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Figure 1. Constraining diffusion models to operate within the representational space of the target quantity can substantially im-
prove convergence speed. Ground truth and estimated optical flow for frame 0 in the KITTI dataset, visualized across four different
architectures trained for an increasing number of steps. GA-DDVM (ours) produces realistic optical flow as early as 50,000 steps into
training by constraining the diffusion pipeline to learn only rotations and scalings of 2D vector fields.

Abstract

Diffusion models are ubiquitous in generative modeling and001
their prevalence in structured prediction tasks is increasing.002
The denoising diffusion vision model (DDVM), for example,003
achieves state-of-the-art accuracy on tasks such as monoc-004
ular depth and optical flow estimation. We introduce GA-005
DDVM, a modified version of DDVM working in Geometric006
Algebra (GA) that includes a geometric prior to constrain007
diffusion for faster and more accurate optical flow estima-008
tion. We constrain diffusion in two key ways: (i) we restrict009
the types of objects learned by the pipeline to 2D vector010
fields, (i.e., optical flows), and (ii) we limit the operations011
performed by the network layers on these objects to scal-012
ing and rotations. GA-DDVM demonstrates substantial im-013
provements over the baseline DDVM that emerge early in014
training and persist across all checkpoints: at 600k train-015
ing steps, GA-DDVM reduces the endpoint error (EPE) on016
the KITTI dataset by 76.3% and reduces the KITTI Fl-all017
metric from 76.8% to 20.1%. The Sintel-clean error and018
Sintel-final errors similarly drop from 11.4 to 3.38, and from019
11.7 to 4.46, respectively. By embedding geometric struc-020
ture directly into the diffusion process, GA-DDVM shows021
that incorporating domain priors into generative models022
can yield substantially faster convergence with minimal ad-023

ditional complexity in network architecture. This opens up 024
promising directions for structured prediction tasks across 025
domains where geometric constraints are inherent. 026

1. Introduction 027

Diffusion models have become the leading approach for 028
a wide range of generative tasks, including image and 029
video synthesis [18, 19], 3D molecular structure generation 030
[65, 66], text-to-image translation [55, 56], and virtual en- 031
vironment generation [36, 51]. 032

Despite their versatility, diffusion models have several 033
drawbacks: they are computationally expensive, require 034
larger and more diverse datasets compared with alternatives, 035
converge slowly, and lack interpretability due to their multi- 036
step stochastic nature [15, 64]. 037

We address these limitations with a unified and concep- 038
tually simple strategy. We focus on optical flow estimation, 039
building on the DDVM pipeline from [57], and introduce 040
GA-DDVM. The premise is straightforward: if the goal 041
is to estimate 2D vector fields, such as optical flow, then 042
the diffusion process should reason in terms of 2D vectors. 043
In other words, models should be constrained in terms of 044
what they learns, i.e., 2D vector fields, and how they learn, 045
i.e., through operations that are geometrically meaningful 046
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in this domain, such as scaling and rotations in 2D. Our047
contributions are as follows:048

049

• We introduce the first diffusion pipeline that operates050
within the framework of Geometric Algebra, providing051
a simple yet powerful geometric prior for optical flow es-052
timation.053

• By constraining the training process to focus exclusively054
on 2D vector fields, we achieve significantly faster con-055
vergence, reducing the training end-point error (EPE)056
from 17.0 with DDVM to 3.99 with GA-DDVM in just057
50,000 steps.058

• As a result, we significantly reduce training time and ex-059
tract more information from fewer data, enabling accu-060
rate diffusion even with limited computational resources061
or data.062

• By working explicitly in 2D space, inputs, outputs, activa-063
tions, weights and biases can all be visualized as objects064
or operations in 2D space, enabling interpretability.065

Embedding both data and architecture within a con-066
sistent framework provided by Geometric Algebra of-067
fers a simple yet powerful strategy for designing diffu-068
sion pipelines that are fast-converging, interpretable, and069
grounded in the geometry of the problem.070

2. Related Work071

Optical flow estimation. Optical flow estimation has pro-072
gressed from classical variational and local methods to073
modern deep learning approaches. Early algorithms such074
as Horn–Schunck [20] and Lucas–Kanade [32] framed the075
problem as an optimization task based on assumptions076
like brightness constancy and spatial smoothness. To ad-077
dress larger displacements, multi-scale strategies [2, 3]078
and coarse-to-fine warping schemes [4] were developed.079
Feature-based approaches, including SIFT Flow [31] and080
DeepFlow [63], improved robustness to appearance changes081
by leveraging dense descriptors and explicit matching costs.082

The advent of deep learning began with FlowNet [14],083
which demonstrated that convolutional networks can learn084
to predict dense flow directly from image pairs. Subse-085
quent models such as SpyNet [52], PWC-Net [60], Lite-086
FlowNet [21], and IRR-PWC [22] integrated classical prin-087
ciples—pyramidal representations, warping, and cost vol-088
umes—into efficient neural architectures. RAFT [62] fur-089
ther improved accuracy through dense correlation volumes090
and recurrent refinement, achieving state-of-the-art re-091
sults. More recent developments explore unsupervised [24,092
35], self-supervised [23], and transformer-based frame-093
works [67, 69], reflecting a shift toward combining geomet-094
ric reasoning with learned representations.095

Throughout this evolution, the integration of domain096
knowledge, such as smoothness priors, multi-scale struc-097
ture, and geometric constraints, has remained central to098

effective optical flow estimation. 099
100

Diffusion models. Diffusion models are a class of gener- 101
ative methods, initially introduced through denoising score 102
matching and stochastic differential equations [18, 58, 59]. 103
These models generate data by reversing a gradual process 104
where noise is added to inputs until they become indistin- 105
guishable from pure noise. In computer vision, diffusion- 106
based architectures have demonstrated remarkable success 107
in tasks such as image generation, editing, and synthesis 108
[9, 10, 37, 50, 68]. 109

The Denoising Diffusion Vision Model (DDVM) [57] 110
extends diffusion models to dense prediction tasks such 111
as monocular depth and optical flow estimation. Unlike 112
conventional regression-based approaches, DDVM frames 113
these tasks probabilistically, modeling dense outputs as 114
samples from a learned distribution conditioned on input 115
frames. This probabilistic formulation enables the model to 116
resolve inherent ambiguities and produce robust estimates 117
even in challenging scenarios such as in the presence of 118
occlusions, where classical heuristics often fail. A second 119
key distinction lies in DDVM’s simplicity: it eliminates the 120
need for problem-specific choices in the model architecture 121
and hand-crafted heuristics that have historically accumu- 122
lated in dense prediction pipelines. Instead, it offers a uni- 123
fied, clean, task-agnostic architecture applicable across do- 124
mains. 125

Although DDVM marks a significant and scalable 126
advance toward general-purpose structured prediction in 127
vision, its computational demands remain high, making it 128
impractical for real-time optical flow estimation. 129

130

Geometric Algebra (GA) networks. GA networks are a 131
class of hypercomplex neural networks that apply the math- 132
ematical framework of Clifford (or Geometric) Algebra to 133
represent and process geometric relationships more effec- 134
tively [5, 6, 38, 39, 54, 71]. GA extends linear algebra 135
by providing a unified system for representing scalars, vec- 136
tors, complex numbers, quaternions, and higher-order ge- 137
ometric entities. It enables concise formulations of trans- 138
formations such as rotations, reflections, and incidence, 139
which are otherwise cumbersome in standard vector spaces 140
[12, 13, 17, 26, 27, 29]. 141

These properties make GA a versatile tool across do- 142
mains such as molecular modeling [1, 30, 42–44], camera 143
pose estimation [41, 46], rotation estimation [28, 33, 47], 144
3D alignment [34, 49], and modeling of partial differential 145
equations (PDEs) [5, 45, 48, 70]. 146

GA networks are model-agnostic and can be integrated 147
into a wide range of architectures, including ResNets [5, 148
45], graph neural networks [71], neural operators [5, 48], 149
and transformers [6]. These GA-enhanced models preserve 150
the original architectural advantages while enhancing them 151
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with expressive, geometry-aware computations. For ex-152
ample, GA layers can be made steerable and equivariant153
[46, 53, 54, 70], using geometric and sandwich product154
layers. Such layers act as learnable geometric templates,155
enabling networks to capture task-relevant spatial patterns156
within the algebraic framework.157

In practice, building a network in GA requires two sim-158
ple steps:159

• Choose the appropriate algebra. Select a geometric al-160
gebra G(p, q, r) suited to the task, defined by its signa-161
ture and dimension n = p + q + r. This determines the162
multivector structure, available products, and semantics163
of computation. Examples include G(n, 0, 0) for nD Eu-164
clidean space, G(1, n, 0) for nD spacetime, G(n, 1, 0) for165
projective geometry, and G(n+1, 1, 0) for nD conformal166
geometry.167

• Embed data into the algebra. Map inputs into the mul-168
tivector space in a way that aligns with the structure of169
the algebra. The embedding defines how the network in-170
terprets and manipulates geometric information.171

These two steps define the inductive bias and geometric172
reasoning capacity of the model. A well-chosen algebra and173
embedding are key to leveraging the full potential of GA in174
learning systems.175

3. Method176

3.1. Definion of Optical Flow177

Images are maps from X = {0, . . . ,W −1}×{0, . . . ,H−178
1}, where H and W are the images width and height, to179
C = {0, . . . , 2b−1}d, where b is number of bits, and d = 1180
for grayscale, d = 3 for RGB, d = 4 for RGBA (RBG plus181
an alpha channel), etc. X is geometric lattice of integer182
pixel coordinates, and C is the photometric space of integer183
pixel intensities. In this way, an image is a map I:184

I : X → C (1)185

x 7→ c = I(x) (2)186

with domain X ⊂ R2 (a rectangle) and co-domain Rd. We187
refer to the value of c of I at x by the “color” of the pixel188
x = (x, y). The set of such maps I is denoted by I.189

Let I0, I1 : X → C be two images observed at consecu-190
tive time steps τ, τ + δτ , respectively. The optical flow is a191
function192

v : X → R2 (3)193

which assigns a displacement vector v(x) to each pixel194
x ∈ X , representing the apparent motion of that pixel from195
image I0 to image I1. That is,196

v(x) =

(
u(x)
v(x)

)
(4)197

This vector field defines how a point x ∈ X in image 198
I0 moves to its new location in image I1. The brightness 199
constancy assumption is expressed as 200

I0(x) = I1(x+ v(x)), (5) 201

It relies on several assumptions: 202

1. Noise-free imaging: Images are acquired without noise. 203
In reality, sensor noise and quantum effects violate this 204
condition. 205

2. Perfect flow: The flow vector v(x) is exact. In practice, 206
it is estimated from noisy data. 207

3. Lambertian surfaces: Surfaces reflect light uniformly 208
in all directions. This fails for specular, transparent, or 209
glossy materials. 210

4. No occlusions or disocclusions: The scene is equally 211
visible in both frames. Occlusions and disocclusions 212
(due to motion or viewpoint change, for exmaple,) lead 213
to violations of this assumption. 214

The probabilistic approach offered by diffusion models 215
such as DDVM and GA-DDVM is able to account for the 216
uncertainty in the flow vectors by modeling them as random 217
variables. This allows the model to accommodate noise, oc- 218
clusions, and other imperfections in real-world data, provid- 219
ing a more robust solution compared to deterministic meth- 220
ods that rely on more strict assumptions. 221

3.2. Diffusion models 222

Diffusion models, possibly conditioned on an external sig- 223
nal ξ, aim to generate samples from a target distribution 224
over a random variable y ∈ Rd, denoted y ∼ p∞(y). To 225
achieve this, the process begins with a simple prior distri- 226
bution y0 ∼ p0(y), typically a standard multivariate Gaus- 227
sian, from which samples are easily drawn. A parametric 228
transformation F : Θ×Rd → Rd is then applied iteratively 229
to evolve the distribution of y0 toward the target. That is, 230
given a sequence of parameters θ1, . . . , θT , the process de- 231
fines a sequence of random variables: 232

yt = F (θt,yt−1), t = 1, . . . , T, (6) 233

such that the distribution of yT approximates that of y∞. 234
The sequence {yt}Tt=0 forms a stochastic process, i.e. an 235
indexed collection of random variables over Rd. 236

To train diffusion models, a denoising objective is typi- 237
cally used. The training process assumes access to samples 238
(ξ,y) from a joint data distribution, and uses a noise sched- 239
ule γt ∈ [0, 1] to define intermediate noisy versions of y. 240
Specifically, a noisy sample yt is constructed as: 241

yt =
√
γt y +

√
1− γt ϵ, ϵ ∼ N (0, I) (7) 242

The model fθ is trained to predict the added noise ϵ from 243
yt, the conditioning variable ξ, and the timestep t. The loss 244
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Figure 2. Architecture of GA-DDVM, which employs a W-Net backbone composed of two cascaded U-Nets. The first is the Efficient U-Net
from the original DDVM pipeline (with its final convolutional layer removed), comprising 700M parameters. The second is a lightweight,
specialised U-Net with 60M parameters, built from steerable geometric layers [54] operating in the geometric algebra G(2, 0, 0). Its
convolutional layers perform only learnable scalings and rotations on the input flow vectors v̂i(x) using sandwich product layers, promoting
geometric consistency and accelerating convergence.

function minimized during training is:245

E(x,y) E(t,ϵ)

∥∥∥∥∥∥∥fθ
x,

√
γt y +

√
1− γt ϵ︸ ︷︷ ︸

yt

, t

− ϵ

∥∥∥∥∥∥∥
2

2

(8)246

This denoising score matching objective encourages the247
network to recover the noise component, effectively learn-248
ing to reverse the diffusion process.249

In our case, the target variable y is the ground-truth opti-250
cal flow v(x), and the conditioning variable ξ is the pair of251
input images (I0, I1). That is, the diffusion model is trained252
to sample optical flow fields conditioned on the observed253
image pair, as done in [57]. During training, the network254
learns to reconstruct the noise added to v(x) from vt(x)255
thereby learning a generative model for optical flow consis-256
tent with the input frames.257

3.3. The G(2, 0, 0) Space258

The geometric algebra G(2, 0, 0), which we employ for the259
task of optical flow estimation, represents the Clifford al-260
gebra over the 2-dimensional Euclidean space R2 with a261
positive-definite metric. This algebra is generated by an or-262
thonormal basis {e1, e2} that satisfies the relations:263

e21 = e22 = 1, e1e2 = −e2e1.264

The full algebra consists of multivectors, which are formed265
by the linear span of the basis elements:266

G(2, 0, 0) = spanR{1, e1, e2, e12}, where e12 := e1e2.267

The element e12 is a unit bivector and satisfies:268

e212 = −1,269

indicating that it represents the oriented area element in R2,270
analogous to the imaginary unit i in the complex plane. This271

structure allows for concise and geometrically intuitive rep- 272
resentations of transformations such as rotations. 273

In the context of optical flow, we model flow vectors as 274
elements in R2 ⊂ G(2, 0, 0). A flow vector v(x) ∈ R2 is 275
represented as: 276

v(x) = v(x)e1 + u(x)e2, 277

where v and u are the flow components in the e1 and e2 278
directions, respectively. A rotation of the flow vector by an 279
angle θ is performed using the sandwich product, which is 280
defined as: 281

v′ = RvR−1, 282

where R(θ) = cos
(
θ
2

)
− sin

(
θ
2

)
e12 is the rotor represent- 283

ing the rotation, and R−1 = cos
(
θ
2

)
+ sin

(
θ
2

)
e12 is its 284

inverse, which is equal to the reverse of R, denoted R̃. 285

4. Architecture: GA-DDVM 286

Our proposed architecture, GA-DVVM, is shown in Fig. 2. 287
GA-DDVM relies on a W-Net backbone, i.e. two cascaded 288
U-Nets: the first U-Net is the Efficient U-Net of the DDVM 289
pipeline without its last convolutional layer, consisting of 290
about 700 million trainable parameters. The second U-Net 291
is a much smaller, yet specialised network, consisting of 60 292
million parameters. 293

The second U-Net is built from steerable layers of [54], 294
it works in G(2, 0, 0) and its convolutional layers can only 295
perform scaling and rotations, i.e. they implement a learn- 296
able transformation Φθ(·) over input flows v̂i(x) of the 297
type: 298

v̂j(x) = Φθ(v̂i(x)) =

C∑
i=1

αij;θRij;θv̂i(x)R̃ij;θ (9) 299

with αi ∈ R, C the number of channels and Ri rotors in 300
G(2, 0, 0). We also add a vector-valued bias term, bij;θ, to 301
Eq. 9. 302
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Figure 3. Ground truth and estimated optical flow for frame 10 in the KITTI dataset through four different architectures trained for an
increasing number of steps.

Table 1. Error with (a) DDVM (b) DDVM + Corr. Vol. (c) GA-DDVM (ours) (d) GA-DDVM + Corr. Vol. (ours) vs training steps

50k 100k 300k 600k
AF K. EPE K. Fl-all S. cl. S. f. AF K. EPE K. Fl-all S. cl. S. f. AF K. EPE K. Fl-all S. cl. S. f. AF K. EPE K. Fl-all S. cl. S. f.

(a) 17.0 27.4 76.8 11.4 11.7 18.64 26.6 76.8 11.3 11.9 14.8 25.8 29.0 10.9 10.9 13.3 24.9 27.6 11.1 11.4
(b) 18.0 28.1 77.8 11.7 12.0 18.59 27.0 76.7 11.6 11.9 15.1 25.7 29.4 10.9 11.3 12.4 25.3 28.6 10.9 11.3
(c) 3.39 10.1 34.4 4.31 5.33 2.20 8.72 29.0 3.96 4.99 1.06 6.62 22.3 3.38 4.46 0.87 5.89 20.1 3.07 3.82
(d) 2.66 10.3 33.8 4.53 5.53 2.59 8.94 29.4 3.79 4.83 1.66 6.34 21.8 3.21 4.22 0.79 5.80 19.6 3.15 3.91

The input to the second U-Net is the reshaped output of303
the first U-Net: instead of employing a simple convolutional304
layer to map 128 channels down to 2 vector channels of the305
optical flow, as in DDVM, we process them as follows:306

• We remove the last convolutional layer from the Efficient307
U-Net.308

• We reshape the tensor that would have been fed into309
the last convolutional layer, x ∈ RB×128×W×H , into310
x ∈ RB×64×2×W×H . We refer to these as optical flow311
“proposals” v̂(x).312

• We embed the third dimension of size 2 as the vector313
components of a geometric algebra tensor with shape314
RB×64×4×W×H , where the scalar and bivector compo-315
nents are kept to zero. The dimension 4 corresponds to316
the basis elements of G(2, 0, 0), our chosen geometric al-317
gebra, consisting of {1, e1, e2, e12}.318

Inputs to and outputs from the second U-Net module are319
hence 2D vector fields, which can only be scaled and rotated320
by the layers working in G(2, 0, 0). The initial number of321
flow proposals is downsampled to a single channel of opti-322
cal flow, v̂, over which the loss is measured. The intuition323
behind GA-DDVM is similar to that of [44, 46] for 3D pro-324
tein structures and camera poses, respectively: we want our325
network to make informed decisions about the object it is326
estimating by explicitly regressing those objects expressed327
as quantities in GA and by constraining the type of opera-328
tions that can be performed on them.329

4.1. Datasets 330

We evaluate GA-DDVM using AutoFlow for training, and 331
KITTI and Sintel for testing. 332

AutoFlow [61] is a large synthetic dataset (40k samples) 333
designed for optical flow. It features diverse scenes with 334
dense ground truth and is augmented following [11, 62]. 335

KITTI [16] contains real-world driving scenes with 336
ground truth optical flow from stereo LiDAR. It includes 337
challenging outdoor conditions with fast motion, occlu- 338
sions, and lighting variations. 339

Sintel [7] is derived from the animated film “Sintel” 340
and features complex, synthetic scenes with large displace- 341
ments, non-rigid motion, and two variants: clean and final 342
(with post-processing effects). 343

5. Experiments 344

We trained four models: (a) Open-DDVM (b) and Open- 345
DDVM with the 4D correlation volume from [62] as well 346
as (c) our own implementation of GA-DDVM without and 347
(d) with correlation volume. The training parameters are 348
kept identical to [11], with the exception of batch size, low- 349
ered from 16 to 8 for memory limitations, and learning rate, 350
lowered from 10−4 to 10−5 to prevent the gradient from ex- 351
ploding. Just like Open-DDVM, the loss function we min- 352
imise is not that of Eq. 8, but the L2 norm between v, v̂, 353
which we found to work better in practice. We train the 354
models across 4 A100 GPUs for an increasing number of 355
steps namely 50 thousand, 100 thousand, 300 thousand and 356
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Figure 4. Training error (EPE) versus number of training steps for
the four models tested.

600 thousand steps. The end-point error (EPE), defined as357

EPE = ∥v̂(x)− v(x)∥2 , (10)358

is shown in Fig. 4 during training stage on the AutoFlow359
dataset.360

Note how the addition of the correlation volume makes361
little to no difference in the accuracy of the pipeline. How-362
ever, working in G(2, 0, 0) is crucial: the EPE error with363
GA-DDVM reaches single digit pixel accuracy already just364
after 50 thousand iterations. DDVM, on the other hand, lags365
at EPE above 10 even after 600 thousand training steps.366

The same pipelines have been tested over the KITTI and367
Sintel datasets, showing agreement with the trend shown368
during training. In Table 1 we report the EPE error on Aut-369
oFlow during training (labelled “AF”) as shown in Fig. 4, as370
well as the EPE error on KITTI (labelled “K. EPE”) and the371
Fl-all error (labelled “K. Fl-all”). The Fl-all error is shown372
in Eq. 11. It measures the proportion of pixels for which the373
estimated optical flow is significantly incorrect.374

Fl-all =
1

N

N∑
i=1

I(∥v̂i − vi∥ > Θ) (11)375

With Θ a threshold normally chosen to be 3 pixels or 5%,376
error above which a pixel is considered to be an outlier. The377
columns labelled as “S. cl” and “S. f” report the EPE for the378
Sintel clean and Sintel final datasets, respectively. The trend379
is clear: GA-DDVM, by operating on optical flows explic-380
itly, is able to estimate the correct flow after few training381
iteration and generalise over previously unseen scenes.382

Examples of estimated optical flows with the four archi-383
tectures are shown in Figs. 1-3 for the KITTI dataset and in384
Figs. 5-6 for the Sintel dataset. For all four example optical385
flows provided, is it clear to see that GA-DDVM is able to386
pick up early on the intensity of the optical flow, meaning387
it is able to identify which objects in the frame move more388
than others, as well as the colour, meaning it is able to de-389
tect the direction of motion early on. This is not true for390
Open-DDVM and Open-DDVM + correlation volume, for391
which the error is still significant after many iterations.392

Lastly, we trained GA-DDVM and GA-DDVM + cor-393
relation volume for 1M steps and compared them with the394

Table 2. Comparison of different models on Sintel and KITTI
benchmarks. EPE = Endpoint error. Fl-all = Percentage of out-
lier pixels. * = as reported in [57], † = as reported in [11].

Method Pretraining Iteration Sintel Clean (EPE) Sintel Final (EPE) KITTI (Fl-all)

DDVM∗ Palette-style Unknown 2.04 2.55 16.59%
Open-DDVM† (305k) - 305k 2.96 3.97 20.38%
Open-DDVM† (900k) - 900k 2.77 3.76 18.57%
Open-DDVM + Corr. Vol.† - 305k 2.98 3.85 19.04%
GA-DDVM (ours) - 1M 2.89 3.99 18.70%
GA-DDVM + Corr. Vol. (ours) - 1M 2.87 3.88 18.44%

results reported in [57] and [11], as shown in Table 2. GA- 395
DDVM slightly outperforms Open-DDVM on KITTI but 396
performs similarly on Sintel. However, this may be due to 397
differences in training setups: Open-DDVM used different 398
batch sizes and learning rates. Since diffusion models are 399
sensitive to such hyperparameters, we expect GA-DDVM 400
to show similar gains when trained under the same condi- 401
tions, as suggested by Table 1. 402

Moreover, GA-DDVM is based on the Open-DDVM ver- 403
sion of DDVM and, like Open-DDVM, does not outperform 404
the original DDVM. This is partly because DDVM bene- 405
fits from palette-style pretraining, which gives it an advan- 406
tage over models like Open-DDVM and GA-DDVM that 407
are trained from scratch. 408

6. Discussion 409

The faster convergence of GA-DDVM stems from the struc- 410
ture of its second, constrained U-Net, which aligns well 411
with the geometry of optical flow denoising in diffusion 412
models. We discuss the main points below. 413

Task-Aligned Inductive Bias. By restricting the net- 414
work to rotations and scalings, GA-DDVM provides induc- 415
tive bias that reflects the two main distortion in optical flow, 416
i.e. directional and magnitude noise. At each timestep t, the 417
model learns to denoise a noisy input vt into the clean flow 418
v0, which typically differs by an angle and scale. Rotor lay- 419
ers (Eq. 9) directly apply these corrections, focusing model 420
capacity on the most relevant transformations. 421

Efficient Hypothesis Space. Convolutional layers, such 422
as those in DDVM’s U-Net, constrain the hypothesis space 423
by enforcing translation equivariance via local connectiv- 424
ity and weight sharing. This inductive bias reduces sample 425
complexity and enhances generalization. Sandwich prod- 426
uct layers, based on geometric algebra rotors, further re- 427
strict this space to transformations aligned with the underly- 428
ing symmetries of the data—such as rotations—thereby en- 429
abling more physically meaningful representations and im- 430
proved generalization capacity on the most relevant trans- 431
formations [8]. 432

Avoiding Spurious Minima. Rotor constraints elimi- 433
nate non-geometric transformations (e.g., shear) that might 434
fit training data but generalize poorly. This narrows the 435
search space to physically plausible solutions, promoting 436
monotonic convergence and better generalization. 437
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Figure 5. Ground truth and estimated optical flow for frame 160 in the Sintel dataset through four different architectures trained for an
increasing number of steps.

Fewer Parameters and Better Conditioning. Each438
rotor is determined by a single angle. This parameter439
efficiency reduces overfitting and improves optimization.440
Moreover, rotors are unit-norm and represent orthogonal441
transformations, avoiding issues with poorly conditioned442
matrices and unstable gradients [54].443

Whether adjusting direction or magnitude, the optimal444
transformation at any timestep into the diffusion pipeline is445
a rotation and scaling:446

v̂ = αR(θ)v̂t, (12)447

where α = ∥v0∥/∥v̂t∥ and R(θ) rotates v̂t into alignment448
with v0. Rotor layers can express this precisely, with the449
denoising function lying in:450

Frot = {f : v 7→ αRvR̃}, (13)451

a subset of the general linear function space452

Flin = {f : v 7→ Wv}, (14)453

enabling faster, targeted optimization.454
Decoupled Gradients. The gradients of the loss with re-455

spect to the network parameters, specifically, the rotor angle456
ϕ and the scaling factor α, influence orthogonal aspects of457
the predicted flow field: direction and magnitude, respec-458
tively. This property simplifies the optimization landscape.459
Below, we derive the gradients of the loss to illustrate this.460

The loss we aim to minimize is the squared error between461
the predicted flow v̂ and the ground truth v0:462

L = ∥v̂ − v0∥2. (15)463

The predicted flow is computed via a rotor-based trans-464
formation:465

v̂ = αRϕuR̃ϕ, (16)466

where Rϕ = cos(ϕ/2) + sin(ϕ/2)e1e2 is a rotor in467
G(2, 0, 0) corresponding to a rotation by an angle ϕ, and468

R̃ϕ is its reverse. In 2D, this is equivalent to a rotation of 469
the input vector u ∈ R2 by angle ϕ, giving: 470

v̂ = αRϕu, (17) 471

where Rϕ ∈ R2×2 is the rotation matrix: 472

Rϕ =

[
cosϕ − sinϕ
sinϕ cosϕ

]
. (18) 473

Let rϕ = Rϕu. The loss then becomes: 474

L = ∥αrϕ − v0∥2. (19) 475

We first compute the gradient with respect to α: 476

∂L
∂α

=
∂

∂α
(αrϕ − v0)

T
(αrϕ − v0) (20) 477

= 2(αrϕ − v0)
T rϕ (21) 478

= 2α∥rϕ∥2 − 2vT
0 rϕ. (22) 479

Let γ denote the angle between the predicted flow v̂ and 480
the ground truth v0. Then: 481

vT
0 rϕ = ∥v0∥∥rϕ∥ cos(γ) (23) 482

so the gradient simplifies to: 483

∂L
∂α

= 2α∥rϕ∥2 − 2∥v0∥∥rϕ∥ cos(γ) (24) 484

Next, we compute the gradient with respect to the rotor 485
angle ϕ, which controls the direction of the predicted flow: 486

∂L
∂ϕ

= 2α(αrϕ − v0)
T dRϕ

dϕ
u, (25) 487

where the derivative of the rotation matrix is: 488

dRϕ

dϕ
=

[
− sinϕ − cosϕ
cosϕ − sinϕ

]
(26) 489

This expression captures how rotating the input by ϕ 490
changes alignment with the target vector v0. In summary: 491
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Figure 6. Ground truth and estimated optical flow for frame 500 in the Sintel dataset through four different architectures trained for an
increasing number of steps.

∂L
∂α

∝ α− ∥v0∥
∥rϕ∥

cos(γ) (27)492

493
∂L
∂ϕ

∝ ∥v0∥∥u∥ sin(γ) (28)494

where γ is the angular error between v̂ and v0. Eq. 27495
depends only on the difference in magnitude, scaled by the496
cosine of the angle γ between prediction and ground truth.497
Similarly, Eq. 28 depends only on the angular misalignment498
between prediction and ground truth, it does not involve α499
directly.500

7. Conclusions501

We introduced GA-DDVM, the first reported diffusion502
pipeline to partially operate within Geometric Algebra503
(GA), aimed at improving optical flow estimation. By504
embedding data and transformations directly in GA,505
GA-DDVM constrains both the representation (2D vec-506
tor fields) and the transformations applied (scaling and507
rotation), allowing the network to focus its capacity508
on physically meaningful variations. Built on a W-Net509
backbone with GCAN layers, GA-DDVM demonstrates510
a substantial reduction in training overhead: it achieves511
strong optical flow predictions, capturing both magnitude512
and direction, within just 50,000 training steps, using513
default hyperparameters and without any pretraining.514
This suggests that GA-DDVM can significantly reduce515
the sample and compute complexity of training diffusion516
models for geometric tasks. Preliminary comparisons517
show it outperforms the open DDVM implementation518
under identical conditions. We anticipate that aligning the519
training schedule (e.g., increasing batch size and learning520
rate) to match that of Open-DDVM will further enhance521
performance. Ultimately, GA-DDVM offers a promising522
path toward more efficient and cost-effective training of523
diffusion-based vision models by embedding inductive524
biases directly into the network structure.525

526

Limitations. An important limitation of GA-DDVM 527
is its slower training time, up to 2× slower compared to 528
DDVM. This is due to the current tensor-based implemen- 529
tation of GA, as seen in [5, 25, 40]. This overhead is a func- 530
tion purely of the implementation and not intrinsic to the 531
method; it is widely reported in the literature and is consid- 532
ered the trade-off for the improved convergence speed and 533
inductive bias offered by geometric structure. Note, how- 534
ever, that sampling time remains identical to that of non-GA 535
diffusion models. 536

Another limitation is the lack of a more extensive train- 537
ing strategy; we did not explore pretraining nor a wide range 538
of hyperparameters or training schedules, which limits the 539
strength of comparative evaluations to previously reported 540
results. 541

Future work. This work serves as a proof of concept, 542
introducing the first diffusion pipeline in GA for structured 543
prediction. Future research could extend this framework to 544
a wide range of tasks, including, but not limited to, monoc- 545
ular depth estimation, surface normals, 3D motion, and 546
broader applications such as PDE solvers or protein mod- 547
eling, fields where data can be naturally embedded as geo- 548
metric primitives or multivectors. 549

Another possible direction is the joint estimation of mul- 550
tiple correlated quantities within a unified GA-based ar- 551
chitecture, enabling more robust and efficient multi-task 552
learning (e.g., depth and optical flow as scalar and vector 553
components of a G(2, 0, 0) multivector in an unsupervised 554
regime). 555

GA networks have the potential to play a key role 556
in geometrically principled diffusion models, offering 557
significantly faster convergence by aligning learning 558
with the symmetries and constraints of the problem 559
in a strikingly simple yet mathematically rigorous way. 560

561
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