183 Here, we investigate this issue by analyzing the performance of a math-focused reward model
184 (AceMath-7B-RM) on the same hard-to-verify tasks. We assess the model using different score
185 thresholds given the scores generated. As shown in Table 1, setting the threshold to 1 (i.e., consid-
186 ering predictions with $RM \geq 1$ as correct) yields a high recall of 91.7% and broad overall coverage,
187 substantially surpassing rule-based verifiers. However, this comes at the cost of lower precision.
188 Increasing the threshold enhances precision but leads to a decrease in recall.

189 **The need for hybrid reward design.** Our analysis underscores a key tension: *neither rule-based*
190 *verification nor reward models alone is sufficient.* Purely binary verifiable rewards can be brittle and
191 overly conservative, especially on hard-to-verify samples. This not only reduces sample efficiency
192 but also skews optimization toward easier, strictly verifiable cases—leaving the hardest and most
193 informative prompts underutilized. Reward models, in contrast, offer dense supervision by scoring
194 responses on a continuum and can capture nuanced quality differences such as partial correctness
195 or proximity to the ground truth. These complementary strengths and weaknesses motivate a hybrid
196 approach: anchoring supervision in symbolic verifiers to preserve correctness, while enriching it
197 with the dense signal of reward models to drive effective policy learning. In the next subsection, we
198 describe our proposed approach in detail.

200 3.2 HERO: HYBRID ENSEMBLE REWARD OPTIMIZATION

201 Motivated by these findings, our design principle is that rule-based rewards should continue to guide
202 the overall reasoning dynamics, while reward models serve as supplementary signals to enrich train-
203 ing. We therefore propose a *hybrid reward framework* that (i) augments binary correctness with
204 dense reward-model scores and (ii) scales supervision according to prompt difficulty. We describe
205 both components in detail below.

206 **Dense signals anchored to verifiable correctness.** As argued in the motivation, binary verifiers
207 alone provide stable but overly coarse supervision, while reward models offer nuanced distinctions
208 that are easily corrupted if left unconstrained. However, we find that a naive combination of rule-
209 based verification and reward modeling signals tends to undermine the stability of training and
210 render the hybrid approach ineffective (see Appendix A.3). Specifically, when the reward model’s
211 continuous signals are naively blended with binary correctness checks, the resulting reward can
212 become misaligned with the expected semantics of correctness.

213 To address this, we propose *stratified normalization*, which rescales the continuous scores of the re-
214 ward model (RM) to align with the range used by traditional binary rule-based methods. Specifically,

216 let $\{r_{\text{rule}}^{(i)}\}_{i=1}^N \subseteq \{0, 1\}$ denote the rule-based verifier outputs and $\{r_{\text{RM}}^{(i)}\}_{i=1}^N \subseteq \mathbb{R}$ the corresponding
 217 reward-model scores for a group of N rollouts. We first partition the responses according to r_{rule} ,
 218 and then apply min–max normalization within each group to r_{RM} resulting in::
 219

$$220 \quad 221 \quad 222 \quad 223 \quad 224 \quad \hat{r}(x, y) = \begin{cases} -\alpha + 2\alpha \cdot \frac{r_{\text{RM}} - \min r_{\text{RM}}}{\max r_{\text{RM}} - \min r_{\text{RM}} + \epsilon}, & r_{\text{rule}} = 0, \\ (1 - \beta) + 2\beta \cdot \frac{r_{\text{RM}} - \min r_{\text{RM}}}{\max r_{\text{RM}} - \min r_{\text{RM}} + \epsilon}, & r_{\text{rule}} = 1. \end{cases} \quad (3)$$

225 Here $\alpha, \beta \in (0, 1]$ control the allowable ranges for incorrect and correct groups, with $\epsilon > 0$ preventing
 226 division by zero. In practice, we set ϵ to relatively small value so that the training dynamics are
 227 primarily led by rule-based rewards, with the reward model’s contribution serving as a supplementa-
 228 ry signal. [Figure 1](#) (c) illustrates the effect of our hybrid reward design compared to r_{RM} (a) and
 229 r_{rule} (b) alone. This design notably differs from traditional pure verifiable rewards, especially for
 230 hard-to-verify samples and for groups where all responses are either positive or negative. In such
 231 cases, pure rule-based methods do not distinguish between different rollouts, providing no learning
 232 signal. As illustrated in [Figure 1\(c\)](#), HERO introduces reward differences within regions where
 233 the rule-based rewards are all 0 or all 1, thereby enabling meaningful gradient flow even when the
 234 rule-based verifier assigns the same outcome to all rollouts.
 235

236 The stratified normalization in our hybrid approach is designed to provide the best of both worlds:
 237 verifiers ensure the preservation of correctness semantics by constraining the score ranges, while
 238 reward models enhance the supervision by introducing gradations within each group. Incorrect
 239 responses are clearly distinguished from correct ones, and correct responses are prioritized based on
 240 their relative quality. In this manner, dense signals are anchored to symbolic correctness, mitigating
 241 the sparsity observed in pure RLVR.
 242

243 **Variance-aware advantage reweighting.** In the motivation, we argued that not all prompts are
 244 equally informative: trivial ones provide little learning signal, while challenging prompts better
 245 reveal differences across candidate solutions. A shortcoming of the original GRPO algorithm is that
 246 it treats all prompts uniformly, ignoring this variability. The consequence is inefficient use of training
 247 capacity—easy prompts dominate optimization even though they provide little additional guidance,
 248 while difficult prompts that expose meaningful distinctions are underutilized. To realign training
 249 effort with informativeness, we introduce a *variance-aware weighting* scheme. For each prompt, let
 250 σ_u denote the standard deviation of reward-model scores across candidate responses, with $\bar{\sigma}$ as a
 251 running mean. This variance reflects uncertainty: higher values suggest greater disagreement and
 252 thus a richer training signal. We define a bounded monotone weighting function:
 253

$$254 \quad w_{\text{difficulty}}(\sigma_u) = w_{\min} + (w_{\max} - w_{\min}) \cdot \frac{1}{1 + \exp(-k(\sigma_u - \bar{\sigma}))}, \quad (4)$$

255 where w_{\min} and w_{\max} set the minimum and maximum weights, and k controls the slope of the
 256 transition. In practice, we treat these as tunable hyperparameters; unless otherwise stated, we use
 257 $w_{\min} = 0.5$, $w_{\max} = 2.0$, and $k = 5$, ensuring that difficult prompts are up-weighted by at most
 258 $2\times$, while trivial prompts retain at least half weight. The final shaped reward is
 259

$$260 \quad r_{\text{final}}(x, y) = w_{\text{difficulty}}(\sigma_u) \cdot \hat{r}(x, y). \quad (5)$$

261 This design operationalizes our intuition: ambiguous, high-variance prompts are emphasized be-
 262 cause they reveal more about model weaknesses and reward-model sensitivity, while trivial, low-
 263 variance prompts are downweighted to avoid wasting capacity. In doing so, the training process not
 264 only remains anchored to verifiable correctness through \hat{r} , but also allocates learning effort to the
 265 most challenging and informative parts of the data.
 266

267 4 EXPERIMENTS

268 4.1 EXPERIMENTAL SETUP

269 **Training datasets.** A central question is whether reasoning skills acquired through RLVR on ver-
 270 ifiable data can generalize to tasks whose correctness cannot be mechanically checked. To empiri-

270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 cally examine this, we construct three distinct training datasets based on subsets of the OPENMATH-
 REASONING (Moshkov et al., 2025) benchmark: (1). easy-to-verify examples, (2). hard-to-verify
 examples, and (3). a mixture of the two. For easy-to-verify training data, we sample 2,000 problems
 whose final answers can be deterministically validated using a rule-based *math_verifier* (*verl*). For
 the hard-to-verify-only regime, we likewise sample 2,000 problems from OPENMATHREASONING,
 where the correct answers have more flexible formats that make rule-based verification challenging
 (see Appendix A.2.2 for how we filter as well as some qualitative examples). For the mixed set,
 we combine 1,000 easy-to-verify and 1,000 hard-to-verify problems, allowing the policy to benefit
 from both robust exact-check supervision and nuanced feedback from unverifiable cases.

Models. To evaluate the generalizability of our method across different backbone models, we
 conduct experiments using the following models: we use Qwen3-4B-Base (Yang et al., 2025) and
 OctoThinker-8B-Hybrid-Base base (Wang et al., 2025). To stabilize RL training dynamics, we first
 perform supervised fine-tuning (SFT) on each base model as a cold start (see Appendix A.2.1 for
 details). All RL experiments are initialized from the same SFT checkpoint.

Baselines. As preliminary points of reference, we also report the performance of the base model
 and a cold-start SFT model. The main baselines are: (1) Reward model, which uses the AceMath-
 RM-7B reward model (Liu et al., 2024); (2) Rule-based verifier, which relies on binary, rule-based
 rewards, marking a sample as correct only if the normalized final answer matches the ground
 truth via *math_verify* (library) in the VERL repo (Sheng et al., 2025). Our method, HERO,
 is a hybrid approach that combines (1) and (2) into a single reward, making them the most ap-
 propriate baselines for comparison. We also compare HERO with a generative model-based veri-
 fier—TIGER-Lab/general-verifier—and with a large language model (Qwen2.5-7B-Instruct) di-
 rectly prompted to act as a verifier, as detailed in the Appendix (see Table 7).

Evaluation. Since our training data contains both easy-to-verify and hard-to-verify samples, we
 aim to evaluate whether the model can acquire generalizable reasoning abilities. To this end, we se-
 lect six test sets: four in which all answers are easy to verify, and two in which the answers are hard
 to verify.(1). Easy-to-verify testsets includes 4 benchmarks: MATH500 (Hendrycks et al., 2021),
 AMC (Li et al., 2024), Minerva (Lewkowycz et al., 2022), and Olympiad (He et al., 2024). We
 report pass@1 averaged over 8 seeds in Table 2. Following (Yang et al., 2024b), we use temperature
 0.6 and top- p 0.95, generate $N = 8$ candidates per problem, and evaluate the first decoded output
 (pass@1). Reported numbers are means over seeds.Correctness is decided by *math_verifier* (normal-
 ized numeric/string match with task-specific post-processing).(2). Hard-to-verify testsets: We use
 temperature 0.6 and top- p 0.95, generate $N = 1$ candidate per problem. Since symbolic checkers
 cannot reliably provide binary labels for open-ended solutions, we adopt an *LLM-as-a-judge* pro-
 tocol. Specifically, we use GPT-4o to compare model outputs against ground-truth answers. We
 evaluate using the HardVerify-Math benchmark (Xu et al., 2025), which consists of 250 samples.
 Based on the results in Section 3.1, we find that HardVerify-Math is not a particularly challenging
 filter, as using *math_verify* yields relatively good results. Therefore, to further evaluate performance
 on hard-to-verify reasoning tasks, we additionally collect the TextBookReasoning dataset (Fan et al.,
 2025) (see Appendix A.2.3 for more details).

4.2 MAIN RESULTS

Performance of HERO on the Qwen-based Model Table 2 shows that HERO consistently outper-
 forms both the reward-model-only and rule-based verifier baselines across all three training data
 settings: (1) easy-to-verify data, (2) hard-to-verify data, and (3) a mixture of the two. For each
 training setting, we evaluate on four datasets where the targets are easy-to-verify tasks, as well as
 two datasets where the targets are hard-to-verify tasks. When trained on easy-to-verify data and
 evaluated on four easy-to-verify test sets, HERO achieves an average score of 62.0, outperforming
 both RM-only (56.4) and rule-based training (58.3). We attribute this improvement to our strati-
 fied normalization, which allows hybrid training to exploit both positive and negative correctness
 groups: while verifier-only training collapses all-correct or all-incorrect batches (yielding zero rel-
 ative advantage), HERO preserves meaningful gradients within each group through dense intra-group
 rewards. The advantage of our approach becomes even more pronounced when training on hard-
 to-verify samples, where rule-based verifiers are brittle and reward models tend to be noisy. Here,

324
 325 **Table 2: Performance of HERO trained with Qwen3-4B-Base on both easy-to-verify and hard-326
 327 to-verify reasoning tasks.** The first block reports results on verifiable tasks (MATH500, AMC,328
 329 Minerva, Olympiad; with average), while the second block presents results on hard-to-verify tasks
 (HVM, TBR). We compare our approach HERO—which combines two reward signals—with two
 baselines corresponding to the two signals: AceMath-7B-RM (a reward model) and `math.verify`
 (ver1), which uses a 0/1 rule as the reward.

	Easy-to-verify tasks					Hard-to-verify tasks		
	MATH500	AMC	Minerva	Olympiad	Avg. ↑	HVM	TBR	Avg. ↑
Qwen3-4B-Base	67.5	44.1	29.4	32.1	43.3	45.2	40.2	42.7
SFT Cold Start Model	69.1	50.3	39.1	34.3	48.2	50.8	43.3	47.1
Training with easy-to-verify samples								
AceMath-7B-RM	80.2	61.6	40.6	43.3	56.4	57.2	52.0	54.6
<code>math.verify</code> (ver1)	82.3	61.3	44.0	45.5	58.3	61.0	53.1	57.1
HERO (Ours)	85.4	69.4	44.5	48.9	62.0	73.2	59.3	66.3
Training with hard-to-verify samples								
AceMath-7B-RM	79.6	58.8	39.9	42.1	55.1	59.2	48.2	53.7
<code>math.verify</code> (ver1)	76.2	46.6	28.7	38.2	47.4	58.4	50.0	54.2
HERO (Ours)	80.0	63.4	40.7	43.1	56.8	59.0	54.0	56.5
Training with mixed samples								
AceMath-7B-RM	79.6	58.8	39.9	42.1	55.1	58.4	49.6	54.0
<code>math.verify</code> (ver1)	81.3	61.3	38.0	43.9	56.1	62.4	55.3	58.9
HERO (Ours)	81.6	64.4	42.1	47.0	58.8	71.4	56.7	64.1

347
 348 HERO attains 56.8, surpassing RM-only (55.1) by +1.7 points and rule-based verifiers (47.4) by a sub-349
 350 substantial +9.4 points. This improvement is due to anchoring continuous reward-model scores within
 351 verifier correctness groups, which prevents reward drift and ensures stable learning even when binary
 352 labels saturate. By combining the precision of rule-based verifiers with the smooth discrimination
 353 of reward models, HERO is able to leverage partially correct reasoning paths that would otherwise
 354 be discarded by rule-based systems, thereby improving both stability and coverage. When trained
 355 on mixed data, which combines easy-to-verify and hard-to-verify samples, HERO again achieves the
 356 average (58.8), outperforming RM-only (55.1) and rule-based verifier (56.1) on verifiable tasks.

357 The advantage becomes even clearer on hard-to-verify evaluations (HVM, TBR), where rule-based
 358 verifiers fail to capture partial correctness and reward models are prone to drift. Here, HERO attains
 359 66.3 when trained on easy-to-verify data, outperforming RM-only (54.6) by +11.7 points and rule-
 360 based training (57.1) by +9.2 points. When trained on hard-to-verify samples, it still leads with 56.5
 361 compared to 53.7 (RM-only) and 54.2 (rule-based). Under mixed training, HERO reaches 64.1, sur-
 362 passing both baselines by large margins on hard-to-verify tasks. These results highlight that hybrid
 363 reward design generalizes robustly across both verifiable and hard-to-verify tasks, yielding stable
 364 improvements regardless of whether evaluation relies on symbolic checking or model judgment.
 365 Overall, hybrid reward learning delivers consistent improvements across all settings, demonstrating
 366 that structured reward integration is critical for reasoning tasks that go beyond strict verifiability.

367 **We note that the magnitude of gains in Table 2 naturally varies across training regimes due to differ-368
 369 ences in reward quality, rather than instability of HERO.** With easy-to-verify training data, the verifier
 370 is accurate and often positive, so HERO can fully exploit its hybrid design and achieve large im-371
 372 provements; with hard-to-verify data, the verifier rarely fires and many prompts receive all-0 labels,
 373 so the learning signal is weaker and gains are necessarily smaller. In the mixed regime, easy-to-374
 375 verify samples provide a strong verifier anchor while hard-to-verify samples reduce the domain gap
 376 to difficult test sets, which explains why improvements are modest on verifiable tasks but large again
 377 on hard-to-verify evaluations.

378
 379 **Performance of HERO on the OctoThinker-based Model** On Qwen3-4B-Base (Table 2), which
 380 already shows strong performance, HERO consistently delivers clear improvements across all evalua-381
 382 tion settings. On OctoThinker-8B-Hybrid-Base (Table 3), which starts from a much weaker baseline
 383 of 16.9 on verifiable and 23.6 on hard-to-verify tasks, HERO achieves substantial absolute and relative
 384 gains. When trained on easy-to-verify samples, it reaches 40.1 on verifiable and 32.6 on hard-to-385
 386

378 **Table 3: Performance of `HERO` trained with OctoThinker-8B-Hybrid-Base on both easy-to-verify**
 379 **and hard-to-verify reasoning tasks.** The first block shows results on four easy-to-verify tasks,
 380 which reported pass@1 averaged over 8 seeds. The second block show results on two hard-to-verify
 381 testsets, which reported GPT4.1 judges results.

	Easy-to-verify tasks					Hard-to-verify tasks		
	MATH500	AMC	Minerva	Olympiad	Avg. ↑	HVM	TBR	Avg. ↑
OctoThinker-8B-Hybrid-Base	32.0	15.3	9.1	11.0	16.9	26.0	21.1	23.6
SFT Cold Start Model	56.0	35.9	19.7	21.6	33.3	27.6	26.4	27.0
Training with easy-to-verify samples								
AceMath-7B-RM	62.3	38.4	26.2	25.5	38.1	29.6	27.8	28.7
math.verify (ver1)	60.1	39.4	26.7	24.1	37.6	31.6	28.9	30.3
HERO (Ours)	63.0	40.6	30.1	26.7	40.1	28.4	36.7	32.6
Training with hard-to-verify samples								
AceMath-7B-RM	60.7	33.8	22.4	24.9	35.4	32.0	29.8	30.9
math.verify (ver1)	60.0	29.7	23.9	24.8	34.6	28.8	26.7	27.8
HERO (Ours)	64.9	41.6	27.9	29.6	41.0	32.4	36.7	34.6
Training with mixed samples								
AceMath-7B-RM	60.2	34.4	24.0	23.8	35.6	30.8	29.3	30.1
math.verify (ver1)	59.3	33.7	24.7	24.0	35.4	27.6	28.7	28.2
HERO (Ours)	65.2	38.1	28.1	29.3	40.2	34.8	31.6	33.2

398 verify evaluations, surpassing both the reward-model baseline (38.1/28.7) and the rule-based verifier
 399 (37.6/30.3). Training on hard-to-verify samples yields similar improvements, achieving 41.0/34.6
 400 compared to 35.4/30.9 (RM-only) and 34.6/27.8 (verifier-only). Training on mixed training sam-
 401 ples, it maintains the highest averages of 40.2 and 33.2, outperforming all baselines by 4–6 points.
 402 These results show that hybrid reward design generalizes robustly across model scales—preserving
 403 the verifier’s stability for stronger models like Qwen3-4B-Base while bringing large relative gains
 404 to weaker ones such as OctoThinker-8B-Hybrid-Base.

405
 406 **Verifier-only training struggles on hard-to-verify tasks.** Symbolic verifiers, while precise, per-
 407 form poorly on open-ended or format-sensitive reasoning. On Qwen3-4B-Base (Table 2), verifier-
 408 only training reaches only 47.4 on hard-to-verify tasks—worse than `HERO` (56.5), RM-only (53.7),
 409 and even slightly below the SFT baseline (47.1). Similar degradation appears on OctoThinker-8B-
 410 Hybrid-Base (Table 3), where verifier-only supervision lags far behind `HERO`. The core issue is that
 411 weaker models often produce rollouts that are uniformly labeled 0 or 1, causing group-relative ob-
 412 jectives such as GRPO to yield zero gradients. In contrast, `HERO` adds dense intra-group variation via
 413 reward-model refinement, preserving gradient flow even when binary labels saturate and allowing
 414 the policy to separate partially correct from entirely incorrect solutions.

416 4.3 ADDITIONAL ABLATIONS

417
 418 **Dense negative ranges are more important than positive samples.** We evaluate the role of dense
 419 negative and positive reward on the setting of training with easy-to-verify samples based on Qwen-
 420 4B-Base. We found dense reward in the negative group play a more criticak role in stabilizing
 421 training and improving learning efficiency than dense reward in the positive group devided by `HERO`..
 422 While positives signal correctness, negatives provide richer supervision by penalizing diverse rea-
 423 soning errors. Notably, dense negative rewards but maintaining sparse verifier positive rewards
 424 boosts performance on verifiable tasks from 59.4 to 61.4, and even more on hard-to-verify tasks
 425 from 62.2 to 68.4 (see Figure 2). This demonstrates that well-calibrated negative ranges are es-
 426 sential: they provide broader feedback, enabling the model to detect subtle errors and generalize better
 427 on complex cases.

428
 429 **Reward range selection is crucial for balancing stability and performance.** We conducted ab-
 430 lation studies to investigate the impact of varying reward ranges on model performance by training
 431 with easy-to-verify samples based on Qwen-4B-Base, as shown in Figure 2(b). For verifiable tasks,
 432 smaller reward ranges (e.g., $\alpha = 0.05$) yielded the best results, as the rule-based verifier’s preci-

432
433
434
435
436
437
438
439
440
441

Figure 2: (a) **Impact of using positive and negative dense ranges.** Dense negative rewards contribute more to stable learning than positive samples. (b) **Effect of varying reward ranges under different training regimes.** Smaller ranges perform best on verifiable tasks, while larger ranges benefit mixed settings by providing denser feedback.

sion benefits from a tighter range that minimizes noise and maintains stability. Expanding the range beyond this threshold led to diminishing returns and increased noise. In contrast, for mixed tasks, where many samples fail the rule-based verifier, the learned reward model plays a larger role. Here, larger reward ranges (e.g., $\alpha = 0.1$ or $\alpha = 0.2$) provided richer signals, allowing the model to learn more effectively from harder tasks. However, expanding the range beyond a certain point caused a slight performance drop due to overfitting or excessive noise. *Overall, careful tuning of the reward range, particularly for the negative rewards, is crucial to balancing stability and performance: datasets with relatively dense informative rewards and few all-positive/all-negative groups tend to benefit from smaller ranges, whereas datasets with many all-positive/all-negative groups are better served by slightly larger ranges that inject more intra-group variation.*

457 Variance-aware reweighting in HERO improves the model’s reasoning ability.

458 We evaluated variance-aware reweighting based on reward-model score variance, which emphasizes ambiguous, high-
 459 variance prompts while down-weighting
 460 trivial ones to reduce overfitting with the
 461 setting of training with easy-to-verify sam-
 462 ples based on Qwen-4B-Base. This dynamic adjustment yields consistent gains, particularly on
 463 hard-to-verify tasks where dense signals are most informative. As shown in Table 4, reweighting
 464 improves accuracy on both verifiable and hard-to-verify benchmarks, with larger gains in the latter
 465 (+3.8), confirming that focusing capacity on uncertain samples leads to more robust and generaliz-
 466 able improvements.

470 5 RELATED WORK

471 **Reinforcement learning from verifiable rewards.** Reinforcement learning from verifiable re-
 472 wards (RLVR) leverages deterministic correctness checks—such as passing unit tests or matching
 473 reference answers—to enhance learning (Shao et al., 2024). Early program synthesis work demon-
 474 strated that agent-generated trajectories validated against ground truth outperform supervised
 475 approaches (Bunel et al., 2018; Chen et al., 2021). For LLMs, rule-based verification plays a crucial
 476 role in filtering, providing training signals, and supporting benchmark evaluations (Xiong et al.,
 477 2025; Yu et al., 2025; Shao et al., 2024). Recent extensions include: outcome-driven RL (GRPO)
 478 for grounding and rubric-anchored RL which introduces structured rubrics for open-ended response
 479 evaluation (Huang et al., 2025b); verifier-free RL strategies like VeriFree, which bypass explicit
 480 checking by directly maximizing the probability of generating the reference answer while achiev-
 481 ing performance on par with verifier-based methods (Zhou et al., 2025); and cross-domain RLVR,
 482 which employs LLM-derived scoring for domains lacking reference answers (Su et al., 2025). De-
 483 spite these advances, function-based rule verifiers remain high-precision but low-recall: they often
 484 assign zero reward to semantically correct yet textually divergent outputs (Huang et al., 2025a),
 485 which has motivated the use of learned, model-based verifiers (Huang et al., 2025a; Chen et al.,

Table 4: Variance-aware reweighting improves performance on both verifiable and hard-to-verify samples.

Methods	Easy-to-verify	Hard-to-verify
w/o reweighting	60.8	69.4
w reweighting	62.0	73.2

2025a; Ma et al., 2025; Xu et al., 2025). However, the coverage and generalization of LLM-based verifiers are still limited (Li et al., 2025), and in many existing “hybrid” schemes they are invoked only to relabel a subset of failures, ultimately producing binary 0/1 signals. As a result, these approaches continue to suffer from sparse outcome-level rewards and the classical RLVR issue that **all-positive or all-negative rollouts yield vanishing advantages, limiting data efficiency**. In contrast to previous work, we propose a hybrid approach that combines rule-based verification with continuous, dense reward signals from learned models, allowing us to maintain the stability of verifiers while addressing their sparsity. By anchoring dense signals to symbolic correctness and introducing a variance-aware weighting mechanism, our method enables more informative, stable, and sample-efficient learning on both verifiable and hard-to-verify tasks.

Reasoning on hard-to-verify tasks. As the reasoning capabilities of LLMs have reached new heights, increasingly challenging reasoning benchmarks have been proposed (Phan et al., 2025; Zhang et al., 2025a). These problems often involve complex outputs, such as natural language representations and intricate mathematical or physical formulas. In such cases, rule-based verification methods, while effective for well-defined problems, struggle to capture the nuances of these tasks. Recent work focused on the LLMs as judges, where LLMs assess the quality of generated responses (Chen et al., 2025a; Ma et al., 2025; Huang et al., 2025a; Xu et al., 2025; Li et al., 2025), enabling more nuanced evaluations. However, despite its conceptual simplicity, LLM-as-judge may not always produce reliable assessments for domain-specific or long-form data. Some recent work proposes going beyond binary labels from verifiers for hard-to-verify tasks. For example, Gurung & Lapata (2025) applies reasoning traces in Next-Chapter Prediction (NCP) for long-form story generation via likelihood estimation, while Tang et al. (2025) uses Jensen’s evidence lower bound to treat chain-of-thought reasoning steps as latent variables in the generative process. They directly discard the verifier component. In contrast, our work retains the use of verifiable rewards but enhances supervision through the introduction of a reward model. Peng et al. (2025) directly add the verifiable correctness signals and the human preferences for agentic tasks.

6 CONCLUSION

We introduced **HERO** (**H**ybrid **E**nsemble **RO**ptimization), which combines a rule-based verifier $r_{\text{rule}} \in \{0, 1\}$ with a dense reward model via stratified normalization and variance-aware weighting. By anchoring reward-model scores to verifier-defined correctness groups and emphasizing informative prompts, HERO preserves the precision and stability of verifiers while supplying dense, trajectory-sensitive feedback, mitigating gradient sparsity and RM-only drift. Empirically, HERO consistently outperforms RM-only and verifier-only baselines across verifiable, hard-to-verify, and mixed regimes and across two backbones, showing that structured hybrid reward design is effective for math reasoning. **HERO is a first step toward more general hybrid reward frameworks: it currently relies on reasonably accurate rule-based signals in math domains, and extends naturally to richer verifiers, process-level supervision, and adaptive weighting schemes.** We hope these results and analyses provide a useful foundation for future work on combining symbolic and learned feedback for reasoning beyond strictly verifiable settings.

REFERENCES

Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait Singh, Chase Blagden, Violet Xiang, Dakota Mahan, et al. Big-math: A large-scale, high-quality math dataset for reinforcement learning in language models. *arXiv preprint arXiv:2502.17387*, 2025.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging grammar and reinforcement learning for neural program synthesis. In *ICLR*, 2018.

Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi Li, Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evaluations. *arXiv preprint arXiv:2504.10481*, 2025a.

540 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 541 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 542 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

543

544 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
 545 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
 546 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025b.

547

548 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 549 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 550 *arXiv e-prints*, pp. arXiv–2407, 2024.

551

552 Run-Ze Fan, Zengzhi Wang, and Pengfei Liu. Megascience: Pushing the frontiers of post-training
 553 datasets for science reasoning. *arXiv preprint arXiv:2507.16812*, 2025.

554

555 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 556 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 557 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

558

559 Alexander Gurung and Mirella Lapata. Learning to reason for long-form story generation. *arXiv
 560 preprint arXiv:2503.22828*, 2025.

561

562 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 563 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 564 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint
 565 arXiv:2402.14008*, 2024.

566

567 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 568 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 569 preprint arXiv:2103.03874*, 2021.

570

571 Yuzhen Huang, Weihao Zeng, Xingshan Zeng, Qi Zhu, and Junxian He. Pitfalls of rule-and model-
 572 based verifiers—a case study on mathematical reasoning. *arXiv preprint arXiv:2505.22203*, 2025a.

573

574 Zenan Huang, Yihong Zhuang, Guoshan Lu, Zeyu Qin, Haokai Xu, Tianyu Zhao, Ru Peng, Xi-
 575 aomeng Hu, Yanmei Gu, Yuanyuan Wang, Zhengkai Yang, Jianguo Li, and Junbo Zhao. Rein-
 576 force learning with rubric anchors. *arXiv preprint*, 2025b. arXiv:2508.12790.

577

578 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 579 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
 580 preprint arXiv:2412.16720*, 2024.

581

582 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 583 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 584 reasoning problems with language models. *Advances in neural information processing systems*,
 35:3843–3857, 2022.

585

586 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 587 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 588 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 13(9):9, 2024.

589

590 Xuzhao Li, Xuchen Li, Shiyu Hu, Yongzhen Guo, and Wentao Zhang. Verifybench: A systematic
 591 benchmark for evaluating reasoning verifiers across domains. *arXiv preprint arXiv:2507.09884*,
 592 2025.

593

594 Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,
 595 Fuxiang Zhang, Jiacheng Xu, et al. Skywork-reward-v2: Scaling preference data curation via
 596 human-ai synergy. *arXiv preprint arXiv:2507.01352*, 2025.

597

598 Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Ad-
 599 vancing frontier math reasoning with post-training and reward modeling. *arXiv preprint
 600 arXiv:2412.15084*, 2024.

594 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 595 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 596 with a 1.5b model by scaling rl, 2025. Notion Blog.

597

598 Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
 599 Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
 600 mathematical reasoning. *arXiv preprint arXiv:2502.06781*, 2025.

601 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zeyun Ma, and Wenhui Chen. General-reasoner:
 602 Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.

603

604 Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
 605 Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art math-
 606 ematical reasoning models with openmathreasoning dataset. *arXiv preprint arXiv:2504.16891*,
 607 2025.

608 Hao Peng, Yunjia Qi, XIAOZHI Wang, Zijun Yao, Bin Xu, Lei Hou, and Juanzi Li. Agentic reward
 609 modeling: Integrating human preferences with verifiable correctness signals for reliable reward
 610 systems. *arXiv preprint arXiv:2502.19328*, 2025.

611 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 612 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. *arXiv preprint*
 613 *arXiv:2501.14249*, 2025.

614

615 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 616 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 617 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

618 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 619 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 620 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

621

622 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong
 623 Yu. Expanding rl with verifiable rewards across diverse domains. *arXiv preprint*, 2025.
 624 *arXiv:2503.23829*.

625 Yunhao Tang, Sid Wang, Lovish Madaan, and Rémi Munos. Beyond verifiable rewards: Scaling re-
 626inforcement learning for language models to unverifiable data. *arXiv preprint arXiv:2503.19618*,
 627 2025.

628

629 Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
 630 reinforcement learning scaling. *arXiv preprint arXiv:2506.20512*, 2025.

631

632 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
 633 Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
 634 to reinforce. *arXiv preprint arXiv:2504.11343*, 2025.

635

636 Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
 637 Lin, and Radha Poovendran. Tinyv: Reducing false negatives in verification improves rl for llm
 638 reasoning. *arXiv preprint arXiv:2505.14625*, 2025.

639

640 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 641 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 642 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
 643 pert model via self-improvement, 2024a.

644

645 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 646 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 647 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

648

649 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 650 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 651 *arXiv:2505.09388*, 2025.

648 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
649 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
650 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

651

652 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
653 zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.

654

655 Jie Zhang, Cezara Petru, Kristina Nikolić, and Florian Tramèr. Realmath: A continuous benchmark
656 for evaluating language models on research-level mathematics. *arXiv preprint arXiv:2505.12575*,
657 2025a.

658

659 Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
660 Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
661 *arXiv preprint arXiv:2509.08827*, 2025b.

662

663 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
664 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
665 reasoning. *arXiv preprint arXiv:2501.07301*, 2025c.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Appendix

A Experiments	14
A.1 Experimental setup	14
A.2 Data preparation	16
A.3 More experiments	18
B Qualitative analysis	20
B.1 Reward model qualification ability	20
B.2 Qualitative analysis of rule-based verifiers	21
C Limitations and Future Work	21
D The Use of Large Language Models(LLM)	22

723 A EXPERIMENTS

724 A.1 EXPERIMENTAL SETUP

726 Category	727 Hyperparameter	728 Value
729 Data	730 Train file	731 OPENMATHREASONING
	732 Max prompt length	1024
	733 Max response length	8192
	734 Filter overlong prompts	True
735 Actor Model	736 Base model 1	737 Qwen3-4B-Base
	738 LR	1×10^{-6}
	739 KL loss coefficient β	0
	740 Entropy loss	0
	741 Use dynamic batch size	True
742 Rollout	743 Rollout engine	vllm
	744 GPU mem utilization	0.6
	745 Train rollout n	8
	746 Temperature	1.0
747 Reward	748 Rule Based	749 Math_Verify
	750 Reward Model Based	751 AceMath-RM-7B
752 Trainer	753 Mini Batch size	128
	754 Full Batch size	512 (4 step off-policy)
	755 Critic Warmup	0
	756 GPUs/node	4
	757 Nodes	8
	758 Total epochs	20
	759 Clip Ratio	(0.2, 0.28)

Table 5: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al., 2025) in the verl (Sheng et al., 2025) framework for the Qwen-4B-Base.

Category	Hyperparameter	Value
Data	Train file	OPENMATHREASONING
	Max prompt length	1024
	Max response length	4096
	Filter overlong prompts	True
Actor Model	Base model 1	OctoThinker-8B-Hybrid-Base
	LR	1×10^{-6}
	KL loss coefficient β	0.001
	Entropy loss	0
	Use dynamic batch size	True
Rollout	Rollout engine	vllm
	GPU mem utilization	0.6
	Train rollout n	16
	Temperature	1.0
Reward	Rule Based	Math_Verify
	Reward Model Based	AceMath-RM-7B
Trainer	Mini Batch size	128
	Full Batch size	512 (4 step off-policy)
	Critic Warmup	0
	GPUs/node	4
	Nodes	8
	Total epochs	20
	Clip Ratio	(0.2, 0.28)

Table 6: Key hyperparameters used for GRPO training on OPENMATHREASONING (Moshkov et al., 2025) in the verl (Sheng et al., 2025) framework for the OctoThinker-8B-Hybrid-Base.

HERO hyper-parameters. For hybrid reward training for both Qwen-4B-Base and OctoThinker-8B-Hybrid-Base, we set the range parameters α and β depending on the task type. For easy-to-verify tasks, we adopt a tighter setting $\alpha = \beta = 0.05$ to exploit the high precision of rule-based verifiers while minimizing noise. For mixed and hard-to-verify tasks, where the reward model contributes more substantially to supervision, we relax the range to $\alpha = \beta = 0.1$ to provide richer feedback. For variance-aware reweighting, we fix the weighting bounds as $w_{\min} = 0.4$ and $w_{\max} = 3.0$, with a steepness parameter $k = 6$ in the logistic weighting function. These values ensure that trivial prompts are down-weighted, while highly uncertain prompts—where reward-model scores vary widely—receive stronger emphasis without destabilizing training.

Training hyper-parameters. Tables 5 and 6 provide an overview of the hyperparameter configurations used in our GRPO training runs with Qwen3-4B-Base and OctoThinker-8B-Base. The tables cover settings across data preparation, actor model optimization, rollout generation, reward specification, and trainer configuration. They highlight the consistent use of OPENMATHREASONING as the training corpus, the integration of both rule-based and reward-model signals, and the adoption of scalable rollout and training strategies within the verl framework. Together, these summaries document the experimental setup and ensure reproducibility across different backbone models. In addition, we employ the HuggingFace `math.verify` library to provide standardized rule-based verification of responses against ground-truth answers, which guarantees consistency in supervision across all experiments.

Evaluation details. For easy-to-verify test sets, we follow Yang et al. (2024b): we use temperature 0.6 and top- $p = 0.95$, generate $N = 8$ candidates per problem, and report pass@1 (first decoded output) averaged over 8 seeds (Table 2). Correctness is determined by `math.verify` (normalized numeric/string match with task-specific post-processing). For hard-to-verify test sets, we use the

810 same temperature and top- p but generate $N = 1$ sample per problem, and rely on GPT-4o as a judge
 811 to compare model outputs with ground-truth answers. HardVerify-Math (Xu et al., 2025) contains
 812 250 samples and, as discussed in Section 3.1, is not a particularly strict filter, since *math_verifier*
 813 already achieves relatively good performance. To further stress-test hard-to-verify reasoning, we
 814 additionally evaluate on the TextBookReasoning dataset (Fan et al., 2025); see Appendix A.2.3 for
 815 construction details.

816
 817 **A.2 DATA PREPARATION**
 818

819 **A.2.1 SUPERVISED FINE-TUNING DATASET PREPARATION**
 820

821 We found that initiating RL training directly from the base model often resulted in instability, particularly
 822 in the absence of a cold start. For instance, the Qwen3-4B-Base model frequently produced
 823 mixed-language outputs and generated irrelevant content during the early stages of training. Similarly,
 824 the octothinker base model demonstrated multi-turn behavior, leading to highly variable response
 825 lengths. To mitigate these issues and enhance the stability of RL training, we first conducted
 826 two epochs of cold-start supervised fine-tuning (SFT) before beginning RL. To avoid unintentional
 827 distillation from more capable models, we used the base model itself to generate responses. These
 828 outputs were then filtered, retaining only samples that satisfied the following criteria: the response
 829 contained the correct final answer, was entirely in English, and did not exhibit any unstopp issues.
 830 For cold start training, we ultimately used only 2,000 SFT samples.

831 **A.2.2 TRAINING DATA FILTER FROM OPENMATHREASONING**
 832

833 In this paper, we focus on reasoning questions that have extractable answers. To this end, we exclusively
 834 utilize data from the OpenMathReasoning dataset, selecting only those examples where the problem_type
 835 is set to has_answer_extracted. From the CoT split, we extracted 40k examples. For each example, we
 836 generated solutions and extracted the predicted answers, which were then verified using *math_verifier* (verl). We
 837 randomly sampled 2k examples that passed the verifier to serve as verifiable training data, and another 2k examples
 838 that failed verification as hard-to-verify training samples. These two sets were combined to create a mixed training dataset for reinforcement learning
 839 (RL) training. We use *math_verifier* (verl) to filter all the samples.
 840

841 **A.2.3 HARD-TO-VERIFY EVALUATION BENCHMARK FROM TEXTBOOKREASONING**
 842

843 GPT-4o filter prompt for TextBookReasoning.
 844
 845
 846 "I am looking for math questions that are suitable for evaluating a math model. Please
 847 help me select questions that meet the following criteria:
 848
 849 1. The question must be clear and unambiguous.
 850
 851 2. The question must have a specific, factual, and answerable solution (not open-ended or
 852 subjective).
 853
 854 3. The question must NOT require a proof or explanation of reasoning.
 855
 856 4. The question must NOT be a statement; it should be a direct question.
 857
 858 For each question I provide, please respond with:
 859 - \"Conclusion: Suitable\" in the end if the question meets all the criteria above.
 860
 861 - \"Conclusion: Not Suitable\"
 862
 863 If the question does not meet the criteria, briefly explain why."

Figure 3: GPT-4o filter prompt for TextBookReasoning.

864 To construct a more challenging and reliable benchmark for hard-to-verify tasks, we employ the
 865 **TextBookReasoning** benchmark. The following criteria were used to filter and refine the dataset for
 866 the evaluation:

868 **1. Pass-through Math Verification Filter**

869 The initial step in filtering was to ensure that the answers in the dataset did not pass the
 870 `math_verify` check, ensuring that the questions and answers involved a certain level of
 871 complexity or ambiguity that would make them challenging for standard verifiers.

872 **2. Llama 3.3-70B Instruct Model for Natural Reasoning**

873 The dataset was further refined by using the `Llama 3.3-70b-instruct` model to answer
 874 natural reasoning prompts. Only the prompts for which Llama could not provide an answer
 875 were kept for further evaluation. This step ensured that the dataset included questions that
 876 required more advanced reasoning abilities, beyond the capabilities of standard models.

877 **3. GPT-4 as the Final Filter**

878 Finally, GPT-4 was used to filter out questions that still met the criteria of being complex
 879 and hard-to-verify. GPT-4's ability to handle nuanced reasoning ensured that only the most
 880 challenging prompts remained. The prompt is shown as Figure 3

881 This process ultimately resulted in a refined set of approximately **750** prompts suitable for hard-to-
 882 verify task evaluation.

884 **Prompt Template for Hard-to-Verify Tasks Evaluation** The evaluation of student answers to
 885 these prompts is based on the following template, which uses GPT-4 to compare the student's answer
 886 against the ground truth:

888 **Math Question Selection Criteria** The following prompt was used to select math questions suitable
 889 for evaluating a math model. The criteria for question selection are outlined below:

890 **A.2.4 HARD-TO-VERIFY PROMPT**

892 We set the hard-to-verify evaluation prompt as shown in Figure 4. This template is designed to
 893 assess whether a student's response matches the reference answer without re-solving the question.
 894 By explicitly instructing GPT-4o to perform equivalence checking rather than problem solving, the
 895 protocol minimizes leakage of additional reasoning and focuses purely on correctness judgment.
 896 The structured format, including the question, ground truth, and student answer, ensures consistency
 897 across evaluations and reduces prompt sensitivity, making it suitable for benchmarking performance
 898 on hard-to-verify tasks.

900 **Prompt Template for hard-to-verify tasks evaluation via GPT-4o.**

```

901
902 User: ### Question: {question}
903
904     ### Ground Truth Answer: {ground_truth}
905
906     ### Student Answer: {student_answer}
907
908     For the above question, please verify if the student's answer is equivalent to the ground
909     truth answer.
910     Do not solve the question by yourself; just check if the student's answer is equivalent to
911     the ground truth answer.
912     If the student's answer is correct, output "Final Decision: Yes". If the student's answer
913     is incorrect, output "Final Decision: No".
914
915     Assistant:
916
917

```

916 Figure 4: Prompt Template for hard-to-verify tasks evaluation via GPT-4o.

918
 919 **Table 7: Comparison with model-based verifiers on Qwen-3-4B-Base.** Results are pass@1 aver-
 920 aged over 8 seeds across verifiable and hard-to-verify reasoning tasks. HERO consistently outperforms
 921 both General Reasoner and Qwen2.5-7B-Instruct under all regimes.

	Easy-to-verify tasks					Hard-to-verify tasks		
	MATH500	AMC	Minerva	Olympiad	Avg. \uparrow	HVM	TBR	Avg. \uparrow
Training with easy-to-verify samples								
General Reasoner	82.8	62.8	43.8	45.0	58.6	62.8	54.0	58.4
Qwen2.5-7B-Instruct	83.7	58.1	43.1	47.4	58.1	68.0	57.1	62.5
HERO (Ours)	85.4	69.4	44.5	48.9	62.0	73.2	59.3	66.3
Training with hard-to-verify samples								
General Reasoner	78.6	56.3	38.7	41.5	53.8	59.6	48.4	54.0
Qwen2.5-7B-Instruct	78.2	60.5	41.8	41.7	55.6	57.2	51.7	54.5
HERO (Ours)	80.0	63.4	40.7	43.1	56.8	59.0	54.0	56.5
Training with mixed samples								
General Reasoner	81.4	61.2	43.2	46.5	58.1	64.0	54.0	59.0
Qwen2.5-7B-Instruct	80.4	63.1	40.5	48.0	58.0	68.8	57.7	63.3
HERO (Ours)	81.6	64.4	42.1	47.0	58.8	71.4	56.7	64.1

A.3 MORE EXPERIMENTS

952 **Figure 5: RL training curves on MATH500 (easy-to-verify training).** Left: mean rule-based
 953 reward computed by `math_verifier`. Right: validation accuracy on MATH500.

954
 955
 956 **RL training curves comparison between HERO and baseline.** Figure 5 compares the RL dy-
 957 namics of the rule-based baseline and HERO when both are trained only on easy-to-verify samples
 958 and evaluated on MATH500. On the left, we plot the mean rule-based reward (computed by
 959 `math_verifier`) over training steps. The rule-based baseline starts with a relatively low reward and
 960 increases slowly, ending around 0.63 after 300 steps. In contrast, HERO climbs much faster and
 961 reaches a substantially higher plateau (around 0.75–0.78), consistently staying above the baseline
 962 throughout training. On the right, we show the corresponding validation accuracy on MATH500.
 963 The rule-based baseline improves from 0.692 at step 0 to 0.802 at step 300, following a gradual up-
 964 ward trend. HERO starts slightly higher at 0.728, quickly jumps above 0.80 by step 30, peaks around
 965 0.852 at step 120, and then fluctuates in the 0.84–0.86 range (e.g., 0.864 at step 240 and 0.842 at
 966 step 300). Overall, HERO not only achieves a higher final accuracy, but also maintains a persistent
 967 4–8 point advantage over the rule-based baseline across most of training, indicating that the hybrid
 968 reward improves both convergence speed and the entire training trajectory on easy-to-verify data.

969 **Hybrid reward surpasses model-based verifiers across all the three regimes.** To further assess
 970 whether hybrid reward learning can outperform existing model-based verifiers, we compare HERO
 971 against two representative systems: General Reasoner, a frozen 1.5B verifier model that provides
 972 binary correctness judgments (Ma et al., 2025), and Qwen2.5-7B-Instruct, a large instruction-tuned

972 verifier (Yang et al., 2024b). As shown in Table 2, HERO consistently achieves higher accuracy than
 973 both model-based verifiers under all training regimes. When trained with verifiable samples, HERO
 974 attains an average score of 62.0, outperforming General Reasoner (58.4) and Qwen2.5-7B-Instruct
 975 (62.5) while maintaining greater stability across datasets such as MATH500 (85.4 versus 82.8 and
 976 83.7) and AMC (69.4 versus 62.8 and 58.1). In the hard-to-verify regime, the advantage becomes
 977 more pronounced: HERO reaches 56.5, exceeding General Reasoner (54.0) and Qwen2.5-7B-Instruct
 978 (54.5), demonstrating that hybrid reward learning provides more reliable supervision even when
 979 symbolic verification is unreliable and model-based signals are uncertain. In the mixed setting,
 980 which combines both verifiable and open-ended samples, HERO again leads with 64.1, surpassing
 981 General Reasoner (59.0) and Qwen2.5-7B-Instruct (63.3). These results highlight that integrating
 982 verifier-anchored and reward-model signals yields not only better accuracy but also more consistent
 983 generalization across regimes, outperforming larger model-based verifiers despite using no additional
 984 model parameters or external training data. The improvement underscores that structured
 985 reward integration, rather than sheer verifier scale, is the key to effective and robust reasoning optimi-
 986 zation.

987 **The proposed method does not rely on**
 988 **large reward models.** A natural ques-
 989 tion is whether stronger supervision re-
 990 quires scaling up the reward model itself.
 991 To isolate this factor, we replace the 7B
 992 reward model in HERO with a much larger
 993 72B reward model, keeping the verifier
 994 and all training configurations fixed. As
 995 shown in Table 8, the larger reward model
 996 yields only a marginal improvement on verifiable tasks (62.8 vs. 62.0) and even slightly underper-
 997 forms on hard-to-verify tasks (71.4 vs. 73.2). This confirms that the gains of HERO primarily come
 998 from its hybrid reward formulation—through stratified normalization and variance-aware weight-
 999 ing—rather than from reward model scaling. Practically, this means that HERO can achieve strong
 1000 results with compact reward models, offering better efficiency and deployability without sacrificing
 1001 accuracy.

1002 **Naively combining rule-based rewards**
 1003 **and reward signals from reward model-
 1004 ing does not perform well.** A direct in-
 1005 tegration of rule-based verification and re-
 1006 ward signals from reward modeling, with-
 1007 out proper structural alignment, often dis-
 1008 rupts the stability of training. As shown in
 1009 Table 9, when the weight of the rule-based
 1010 reward is varied ($\alpha = 0.1, 0.5$, and 0.9),
 1011 the combined reward performance remains
 1012 suboptimal, with scores ranging from 55.9
 1013 to 58.7 for verifiable tasks and 60.2 to 61.4
 1014 for hard-to-verify tasks. Specifically, when the continuous signals from the reward model are naively
 1015 combined with binary correctness checks, the resulting reward can become noisy or misaligned with
 1016 the intended notion of correctness. Without explicitly constraining the continuous scores within the
 1017 rigid framework of the verifier’s correctness criteria, reward-model outputs can be distorted by im-
 1018 perfections in the model, diminishing both interpretability and precision in the feedback. Moreover,
 1019 the lack of a safeguard to differentiate true positives from noisy results can lead the model to exploit
 1020 unintended patterns, which may not align with human expectations. As a result, an unrefined fusion
 1021 of these two reward signals can dilute the benefits of both approaches, destabilizing the learning
 1022 process.

1023 **Reward models hack faster on hard-to-verify samples.** Since the reward model (RM) is trained
 1024 on outcome-based verifiable samples (Liu et al., 2024), it is important to examine its behavior across
 1025 datasets with varying levels of verifiability. We evaluate four datasets: DAPO (Yu et al., 2025),
 which is easy to verify; OpenMath Verifiable, which passes the `math_verifier`; OpenMath Non-

Table 8: Impact of reward model size: a larger RM provides in HERO no remarkable gain over the HERO with smaller RM .

Reward model	Easy-to-verify	Hard-to-verify
AceMath-RM-7B	62.0	73.2
AceMath-RM-72B	62.8	71.4

Table 9: α represents the weight of the rule-based re-
 ward.

Methods	Easy-to-verify	Hard-to-verify
Reward combine ($\alpha=0.1$)	57.6	60.2
Reward combine ($\alpha=0.5$)	58.7	61.4
Reward combine ($\alpha=0.9$)	55.9	60.4
HERO (Ours)	62.0	73.2

Figure 6: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b) AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

Verifiable, which is harder to verify; and OpenMath Mix Verifiable, which combines both. As shown in Figure 6, the RM rapidly increases the reward mean across all datasets, with the sharpest gains on OpenMath Non-Verifiable and OpenMath Mix Verifiable. For example, on Non-Verifiable data, the reward mean climbs steeply from below 5 to over 30 within the first 100 training steps, and peaks above 40 by step 150. However, MATH500 accuracy collapses shortly after, dropping from around 0.75 at step 50 to below 0.2 by step 100, and effectively to zero by step 150. A similar trend appears on Mix Verifiable: accuracy initially rises to about 0.8 at step 100 but then crashes to nearly zero by step 150, despite the reward mean continuing to rise steadily past 35. In contrast, OpenMath Verifiable shows slower but steadier progress: rewards grow more gradually, and accuracy improves to about 0.8 by step 120 before stabilizing without collapse. DAPO also exhibits stable optimization, with accuracy consistently around 0.75–0.78 as rewards increase moderately. These results highlight a clear mismatch: rapid reward gains on hard-to-verify tasks are not evidence of genuine reasoning improvement, but rather reward hacking that leads to catastrophic accuracy collapse. This illustrates the brittleness of relying solely on dense reward models and motivates hybrid reward frameworks that combine verifier-anchored reliability with the nuance of dense signals.

B QUALITATIVE ANALYSIS

B.1 REWARD MODEL QUALIFICATION ABILITY

To better understand the reliability of reward-model supervision, we analyze its ability to approximate the verifier signal as a binary classification task. We randomly take all the rollouts from one step (the 250 for the verifiable samples training) during the training. Specifically, we treat the reward model’s raw scores as logits and the verifier’s outputs as ground-truth binary labels, then compute AUROC statistics to measure discriminative power.

Figure 7 shows four complementary views. The histogram (top-left) reveals a strong skew toward high AUROC values, with a mean of 0.79 and a median of 0.92, indicating that the reward model often ranks correct responses above incorrect ones. The box plot (top-right) highlights robustness but also exposes several low outliers where the model fails to separate classes. The cumulative distribution (bottom-left) confirms that roughly 80% of groups achieve AUROC above 0.7. Finally, the performance categorization (bottom-right) shows that 56.8% of groups reach “excellent” AUROC (≥ 0.9), while only 13.7% fall into the “random/poor” range (0.4–0.6).

These results suggest that although the reward model is not perfect, it provides reliable ranking signals in the majority of cases. Importantly, this supports the use of dense reward signals to refine learning within verifier-defined groups: while the verifier anchors correctness, the reward model adds discriminative power that helps differentiate among responses of varying quality. The presence of failure cases further justifies our hybrid framework, which uses stratified normalization to bound reward-model signals within verifier groups, ensuring stability even when AUROC is low.

Figure 7: Reward model qualification ability on mixed groups: (a) distribution of AUROC scores, (b) AUROC box plot, (c) cumulative distribution of AUROC, and (d) AUROC performance categories.

B.2 QUALITATIVE ANALYSIS OF RULE-BASED VERIFIERS

Table 10 highlights representative behaviors of rule-based and model-based verifiers. `math.py` is overly strict, failing on minor formatting variations such as boxing or punctuation (Rows 1–2), while `math.verify.py` improves recall through normalization. The Math-Verify library handles simple surface mismatches but struggles with structural differences like disjoint ranges or multiple valid tuples (Rows 4–5). In contrast, `o3` is the most permissive: it credits partially correct sets (Row 3) and parametric families with renamed symbols (Row 6), which increases coverage but risks over-crediting. These cases illustrate the precision–recall trade-off: rule-based verifiers enforce exact symbolic correctness but miss semantically equivalent or partially correct answers, whereas model judges offer flexibility at the cost of reliability. This motivates our hybrid design: HERO anchors dense reward signals to rule-based correctness, ensuring robustness to format variance, while leveraging model- or RM-derived scores to provide graded feedback on harder cases involving subsets, orderings, or parametric equivalence.

C LIMITATIONS AND FUTURE WORK

While HERO demonstrates clear advantages over RM-only and verifier-only training, several limitations remain. First, the method depends on the availability and reliability of rule-based verifiers: when these are brittle or domain-mismatched, the partitioning into correctness groups may be biased, weakening the benefits of stratified normalization. **More broadly, our method is explicitly designed for settings where a rule-based signal and a dense reward-model signal can be combined; when such a verifier is unavailable or highly unreliable, the current HERO formulation is not directly applicable.** Second, because the reward model is trained primarily on outcome-based, verifiable data, it can become miscalibrated on harder, non-verifiable formats, and although our framework constrains its scores, residual bias or spurious correlations may still be exploited. Third, HERO introduces sensitivity to hyperparameters such as (α, β) and the weighting slope k , and increases training overhead due to concurrent verifier and RM calls. Finally, evaluation on non-verifiable tasks often relies on LLM-as-judge protocols, which introduce prompt sensitivity and annotation noise. Future work will focus on improving verifier coverage with hybrid symbolic–learned approaches, incorporating process-level supervision to capture reasoning quality beyond final answers, and developing adap-

1134	Ground truth	Model Prediction	math.py	math_verify.py(verl)	Math_verify library	o3
1135	$f(x) = 2x$	$\boxed{f(x) = 2x}$	\times	\checkmark	\checkmark	\checkmark
1136	$(6, 3), (9, 3), (9, 5), (54, 5)$	$\boxed{(6,3)}, \boxed{(9,3)}, \boxed{(9,5)}, \boxed{(54,5)}$	\times	\checkmark	\checkmark	\checkmark
1137	$(0, 1, 1), (0, -1, -1), (1, 0, 1),$ $(-1, 0, -1), (1, 1, 0), (-1, -1, 0),$ $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),$ $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), \dots$	Final Answer: $\boxed{(1,1,0)}, \boxed{(-1,-1,0)}, \boxed{\{1/\sqrt{3},1/\sqrt{3},1/\sqrt{3}\}}, \boxed{(-1/\sqrt{3},-1/\sqrt{3},-1/\sqrt{3})},$	\times	\times	\times	\checkmark
1138	$(0, 11, 12, 13, 14, -2, -1, 0, 1, 2)$	Final Answer: $\boxed{\{-2,-1,0,1,2\}}$ and $\boxed{\{10,11,12,13,14\}}$	\times	\checkmark	\times	\checkmark
1139	$(1, 7, 103, 105), (3, 5, 101, 107)$	Final Answer: Two possible lists are $\boxed{\{3,5,101,107\}}$ and $\boxed{\{1,7,103,105\}}$	\times	\checkmark	\times	\checkmark
1140	$f(x) = ax + b$ (where b is an arbitrary integer, and a is an arbitrary positive integer with $\text{mho}(a)=0$)	Final Answer: $\boxed{f(n)=cn+d}$, where c has no prime factors > 10^{100} and d is any integer	\times	\checkmark	\times	\checkmark
1141						
1142						
1143						
1144						
1145						
1146						
1147						
1148						
1149						
1150						
1151						

Table 10: Examples demonstrating agreement between different math verification tools.

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
tive range and weighting schemes that calibrate dense signals online. These directions can further strengthen the stability and generality of hybrid reward frameworks for reasoning.

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
Mathematical reasoning benchmarks are a natural first testbed for HERO, as they provide mature, high-precision verifiable rewards (e.g., programmatic checks for final answers) and are widely used in recent RLVR systems such as DeepSeek-R1. For this reason, we intentionally restrict our empirical study to math reasoning, where HERO’s assumptions are well satisfied and comparisons to existing verifier-based RL methods are most meaningful. In contrast, many non-mathematical, open-ended, or multimodal tasks currently lack clear, high-precision rule-based verifiers, making them less aligned with our present problem setting. We therefore do not claim that HERO, as instantiated in this paper, already solves open-ended generation; instead, these tasks remain outside the scope of our experiments. Nonetheless, HERO itself is agnostic to the specific form of r_{rule} : in principle, any structured checker (such as code-execution tests, safety or formatting constraints, or even rubric-guided LLM-as-judge signals) could play this role. Systematically extending HERO to such “soft” verifiers for open-ended and multimodal reasoning, and studying the resulting trade-offs between stability, coverage, and bias, is an important direction for future work.

D THE USE OF LARGE LANGUAGE MODELS(LLM)

In our project, we use LLM for writing polishing.