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Abstract

In partial label learning (PLL), each sample is associated with a group of candidate
labels, among which only one label is correct. The key of PLL is to disambiguate
the candidate label set to find the ground-truth label. To this end, we first construct
a constrained regression model to capture the confidence of the candidate labels,
and multiply the label confidence matrix by its transpose to build a second-order
similarity matrix, whose elements indicate the pairwise similarity relationships of
samples globally. Then we develop a semantic dissimilarity matrix by considering
the complement of the intersection of the candidate label set, and further propagate
the initial dissimilarity relationships to the whole data set by leveraging the local
geometric structure of samples. The similarity and dissimilarity matrices form
an adversarial relationship, which is further utilized to shrink the solution space
of the label confidence matrix and promote the dissimilarity matrix. We finally
extend the proposed model to a kernel version to exploit the non-linear structure
of samples and solve the proposed model by the inexact augmented Lagrange
multiplier method. By exploiting the adversarial prior, the proposed method can
significantly outperform state-of-the-art PLL algorithms when evaluated on 10
artificial and 7 real-world partial label data sets. We also prove the effectiveness
of our method with some theoretical guarantees. The code is publicly available at
https://github.com/Yangfc-ML/DPCLS.

1 Introduction

Partial label learning (PLL) [14, 15, 17] is an emerging weakly supervised learning framework. In
PLL, each sample is associated with a set of candidate labels, among which only one is the ground-
truth label. Different from conventional supervised learning, PLL avoids precisely annotating label
on each sample, which greatly reduces the labeling cost. Accordingly, PLL has been applied to many
real-world scenarios such as automatic image annotation [1, 20], web mining [9], and ecoinformatics
[8].

Formally speaking, let X = Rd be the d-dimensional feature space and Y = {1, 2, ..., q} be the label
space with q labels. Given the partial label training set D = {(xi, Si) | 1 ≤ i ≤ m}, where xi ∈ X
is a d-dimensional feature vector to represent the i-th sample and Si ⊆ Y is the associated candidate
label set, among which only one label is correct. PLL aims to induce a multi-class classifier f :
X → Y from D, which is very challenging as the ground-truth label of a sample is concealed in the
candidate label set.
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The key to solving PLL is label disambiguation, i.e., identifying the ground-truth label of a sample
from its candidate label set. For example, [6, 12] considered the ground-truth label as a latent variable
and identified it through an iterative refining procedure. [3] narrowed the candidate label set through a
sparsity-based self-training procedure. Some works [19, 22, 23] leveraged the similarity relationship
of samples in the feature space to disambiguation, i.e., samples are similar to each other in the
feature space are likely to share the same ground-truth label. Recently, some researches exploited the
label space to achieve label disambiguation [2, 7, 13]. For example, SDIM [2] first built a pairwise
dissimilarity matrix through the candidate label sets, and then maximized the difference of the label
confidence between two samples if their pairwise dissimilarity between them is large according
to the constructed dissimilarity matrix. However, the dissimilarity matrix constructed by SDIM is
predefined and relatively sparse, which depresses its effectiveness.

Realizing the effectiveness of the dissimilarity relationship in PLL, we propose a novel PLL method
named DPCLS (partial label learning with Dissimilarity Propagation guided Candidate Label Shrink-
age). Specifically, we first construct a semantic dissimilarity matrix by considering the complement
of the intersection of the candidate label set, i.e., if two samples do not share any common candidate
labels, they must belong to different classes, and their semantic dissimilarity is large. The above
constructed dissimilarity relationships are still sparse and fixed, we therefore propose to propagate
the initial dissimilarity relationships to the whole data set by leveraging the local geometric structure
of samples, i.e., if two samples are similar to each other in feature space, they are expected to share
the similar dissimilarity codings. Second, to include the enhanced semantic dissimilarity matrix in
label disambiguation, we design a second-order similarity matrix by multiplying the label confidence
matrix with its transpose. Under the ideal condition, the enhanced semantic dissimilarity matrix
and the similarity matrix naturally form an adversarial relationship, i.e., a larger (resp. smaller)
dissimilarity between two samples means a smaller (resp. larger) similarity between them. By
exploiting this adversarial prior, the enhanced dissimilarity matrix can shrink the solution space of
the label confidence matrix, and meanwhile, the similarity matrix induced from the label confidence
matrix also contributes to build a better dissimilarity matrix. We theoretically confirm the above
statement under some general conditions. Furthermore, we extend our method to a kernel version to
model the non-linear structure of samples. The proposed model is finally formulated as a constrained
regression problem with adversarial learning and graph regularization, which is optimized by inexact
augmented Lagrange multiplier (IALM). Extensive experiments on artificial and real-world partial
label data sets demonstrate the effectiveness of the proposed PLL method.

2 The Proposed Method

Basic Model
Let X = [x1, x2, · · · , xm]T ∈ Rm×d denote the feature matrix, where m and d represent the number
of samples and the dimension of features. Y = [y1, y2, · · · , ym]T ∈ {0, 1}m×q represents the partial
label matrix, where q is the number of classes. Moreover, yij = 1 indicates that the j-th label is one
of the candidate labels of the sample xi. Note that in the candidate label set, only one label is correct.

To fulfill PLL, we first build the following constrained regression model

min
W,F
∥XW − F∥2F + λ ∥W∥2F

s.t. F1q = 1m,0m×q ≤ F ≤ Y,
(1)

where F ∈ Rm×q is the label confidence matrix with Fij representing the probability of the j-th
label being the ground-truth label for the i-th sample. W ∈ Rd×q is the coefficient matrix that
maps the feature matrix to the label confidence matrix F. To avoid over-fitting, we impose the
widely-used squared Frobenius norm on W as the regularization term, which is introduced by λ > 0.
1q ∈ Rq and 1m ∈ Rm are two all ones vectors, 0m×q ∈ Rm×q is an all zeroes matrix. The first
constraint F1q = 1m normalizes the label confidence vector for all samples. The second constraint
0m×q ≤ F ≤ Y means each element of F is no less than 0, and no more than the corresponding
element of Y, which implies the ground-truth label of each sample must reside in the candidate label
set and the label confidence of the non-candidate labels must be 0. We initialize the label confidence
matrix as Fij = 1/

∑
j yij if yij=1, otherwise Fij = 0.

By minimizing Eq. (1), we construct a linear regression model that maps the feature space to the
label confidence F. We assume that the mapping from the features to the ground-truth label may
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be easier, while that to the false-positive label residing in the candidate label set is relatively harder.
Accordingly, optimizing Eq. (1) will help disambiguate the candidate labels and produce a preliminary
label confidence matrix by exploring the useful information in the feature space.
Dissimilarity Propagation guided Candidate Label Shrinkage
To further exploit the valuable information in the label space, we first use candidate labels to construct
a dissimilarity matrix D0 ∈ Rm×m, i.e.,

D0ij =

{
1, if yiyT

j = 0

0, otherwise.
(2)

If yiyTj = 0, the i-th sample xi and the j-th sample xj do not share any common candidate labels,
which means they must belong to the different classes. Otherwise, xi and xj have a chance to belong
to the same class. Therefore, D0 indicates the semantic dissimilarity of samples. We then multiply
the label confidence matrix with its transpose to create a similarity matrix termed as FFT, whose
(i, j)-th element indicates the similarity between xi and xj . As the semantic dissimilarity matrix D0

and similarity matrix FFT form an adversarial relationship, i.e., a larger (resp. smaller) element
in D0 implies a smaller (resp. larger) element in FFT, we use this adversarial prior to shrink the
solution space of F by:

min
F

∥∥∥D0 ⊙ FFT
∥∥∥
1
, (3)

where ⊙ denotes the element-wise product of two matrices and || · ||1 represents the l1 norm (i.e.,
the sum of absolute values of all elements in a matrix). Minimizing Eq. (3) ensues that the positive
elements of D0 and FFT will lie in the different locations. Unfortunately, directly minimizing Eq.
(3) cannot help produce a better label confidence matrix F, because D0 is inferred from the candidate
label set, and the (i, j)-th element of D0 is positive only when yiy

T
j = 0, while F is upper bounded

by Y, the (i, j)-th element of FFT is positive only when yiy
T
j ̸= 0. That is the locations of the

positive elements of D0 and FFT are complementary.

To solve this problem, we propose to promote the initial dissimilarity matrix D0 to produce a denser
dissimilarity matrix D ∈ Rm×m by a novel dissimilarity propagation method. Specifically, we
leverage the local geometric structure of samples to enhance D0. Note that each column of D (e.g.,
D.i) can represent the dissimilarity relationships between a sample (e.g., xi) and the other samples.
If two samples xi and xj are close to each other in the feature space, their dissimilarity relationships
(D.i and D.j) should also be similar. To capture the feature similarity, we build a local geometric
matrix S ∈ Rm×m using a radial basis function (RBF) kernel:

Sij =

{
exp(−||xi − xj ||22/σ2), if j ∈ Ni

0, otherwise,
(4)

where j ∈ Ni indicates that xj is a k-nearest neighbor of xi, and σ is a hyper-parameter controlling
the bandwidth of the RBF kernel. Based on S, the dissimilarity propagation guided candidate label
shrinkage module becomes

min
F,D

∥∥∥D⊙ FFT
∥∥∥
1
+

m∑
i,j=1

Sij ∥D.i −D.j∥22

s.t. 0m×m ≤ D ≤ 1m×m,Dij = D0ij , if D0ij = 1.

(5)

The second term makes the highly similar samples in the feature samples share the similar dissimilarity
codings. Moreover, Dij = D0ij if D0ij = 1 means the reliable semantic relationship should be
retained in D. In order to make D a well-defined dissimilarity matrix, each element in D should lie
in the range of [0,1]. Note that in Eq. (5), both F and D are optimization variables. By minimizing
Eq. (5), the enhanced semantic dissimilarity matrix will shrink the solution space of F and at the
same time F will also help promote the quality of D by the adversarial term.
Model Formulation
Taking all the above considerations into account, the proposed model finally becomes:

min
W,F,D

∥XW − F∥2F + λ ∥W∥2F + α
∥∥∥D⊙ FFT

∥∥∥
1
+ βTr(DLDT)

s.t. F1q = 1m,0m×q ≤ F ≤ Y,0m×m ≤ D ≤ 1m×m,Dij = D0ij , if D0ij = 1,
(6)

where L ∈ Rm×m = DS − S is a graph Laplacian matrix, and DS ∈ Rm×m is a diagonal matrix
with the i-th diagonal element DSii =

∑m
j=1 Sij . Tr(·) returns the trace of a matrix. α, β ≥ 0 are

two hyper-parameters to balance different terms. By solving Eq. (6), the semantic dissimilarity is
enhanced by a dissimilarity propagation process, and further utilized to shrink the solution space of
the label confidence matrix by a novel adversarial prior.
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3 Optimization and Setting

We adopt IALM to solve the problem in Eq. (6). To simplify Eq. (6), we introduce an auxiliary
matrix A = D ∈ Rm×m and equivalently rewrite it as

min
W,F,D,A

∥XW − F∥2F + λ ∥W∥2F + α
∥∥∥A⊙ FFT

∥∥∥
1
+ βTr(DLDT)

s.t. F1q = 1m,0m×q ≤ F ≤ Y,D = A,0m×m ≤ A ≤ 1m×m,Aij = D0ij , if D0ij = 1.
(7)

The solution of Eq. (7) can be obtained by solving the following augmented Lagrange equation:

min
W,F,D,A

∥XW − F∥2F + λ ∥W∥2F + α
∥∥∥A⊙ FFT

∥∥∥
1
+ βTr(DLDT) + ⟨Φ,D−A⟩+ µ

2
∥D−A∥2F

s.t. F1q = 1m,0m×q ≤ F ≤ Y,0m×m ≤ A ≤ 1m×m,Aij = D0ij , if D0ij = 1,
(8)

where Φ ∈ Rm×m is the Lagrange multiplier matrix, µ ≥ 0 is a penalty parameter, and ⟨·, ·⟩ returns
the inner product of two matrices. We can optimize Eq. (8) by solving the following subproblems
alternatively and iteratively.

1) W subproblem is formulated as

min
W
∥XW − F∥2F + λ ∥W∥2F , (9)

Kernel Extension
The linear mapping in Eq. (9) may fail to model the nonlinear relationship. Therefore, we extend
the above model to a kernel-based non-linear version. Let ϕ(·) : Rd → Rh denote the feature
transformation that maps the origin feature space X to a higher dimensional Hilbert space ϕ(X).
According to the Representer Theorem, W can be expressed as a linear combination of the input
features, i.e., W = ϕ(X)TH, where H ∈ Rm×q stores the combination weights. Then, we
have ϕ(X)W = KH, where K = ϕ(X)ϕ(X)T ∈ Rm×m is the kernel matrix and each element
Kij = K(xi, xj). Finally, the nonlinear version is represented as:

min
H,b

∥∥∥KH+ 1mbT − F
∥∥∥2

F
+ λTr(HTKH), (10)

where b ∈ Rq is the bias term. When the first derivatives of H and b reach 0, Eq. (10) is solved, i.e.,

H =

(
K+ λIm×m −

1m1T
mK

m

)−1 (
F− 1m1T

mF

m

)
,b =

1

m

(
FT1m −HTKT1m

)
, (11)

where Im×m ∈ Rm×m denotes an identity matrix. In the experiments, we use the RBF kernel as the
kernel function, i.e., K(xi, xj) = exp(−||xi − xj ||22/σ2), for our method and the compared ones.
2) F subproblem is written as

min
F
∥F−P∥2F + α

∥∥∥A⊙ FFT
∥∥∥
1

s.t. F1q = 1m,0m×q ≤ F ≤ Y,
(12)

where P = KH+1mbT ∈ Rm×q is the output matrix of the model. Eq. (12) can be formulated as a
standard quadratic programming (QP) problem, and solved by any QP tools. The detailed derivation
process can be found in Section A of the supplementary file.
3) D subproblem is represented as

min
D

βTr(DLDT) +
µ

2

∥∥∥∥D−A+
Φ

µ

∥∥∥∥2

F

. (13)

Eq. (13) reaches the minimum when its first-order derivative with respect to D vanishes, leading to

D = (µA−Φ)(2βL+ µIm×m)−1. (14)

4) A subproblem is expressed as

min
A

α
∥∥∥A⊙ FFT

∥∥∥
1
+

µ

2

∥∥∥∥D−A+
Φ

µ

∥∥∥∥2

F

s.t. 0m×m ≤ A ≤ 1m×m,Aij = D0ij , if D0ij = 1.

(15)

Eq. (15) can solved element-wisely, i.e.,

A = T
(
T1

(
T0

(
µD+Φ− αFFT

µ

)))
, (16)
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Algorithm 1 The Pseudo Code of the Proposed Method
Input: D: the partial label training set; λ, α, β, k: the parameters of model; x̂: an unseen test sample
Output: ŷ: the predicted label for sample x̂

1: Construct the dissimilarity matrix D0 according to Eq. (2) and the kernel matrix K = [K(xi, xj)]m×m

2: Initialize D = A = Φ = 0m×m, µ = 10−4

3: while not converged do
4: Update H and b by Eq. (11)
5: Update F by solving Eq. (12)
6: Update D by Eq. (14)
7: Update A by Eq. (16)
8: Update Φ, µ by Eq. (17)
9: Check the convergence condition ∥D−A∥∞ < 10−8

10: end while
11: Return the predicted label ŷ according to Eq. (18).

where T , T1, T0 are three thresholding operators in elementwise, i.e., T (Cij) = 1, if D0ij = 1,
T1(Cij) := min(1,Cij), T0(Cij) := max(0,Cij).

Finally, the Lagrangian multiplier matrix and µ are updated by{
Φ← Φ+ µ(D−A)

µ ← min(1.1µ, µmax),
(17)

where µmax=1010 is a predefined upper bound for µ.
Model Prediction
Given an unseen test example x̂ , our method predicts its label by

ŷ = argmax
k

m∑
i=1

HikK(x̂, xi) + bk. (18)

The overall pseudo code of our method is summarized in Algorithm 1, where it stops when
∥D−A∥∞ < 10−8, where ∥ · ∥∞ denotes the infinity norm of a matrix.
Hyper-parameter Settings of Our Method
Parameter λ is used to control the model complexity. A too large (resp. small) value of λ will lead to
under-fitting (resp. over-fitting). Therefore, we set λ=0.05 for our method. Parameters α and β are
used to control the importance of the adversarial term and dissimilarity propagation term respectively.
According to a number of experiments, we fix β = 0.001 and select α from {0.001, 0.01}. Parameter
k controls the number of k-nearest neighbors. Following the previous works [16, 22], we set k=10.
Computational Complexity Analysis
The computational complexity of Algorithm 1 is mainly determined by steps 4-7. Specifically, steps
4 and 6 involve the inversion of m×m matrices with the complexity of O(m3). Step 5 solves a QP
problem, leading to the complexity of O(m3q3). Step 7 can be efficiently solved by linear thresh-
olding operations with the complexity of O(m2). Therefore, the overall computational complexity
of Algorithm 1 in each iteration is O(2m3 + m2 + m3q3). More analysis about computational
complexity can be found in Section A of the supplementary file.

4 Theoretical Analysis

Theorem 1. The square loss function ℓ of DPCLS can be rewritten as ∥FG +N−XW∥2F , where
FG ∈ Rm×q and N ∈ Rm×q are ground-truth label matrix and false-positive label matrix respec-
tively. Let H = W ×N represent the family of functions for DPCLS, where the linear function
(W,N) ∈ H. Suppose the complexity of W and the sparsity of N are upper bounded by ϵ1 and ϵ2
respectively, i.e., ∥W∥F ≤ ϵ1 and ∥N∥1 ≤ ϵ2. The Rademacher complexity of DPCLS with square
loss ℓ is upper bounded as follow

R̂S(ℓ ◦ H) ≤
2
√
2q(
√
mqϵ1 + ϵ2)

m
. (19)

Lemma 1. [11] Denote H be a family of functions and S = {x1, x2, ..., xm} is a set of fixed samples.
Loss function ℓ is upper bounded by Θ ≥ 0, then for any δ > 0, with probability at least 1− δ, for
all h ∈ H we have

L(h) ≤ LS(h) + R̂S(ℓ ◦ H) + 3Θ

√
log(2/δ)

2m
, (20)
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where L(h) and LS(h) are generalization error and empirical error to h respectively.

The detailed proof of Theorem 1 is given in the Section B of the supplementary file. According to
Lemma 1 and Theorem 1, we have

L(h) ≤ LS(h) +
2
√
2q(
√
mqϵ1 + ϵ2)

m
+ 3Θ

√
log(2/δ)

2m
. (21)

The Rademacher complexity is bounded by the sum of the complexity of classifier W and the sparsity
of false-positive label matrix N. When the number of false-positive labels is small, which leads to a
better generalization performance. Moreover, more training samples (a larger m) will also promote
the generalization performance.

Theorem 2. Denote F ∈ {0, 1}m×q and D ∈ {0, 1}m×m the partial label matrix and the to be
optimized semantic dissimilarity matrix. Let FG and D̂ be the ground-truth label matrix and the
ground-truth dissimilarity matrix. Suppose the smallest eigenvalue of D̂ and L are λD̂ and λL

respectively (λD̂ ≥ 0, λL ≥ 0). Let
∥∥∆̄F

∥∥
F

be the average distance of each sample between FG

and F (i.e.,
∥∥∆̄F

∥∥
F
= 1

m ∥FG − F∥F ) and
∥∥∆̄D

∥∥
F

be the average distance of each corresponding

position between D̂ and D (i.e.,
∥∥∆̄D

∥∥
F
= 1

m2

∥∥∥D̂−D
∥∥∥
F

). Then we have

∥∥∆̄F

∥∥
F
≤ q

λD̂

∥∥∥D− D̂
∥∥∥
F
+

2
√
q

λD̂

√
m

∥∥∥D̂∥∥∥
F
,

∥∥∆̄D

∥∥
F
≤ 1

λLm

∥∥∥FFT − FGFG
T
∥∥∥
F
+

2

λLm
∥L∥F +

1

λLm
.

(22)

The proof can be found in Section B of the supplementary file. From Theorem 2, we can find that
as the number of samples m increases, the upper bound of

∥∥∆̄F

∥∥
F

decreases, which indicates that
more training samples will push the partial label matrix to be close to the ground-truth one and
achieve better PLL performance. Moreover, a smaller error between D and D̂ implies a smaller
upper bound of

∥∥∆̄F

∥∥
F

, which indicates a better dissimilarity matrix can help achieve a better label
matrix. Similarly, a larger number of training samples will reduce the distance between D and D̂,
and a smaller error between F and FG implies a smaller upper bound of

∥∥∆̄D

∥∥
F

, suggesting a
better dissimilarity matrix. As a summary, we prove that, under some general assumptions, a better
dissimilarity matrix will help produce a better label matrix, and vice versa. Therefore, the rationality
of the proposed adversarial prior is theoretically proved.

5 Experiment and Analysis

To demonstrate the effectiveness of the proposed model, we compared DPCLS with eight shallow
PLL algorithms, which were configured by the suggested parameters in the literature, i.e., CLPL [1],
PL-SVM [12], PL-KNN [5], PL-DA [18], IPAL [22], AGGD [16], PL-CLA [13], SDIM [2]. Those
methods were evaluated on 10 synthetic data sets and 7 real-world data sets, whose details can be
found in Section C of the supplementary file. Three deep learning PLL methods RC [4], PRODEN
[10], and CAVL [21] were also evaluated as comparison on the real-world data sets. Ten runs of
50%/50% random train/test splits were performed on each data set, and the average classification
accuracy and the standard deviation were recorded.

5.1 Performance on Synthetic Data Sets

Following the widely-used partial label data generation protocol [1], 10 synthetic data sets were
used to generate artificial partial label data sets. Specifically, three parameters r, p, ϵ control the
generation process, i.e., p controls the proportion of partial label examples, r controls the number of
false-positive labels, and ϵ controls the probability of a specific false-positive label co-occurs with the
ground-truth label.

Fig. 1 illustrates the classification accuracy of six data sets (Glass, Steel, Ecoli, Yeast, Optdigits
and Usps) as the co-occurring probability ϵ varies from 0.1 to 0.7 with step-size 0.1 (p=1, r=1). In
general, the proposed model clearly exceeds the compared methods with different ϵ, and achieves the
highest accuracy in 33 out of 36 cases. Moreover, as ϵ increases, it is more difficult to distinguish the
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(c) Ecoli (p=1, r=1)
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(e) Optdigits (p=1, r=1)
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(f) Usps (p=1, r=1)

Figure 1: The classification accuracy of each algorithm as ϵ increases from 0.1 to 0.7 with p=1, r=1.

Table 1: Classification accuracy (mean±std) of each comparing algorithm on four synthetic data sets as
r increases from 3 to 6. •/◦ indicates whether the accuracy of DPCLS is statistically superior/inferior
to the compared algorithm according to the pairwise t-test at 0.05 significance level.

Data set r DPCLS CLPL PL-SVM PL-KNN PL-DA IPAL AGGD PL-CLA SDIM

Isolet

3 .912±.008 .604±.023• .668±.034• .695±.025• .782±.020• .793±.018• .898±.011• .880±.007• .917±.007
4 .899±.011 .594±.023• .577±.057• .661±.026• .768±.022• .772±.017• .880±.013• .855±.011• .891±.015
5 .880±.012 .535±.015• .543±.070• .668±.018• .751±.016• .790±.010• .855±.017• .845±.018• .849±.017•
6 .858±.017 .525±.020• .452±.062• .645±.020• .733±.020• .776±.011• .824±.015• .824±.015• .824±.018•

Orl

3 .807±.040 .780±.037 .262±.034• .247±.033• .347±.061• .715±.064• .764±.054 .735±.055• .744±.044•
4 .776±.049 .743±.031 .196±.052• .216±.030• .287±.042• .665±.065• .730±.065 .673±.066• .692±.067•
5 .736±.041 .704±.032 .158±.029• .189±.027• .247±.040• .594±.045• .677±.067• .607±.049• .622±.056•
6 .669±.042 .660±.045 .114±.024• .159±.025• .218±.029• .536±.047• .646±.073 .545±.050• .556±.053•

Amazon

3 .062±.007 .058±.007 .041±.006• .021±.004• .022±.004• .060±.009 .056±.010 .055±.008• .047±.006•
4 .057±.007 .055±.007 .043±.005• .020±.005• .021±.005• .055±.009 .054±.009 .053±.007 .045±.005•
5 .055±.009 .050±.007 .043±.005• .020±.005• .022±.005• .050±.009 .047±.008• .044±.009• .037±.007•
6 .048±.009 .042±.007 .029±.007• .020±.003• .020±.003• .046±.009 .043±.008 .041±.006• .032±.006•

Bookmark

3 .337±.007 .248±.007• .208±.013• .115±.017• .178±.014• .286±.012• .333±.009 .291±.009• .305±.010•
4 .326±.008 .244±.009• .190±.020• .121±.028• .170±.013• .282±.010• .325±.007 .284±.011• .300±.011•
5 .323±.009 .240±.010• .169±.019• .116±.025• .189±.051• .278±.009• .319±.005 .278±.010• .298±.011•
6 .322±.009 .240±.010• .148±.013• .103±.029• .186±.043• .270±.009• .316±.007 .276±.009• .295±.007•

false-positive label and the ground-truth label, and PLL becomes harder. Accordingly, the accuracies
of all the PLL algorithms decrease, but the performance advantage of the proposed method over the
compared ones becomes more salient such as on Glass and Ecoli, which proves that our method is
skilled in more challenging PLL tasks.

Table 1 reports the classification accuracies of different algorithms as r varies from 3 to 6 on four
data sets (Isolet, Orl, Amazon, Bookmark) with more than 20 classes. Our method ranks first in
11 out of 12 cases, and ranks second in the remaining case. The improvements brought by our
method are significant. For example, on Isolet with r = 6, our method improves the classification
accuracy of the best comparison from 0.824 to 0.858. According to the pairwise t-test, our method
significantly surpasses the compared ones in 103 out of 128 cases. Moreover, different methods have
different characteristics and may fit different data sets. For example, CLPL performs satisfactorily on
Orl and Amazon, but badly on Isolet and Bookmark; AGGD is good at Bookmark, but not at Orl.
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Table 2: Classification accuracy (mean±std) of each algorithm on real-world partial label data sets. •/◦
indicates whether the accuracy of DPCLS is statistically superior/inferior to the compared algorithm
according to the pairwise t-test at 0.05 significance level. “S” and “D” indicate shallow and deep PLL
methods respectively.
Type Method FG-NET FG-NET3 FG-NET5 Lost MSRCv2 BirdSong Malagasy Soccer Player Yahoo! News

S

DPCLS .077±.009 .436±.017 .586±.011 .770±.024 .557±.014 .751±.009 .676±.004 .532±.002 .626±.003
CLPL .058±.009• .383±.016• .538±.017• .665±.019• .371±.010• .610±.012• .675±.016 .497±.002• .544±.004•

PL-SVM .052±.010• .357±.022• .511±.026• .578±.078• .310±.060• .682±.023• .564±.061• .500±.002• .546±.006•
PL-KNN .038±.005• .287±.022• .433±.019• .334±.021• .391±.023• .657±.014• .573±.007• .493±.002• .383±.003•
PL-DA .042±.004• .166±.050• .255±.070• .309±.069• .416±.022• .690±.013• .606±.008• .495±.003• .397±.004•
IPAL .052±.006• .347±.015• .510±.016• .610±.020• .494±.024• .722±.006• .621±.017• .530±.005 .618±.007•

AGGD .075±.010 .423±.016 .568±.018• .702±.024• .477±.019• .722±.014• .593±.050• .527±.003• .616±.004•
PL-CLA .074±.011 .424±.020 .571±.015• .696±.021• .470±.016• .722±.012• .654±.005• .525±.003• .606±.004•

SDIM .073±.009 .423±.022 .568±.019• .736±.023• .475±.016• .724±.012• .643±.007• .524±.003• .607±.004•

D
RC .072±.009 .391±.012• .488±.020• .740±.026• .446±.019• .715±.007• .664±.004• .532±.004 .620±.003•

PRODEN .071±.009 .415±.016• .567±.025• .712±.032• .430±.019• .704±.013• .665±.017• .528±.004• .620±.003•
CAVL .071±.006 .365±.020• .488±.021• .747±.060• .444±.013• .695±.017• .668±.039 .510±.004• .628±.004

Table 3: Win/tie/loss counts on the classification performance of DPCLS against each comparing
algorithm on all data sets. D-PLL indicates the summary of deep learning PLL methods RC,
PRODEN and CAVL. (I), (II) indicate the summaries on synthetic data sets and on real-world data
sets respectively. “Total” denotes the summary on all the data sets.

CLPL PL-SVM PL-KNN PL-DA IPAL AGGD PL-CLA SDIM D-PLL
(I) 44/8/0 51/1/0 52/0/0 47/5/0 46/6/0 23/29/0 38/14/0 30/22/0 –
(II) 8/1/0 9/0/0 9/0/0 9/0/0 8/1/0 7/2/0 7/2/0 7/2/0 21/6/0

Total 52/9/0 60/1/0 61/0/0 56/5/0 54/7/0 30/31/0 45/16/0 37/24/0 21/6/0

Different from them, the proposed method produces excellent performance on all the evaluated data
sets, suggesting its robustness to different data sets.

Table 3 (row (I)) reports win/tie/loss counts between DPCLS and eight comparing algorithms on the
synthetic data sets according to the pairwise t-test at the significance level of 0.05, where we can find
that DPCLS statistically outperforms other algorithms in 79.6% cases (331 out of 416) and none of
the algorithms can beat DPCLS significantly.

5.2 Performance on Real-world Data Sets

Real-world data sets were collected from various tasks and domains. As the average size of the
candidate label set of FG-NET is large, which will cause low classification accuracy on the test
set. Following [2, 16] we employed the mean absolute error (MAE) to further calculate two extra
evaluation indicators MAE3 and MAE5 on FG-NET, i.e., the test examples are considered to be
correctly classified if the difference between the predicted age and the ground-truth age is no more
than 3/5 years.

Table 2 demonstrates the classification accuracies of different methods on the real-world data sets.
It is obvious that our method ranks first in all cases when compared with shallow PLL algorithms.
Moreover, according to the pairwise t-test, our method statistically outperforms PL-SVM, PL-KNN
and PL-DA on all real-world data sets and statistically surpasses AGGD, PL-CLA and SDIM on six
data sets except FG-NET. Furthermore, compared with the best comparisons, our method improves
the classification accuracy from 0.494 to 0.557 on MSRCv2 and from 0.747 to 0.770 on Lost.

We also compare the classification accuracies of our method with three deep learning PLL methods
RC, PRODEN, CAVL on the real-world data sets. Our method ranks first on six the data sets except
Yahoo! News. Specifically, according to the pairwise t-test, our method statistically outperforms
RC, PRODEN and CAVL on three real-world data sets (Lost, MSRCv2 and BirdSong). Furthermore,
compared with the best comparisons of deep leraning PLL methods, our method improves the
classification accuracy from 0.446 to 0.557 on MSRCv2 and from 0.715 to 0.751 on BirdSong.
Therefore, we can conclude that our method shows competitive performance compared with the deep
learning PLL methods.
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Table 4: Ablation study of our method on the real-world partial label data sets.
FG-NET Lost MSRCv2 BirdSong Malagasy Soccer Player Yahoo! News

DPCLS .077±.009 .770±.024 .557±.014 .751±.009 .676±.004 .532±.002 .626±.003
DPCLS-LM .067±.009• .652±.023• .357±.009• .577±.012• .587±.014• .492±.002• .447±.004•
DPCLS-KE .068±.009• .701±.023• .388±.014• .595±.014• .674±.009 .495±.002• .463±.004•
DPCLS-DP .073±.010 .687±.027• .466±.018• .721±.014• .612±.011• .524±.003• .604±.004•
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Figure 2: Visual comparison of the similarity matrix and the semantic dissimilarity matrix on data
set Ecoli (p=1, r=1, ϵ=0.8). (a), (d) Ideal similarity matrix and semantic dissimilarity matrix; (b),
(e) Initial similarity matrix FFT and semantic dissimilarity matrix D0; (c), (f) The similarity matrix
FFT and the dissimilarity matrix D produced by DPCLS. The brighter color indicates a larger value.

Table 3 (row (II)) presents the win/tie/loss counts of the proposed method against the compared
ones on real-world data sets according to the pairwise t-test at significance level of 0.05. On all the
real-world data sets, DPCLS achieves significantly superior performance in 85.9% cases, and gets
comparable performance in the remaining cases against the comparing algorithms. Taking both the
synthetic data sets and real-world data sets into account, our method accomplishes significantly better
performance in 80.8% cases, which indicates the excellent classification ability of our method.

5.3 Further Analysis

Visualization Fig. 2 visually compares the ideal, the original and the enhanced similarity matrix and
semantic dissimilarity matrices on data set Ecoli (p=1, r=1, ϵ=0.8). Compared with the ideal similarity
matrix, the value of each element in the original similarity matrix FFT is relatively small with many
incorrect connections. Compared with the ideal dissimilarity matrix, the original dissimilarity matrix
D0 is relatively sparse, and many positive elements are missed in D0. On the contrary, the similarity
matrix and the dissimilarity matrix produced by DPCLS become denser, which are quite close to the
ideal ones. Especially, when checking the areas highlighted by the red rectangle boxes, DPCLS can
effectively recover the similarity relationship between samples in FFT, and many positive elements
missed by D0 have been recovered by our method. The visual comparison illustrates that our method
can produce much higher-quality similarity and dissimilarity matrices, which is useful to find a
high-quality label confidence matrix F and promote the performance of PLL.
Ablation Study In Table 4, we conduct an ablation study on the real-world data sets to check the
necessity of the involved terms of our method. Specifically, DPCLS-LM denotes DPCLS without
Dissimilarity Propagation and Kernel Extension, and DPCLS-KE and DPCLS-DP indicate DPCLS
without Kernel Extension and without Dissimilarity Propagation respectively. From Table 4, we
can find that both the kernel extension and the dissimilarity propagation are helpful in improving
classification accuracy and taking both of them into account is the best choice.

6 Conclusion

In this paper, we have presented a novel PLL method. Specifically, we first construct a similarity
matrix based on the multiplication of the label confidence matrix and its transpose. Then, we develop
a dissimilarity matrix by exploiting the label space, and further utilize the local geometric structure
of the samples to enhance the dissimilarity matrix, i.e., propagating the initial semantic dissimilarity
relationships to the whole data set. The similarity and dissimilarity matrices form an adversarial
relation, and the proposed model takes advantage of this novel adversarial prior to shrink the solution
space of the label confidence matrix, which contributes to find the correct label in the candidate label
set. Extensive experiments and comparisons on artificial and real-world partial label data sets have
validated the effectiveness of our approach.
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