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Figure 1. Constraining diffusion models to operate within the representational space of the target quantity can substantially im-
prove convergence speed. Ground truth and estimated optical flow for frame 0 in the KITTI dataset, visualized across four different
architectures trained for an increasing number of steps. GA-DDVM (ours) produces realistic optical flow as early as 50,000 steps into
training by constraining the diffusion pipeline to learn only rotations and scalings of 2D vector fields. Code can be found here.

Abstract

Diffusion models are ubiquitous in generative modeling and
their prevalence in structured prediction tasks is increasing.
The denoising diffusion vision model (DDVM), for example,
achieves state-of-the-art accuracy on tasks such as monoc-
ular depth and optical flow estimation. We introduce GA-
DDVM, a modified version of DDVM working in Geometric
Algebra (GA) that includes a geometric prior to constrain
diffusion for faster and more accurate optical flow estima-
tion. We constrain diffusion in two key ways: (i) we restrict
the types of objects learned by the pipeline to 2D vector
fields, (i.e., optical flows), and (ii) we limit the operations
performed by the network layers on these objects to scal-
ing and rotations. GA-DDVM demonstrates substantial im-
provements over the baseline DDVM that emerge early in
training and persist across all checkpoints: at 600k train-
ing steps, GA-DDVM reduces the endpoint error (EPE) on
the KITTI dataset by 76.3% and reduces the KITTI Fl-all
metric from 76.8% to 20.1%. The Sintel-clean error and
Sintel-final errors similarly drop from 11.4 to 3.38, and from
11.7 to 4.46, respectively. By embedding geometric struc-

ture directly into the diffusion process, GA-DDVM shows
that incorporating domain priors into generative models
can yield substantially faster convergence with minimal ad-
ditional complexity in network architecture. This opens up
promising directions for structured prediction tasks across
domains where geometric constraints are inherent.

1. Introduction

Diffusion models have become the leading approach for
a wide range of generative tasks, including image and
video synthesis [19, 20], 3D molecular structure generation
[66, 67], text-to-image translation [56, 57], and virtual en-
vironment generation [37, 52].

Despite their versatility, diffusion models have several
drawbacks: they are computationally expensive, require
larger and more diverse datasets compared with alternatives,
converge slowly, and lack interpretability due to their multi-
step stochastic nature [15, 65].

We address these limitations with a unified and concep-
tually simple strategy. We focus on optical flow estimation,
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building on the DDVM pipeline from [58], and introduce
GA-DDVM. The premise is straightforward: if the goal
is to estimate 2D vector fields, such as optical flow, then
the diffusion process should reason in terms of 2D vectors.
In other words, models should be constrained in terms of
what they learns, i.e., 2D vector fields, and how they learn,
i.e., through operations that are geometrically meaningful
in this domain, such as scaling and rotations in 2D. Our
contributions are as follows:

• We introduce the first diffusion pipeline that operates
within the framework of Geometric Algebra, providing
a simple yet powerful geometric prior for optical flow es-
timation.

• By constraining the training process to focus exclusively
on 2D vector fields, we achieve significantly faster con-
vergence, reducing the training end-point error (EPE)
from 17.0 with DDVM to 3.99 with GA-DDVM in just
50,000 steps.

• As a result, we significantly reduce training time and ex-
tract more information from fewer data, enabling accu-
rate diffusion even with limited computational resources
or data.

• By working explicitly in 2D space, inputs, outputs, activa-
tions, weights and biases can all be visualized as objects
or operations in 2D space, enabling interpretability.

Embedding both data and architecture within a con-
sistent framework provided by Geometric Algebra of-
fers a simple yet powerful strategy for designing diffu-
sion pipelines that are fast-converging, interpretable, and
grounded in the geometry of the problem.

2. Related Work

Optical flow estimation. Optical flow estimation has pro-
gressed from classical variational and local methods to
modern deep learning approaches. Early algorithms such
as Horn–Schunck [21] and Lucas–Kanade [33] framed the
problem as an optimization task based on assumptions
like brightness constancy and spatial smoothness. To ad-
dress larger displacements, multi-scale strategies [2, 3]
and coarse-to-fine warping schemes [4] were developed.
Feature-based approaches, including SIFT Flow [32] and
DeepFlow [64], improved robustness to appearance changes
by leveraging dense descriptors and explicit matching costs.

The advent of deep learning began with FlowNet [14],
which demonstrated that convolutional networks can learn
to predict dense flow directly from image pairs. Subse-
quent models such as SpyNet [53], PWC-Net [61], Lite-
FlowNet [22], and IRR-PWC [23] integrated classical prin-
ciples—pyramidal representations, warping, and cost vol-
umes—into efficient neural architectures. RAFT [63] fur-
ther improved accuracy through dense correlation volumes

and recurrent refinement, achieving state-of-the-art re-
sults. More recent developments explore unsupervised [25,
36], self-supervised [24], and transformer-based frame-
works [68, 70], reflecting a shift toward combining geomet-
ric reasoning with learned representations.

Throughout this evolution, the integration of domain
knowledge, such as smoothness priors, multi-scale struc-
ture, and geometric constraints, has remained central to
effective optical flow estimation.

Diffusion models. Diffusion models are a class of gener-
ative methods, initially introduced through denoising score
matching and stochastic differential equations [19, 59, 60].
These models generate data by reversing a gradual process
where noise is added to inputs until they become indistin-
guishable from pure noise. In computer vision, diffusion-
based architectures have demonstrated remarkable success
in tasks such as image generation, editing, and synthesis
[9, 10, 38, 51, 69].

The Denoising Diffusion Vision Model (DDVM) [58]
extends diffusion models to dense prediction tasks such
as monocular depth and optical flow estimation. Unlike
conventional regression-based approaches, DDVM frames
these tasks probabilistically, modeling dense outputs as
samples from a learned distribution conditioned on input
frames. This probabilistic formulation enables the model to
resolve inherent ambiguities and produce robust estimates
even in challenging scenarios such as in the presence of
occlusions, where classical heuristics often fail. A second
key distinction lies in DDVM’s simplicity: it eliminates the
need for problem-specific choices in the model architecture
and hand-crafted heuristics that have historically accumu-
lated in dense prediction pipelines. Instead, it offers a uni-
fied, clean, task-agnostic architecture applicable across do-
mains.

Although DDVM marks a significant and scalable
advance toward general-purpose structured prediction in
vision, its computational demands remain high, making it
impractical for real-time optical flow estimation.

Geometric Algebra (GA) networks. GA networks are a
class of hypercomplex neural networks that apply the math-
ematical framework of Clifford (or Geometric) Algebra to
represent and process geometric relationships more effec-
tively [5, 6, 39, 40, 55, 72]. GA extends linear algebra
by providing a unified system for representing scalars, vec-
tors, complex numbers, quaternions, and higher-order ge-
ometric entities. It enables concise formulations of trans-
formations such as rotations, reflections, and incidence,
which are otherwise cumbersome in standard vector spaces
[12, 13, 18, 27, 28, 30].

These properties make GA a versatile tool across do-
mains such as molecular modeling [1, 31, 43–45], camera



pose estimation [42, 47], rotation estimation [29, 34, 48],
3D alignment [35, 50], and modeling of partial differential
equations (PDEs) [5, 46, 49, 71]. In [17], CliffPhys is in-
troduced for the joint estimation of optical flow and depth
estimation.

GA networks are model-agnostic and can be integrated
into a wide range of architectures, including ResNets [5,
46], graph neural networks [72], neural operators [5, 49],
and transformers [6]. These GA-enhanced models preserve
the original architectural advantages while enhancing them
with expressive, geometry-aware computations. For ex-
ample, GA layers can be made steerable and equivariant
[47, 54, 55, 71], using geometric and sandwich product
layers. Such layers act as learnable geometric templates,
enabling networks to capture task-relevant spatial patterns
within the algebraic framework.

In practice, building a network in GA requires two sim-
ple steps:
• Choose the appropriate algebra. Select a geometric al-

gebra G(p, q, r) suited to the task, defined by its signa-
ture and dimension n = p + q + r. This determines the
multivector structure, available products, and semantics
of computation. Examples include G(n, 0, 0) for nD Eu-
clidean space, G(1, n, 0) for nD spacetime, G(n, 1, 0) for
projective geometry, and G(n+1, 1, 0) for nD conformal
geometry.

• Embed data into the algebra. Map inputs into the mul-
tivector space in a way that aligns with the structure of
the algebra. The embedding defines how the network in-
terprets and manipulates geometric information.
These two steps define the inductive bias and geometric

reasoning capacity of the model. A well-chosen algebra and
embedding are key to leveraging the full potential of GA in
learning systems.

3. Method
3.1. Definion of Optical Flow
Images are maps from X = {0, . . . ,W −1}×{0, . . . ,H−
1}, where H and W are the images width and height, to
C = {0, . . . , 2b−1}d, where b is number of bits, and d = 1
for grayscale, d = 3 for RGB, d = 4 for RGBA (RBG plus
an alpha channel), etc. X is geometric lattice of integer
pixel coordinates, and C is the photometric space of integer
pixel intensities. In this way, an image is a map I:

I : X → C (1)
x 7→ c = I(x) (2)

with domain X ⊂ R2 (a rectangle) and co-domain Rd. We
refer to the value of c of I at x by the “color” of the pixel
x = (x, y). The set of such maps I is denoted by I.

Let I0, I1 : X → C be two images observed at consecu-
tive time steps τ, τ + δτ , respectively. The optical flow is a

function
v : X → R2 (3)

which assigns a displacement vector v(x) to each pixel
x ∈ X , representing the apparent motion of that pixel from
image I0 to image I1. That is,

v(x) =

(
u(x)
v(x)

)
(4)

This vector field defines how a point x ∈ X in image
I0 moves to its new location in image I1. The brightness
constancy assumption is expressed as

I0(x) = I1(x+ v(x)), (5)

It relies on several assumptions:
1. Noise-free imaging: Images are acquired without noise.

In reality, sensor noise and quantum effects violate this
condition.

2. Perfect flow: The flow vector v(x) is exact. In practice,
it is estimated from noisy data.

3. Lambertian surfaces: Surfaces reflect light uniformly
in all directions. This fails for specular, transparent, or
glossy materials.

4. No occlusions or disocclusions: The scene is equally
visible in both frames. Occlusions and disocclusions
(due to motion or viewpoint change, for exmaple,) lead
to violations of this assumption.
The probabilistic approach offered by diffusion models

such as DDVM and GA-DDVM is able to account for the
uncertainty in the flow vectors by modeling them as random
variables. This allows the model to accommodate noise, oc-
clusions, and other imperfections in real-world data, provid-
ing a more robust solution compared to deterministic meth-
ods that rely on more strict assumptions.

3.2. Diffusion models
Diffusion models, possibly conditioned on an external sig-
nal ξ, aim to generate samples from a target distribution
over a random variable y ∈ Rd, denoted y ∼ p∞(y). To
achieve this, the process begins with a simple prior distri-
bution y0 ∼ p0(y), typically a standard multivariate Gaus-
sian, from which samples are easily drawn. A parametric
transformation F : Θ×Rd → Rd is then applied iteratively
to evolve the distribution of y0 toward the target. That is,
given a sequence of parameters θ1, . . . , θT , the process de-
fines a sequence of random variables:

yt = F (θt,yt−1), t = 1, . . . , T, (6)

such that the distribution of yT approximates that of y∞.
The sequence {yt}Tt=0 forms a stochastic process, i.e. an
indexed collection of random variables over Rd.
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Figure 2. Architecture of GA-DDVM, which employs a W-Net backbone composed of two cascaded U-Nets. The first is the Efficient U-Net
from the original DDVM pipeline (with its final convolutional layer removed), comprising 700M parameters. The second is a lightweight,
specialised U-Net with 60M parameters, built from steerable geometric layers [55] operating in the geometric algebra G(2, 0, 0). Its
convolutional layers perform only learnable scalings and rotations on the input flow vectors v̂i(x) using sandwich product layers, promoting
geometric consistency and accelerating convergence.

To train diffusion models, a denoising objective is typi-
cally used. The training process assumes access to samples
(ξ,y) from a joint data distribution, and uses a noise sched-
ule γt ∈ [0, 1] to define intermediate noisy versions of y.
Specifically, a noisy sample yt is constructed as:

yt =
√
γt y +

√
1− γt ϵ, ϵ ∼ N (0, I) (7)

The model fθ is trained to predict the added noise ϵ from
yt, the conditioning variable ξ, and the timestep t. The loss
function minimized during training is:

E(x,y) E(t,ϵ)

∥∥∥∥∥∥∥fθ
x,

√
γt y +

√
1− γt ϵ︸ ︷︷ ︸

yt

, t

− ϵ

∥∥∥∥∥∥∥
2

2

(8)

This denoising score matching objective encourages the
network to recover the noise component, effectively learn-
ing to reverse the diffusion process.

In our case, the target variable y is the ground-truth opti-
cal flow v(x), and the conditioning variable ξ is the pair of
input images (I0, I1). That is, the diffusion model is trained
to sample optical flow fields conditioned on the observed
image pair, as done in [58]. During training, the network
learns to reconstruct the noise added to v(x) from vt(x)
thereby learning a generative model for optical flow consis-
tent with the input frames.

3.3. The G(2, 0, 0) Space
The geometric algebra G(2, 0, 0), which we employ for the
task of optical flow estimation, represents the Clifford al-
gebra over the 2-dimensional Euclidean space R2 with a
positive-definite metric. This algebra is generated by an or-
thonormal basis {e1, e2} that satisfies the relations:

e21 = e22 = 1, e1e2 = −e2e1.

The full algebra consists of multivectors, which are formed
by the linear span of the basis elements:

G(2, 0, 0) = spanR{1, e1, e2, e12}, where e12 := e1e2.

The element e12 is a unit bivector and satisfies:

e212 = −1,

indicating that it represents the oriented area element in R2,
analogous to the imaginary unit i in the complex plane. This
structure allows for concise and geometrically intuitive rep-
resentations of transformations such as rotations.

In the context of optical flow, we model flow vectors as
elements in R2 ⊂ G(2, 0, 0). A flow vector v(x) ∈ R2 is
represented as:

v(x) = v(x)e1 + u(x)e2,

where v and u are the flow components in the e1 and e2
directions, respectively. A rotation of the flow vector by an
angle θ is performed using the sandwich product, which is
defined as:

v′ = RvR−1,

where R(θ) = cos
(
θ
2

)
− sin

(
θ
2

)
e12 is the rotor represent-

ing the rotation, and R−1 = cos
(
θ
2

)
+ sin

(
θ
2

)
e12 is its

inverse, which is equal to the reverse of R, denoted R̃.

4. Architecture: GA-DDVM
Our proposed architecture, GA-DVVM, is shown in Fig. 2.
GA-DDVM relies on a W-Net backbone, i.e. two cascaded
U-Nets: the first U-Net is the Efficient U-Net of the DDVM
pipeline without its last convolutional layer, consisting of
about 700 million trainable parameters. The second U-Net
is a much smaller, yet specialised network, consisting of 60
million parameters.
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Figure 3. Ground truth and estimated optical flow for frame 10 in the KITTI dataset through four different architectures trained for an
increasing number of steps.

Table 1. Error with (a) DDVM (b) DDVM + Corr. Vol. (c) GA-DDVM (ours) (d) GA-DDVM + Corr. Vol. (ours) vs training steps. The
four pipeliens have been trained from scratch on AutoFlow and evaluated zero-shot on KITTI and Sintel at the reported checkpoints.

50k 100k 300k 600k
AF K. EPE K. Fl-all S. cl. S. f. AF K. EPE K. Fl-all S. cl. S. f. AF K. EPE K. Fl-all S. cl. S. f. AF K. EPE K. Fl-all S. cl. S. f.

(a) 17.0 27.4 76.8 11.4 11.7 18.6 26.6 76.8 11.3 11.9 14.8 25.8 29.0 10.9 10.9 13.3 24.9 27.6 11.1 11.4
(b) 18.0 28.1 77.8 11.7 12.0 18.6 27.0 76.7 11.6 11.9 15.1 25.7 29.4 10.9 11.3 12.4 25.3 28.6 10.9 11.3
(c) 3.39 10.1 34.4 4.31 5.33 2.20 8.72 29.0 3.96 4.99 1.06 6.62 22.3 3.38 4.46 0.87 5.89 20.1 3.07 3.82
(d) 2.66 10.3 33.8 4.53 5.53 2.59 8.94 29.4 3.79 4.83 1.66 6.34 21.8 3.21 4.22 0.79 5.80 19.6 3.15 3.91

The second U-Net is built from steerable layers of [55],
it works in G(2, 0, 0) and its convolutional layers can only
perform scaling and rotations, i.e. they implement a learn-
able transformation Φθ(·) over input flows v̂i(x) of the
type:

v̂j(x) = Φθ(v̂i(x)) =

C∑
i=1

αij;θRij;θv̂i(x)R̃ij;θ (9)

with αi ∈ R, C the number of channels and Ri rotors in
G(2, 0, 0). We also add a vector-valued bias term, bij;θ, to
Eq. 9.

The input to the second U-Net is the reshaped output of
the first U-Net: instead of employing a simple convolutional
layer to map 128 channels down to 2 vector channels of the
optical flow, as in DDVM, we process them as follows:
• We remove the last convolutional layer from the Efficient

U-Net.
• We reshape the tensor that would have been fed into

the last convolutional layer, x ∈ RB×128×W×H , into
x ∈ RB×64×2×W×H . We refer to these as optical flow
“proposals” v̂(x).

• We embed the third dimension of size 2 as the vector
components of a geometric algebra tensor with shape
RB×64×4×W×H , where the scalar and bivector compo-
nents are kept to zero. The dimension 4 corresponds to
the basis elements of G(2, 0, 0), our chosen geometric al-
gebra, consisting of {1, e1, e2, e12}.
Inputs to and outputs from the second U-Net module are

hence 2D vector fields, which can only be scaled and rotated

by the layers working in G(2, 0, 0). The initial number of
flow proposals is downsampled to a single channel of opti-
cal flow, v̂, over which the loss is measured. The intuition
behind GA-DDVM is similar to that of [45, 47] for 3D pro-
tein structures and camera poses, respectively: we want our
network to make informed decisions about the object it is
estimating by explicitly regressing those objects expressed
as quantities in GA and by constraining the type of opera-
tions that can be performed on them.

4.1. Datasets
We evaluate GA-DDVM using AutoFlow for training, and
KITTI and Sintel for testing. AutoFlow [62] is a large syn-
thetic dataset (40k samples) designed for optical flow. It
features diverse scenes with dense ground truth and is aug-
mented following [11, 63]. KITTI [16] contains real-world
driving scenes with ground truth optical flow from stereo
LiDAR. It includes challenging outdoor conditions with fast
motion, occlusions, and lighting variations. Sintel [7] is de-
rived from the animated film “Sintel” and features complex,
synthetic scenes with large displacements, non-rigid mo-
tion, and two variants: clean and final (with post-processing
effects).

5. Experiments
We trained four models: (a) Open-DDVM (b) and Open-
DDVM with the 4D correlation volume derived from [63]
as well as (c) our own implementation of GA-DDVM with-
out and (d) with correlation volume. The correlation vol-
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Figure 4. Training error (EPE) versus number of training steps for
the four models tested.

ume is a tensor storing similarity scores between features
from two images, which we employed as a prior similalry
to [11]. The training parameters are kept identical to [11],
with the exception of batch size, lowered from 16 to 8 for
memory limitations, and learning rate, lowered from 10−4

to 10−5 to prevent the gradient from exploding. Just like
Open-DDVM, the loss function we minimise is not that of
Eq. 8, but the L2 norm between v, v̂, which we found to
work better in practice. We train the models across 4 A100
GPUs for an increasing number of steps namely 50 thou-
sand, 100 thousand, 300 thousand and 600 thousand steps.
The end-point error (EPE), defined as

EPE = ∥v̂(x)− v(x)∥2 , (10)

is shown in Fig. 4 during training stage on the AutoFlow
dataset.

Note how the addition of the correlation volume makes
little to no difference in the accuracy of the pipeline. How-
ever, working in G(2, 0, 0) is crucial: the EPE error with
GA-DDVM reaches single digit pixel accuracy already just
after 50 thousand iterations. DDVM, on the other hand, lags
at EPE above 10 even after 600 thousand training steps.

The same pipelines have been tested over the KITTI and
Sintel datasets, showing agreement with the trend shown
during training. In Table 1 we report the EPE error on Aut-
oFlow during training (labelled “AF”) as shown in Fig. 4, as
well as the EPE error on KITTI (labelled “K. EPE”) and the
Fl-all error (labelled “K. Fl-all”). The Fl-all error is shown
in Eq. 11. It measures the proportion of pixels for which the
estimated optical flow is significantly incorrect.

Fl-all =
1

N

N∑
i=1

I(∥v̂i − vi∥ > Θ) (11)

With Θ a threshold normally chosen to be 3 pixels or 5%,
error above which a pixel is considered to be an outlier. The
columns labelled as “S. cl” and “S. f” report the EPE for
the Sintel clean and Sintel final datasets, respectively. The
trend is clear: GA-DDVM, by operating on optical flows
explicitly, is able to estimate the correct flow after few train-
ing iteration and generalise over previously unseen scenes.

Similarly to [11], we find that including the correlation vol-
ume has negligible impact on the performance of our GA-
DDVM pipeline. This is likely because the geometric prior
provides a stronger constraint than the correlation volume.

Examples of estimated optical flows with the four archi-
tectures are shown in Figs. 1-3 for the KITTI dataset and in
Figs. 5-6 for the Sintel dataset. For all four example optical
flows provided, is it clear to see that GA-DDVM is able to
pick up early on the intensity of the optical flow, meaning
it is able to identify which objects in the frame move more
than others, as well as the colour, meaning it is able to de-
tect the direction of motion early on. This is not true for
Open-DDVM and Open-DDVM + correlation volume, for
which the error is still significant after many iterations.

Table 2. Comparison of different models on Sintel and KITTI
benchmarks. EPE = Endpoint error. Fl-all = Percentage of out-
lier pixels. * = as reported in [58], † = as reported in [11].

Method Pretraining Iteration Sintel Clean (EPE) Sintel Final (EPE) KITTI (Fl-all)

DDVM∗ Palette-style Unknown 2.04 2.55 16.59%
Open-DDVM† (305k) - 305k 2.96 3.97 20.38%
Open-DDVM† (900k) - 900k 2.77 3.76 18.57%
Open-DDVM + Corr. Vol.† - 305k 2.98 3.85 19.04%
GA-DDVM (ours) - 1M 2.89 3.99 18.70%
GA-DDVM + Corr. Vol. (ours) - 1M 2.87 3.88 18.44%

Lastly, we trained GA-DDVM and GA-DDVM + cor-
relation volume for 1M steps and compared them with the
results reported in [58] and [11], as shown in Table 2. GA-
DDVM slightly outperforms Open-DDVM on KITTI but
performs similarly on Sintel. This is likely due to differ-
ences in training setups: Open-DDVM used different batch
sizes and learning rates. Since diffusion models are sen-
sitive to such hyperparameters, we expect GA-DDVM to
show similar gains when trained under the same conditions,
as suggested by Table 1.

Moreover, GA-DDVM is based on the Open-DDVM ver-
sion of DDVM and, like Open-DDVM, does not outperform
the original DDVM. This is partly because DDVM bene-
fits from palette-style pretraining, which gives it an advan-
tage over models like Open-DDVM and GA-DDVM that
are trained from scratch.

6. Discussion

We argue that the faster convergence of GA-DDVM stems
from the its second, specialized U-Net. We discuss the main
points below.
Task-Aligned Inductive Bias. By restricting the network
to rotations and scalings, GA-DDVM provides inductive
bias that reflects the two main distortion in optical flow, i.e.
directional and magnitude noise. At each timestep t, the
model learns to denoise a noisy input vt into the clean flow
v0, which typically differs by an angle and scale. Rotor lay-
ers (Eq. 9) directly apply these corrections, focusing model
capacity on the most relevant transformations.
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Figure 5. Ground truth and estimated optical flow for frame 160 in the Sintel dataset through four different architectures trained for an
increasing number of steps.

Efficient Hypothesis Space. Convolutional layers con-
strain the hypothesis space by enforcing translation equiv-
ariance. This inductive bias reduces sample complexity and
enhances generalization. Sandwich product layers, based
on GA rotors, further restrict this space to transforma-
tions aligned with the underlying symmetries of the data,
thereby enabling more physically meaningful representa-
tions and improved generalization capacity on the most rel-
evant transformations [8].
Avoiding Spurious Minima. Rotor constraints eliminate
non-geometric transformations (e.g., shear) that might fit
training data but generalize poorly. This narrows the search
space to physically plausible solutions, promoting mono-
tonic convergence and better generalization.
Fewer Parameters and Better Conditioning. Each rotor
is determined by a single angle. This parameter efficiency
reduces overfitting and improves optimization. Moreover,
rotors are unit-norm and represent orthogonal transforma-
tions, avoiding issues with poorly conditioned matrices and
unstable gradients [55].

Whether adjusting direction or magnitude, the optimal
transformation at any timestep into the diffusion pipeline is
a rotation and scaling:

v̂ = αR(θ)v̂t, (12)

where α = ∥v0∥/∥v̂t∥ and R(θ) rotates v̂t into alignment
with v0. Rotor layers can express this precisely, with the
denoising function lying in:

Frot = {f : v 7→ αRvR̃}, (13)

a subset of the general linear function space

Flin = {f : v 7→ Wv}, (14)

enabling faster, targeted optimization.
Decoupled Gradients. The gradients of the loss with re-
spect to the network parameters, specifically, the rotor angle
ϕ and the scaling factor α, influence orthogonal aspects of

the predicted flow field: direction and magnitude, respec-
tively. This property simplifies the optimization landscape.
Below, we derive the gradients of the loss to illustrate this.

The loss we aim to minimize is the squared error between
the predicted flow v̂ and the ground truth v0:

L = ∥v̂ − v0∥2. (15)

The predicted flow is computed via a rotor-based transfor-
mation:

v̂ = αRϕuR̃ϕ, (16)

where Rϕ = cos(ϕ/2) + sin(ϕ/2)e1e2 is a rotor in
G(2, 0, 0) corresponding to a rotation by an angle ϕ, and
R̃ϕ is its reverse. In 2D, this is equivalent to a rotation of
the input vector u ∈ R2 by angle ϕ, giving:

v̂ = αRϕu, (17)

where Rϕ ∈ R2×2 is the rotation matrix:

Rϕ =

[
cosϕ − sinϕ
sinϕ cosϕ

]
. (18)

Let rϕ = Rϕu. The loss then becomes:

L = ∥αrϕ − v0∥2. (19)

We first compute the gradient with respect to α:

∂L
∂α

=
∂

∂α
(αrϕ − v0)

T
(αrϕ − v0) (20)

= 2(αrϕ − v0)
T rϕ (21)

= 2α∥rϕ∥2 − 2vT
0 rϕ. (22)

Let γ denote the angle between the predicted flow v̂ and
the ground truth v0. Then:

vT
0 rϕ = ∥v0∥∥rϕ∥ cos(γ) (23)

so the gradient simplifies to:

∂L
∂α

= 2α∥rϕ∥2 − 2∥v0∥∥rϕ∥ cos(γ) (24)
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Figure 6. Ground truth and estimated optical flow for frame 500 in the Sintel dataset through four different architectures trained for an
increasing number of steps.

Next, we compute the gradient with respect to the rotor
angle ϕ, which controls the direction of the predicted flow:

∂L
∂ϕ

= 2α(αrϕ − v0)
T dRϕ

dϕ
u, (25)

this expression captures how rotating the input by ϕ changes
alignment with the target vector v0. In summary:

∂L
∂α

∝ α− ∥v0∥
∥rϕ∥

cos(γ) (26)

∂L
∂ϕ

∝ ∥v0∥∥u∥ sin(γ) (27)

where γ is the angular error between v̂ and v0. Eq. 26
depends only on the difference in magnitude, scaled by the
cosine of the angle γ between prediction and ground truth.
Similarly, Eq. 27 depends only on the angular misalignment
between prediction and ground truth, it does not involve α
directly.

7. Conclusions
We introduced GA-DDVM, one of the earliest reported dif-
fusion pipelines to operate within Geometric Algebra (GA),
aimed at improving optical flow estimation. By embedding
data and transformations directly in GA, GA-DDVM
constrains both the representation (2D vector fields) and
the transformations applied (scaling and rotation), allowing
the network to focus its capacity on physically meaningful
variations. Built on a W-Net backbone with GCAN
layers, GA-DDVM demonstrates a substantial reduction
in training overhead: it achieves strong optical flow pre-
dictions, capturing both magnitude and direction, within
just 50,000 training steps and without any pretraining.
This suggests that GA-DDVM can significantly reduce
the sample and compute complexity of training diffusion
models for geometric tasks. Preliminary comparisons
show it outperforms the open DDVM implementation
under identical conditions. We anticipate that aligning the

training schedule (e.g., increasing batch size and learning
rate) to match that of Open-DDVM will further enhance
performance. GA-DDVM offers a promising path toward
more efficient and cost-effective training of diffusion-based
vision models by embedding inductive biases directly into
the network structure.

Limitations. An important limitation of GA-DDVM
is its slower training time, up to 2× slower compared to
DDVM. This is due to the current tensor-based implemen-
tation of GA, as seen in [5, 26, 41]. This overhead is purely
a function of the implementation and not intrinsic to the
method; it is a known fact the literature and is considered
the trade-off for the improved convergence speed and in-
ductive bias offered by geometric structure. Sampling time
remains identical to that of non-GA diffusion models. A
more extensive training strategy is due: the lack of pretrain-
ing or hyperparameter sweep limits the strength of compar-
ative evaluations to previously reported results.

Future work. This work serves as a proof of concept,
introducing one of the earliest diffusion pipelines in GA
for structured prediction. Future research could extend this
framework to a wide range of tasks, including monocular
depth estimation, surface normals, 3D motion, and broader
applications such as PDE solvers or protein modeling, fields
where data can be naturally embedded as geometric primi-
tives or multivectors. Another possible direction is the joint
estimation of multiple correlated quantities within a unified
GA-based architecture, enabling more robust and efficient
multi-task learning (e.g., depth and optical flow as scalar
and vector components of G(2, 0, 0), as done in [17]).

GA networks have the potential to play a key role
in geometrically principled diffusion models, offering
significantly faster convergence by aligning learning
with the symmetries and constraints of the problem
in a strikingly simple yet mathematically rigorous way.
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