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ABSTRACT

The rate-distortion function R(D) tells us the minimal number of bits on aver-
age to compress a random object within a given distortion tolerance. A lower
bound on R(D) therefore represents a fundamental limit on the best possible rate-
distortion performance of any lossy compression algorithm, and can help us assess
the potential room for improvement. We make a first attempt at an algorithm for
estimating such a lower bound from data samples, applicable to general memo-
ryless data sources. Based on a dual characterization of R(D) (Csiszár, 1974),
our method solves a constrained maximization problem over a family of functions
parameterized by neural networks. On a 2D Gaussian source, we obtain a lower
bound within 1 bit of the analytical R(D). Our code can be found here.

1 INTRODUCTION AND BACKGROUND

LetX ∈ X be a random variable with distribution PX 1 that represents a memoryless data source, let
Y be the set of lossy representations, and let ρ : X × Y → [0,∞) be a distortion cost function. The
(information) rate-distortion function R(D) is defined as the solution to the optimization problem,

R(D) = inf
PY |X :E[ρ(X,Y )]≤D

I(X;Y ), (1)

where we consider all stochastic transforms PY |X whose expected distortion is within the given
threshold D, and minimize the mutual information between the source X and its reproduced rep-
resentation Y . Rate-distortion theory (Shannon, 1959; Cover, 1999) gives operational meaning to
the above definition as the asymptotic fundamental limit of lossy data compression. In essence,
R(D) delimits the minimal average number of bits (or nats, depending the base of log) needed to
convey i.i.d. samples ofX within average distortionD, for any block code that is allowed arbitrarily
long blocks or high complexity, regardless of its implementation technology. Therefore, the rate-
distortion function, or a lower bound on it, can help analyze how close lossy compression algorithms
are to their theoretical performance limits. If the operational rate and distortion of a compression
algorithm lies far above the R(D) curve (or its lower bound), then we may expect room for further
improvement; otherwise, the algorithm’s rate-distortion performance is already close to theoretically
optimal, so we may better focus our attention on improving other aspects of the algorithm.

AlthoughR(D) has no analytical form in general, it can be computed in principle by solving the con-
vex optimization problem Eq. 1. The mutual information I(X;Y ), however, is typically challenging
to compute, so a tractable upper bound I(X;Y ) ≤ I(X;Y )+KL(PY ‖P̃Y ) = EX [KL(PY |X‖P̃Y )]
is often used instead in the optimization problem. Solving the resulting minimization problem then
leads to upper bounds on R(D), and is the basis of the Blahut–Arimoto algorithm (Arimoto, 1972).
The same mutual information upper bound has also made numerous appearances in machine learn-
ing (Alemi et al., 2017; Poole et al., 2019), notably as the aggregate KL-divergence regularizer in
Variational-Autoencoders (VAEs) (Kingma & Welling, 2013). Traditionally, the set of lossy presen-
tations Y is often a subset of the data space X , in the form of quantization points, and distortion ρ
is fixed. In VAEs and their recent application to learned data compression (Ballé et al., 2017), Y
has the interpretation of a latent space, P̃Y is the prior, and ρ(x, y) = ρ0(x, fθ(y)) corresponds

1Formally, X : Ω → X is a measurable function on an underlying probability space (Ω,A,P), and PX is
the image measure of P under X .
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to the negative log likelihood log pθ(x|y) parameterized by a decoder fθ : Y → X (e.g., pθ(x|y)
is a Gaussian density with mean fθ(y), ρ0 is a squared error), so the distortion ρ is learned. The
Lagrangian EX [KL(PY |X‖P̃Y )] + λE[ρ(X,Y )] then corresponds to the negative ELBO (Kingma
& Welling, 2013) for learning and inference. Using the analytical density of PY |X that optimizes the
Lagrangian (assumed to exist), Huang et al. (2020) sample from this optimal PY |X to compute opti-
mistic upper bounds onR(D) of trained VAEs and other generative models, hinting at their possible
compression performance. Our method is agnostic to the choice of representations Y or distortion ρ,
and can also be extended to compute R(D) lower bounds of trained decoder-based models. Unlike
(Huang et al., 2020), however, we do not assume (or require) a prior distribution P̃Y , and our lower
bound establishes what kind of lossy compression performance is theoretically impossible to obtain.

Lower bounds of R(D), by contrast, have received considerably less attention, potentially because
of difficulty in obtaining them. A variational lower bound of R(D) already appeared in Shannon’s
landmark paper (Shannon, 1948), which was later extended (Berger, 1971) and proved rigorously for
X in a general abstract probability space by Csiszár (1974); we adopt the version in (Kostina, 2016).
The special case of a discrete and known source PX is considered by Chiang & Boyd (2004), who
solve the corresponding (finite-dimensional) dual problem of R(D) by geometric programming.

2 METHOD

2.1 DUAL CHARACTERIZATION OF R(D)

We use the below general characterization ofR(D) in terms of a constrained maximization problem:
Theorem 2.1. (Kostina, 2016) Under basic regularity conditions (e.g., satisfied by a bounded ρ; see
Appendix Sec. A.1), for any distortion tolerance D > Dmin := inf{D : R(D) <∞}, it holds that

R(D) = max
g(x),λ

{E[− log g(X)]− λD} (2)

where the maximization is over g(x) ≥ 0 and λ ≥ 0 satisfying the constraint

E
[

exp(−λρ(X, y))

g(X)

]
=

∫
exp(−λρ(x, y))

g(x)
dPX(x) ≤ 1,∀y ∈ Y (3)

In other words, every pair of feasible (λ, g) satisfying Eq. 3 yields a lower bound of R(D), i.e.,
E[− log g(X)] − λD ≤ R(D), and we obtain R(D) via the tightest such lower bound. This char-
acterization of R(D) can be derived from Lagrange duality (Chiang & Boyd, 2004) in the case of a
finite alphabet X ; the extension to a general X requires a more involved argument (Csiszár, 1974).

2.2 LOWER BOUNDING R(D) VIA NUMERICAL OPTIMIZATION

We rarely know PX explicitly; e.g., when PX is induced by natural images, characterizing the
support of PX (a low dimensional manifold of Euclidean space) alone is non-trivial. However, if we
can compute the expectations in Eqs. 2 and 3, then we can still obtain a lower bound of R(D) by
numerically solving a constrained optimization problem. The main idea is to replace maximizing
over functions g ≥ 0 by a subset of functions gθ ≥ 0 parameterized by a vector θ. Any feasible
(gθ, λ) would then give us a (possibly loose) lower bound on R(D). We can use a flexible family of
functions for gθ, such as neural networks with a non-negative output activation to ensure gθ ≥ 0 (or,
we can parameterize log g instead). Noting that the constraint Eq. 3 is equivalent to the constraint
function c(g, λ) := supy E [exp(−λρ(X, y))/g(X)] − 1 being non-positive, we can then consider
solving the following constrained maximization problem to obtain a R(D) lower bound, RL(D):

R(D) ≥ RL(D) = max
θ,λ≥0

f(θ, λ), where f(θ, λ) := E[− log gθ(X)]− λD (4)

subject to c(θ, λ) = sup
y

E
[

exp(−λρ(X, y))

gθ(X)

]
− 1 ≤ 0 (5)

Assuming the supremum in Eq. 5 can be computed exactly, then a variety of algorithms can be used
to find a local optimum of this problem. We consider a simple formulation based on exact penalty
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method (Nocedal & Wright, 2006): we solve a sequence of unconstrained problems

max
θ,λ≥0

f(θ, λ)− γt[c(θ, λ)]+ (6)

where [c(θ, λ)]+ = max{0, c(θ, λ)} measures the amount of constraint violation, and the sequence
of penalty coefficients γt is gradually increased. Under fairly general conditions, a feasible solution
{(θ∗t , λ∗t )} to Eq. 6 is also a local optimum of the original constrained optimization problem in
Eqs. 4, 5 (Theorem 17.4 of Nocedal & Wright (2006)). Then we can estimate RL = f(θ∗t , λ

∗
t ).

2.3 AN APPROXIMATE ALGORITHM USING STOCHASTIC ESTIMATORS

In most practical problems, the expectations in the optimization problem can only be approximated
by Monte-Carlo averaging over samples of X . Let’s focus on the constraint function c for now,
and denote ψ(x, y) := exp(−λρ(x,y))

g(x) − 1, suppressing its dependence on (g, λ) for brevity. Note,
however, that c = supy E[ψ(X, y)] does not have the form of an expectation due to the maximization
over y. Still, we may try to estimate c by maximizing the sampled approximation of E[ψ(X, y)], i.e.,
compute the k-sample estimator Ck := supy

1
k

∑k
i=1 ψ(Xi, y), with Xi ∼ PX . What’s the relation

between Ck and c? Given a candidate (g, λ), can we verify its feasibility using Ck, instead of the
intractable c? We answer these questions in the following theorem (proved in Appendix Sec. A.2):
Theorem 2.2. Let X1, X2, ... be a sequence of i.i.d. random variables with the shared data distri-
bution Xk ∼ PX . Define the sequence of random variables Ck := supy

1
k

∑
i ψ(Xi, y). Then

1. E[Ck] = EX1,...,Xk [supy
1
k

∑
i ψ(Xi, y)] ≥ supy E[ψ(X, y)] =: c;

2. E[C1] ≥ E[C2] ≥ ... ≥ E[Ck] ≥ E[Ck+1] ≥ ... supy E[ψ(X, y)] = c;

3. If ψ(x, y) is bounded and continuous in y, and if Y is compact, then Ck converges to c
almost surely (as well as in probability, i.e., limk→∞ P(|Ck − c| > ε) = 0,∀ε > 0), and
limk→∞ E[Ck] = c.

Theorem 2.2 tells us that Ck is on average an over-estimator of the value of the constraint function
c; and like the Importance-Weighted ELBO (Burda et al., 2015), the bias of the estimator decreases
monotonically as k → ∞, and that under continuity assumptions, Ck is asymptotically unbiased
and converges to c. This means that we can form an empirical estimate of the constraint function c
by computing Ĉk := supy

1
k

∑
i ψ(xi, y) from a large batch of samples {x1, x2, ..., xk} (or, to be

more precise, we average many such Ĉk computed from multiple batches to estimate E[Ck]); if the
empirical estimate of c is satisfied, then we can be confident so is the true constraint c satisfied.

In light of this, we can replace the original constraint c ≤ 0 by the more conservative constraint
E[Ck] ≤ 0. Using the unbiased estimator Ĉk for E[Ck], and similarly the sample-mean f̂ :=
1
m

∑m
j=1− log g(xj)−λD for f , our algorithm solves the following sequence of penalty problems,

max
θ,λ≥0

ˆ̀(θ, λ), with ˆ̀(θ, λ) := f̂(θ, λ)− γt[Ĉk(θ, λ)]+ (7)

where given a penalty coefficient γt, we perform stochastic gradient ascent on the unconstrained
objective ˆ̀(θ, λ) till convergence; we then increase the penalty e.g., γt+1 := βγt with β > 1, and
solve the maximization problem w.r.t. (θ, λ) again, until we can verify feasibility of resulting (θ, λ)

(e.g., Ĉk ≤ 0) with high confidence. We specify Algorithm 1 in full detail in Appendix Sec. A.3.

2.4 INNER OPTIMIZATION WITH RESPECT TO y

So far we have assumed that we can exactly compute the supremum Ĉk = supy
1
k

∑
i ψ(xi, y).

In practice, 1
k

∑
i ψ(xi, y) is rarely concave in y, and we can only find a local optimum, e.g.,

with a gradient-based method. This is less problematic during training, as long as (g, λ) re-
ceive the appropriate training signal to eventually arrive at a feasible solution. However, once
the training terminates with some candidate solution (g∗, λ∗), we need to compute Ĉk exactly
(ideally with as large k as possible), in order to verify that the solution (g∗, λ∗) is feasible (with
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Figure 1: Left: trajectories of various quantities across training steps, for the D = 0.6 experiment;
Middle: the final lower bound estimate R̂L(D), plotted against the true R(D); Right: visualizing
(along the y-axis of R2) a converged neural network solution gθ∗(x), the theoretically optimal g(x),
and the optimization objective of the constraint estimator Ĉk, φ(y) :=

∑k
i=1 φxi(y),with φxi(y) :=

exp{−λ∗‖xi − y‖2}/{kgθ∗(xi)}, computed from k = 20 samples, in the D = 0.6 experiment.

high probability) and that f̂(g∗, λ∗) gives a valid estimate of a R(D) lower bound. This require-
ment makes it computationally expensive (if not infeasible) to verify a solution, and indeed poses
an open challenge for our method; techniques from global optimization might offer useful tools.
We note that in the simple case X = Y = Rn and ρ is the (mean) squared error, maximizing
φ(y) := 1

k

∑
i ψ(xi, y) + 1 = α

∑
i αi exp(−λ‖xi − y‖2) is equivalent to finding the mode of a

k-component Gaussian mixture density. Global optimization algorithms for the latter problem exist
with (partial) optimality guarantees (Carreira-Perpinan, 2000); e.g., we can run k gradient ascent
procedures separately from each of the component modes x1, ..., xk, and take the largest result.

3 RESULTS

We apply our algorithm to a 2D standard Gaussian source, using mean-squared error as distortion
ρ. We parameterize log g by a two-layer fully connected neural network. During training, we use
k = 100 for the constraint estimator Ĉk, and run a simple gradient ascent procedure in the inner
optimization w.r.t. y for computational efficiency. We start with a penalty parameter γ0 = 1, and
double it every 1000 training steps (which seemed sufficient for convergence). We stop training after
4000 steps, at which point our simple estimate of constraint Ĉk is frequently satisfied across training
steps; see Fig. 1 (Left) for example training curves. To certify the resulting solution (g∗, λ∗) as valid,
we then compute Ĉk with the global optimization algorithm described in Section 2.4, using a large
number of samples (k = 10000); in all our experiments, Ĉ10000(g∗, λ∗) < 0, so we conclude the
solutions are feasible, and f̂(g∗, λ∗) gives a valid lower bound of R(D) with very high probability.

We repeat the above with D ranging from 0.02 to 0.8, and plot the corresponding R̂L(D) =

f̂(g∗, λ∗) to trace out an R(D) lower bound. As shown in Fig. 1 (Middle), our lower bound shows
good agreement with the true R(D), with an average gap of 0.74 bit. Fig. 1 (Right) visualizes
the optimization problem for D = 0.6, where we take a vertical slice of R2 and show the learned
gθ∗(x), the theoretically derived optimal g(x) (a scaled Gaussian density), and the Ĉk optimization
objective φ(y) and its component functions φxi(y) centered on k = 20 random samples, plugging in
the learned (gθ∗ , λ

∗). Note that the component functions have the form of a Gaussian kernel, whose
steepness is controlled by λ. When λ is large or k is small, the resulting Ĉk = maxy φ(y)− 1 more
severely overestimates the true constraint c. With a smaller λ, or by increasing k, the landscape of
φ(y) is more smoothed out, so the overestimating effect is reduced. Indeed, in this figure we see
maxy φ(y) > 1.25; by increasing the sample size k from 20 to 10000, maxy φ(y) would decrease
to around 0.93 instead (so that Ĉk ≈ −0.07 < 0), as predicted by Theorem 2.2. In the low dis-
tortion (small D) regime, λ is driven to large values, so that Ĉk exhibits higher bias, and constraint
violations max{0, Ĉk} are often penalized overly harshly (as Ĉk tends to overestimate c); this likely
explains why our lower bound has a larger gap to the true R(D) as we decrease D. We expect the
bound can be improved by more accurately estimating the gradient of the penalty/constraint function
(we elaborate this point in Appendix Sec. A.3), and/or training with a larger k especially in the lower
distortion regime. We provide more experimental details and visualizations in Appendix Sec. A.4.
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A APPENDIX

A.1 FULL VERSION OF THEOREM 2.1

Theorem A.1. (Theorem 2.3, Csiszár (1974); Theorem 1, Kostina (2016).) Suppose that the fol-
lowing basic assumptions are satisfied.

1. R(D) is finite for some D, i.e., Dmin := inf{D : R(D) <∞} <∞;

2. The distortion metric ρ is such that there exists a finite set E ⊂ Y such that

E[min
y∈E

ρ(X, y)] <∞

Then, for each D > Dmin, it holds that

R(D) = max
g(x),λ

{E[− log g(X)]− λD} (8)

where the maximization is over g(x) ≥ 0 and λ ≥ 0 satisfying the constraint

E
[

exp(−λρ(X, y))

g(X)

]
=

∫
exp(−λρ(x, y))

g(x)
dPX(x) ≤ 1,∀y ∈ Y (9)

Note: the basic assumption 2 is trivially satisfied when the distortion ρ is bounded from above; the
maximization over g(x) ≥ 0 can be restricted to only 1 ≥ g(x) ≥ 0. Unless stated otherwise, we
use log base e in this work, so the R(D) above is in terms of nats.

A.2 PROOF OF THEOREM 2.2

Theorem A.2. (Basic properties of the proposed estimator Ck.)

Let X1, X2, ... ∼ PX be a sequence of i.i.d. random variables. Let ψ : X × Y → R+ be a
measurable function. For each k, define the random variable Ck := supy

1
k

∑
i ψ(Xi, y). Then

1. Ck is an overestimator of the sup-partition function c, i.e.,
E[Ck] = EX1,...,Xk [supy

1
k

∑
i ψ(Xi, y)] ≥ supy E[ψ(X, y)] =: c;

2. The bias of Ck decreases with increasing k, i.e.,
E[C1] ≥ E[C2] ≥ ... ≥ E[Ck] ≥ E[Ck+1] ≥ ... supy E[ψ(X, y)] = c;

3. If ψ(x, y) is bounded and continuous in y, and if Y is compact, then Ck is strongly consis-
tent, i.e., Ck converges to c almost surely (as well as in probability, i.e., limk→∞ P(|Ck −
c| > ε) = 0,∀ε > 0), and limk→∞ E[Ck] = c.

Proof. We prove each in turn:

1. E[Ck] = E[supy
1
k

∑
i ψ(Xi, y)] ≥ supy E[ 1k

∑
i ψ(Xi, y)] = supy E[ψ(X, y)] = c

2. First, note that E[C1] ≥ E[Ck] since

E[C1] = E[sup
y
ψ(X1, y)] = E[

1

k

∑
i

sup
y
ψ(Xi, y)] ≥ E[sup

y

1

k

∑
i

ψ(Xi, y)] = E[Ck]

6
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We therefore have

E[Ck+1] = E[sup
y

1

k + 1

k+1∑
i=1

ψ(Xi, y)]

= E[sup
y
{ 1

k + 1

k∑
i=1

ψ(Xi, y) +
1

k + 1
ψ(Xk+1, y)}]

≤ E[sup
y
{ 1

k + 1

k∑
i=1

ψ(Xi, y)}+ sup
y
{ 1

k + 1
ψ(Xk+1, y)}]

=
k

k + 1
E[Ck] +

1

k + 1
E[C1]

≤ E[Ck]

3. Define the shorthand Mk(y) := 1
k

∑k
i=1 ψ(Xi, y),Ψ(y) = E[ψ(X, y)]. Denote the sup

norm on the set of continuous bounded functions on Y by ‖f(·)‖∞ := supy∈Y |f(y)|.
Then it holds that

| sup
y
Mk(y)− sup

y
Ψ(y)| = | sup

y
|Mk(y)| − sup

y
|Ψ(y)||

= |‖Mk(·)‖∞ − ‖Ψ(·)‖∞|
≤ ‖Mk(·)−Ψ(·)‖∞
= sup

y
|Mk(y)−Ψ(y)|,

where we made use of the fact that ψ ≥ 0 in the first equality, and the reverse triangle
inequality in the second-to-last step. By the uniform strong law of large numbers (Ferguson,
2017),

lim
k→∞

sup
y
|Mk(y)−Ψ(y)| = 0

almost surely. Therefore, by the inequality we just showed, we also have
lim
k→∞

| sup
y
Mk(y)− sup

y
Ψ(y)| ≤ lim

k→∞
sup
y
|Mk(y)−Ψ(y)| = 0

almost surely, i.e.,
lim
k→∞

Ck = lim
k→∞

sup
y
Mk(y) = sup

y
E[ψ(X, y)] := c

almost surely. Then it trivially follows that Ck also converges to c in probability, and that
limk→∞ E[Ck] = c by the bounded convergence theorem.

Corollary A.2.1. Under the conditions of Theorem 2.1, if any pair of non-negative (g, λ) sat-
isfies E[Ck] ≤ 0, where Ck := supy

1
k

∑
i ψ(Xi, y) = supy

1
k

∑
i ψ(Xi, y) and ψ(x, y) :=

exp(−λρ(x,y))
g(x) − 1 as before, then for every D > Dmin, it holds that E[− log gθ(X)]− λD ≤ R(D).

Proof. The feasibility of such (g, λ) trivially follows from the fact that c ≤ E[Ck] ≤ 0 by Theorem
2.2. The fact that the resulting function E[− log gθ(X)]− λD underestimates R(D) for every D >
Dmin follows from the variational characterization of R(D) as the upper envelope of tangent linear
underestimators (see, e.g., lemma 1.2 of Csiszár (1974)).

A.3 PROPOSED STOCHASTIC OPTIMIZATION ALGORITHM

Our algorithm aims to find a solution to the following constrained optimization problem:
max
θ,λ≥0

f(θ, λ), where f(θ, λ) := E[− log gθ(X)]− λD (10)

subject to E[Ck(θ, λ)] = E

[
sup
y

1

k

∑
i

exp(−λρ(Xi, y))

gθ(Xi)

]
− 1 ≤ 0 (11)
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Algorithm 1: Proposed algorithm for estimating rate-distortion lower bound RL(D).
Requires: Model gθ (e.g., a neural network), initial parameters (gθ0 , λ0), initial penalty
parameter γ0 = 1, batch sizes k,m, gradient ascent step size η, step counter t = 0

while True do
// Find a local maximum of ˆ̀(θ, λ) given the current γt
while (θt, λt) not converged do

Draw two batches of data samples {x1, ..., xk} and {x1, ..., xm}
y∗, Ĉk = estimate constraint (θt, λt, {x1, ..., xk})
Update parameters by (θt+1, λt+1) = (θt, λt) +

η∇(θ,λ)

(
1
m

∑m
j=1− log gθt(xj)− γt max{0, 1k

∑k
i=1

exp{−λtρ(xi,y∗)}
gθt (xi)

− 1}
)

Update training step counter t := t+ 1
end
y∗, Ĉk = estimate constraint global opt (θt, λt, {x1, ..., xk})
if Ĉk ≤ 0 then

// True constraint c is likely satisfied

Return solution (θt, λt), and lower bound estimate R̂L =
∑m
j=1− log gθt(xj)

else
Increase penalty parameter, γt := βγt, with e.g., β = 2 or 10

end
end
Subroutine estimate constraint (θ, λ, {x1, ..., xk}) :

Run gradient ascent on φ(y) :=
∑k
i=1 exp{−λρ(xi, y)}/gθ(xi), until converging to y∗

Compute Ĉk = φ(y∗)− 1

Return (y∗, Ĉk)
Subroutine estimate constraint global opt (θ, λ, {x1, ..., xk}) :

Find global maximizer y∗ = arg maxy φ(y)

Compute Ĉk = φ(y∗)− 1

Return (y∗, Ĉk)

which, by Theorem 2.2 and Corollary A.2.1, would guarantee a feasible solution to the original
problem and yield a valid lower bound on R(D).

We apply the penalty method and solve the following sequence of unconstrained problems:

max
θ,λ≥0

f(θ, λ)− γt[E[Ck(θ, λ)]]+

where we have essentially replaced c(θ, λ) in Eq. 6 by its overestimator E[Ck(θ, λ)].

We estimate E[Ck(θ, λ)]]+ by the plug-in estimator:

[E[Ck]]+ ≈

1

s

s∑
j=1

Ĉjk

+

=

1

s

s∑
j=1

sup
y

1

k

k∑
i=1

ψ(xs[i], y)

+

where we draw s mini-batches of data samples, each mini-batch containing k samples. Since com-
puting each Ĉk requires solving a global optimization problem with respect to y, we simply use
s = 1 for computational efficiency, i.e.,

[E[Ck]]+ ≈
[
Ĉk

]+
=

[
sup
y

1

k

k∑
i=1

ψ(xi, y)

]+

The sampled loss function of the unconstrained penalty (sub)problem is then

max
θ,λ≥0

f̂m(θ, λ)− γt[Ĉk(θ, λ)]+

8
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To apply stochastic gradient ascent, we derive the gradient for each of the two terms with respect to
θ (the gradient with respect to λ is similar). The gradient of f̂ is simply a sample average:

∇θf̂m = ∇θ

 1

m

m∑
j=1

− log gθ(xj)− λD

 =
1

m

m∑
j=1

−∇θ log gθ(xj)− λD

The gradient with respect to the penalty term requires more work. First we need to compute Ĉk by
solving a global optimization problem, finding a y∗ such that

Ĉk = sup
y

1

k

k∑
i=1

ψθ(xi, y) =
1

k

k∑
i=1

ψθ(xi, y
∗),

and then we have

∇θ[Ĉk]+ =

{
0, if Ĉk ≤ 0

∇θĈk = ∇θ 1
k

∑k
i=1 ψθ(xi, y

∗) = 1
k

∑k
i=1∇θψθ(xi, y∗), if Ĉk > 0

where in the case Ĉk > 0, we plug in y∗ and remove the dependence of the gradient on y by
appealing to an envelope theorem (Milgrom & Segal, 2002).

We give a pseudocode implementation of our proposed stochastic optimization procedure in Algo-
rithm 1. We follow a simple exact penalty method (Nocedal & Wright, 2006), but other constrained
optimization methods like augmented Lagrangian can also be used instead.

The subroutine estimate constraint in the inner loop is intended as a computationally
cheaper alternative to the exact (but expensive) estimate constraint global opt proce-
dure, which we reserve for verifying the feasibility of a candidate solution. We give an example
implementation of estimate constraint that simply performs a single gradient ascent run
on φ(y) to estimate Ĉk (and its gradient), which proved sufficient for training in our experiments;
however, since gradient ascent only gives us a local maximum of φ(y) in general, this naive imple-
mentation of the algorithm may run into convergence issues.
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A.4 MORE EXPERIMENTAL DETAILS AND RESULTS

We used a simple 2 layer fully connected network with a scalar output for log g, with 8 hidden units
in each layer. We parameterized λ as λ = exp λ̃ using an unconstrained variable λ̃. We used the
Adam optimizer for all gradient based optimization. During training, we set batch size k = m =
100, and implement estimate constraint by a single gradient ascent run, initializing y to the
data sample in the batch that achieves the highest value of φ(·) (we find that initializing y to the
batch mean 1

k

∑k
i=1 xi also works well).

We used the (g∗, λ∗) trained after 3500 steps for estimating the final R(D) lower
bound. We first verified their feasibility by running the global optimization procedure
of Carreira-Perpinan (2000) with k = 10000, as assured by the negative values of the
resulting Ĉ10000, which were −0.199,−0.106,−0.254,−0.202,−0.115,−0.068,−0.052,
for D = 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8. Then we compute f̂m from m =

10000 samples, repeat for 10 different batches, and plot the mean f̂m as the
lower bound R̂L(D) in Figure 1 (Middle), corresponding to the (D,R) points
(0.02, 4.062), (0.05, 3.343), (0.1, 2.424), (0.2, 1.600), (0.4, 0.853), (0.6, 0.432), (0.8, 0.125),
in terms of (MSE, bits). The standard deviations of f̂ from the 10 different batches are between
0.005 and 0.007, so the error bars do not appear noticeable in the figure.

In our problem setting, the optimal g(x) can be found analytically as g(x) = fX(x)(2πD)n/2,
where n = 2 and fX is the density of the source X (2D standard Gaussian). The Shannon
lower bound coincides with the true R(D) (Cover, 1999), giving R(D) = h(X) − h(D), where
h(X), h(D) are the differential entropy of X , and an isotropic n-dimensional Gaussian distribution
with diagonal covariances equal to D, respectively.

In the next figure, we visualize the evolution of gθ during training for a few experiments.

Figure 2: Example contour plots of gθ during training. The columns correspond to the situation
after step 0, 500, 1000, and 4000. Each row corresponds to a different setting of D, with D =
0.02, 0.1, 0.4; the training configuration (including initialization) is otherwise kept identical. In each
case, the ground truth optimal g is a scaled Gaussian density with spherical contour lines, which
attains its maximum value equal to D at the origin. The shape of the learned gθ generally resembles
the ground truth g, but in the lower distortion regime (e.g., when D = 0.02), the agreement is worse
and gθ more severely overestimates g.

10


