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Abstract

The hardness of learning a function that attains
a target task relates to its input-sensitivity. For
example, image classification tasks are input-
insensitive as minor corruptions should not affect
the classification results, whereas arithmetic and
symbolic computation, which has been recently at-
tracting interest, is highly input-sensitive as each
input variable connects to the computation results.
This study presents the first learning-based Quick
Response (QR) code decoding and investigates
learning functions of medium sensitivity. Our
experiments reveal that Transformers can success-
fully decode QR codes, even beyond the theoreti-
cal error-correction limit, by learning the underly-
ing structure of embedded texts. They generalize
from English-rich training data to other languages
and even random strings. Moreover, we observe
that the Transformer-based QR decoder focuses
on data bits while ignoring error-correction bits,
suggesting a decoding mechanism distinct from
standard QR code readers.

1. Introduction
Over a decade, deep learning has shown remarkable success
in learning input-insensitive functions that realize the target
tasks. Indeed, in most standard tasks, such as image clas-
sification, object detection, document summarization, and
speech recognition, a slight change in their input (e.g., image
perturbation, a few typos) is supposed to have little impact
on the output (e.g., classification, document summary). Con-
sequently, for example, data augmentation techniques such
as rotation, flipping, and cropping of images enhance the
insensitivity (more commonly robustness), which leads to
substantial performance increases in these tasks.
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Figure 1. Example of a severely corrupted QR code successfully
decoded by the Transformer. “original” denotes the QR code
before corruption, and “corrupted” refers to the QR code after
applying a 20-bit error. Standard QR code readers fail to decode
the corrupted QR code, but the Transformer succeeds. The readers
are recommended to try a QR code scan using their smartphone.

Recent studies in arithmetic and symbolic computation fur-
ther explore the learning of high-sensitivity functions with
Transformer models (Vaswani et al., 2017). Examples in-
clude integer and modular arithmetic (Power et al., 2022;
Shen et al., 2023), symbolic integration (Lample & Charton,
2020), Lyapunov function design (Alfarano et al., 2024),
Gröbner basis computation (Kera et al., 2024; 2025), and so
on (Wenger et al., 2022; Li et al., 2023a;b; Charton, 2024).
In such tasks, changing a single number, coefficient, vari-
able, or operator in the input can immediately change the
output, and thus, the target functions to learn are highly
sensitive. Although the theoretical difficulty of learning
such functions has suggested their hardness (Shalev-Shwartz
et al., 2017; Hahn & Rofin, 2024), recent empirical and theo-
retical studies have shown that high-sensitivity functions can
be learned through techniques such as normalization, weight
decay, and autoregressive generation (Chiang & Cholak,
2022; Zhou et al., 2024; Kim & Suzuki, 2025). As such,
the sensitivity of the target function plays a critical role in
determining the difficulty of learning, offering new insights
into the capabilities of deep learning models.

In this study, we examine the intermediate case—learning
medium-sensitivity functions—through the decoding task
of Quick Response codes (QR codes; International Organi-
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zation for Standardization (2024)) using a Transformer. QR
codes are designed to be tolerant (i.e., insensitive) to corrup-
tions from image capture or physical damage, but decoding
them should sensitively capture the change in the plain texts
(i.e., embedded strings, such as URLs). Such characteristics
place QR code decoding between the low-sensitivity case
of classical tasks and the high-sensitivity case of arithmetic
and symbolic tasks. QR codes have several error-correction
levels and embedding capacities through which we can con-
trol their sensitivity. To the best of our knowledge, no prior
research has addressed learning-based QR code decoding.
There have been many studies for better QR code detection
and scanning as a computer vision task (Chou et al., 2015;
Kurniawan et al., 2019; Pu et al., 2019; Peng et al., 2020;
Shindo et al., 2022; Edula et al., 2023; Zheng et al., 2023;
Chen et al., 2024), but these are orthogonal to our context.

Our experiments demonstrate a striking success of
Transformer-based decoding under corruptions—the suc-
cess rate of decoding under corruptions exceeds the theo-
retical limit, outperforming the standard decoding protocol.
Figure 1 shows a case where a standard QR code reader fails
to decode the QR code due to severe corruption, whereas
the Transformer successfully decodes it. The datasets for
training and evaluation consist of QR codes that embed do-
main names combining random English words and the top
1,000,000 domain names from the Tranco (Pochat et al.,
2018). Transformers can retrieve domain names from QR
codes even under severe corruptions because of the intrinsic
structure of natural language words (e.g., consonants and
vowels roughly appear alternatingly in a word). Surpris-
ingly, the trained Transformer generalizes to non-English
words and even random alphabetic strings. Interestingly, the
least successful case is the generalization to domain names
with irregular words (e.g., “freedoz” instead of “freedom”).
In such a case, the Transformer model outputs spell-checked
words (i.e., “freedom”), which are incorrect. We also in-
vestigated the sensitivity of the functions learned by the
Transformer. The Transformer successfully learned func-
tions with four different sensitivity levels, each determined
by the error-correction level, demonstrating its ability to de-
code QR codes. In experiments where the location of errors
was controlled, we found that the Transformer learned a
function insensitive to the error-correction bits. These find-
ings suggest that the Transformer performs error correction
using a mechanism distinct from standard QR code readers.

To summarize, this study addresses a novel QR code decod-
ing task as a showcase of learning medium-sensitivity func-
tions. We empirically obtain the following results through
extensive experiments on domain name datasets:

• Transformer-based decoding empirically attains a high
success rate with low corruption and maintains mod-
erate success even when the corruption magnitude ex-

ceeds the theoretical limit, which we newly derived for
analysis, of error correction.

• Transformers learn natural language structure from
English-rich datasets and generalize not only to other
languages but even to random alphabetic strings.

• Transformers learn a function sensitive to information
essential for decoding while remaining insensitive to
redundant information. This tendency suggests that
the Transformer performs error correction through a
mechanism different from standard QR code readers,
which rely explicitly on redundant information.

2. Related Work
Learning High-Sensitivity Functions. Transformers are
widely used and excel at learning low-sensitivity functions
like image classification (Dosovitskiy et al., 2021), object de-
tection (Zong et al., 2023), and speech recognition (Radford
et al., 2023). Recent work shows Transformers can handle
high-sensitivity tasks such as arithmetic and symbolic com-
putation (Lample & Charton, 2020; Charton, 2022; Wenger
et al., 2022; Li et al., 2023a;b; Charton, 2024; Alfarano
et al., 2024; Kera et al., 2024; 2025). For instance, Lample
& Charton (2020) demonstrated that Transformers surpass
established computational software such as Mathematica
and Matlab in accuracy and computational efficiency when
solving integrals and ordinary differential equations. Al-
though training on high-sensitivity functions was long con-
sidered theoretically difficult (Shalev-Shwartz et al., 2017;
Hahn & Rofin, 2024), recent empirical work has shown that
techniques such as normalization (Chiang & Cholak, 2022),
weight decay (Zhou et al., 2024), and autoregressive gen-
eration (Kim & Suzuki, 2025) can successfully surmount
these challenges. In previous research, functions with low
or high sensitivity have been the focus, leaving medium-
sensitivity functions almost unexplored. In this study, we
examine Transformer behavior by training models to decode
QR codes, thereby probing a function of medium sensitivity.

Deep Learning Approaches to QR Codes. Many studies
have explored applying deep learning to QR codes (Chou
et al., 2015; Kurniawan et al., 2019; Pu et al., 2019; Peng
et al., 2020; Shindo et al., 2022; Edula et al., 2023; Zheng
et al., 2023; Chen et al., 2024). For instance, several fo-
cus on enhancing detectability by leveraging deep learning
models to accurately locate QR codes within images (Chou
et al., 2015; Kurniawan et al., 2019; Peng et al., 2020; Chen
et al., 2024). On the other hand, other approaches use deep
learning models to restore image quality and reduce blurring
or low resolution to improve recognition accuracy (Pu et al.,
2019; Shindo et al., 2022; Edula et al., 2023; Zheng et al.,
2023). QR code reading consists of two principal stages:
detection and decoding. Prior works have enhanced reading
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Figure 2. Structure of a v2-QR code. It comprises functional pat-
terns, which support detection, and the encoding region, which
embeds the encoded representation of the plain text.

performance by proposing methods to facilitate detection.
In contrast, this study aims to analyze the characteristics of
the Transformer by training it for decoding.

3. QR Codes
QR codes (International Organization for Standardization,
2024) are two-dimensional matrix codes developed by
Denso Wave in 1994 and designed for high-speed informa-
tion reading. QR codes enable high-speed, accurate trans-
mission of textual information and are used worldwide for
various applications, including website access, electronic
payments, and airline ticketing.

Figure 2 illustrates the basic structure of a QR code. A
QR code consists of black and white units (called modules).
Some of the units form function patterns, which are used
at the detection stage by cameras. The rest of the part
corresponds to encoding region, which encodes the data,
along with error correction bits. The encoding region is
divided into three components.

Data and Error-Correction Codewords. The plain text
is encoded with the Reed–Solomon code and organized into
8-bit units called codewords. The data codewords represent
the plain text itself, while the error-correction codewords
contain the redundant information required for error correc-
tion. QR codes support four error correction levels (i.e., L,
M, Q, and H in ascending order). As the level increases,
the proportion of error-correction codewords to the total
number of codewords also increases.

Format Information. It encodes the error-correction level
and mask pattern identifier using a BCH code. The resulting
bit sequence is duplicated, with one copy placed next to the
top-left finder pattern. The other copy is split between the
regions next to the bottom-left and top-right finder patterns.

Remainder Bits. These bits are the leftovers resulting
from the codeword placement. They contain no actual data
or error-correction information and are ignored during de-
coding.

Figure 3. Mask patterns 0 to 3. There are eight mask patterns in
total. During masking, black modules within the designated pattern
area are inverted. See Appendix A for all mask patterns.

A QR code can have an imbalanced distribution of black
and white modules. To mitigate this, a mask pattern is su-
perposed onto the QR code in the final encoding step. There
are eight mask patterns (Figure 3), and the most suitable
one is selected according to a scoring rule that penalizes
poor arrangements, such as long runs of the same color or
layouts that hinder detection.

QR codes are defined in 40 versions, ranging from Version 1
to Version 40 by its size. The higher version has more mod-
ules, implying higher data capacity. For example, Version 1
has 21 modules per side, Version 2 has 25, and Version 3 has
29. These versions are widely used in product packaging
and promotional materials.

In what follows, we write QR codes, for example, of Version
3 and error correction level L as (v3, L)-QR codes.

4. Success Rate Analysis of Error Correction
We will later evaluate the robustness of QR code decoding
by Transformers. To this end, we here derive the success
rate of error correction in QR codes with n-bit errors. We
assume that a bit flip occurs uniformly at random in the
encoding region. To the best of our knowledge, this study is
the first to derive the theoretical success rate.

Recall that the encoding region consists of the data and
error-correction codewords, the format information, and the
remainder bits, and the remainder bits are not used in the
decoding. Let N denote the total number of bits in the en-
coding region, and let Nd, Nf and Nr be the numbers of bits
in the data and error-correction codewords and the format
information, remainder bits, respectively. Accordingly, the
numbers of erroneous bits are denoted by p, q, and n−p−q,
respectively. Then, the successful rate of error correction in
encoding region is given by the following.

Theorem 4.1 (Success Rate of Error Correction in the En-
coding Region). Let n be the total number of bit errors
in the encoding region. Then, the success rate of error
correction —denoted by Psuccess(n) —is given by:

Psuccess(n) =
1(
N
n

) n∑
p=0

n−p∑
q=0

W (p, q)Pd(p)Pf(q), (1)
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Table 1. Success rate (%) of a model trained on data in which the mask pattern was automatically selected based on the scoring rule,
simulating a realistic scenario. The table also shows the proportion (%) of mask patterns in the training dataset. When the scoring rule
selects the mask pattern, it tends to favor patterns 1 and 4, resulting in a lower success rate for the other mask patterns.

Mask Pattern 0 1 2 3 4 5 6 7 Average

Success Rate 59.6 92.8 49.1 64.2 90.9 50.7 68.8 54.2 68.3

Proportion 1.3 60.6 1.7 2.7 29.1 1.2 2.4 1.1 -

where Pd and Pf respectively denote the success rate of
error correction in the data and error-correction codewords
with p-bit errors and that in format information with q-bit
errors, and

W (p, q) =

(
Nd

p

)(
Nf

q

)(
Nr

n− p− q

)
(2)

is the probability that (n − p − q)-bit errors fall into the
remainder bits.

In the following, we provide an overview of the deriva-
tion of Pd(p) and Pf(q). All the proofs can be found in
Appendix H.

Pd(p) - Success Rate in Data and Error-Correction
Codewords. For the data and error-correction codewords,
let M = Nd/8 denote the total number of codewords, and
let Mecc represent the number of error-correction code-
words, which depends on the error correction level. Accord-
ing to the properties of Reed–Solomon codes, the maximum
number of correctable codewords, denoted by t, is deter-
mined by t = ⌊Mecc/2⌋. Under these conditions, the suc-
cess rate of error correction for the data and error-correction
codewords can be determined as follows:

Theorem 4.2 (Success Rate of Error Correction in Data
and Error-Correction Codewords). Let p be the number of
erroneous bits within the data and error-correction code-
words. Then, the success rate of error correction —denoted
by Pd(p)— is given by

Pd(p) =
1(
Nd

p

) t∑
k=⌈ p

8 ⌉

(
M

k

) k∑
j=0

(−1)j
(
k

j

)(
8(k − j)

p

)
.

(3)

Pf (q) - Success Rate in Format Information. The for-
mat information is encoded into 15 bits using a (15, 5) BCH
code, and the resulting bit sequence is duplicated so that two
identical copies are placed in the QR code. If error correc-
tion works in either one of the two, the format information
can be correctly read. The (15, 5) BCH code can correct up
to 3-bit errors. Under these conditions, the success rate of
error correction for format information is given below:

Theorem 4.3 (Success Rate of Error Correction in Format
Information). Let q denote the number of erroneous bits af-
fecting the format information, and let i and j represent the
number of bit errors in each of the two respective instances.
Then, the success rate of error correction —denoted by
Pf—is given by

Pf(q) =

∣∣{(i, j) ∈ N2
0 | i+ j = q, min(i, j) ≤ 3}

∣∣
q + 1

. (4)

5. Learning to Decode QR Codes
In this section, we present the evaluation results of the Trans-
former’s QR code decoding success rate and robustness. We
assume that QR code detection has been successfully per-
formed and focus solely on the decoding phase.

5.1. Setup

Task. Transformers are trained for the QR code decoding
task. The input is a QR code, and the output is the plain text
embedded in the QR code. The QR code is passed to the
model in the bit string format.

Dataset. We sampled domain names from Tranco (Pochat
et al., 2018), a publicly available ranking of popular domain
names. The sampled domain names were encoded into
QR codes using the Segno library1 as a QR code generator.
Each QR code was then linearized into a one-dimensional
sequence following Figure 4(d). We fixed each dataset’s
QR code version, error correction level, and mask pattern.
We generated 500,000 samples for the training dataset and
1,000 samples for the evaluation dataset.

Model & Training. To evaluate the general capabili-
ties of the Transformer, we adopted a standard architec-
ture (Vaswani et al., 2017) (six encoder and decoder layers,
eight attention heads) and conventional training settings
(AdamW optimizer (Loshchilov & Hutter, 2019) with a
linearly decaying learning rate starting from 10−4). Follow-
ing (Lewis et al., 2020), we applied weight sharing between
the input embeddings and the output projection layer and
employed learnable positional embeddings. The batch size
was set to 16, and training was conducted for 10 epochs.

1https://github.com/heuer/segno
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(a) (b) (c) (d)

Figure 4. Candidate linearization orders for converting a QR code
into a one-dimensional sequence

Table 2. Success rate (%) for four different linearizing orders in (v3,
L)-QR codes. The ordering shown in Figure 4(d) outperforms the
others, suggesting it is the most suitable for training Transformers.

Order (a) (b) (c) (d)

Success Rate 93.3 90.2 93.9 95.5

Evaluation. The decoding success rate is defined as the
proportion of successfully decoded samples in the evalu-
ation dataset. A decoding is considered successful if the
Transformer’s output exactly matches the plain text. To
evaluate robustness, we compute the decoding success rate
on evaluation datasets composed of artificially corrupted
QR codes. We introduce two types of artificial corruption:
flip errors and burst errors. Flip errors are introduced by
randomly selecting bits within the QR code and inverting
their binary values. Burst errors are generated by randomly
selecting a 3×3 square region and forcing all bits within
that region to be 1. In this experiment, we assume that the
detection stage has already been completed. Therefore, cor-
ruption is applied only to the encoding region, excluding
functional patterns. For evaluation on corrupted data, we
compare the Transformer with pyzbar2—a Python wrapper
for the widely used open-source ZBar QR code decoder3.

Preliminary Experiments. The aforementioned experi-
mental setup is based on three observations from our pre-
liminary experiments.

1. It was unsuccessful to train Transformers on data where
the mask pattern was automatically selected, which re-
flects a realistic scenario (Table 1). This is because
the proportion of mask patterns becomes highly imbal-
anced. The details can be found in Appendix B.

2. It was easy to train a near-perfect classifier that classi-
fies the mask pattern from input QR codes with almost
100 % accuracy, see Appendix C.

3. Transformer trained on bit strings in the ordering in Fig-
ure 4(d) was more successful than in others (Table 2).
This is likely because the ordering in Figure 4(d) more

2https://github.com/NaturalHistoryMuseum/
pyzbar

3https://github.com/mchehab/zbar

785758

565960

346162

126364

Figure 5. Arrangement order of encoded data in v2-QR Code. The
data is placed in a vertical zigzag pattern, moving up and down in
two-column bands while avoiding function patterns.

closely matches the bit ordering of QR codes, as illus-
trated in Figure 5.

From the first two observations, we decided to focus on a
fixed mask pattern. From the last observation, we adopted
the ordering in Figure 4(d) in our main experiments.

5.2. Decoding Success Rate and Robustness

We evaluated the Transformer’s ability to decode QR codes
by decoding success rate, robustness to corruption, and the
effect of data augmentation. We also looked at the model’s
outputs when decoding both clean and corrupted QR codes.

Decoding Success Rate. Table 3 shows the decoding suc-
cess rate of (v1, L) to (v3, L)-QR codes under each mask pat-
tern. Across all versions, the average success rate exceeded
93 %, indicating high performance. These results suggest
that Transformers can learn medium-sensitivity functions.

Decoding Robustness. Figure 6 illustrates the evaluation
results for (v3, L)-QR codes (mask pattern 0) with two
types of corruption. Figure 6(a) shows that the Transformer
achieves a higher success rate than the theoretical success
rate of error correction proven in Theorem 4.1 when the
number of flip errors exceeds nine. Furthermore, the Trans-
former surpassed the pyzbar when the number of flip errors
exceeded nine or burst errors exceeded four. This result
indicates that the Transformer exhibits superior robustness
under severe corruption. Additionally, in Appendix E, we
present examples of severe corruption where pyzbar fails
to decode the QR code but the Transformer succeeds (Fig-
ures 10 and 11). Such robustness may be attributed to the
model’s ability to learn regularities in word patterns com-
monly found in domain names, thereby enabling it to infer
and reconstruct corrupted information. Note that the plain
texts used in the training and evaluation datasets differ.

Data Augmentation. We trained the Transformer on (v3,
L)-QR codes (mask pattern 0) augmented with flip and burst
errors. As shown in Figure 6, it improved significantly
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Table 3. Success rate (%) of Transformers for each mask pattern in (v1, L) to (v3, L)-QR codes. Across all versions, the model achieves
an average decoding success rate of over 93 %, suggesting that Transformers can learn functions with medium sensitivity. Here, as shown
in Section 3, the version determines the number of bits and the structural layout of the QR code; the error correction level represents the
degree of redundancy for data recovery; and the mask pattern specifies the type of mask applied after encoding.

Mask Pattern 0 1 2 3 4 5 6 7 Average

Version 1 99.0 97.9 99.2 97.8 98.6 98.5 97.5 97.8 98.3

Version 2 96.0 95.5 96.3 95.0 92.1 95.0 94.5 94.3 94.8

Version 3 95.5 95.5 95.6 93.6 95.1 91.6 93.4 90.8 93.9

Figure 6. Success rate on corrupted (v3, L)-QR codes (mask pattern 0) for each method. (a) Success rate under flip noise. (b) Success
rate under burst noise. “Transformers (DA)” refers to the model trained with corrupted data augmentation. “Theoretical” refers to the
success rate of error correction proved in Theorem 4.1. When the level of corruption is high, the Transformer can decode with a greater
success rate than the success rate guaranteed by the QR code’s error correction capability. In addition, applying data augmentation leads
to substantial improvements in error resilience.

on corrupted data. These results suggest that training on
corrupted inputs can make models more robust.

Examples of Generated Strings. Examples of strings
generated during decoding by the Transformer are shown
in Table 4. When the generated string matches the origi-
nal string precisely, the model successfully handled both
short and long plain text. In addition, even when the gen-
erated strings did not precisely match the original string,
they were generally close to the ground truth. For instance,
for “dtv2009.gov,” the model outputs “dtv2008.gov,” which
differs only by one character. There are also cases where the
model makes mistakes because it has learned specific pat-
terns in English words. For example, for the plain text
“doggettinc.com,” the Transformer incorrectly generated
“doggetting.com.” This was likely because it misinterpreted
“inc” as part of the preceding word and segmented it as “get-
ting,” reflecting a misunderstanding influenced by learned
linguistic regularities. On the other hand, Table 4(b) shows
examples of outputs generated from inputs with 20 random
bit flips. Compared to the clean examples in Table 4(a),
the outputs are generally less similar to the original strings.
However, some errors affect only one character, such as
“delicom.global” becoming “dedicom.global.” As shown in
Figure 6(a), pyzbar fails to return any output when 20-bit

corruption is applied. This is because it is designed to sup-
press output entirely once the corruption exceeds a certain
threshold to avoid incorrect results. In contrast, the Trans-
former always produces an output, even if it is incorrect.
While this can lead to errors, the outputs often remain close
to the original, even with heavy corruption. Additionally,
in Appendix E, we present the distribution of similarity be-
tween the generated strings and the original plain text under
severe corruption (Figure 12).

6. Generalization performance of decoding
with Transformer

In this section, we evaluate the generalization performance
of the Transformer in QR code decoding on various types
of plain text.

6.1. Setup

The training configuration is identical to that in Section 5.1.
To evaluate the Transformer’s generalization, we generated
eight evaluation sets. Each evaluation sample follows the
domain name format word1word2.tld, where word1 and
word2 are concatenated to form the second-level domain
(SLD), and tld denotes the top-level domain (TLD), which

6
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Table 4. Examples of strings generated by the Transformer from clean and corrupted (v3, L)-QR codes (mask pattern 0). For clean inputs
(a), the model successfully reconstructs the plain text with a high success rate for both short and long sequences. Even when decoding
fails, the generated strings exhibit high similarity to the ground truth. For inputs with 20-bit flips (b), lower-similarity failures are observed.
However, despite severe corruption, both successful cases and failures are also present, with high similarity to the ground truth.

(a) Clean QR codes

Ground Truth Prediction
✓ ellis.ru ellis.ru
✓ mobile-arsenal.com.ua mobile-arsenal.com.ua
✓ osakabasketball.jp osakabasketball.jp
× doggettinc.com doggetting.com
× elalmanaque.com elalmanique.com
× dtv2009.gov dtv2008.gov

(b) QR codes with 20-bit flips

Ground Truth Prediction
✓ casino-x-dawn.bet casino-x-dawn.bet
✓ mobil-isc.de mobil-isc.de
✓ slotsyps.info slotsyps.info
× delicom.global dedicom.global
× inhand.com inhcdn.com
× mobile-arsenal.com.ua mobxle-arsenat.com.mt

is randomly selected from frequent options such as “com,”
“org,” or “co.” We constructed eight evaluation sets, each
comprising 5,000 (v3, L)-QR codes (mask pattern 0) gener-
ated from domain names with varying lexical or structural
properties. The eight evaluation datasets are as follows:

• English, German, Swahili: words in the respective
language.

• Shuffle: words created by randomly permuting the
characters of English words.

• Random-alphabet: random sequences consisting of
alphabet characters.

• Misspelled: English words in which one character is
randomly replaced with an incorrect alphabet.

• Leetspeak: English words rewritten using visually
similar numerals (e.g., c4t; originally cat).

• no-TLD: two English words concatenated without
a top-level domain (e.g., pianofox instead of pi-
anofox.com). This structural deviation removes the
period and TLD component, setting it apart from the
standard domain format used in the other datasets.

6.2. Generalization Performance on Multiple Data Sets

Table 5 presents the evaluation results on eight evaluation
sets. The Transformer’s success rate varied depending on
the characteristics of the dataset.

Natural Language Datasets. In the English, German,
and Swahili datasets, consisting of natural language, the
Transformer achieved higher success rates than the others.
Since the training data was created from popular domain
names in the Tranco, many samples include English words.
As a result, the Transformer likely learned common patterns
such as frequently used prefixes and suffixes, as well as
other frequent patterns like consonant–vowel alternation.
The differences in success rates among English, German,
and Swahili are likely due to differences in the structure of

words across these languages.

Unstructured Datasets. Compared to the English dataset,
the Transformer achieved 3.2 % lower success rates on the
Shuffle dataset and 4.1 % lower on the Random-alphabet
dataset. This is likely because these datasets lack frequent
patterns and regularities typically found in real words.

English-Variant Datasets. Although the Misspelled and
Leetspeak datasets retain much of the English word struc-
ture, the Transformer achieved lower success rates than the
English dataset. Specifically, the success rate dropped by
11.4 % on the Misspelled dataset and by 27.0 % on the Leet-
speak dataset. These results suggest that even small changes
can cause the Transformer to misread letters and instead pre-
dict other characters based on learned patterns. As shown
in Appendix D, we identified examples in the Misspelled
dataset where the model’s learned regularities of English
words led to failures. The extremely low success rate on the
Leetspeak dataset may be attributed to the lower frequency
of digits than letters in the training dataset.

no-TLD Dataset. The success rate on the no-TLD dataset
was notably low at 3.0 %. This can be attributed to the fact
that the Transformer was trained exclusively on domain
names, which caused it to append a top-level domain during
inference in most cases.

The experiment shows that the Transformer learns language
rules and frequent patterns during training. As a result, it
performs well on datasets made from a natural language
with a clear structure. In contrast, it showed a lower success
rate on the Shuffle and Random-alphabet datasets, which
lack such structure. The Misspelled and Leetspeak datasets
kept the basic structure of English words but included small
changes. In these cases, the Transformer was often confused
by the small changes and mistakenly treated them as clean
patterns it had learned before.
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Table 5. Success rate (%) across eight datasets. In natural language datasets such as English, German, and Swahili, the Transformer shows
a high success rate, indicating that the Transformer effectively leverages linguistic regularities. On the other hand, datasets lacking such
structure (e.g., Shuffle, Random-alphabet) or containing minor perturbations (e.g., Misspelled, Leetspeak) result in a lower success rate.

Dataset English German Swahili Shuffle Random-alphabet Misspelled Leetspeak no-TLD

Success Rate 99.5 97.1 96.6 95.3 94.4 88.1 72.5 3.0
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Figure 7. Success rates under (a) flip and (b) burst errors were
evaluated for v2-QR codes with all four error correction levels.
“(DA)” indicates the result when data augmentation is applied
during training. There were almost no differences in success rates
between the levels.

7. Sensitivity Analysis of Transformer’s
Behavior in QR Code Decoding

In this section, we train Transformers on different error-
correction levels (i.e., different input sensitivity) and exam-
ine their effect on the trainability of Transformers and the
sensitivity after training.

7.1. Setup

Recall that QR codes support four levels of error correc-
tion—L, M, Q, and H—in ascending order of strength, with
each higher level able to correct more bit errors. Moreover,
as the level increases, the proportion of error-correction
codewords to the total number of codewords also increases,
which leads to lower sensitivity (cf. Table 9). We trained
Transformers for the v2-QR code decoding task with each
error-correction level. All training and evaluation settings
aside from the dataset were identical to those in Section 5.1.
The training and test sets were constructed from the same
plain texts across different levels so that we could examine
the impact of sensitivity differences. Therefore, sensitivity
differences appear only in the error-correction codewords.

7.2. Results and Discussion on Sensitivity Behavior

Figure 7 shows the success rates of decoding v2-QR codes
across the four error-correction levels. The sensitivity dif-
ference did not impact the success rate. To understand this,
we plot the success rate decay over the number of flip errors
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Figure 8. Success rates when bit-flip errors are applied either to the
data codewords (DC) or the error-correction codewords (ECC) of
(v2, L)-QR codes. “(DA)” indicates the result when data augmenta-
tion is applied during training. While errors in the error-correction
codewords have little impact, those in the data codewords signifi-
cantly degrade the success rate.

in Figure 8. It reveals that the bit flips in data codewords
decrease the success rate, while those in error-correction
codewords do not. This tendency holds even when data aug-
mentation is applied during training. Namely, Transformers
do not use error correction bits for QR code decoding.

8. Conclusions
This study tackles the QR code decoding task as an exam-
ple of a medium-sensitivity function. We demonstrate that
Transformers achieve a high success rate under low corrup-
tion and maintain moderate decoding success rates even
when the corruption exceeds the theoretical error-correction
limit, which we newly derived. Moreover, a Transformer
trained on datasets rich in English words learns the struc-
ture of natural language and generalizes not only to other
languages but also to random alphabetic strings. In addition,
we show that the Transformer learns a function that is insen-
sitive to error-correction codewords. This finding suggests
that the Transformer performs error correction through a
mechanism different from that of standard QR code readers.

While our findings provide insights into the Transformer’s
ability to decode QR codes as a medium-sensitivity func-
tion, this study does not investigate how its internal structure
affects decoding performance. In future work, comparing
architectures with different positional embeddings and at-
tention mechanisms will be essential to gain a deeper under-
standing of the Transformer’s behavior in decoding.
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A. Mask Pattern
QR Code has eight different mask patterns (International Organization for Standardization, 2024). Figure 9 shows a list of
mask patterns.

Figure 9. List of mask patterns.

B. Transformer Performance on Data with Mask Patterns Automatically Selected by the Scoring
Rule

In QR codes, mask patterns are ordinarily selected automatically by the scoring criteria (International Organization for
Standardization, 2024). In this section, we construct the dataset by encoding v3-QR codes from internet-domain inputs with
mask patterns chosen automatically by the scoring rules and subsequently train the Transformer. For evaluation, we prepare
1,000 samples for each of the eight mask patterns, yielding 8,000 samples. The experimental configuration follows that
of Section 5.1. As presented in Table 6, the Transformer attains an average decoding success rate of 68.3 % when mask
patterns are heterogeneous. Although only patterns 1 and 4 achieve decoding accuracies above 90 %, the remaining patterns
fall below the 3 % threshold. We attribute this disparity to the biased proportion of mask patterns within the training dataset.
Table 6 depicts this proportion, revealing that most of the 500,000 training samples correspond to patterns 1 and 4. This
pronounced imbalance results in an insufficient representation of the other patterns, impairing generalization and reducing
inference performance.

Table 6. Success rate (%) of a model trained on data in which the mask pattern was automatically selected based on the scoring rule,
simulating a realistic scenario. The table also shows the proportion (%) of mask patterns in the training dataset. When the scoring rule
selects the mask pattern, it tends to favor patterns 1 and 4, resulting in a lower success rate for the other mask patterns. (Repeated From
Table 1)

Mask Pattern 0 1 2 3 4 5 6 7 Average

Success Rate 59.6 92.8 49.1 64.2 90.9 50.7 68.8 54.2 68.3

Proportion 1.3 60.6 1.7 2.7 29.1 1.2 2.4 1.1 -

C. Mask Pattern Classification via Transformer
To ascertain whether a Transformer can discriminate among mask patterns, we trained and evaluated the model using a
dataset encompassing all eight mask patterns. For training, we curated 800,000 popular internet domains from the Tranco list
and synthesized the dataset such that each mask pattern was represented by 100,000 samples. For evaluation, we collected
8,000 samples from internet domains distinct from the training set, ensuring each mask pattern comprised 1,000 samples.
The architecture and training protocol were identical to those described in Section 5.1. We set the batch size to eight and
trained the model for one epoch. The evaluation revealed that the Transformer achieved a classification accuracy of 100 %.
This result confirms that mask patterns can be classified with perfect accuracy; consequently, in our proposed method, we
assume known mask patterns and train separate models for each pattern.

D. Generated Strings for Misspelled Dataset
Table 7 shows examples of strings generated by the Transformer on the Misspelled dataset in the experiments of Section 6.
From the successful cases, it is clear that the Transformer can handle spelling mistakes. However, the failure examples
reveal instances where its learned knowledge of English word patterns actually leads to incorrect outputs. For example, the
plain text “domajinprotocjl.me” is composed of misspellings of the two English words “domain” and “protocol,” but the
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Transformer generated “domainprotocol.me.” This appears to result from misreading “domaij” as “domain” and “protocjl”
as “protocol.”

Table 7. Examples of strings generated by the Transformer on the Misspelled dataset in the experiments of Section 6.

Ground Truth Prediction Component Words
✓ drwafcess.io drwafcess.io dry + access
✓ eglyiefd.jp eglyiefd.jp egg + yield
✓ hopeynww.co hopeynww.co honey + new
✓ joqpct.jp joqpct.jp job + act
✓ yelloqnobe.io yelloqnobe.io yellow + note
× acrfreedoz.io acrfreedom.io act + freedom
× domaijprotocjl.me domainprotocol.me domain + protocol
× fiameupstrerm.site fiameupstream.site flame + upstream
× ghoctwnreless.fr ghostwnreless.fr ghost + wireless
× ordbrowqer.cc ordbrowser.cc old + browser

E. Transformer Performance under Severe Corruption
In this section, we demonstrate the Transformer’s success under severe corruption. First, we present examples in which
the Transformer successfully decodes heavily corrupted inputs. Recall that in this study, flip errors and burst errors were
artificially simulated. Figures 10 and 11 shows cases for both flip and burst errors where the Transformer succeeds in
decoding while the pyzbar fails to read the code. In each case, the corruption causes a significant deviation from the original
QR code, preventing pyzbar from decoding it. However, the Transformer successfully decodes these corrupted codes. The
readers are recommended to try a QR code scan using their smartphone.

original

o-hand.com

corrupted

pyramexsafety.com knittersdream.com

original corruptedoriginalcorrupted

original

artisan.se

corrupted

gaoshouyou.com msuadmissions.org

original corruptedoriginalcorrupted

Figure 10. Examples where the Transformer successfully decodes QR codes after 20 flip errors. “original” shows the QR code before
corruption, and “corrupted” shows the version after applying the errors. While pyzbar fails to decode the corrupted QR code, the
Transformer can decode it.

original

o-hand.com

corrupted

pyramexsafety.com knittersdream.com

original corruptedoriginalcorrupted

original

artisan.se

corrupted

gaoshouyou.com msuadmissions.org

original corruptedoriginalcorrupted

Figure 11. Examples where the Transformer successfully decodes QR codes after 10 burst errors. “original” shows the QR code before
corruption, and “corrupted” shows the version after applying the errors. While pyzbar fails to decode the corrupted QR code, the
Transformer can decode it.

Next, we examine the similarity between the plain text and the strings generated by the Transformer under severe corruption.
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Similarity was computed as the Levenshtein distance (Levenshtein, 1966) normalized by the maximum string length, as
follows:

Similarity(a, b) = 1− Levenshtein(a, b)

max(|a|, |b|)
. (5)

Here, a and b denote the two strings being compared. Figure 12 illustrates the distributions of similarity scores for the
generated strings compared to the plain text when subjected to 20 flip errors and 10 burst errors, respectively. In both
(a) and (b), the Transformer produces a large proportion of strings with over 80 % similarity to the plain text, even under
severe corruption. Moreover, applying data augmentation substantially increases these similarity scores. Therefore, the
Transformer can generate highly similar outputs despite heavy damage, and its performance can be further enhanced through
data augmentation. For reference, Table 8 presents the correspondence between similarity scores and the actual generated
strings.

Figure 12. Distributions of similarity scores for the generated strings compared to the plain text when subjected to (a) 20 flip errors and (b)
10 burst errors.

Table 8. Examples of strings and their similarity scores.

Strings Transformer Transformey Transforcel Transfuimur Tranyfjjber
Similarity 1.00 0.91 0.82 0.73 0.64

pcavsfzumec buagyfirchr Trpbgfbildv xwbiliorblq bpqzcvprwvh bxxggbggpjx
0.45 0.36 0.27 0.18 0.09 0.00

F. Sensitivity of Decoding QR Code
In this section, we evaluate the sensitivity of QR code decoding. The sensitivity of a function is defined by how much
the output changes in response to variations in the input. In this experiment, we examine how many bits in a QR code
must be altered to produce a one-character change in the expected output (i.e., the plain text). We prepare a set of domain
names and generate 1,000 samples by randomly modifying a single character in each (e.g., changing “example.com” to
“exomple.com”). We then convert both the original and modified strings into QR codes. Finally, we count the number of
differing bits between the original and modified QR codes and compute the average.

Table 9 shows the average number of bit changes resulting from a one-character change in the plain text for QR code Version
1 through Version 3. For Version 1 and Version 2, the number of bit changes required to alter the output increases with the
error correction level. This suggests that the decoding of QR codes in Version 1 and Version 2 becomes less sensitive as the
error correction level increases. On the other hand, Version 3 does not follow this trend. This is attributed to differences in
the encoding schemes used in each version. In Version 3 and later versions, the data codewords are divided into two or more
blocks, and each block is independently encoded with Reed–Solomon codes to generate corresponding error correction
codewords. Because Version 3 and later versions perform encoding on split data blocks, the function sensitivity does not
necessarily decrease with higher error correction levels. Given these factors, Version 1 and Version 2 are more suitable for
examining how function sensitivity impacts the behavior of Transformers.
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Table 9. Average number of bit changes caused by a single-character change in the plain text.

Version L M Q H

1 30.3 42.0 54.1 69.2

2 43.4 66.7 90.2 115.4

3 62.1 106.5 74.3 92.1

G. Sensitivity Analysis Across QR Code’s Four Error-Correction Levels
In this section, we investigate the Transformer’s behavior by training it to decode QR codes at four different error-correction
levels, each corresponding to a distinct sensitivity.

Figure 13(a) shows the success rate of the Transformers under flip errors. The results showed that there were almost
no differences in success rate between error correction levels. For comparison, Figure 13(b) shows the success rate of
Transformer pyzbar. It is clear that robustness against corruption varies significantly with the error-correction level. The
performance gap between the Transformer and pyzbar likely arises because the Transformer focuses exclusively on the data
codewords that carry the essential plain text information and thus ignores the error correction codewords.

Figure 13. Success rates under flip errors for Transformer (a) and pyzbar (b), evaluated on v2-QR codes with all four error correction
levels. The Transformer shows almost no difference in success rates across the error correction levels, whereas the pyzbar exhibits
substantial variation depending on the level.

H. Success Rate of Error Correction in the Encoding Region
Here, we derive the success rate of error correction in QR codes with n-bit errors. We assume that a bit flip occurs uniformly
at random in the encoding region. The encoding region consists of the data and error-correction codewords, the format
information, and the remainder bits. Note that the remainder bits are not used in the decoding; thus, any errors in those bits
do not affect the result.

Let N denote the total number of bits in the encoding region, and let Nd, Nf and Nr be the numbers of bits in the data and
error-correction codewords and the format information, remainder bits, respectively. Accordingly, the numbers of erroneous
bits are denoted by p, q, and n− p− q, respectively. Then, the successful rate of error correction is given by the following.

Theorem 4.1 (Success Rate of Error Correction in the Encoding Region). Let n be the total number of bit errors in the
encoding region. Then, the success rate of error correction —denoted by Psuccess(n) —is given by:

Psuccess(n) =
1(
N
n

) n∑
p=0

n−p∑
q=0

W (p, q)Pd(p)Pf(q), (1)

where Pd and Pf respectively denote the success rate of error correction in the data and error-correction codewords with
p-bit errors and that in format information with q-bit errors, and

W (p, q) =

(
Nd

p

)(
Nf

q

)(
Nr

n− p− q

)
(2)
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is the probability that (n− p− q)-bit errors fall into the remainder bits.

In the following, we provide an overview of the derivation of Pd(p) and Pf(q).

Pd(p) - Success Rate in Data and Error-Correction Codewords. For the data and error-correction codewords, let M
denote the total number of codewords, and let Mecc represent the number of error-correction codewords, which depends on
the error correction level. Here, M = Nd/8. According to the properties of Reed–Solomon codes, the maximum number of
correctable codewords, denoted by t, is determined by t = ⌊Mecc/2⌋. Under these conditions, the probability of successful
error correction for the data and error-correction codewords can be determined as follows:
Theorem 4.2 (Success Rate of Error Correction in Data and Error-Correction Codewords). Let p be the number of erroneous
bits within the data and error-correction codewords. Then, the success rate of error correction —denoted by Pd(p)— is
given by

Pd(p) =
1(
Nd

p

) t∑
k=⌈ p

8 ⌉

(
M

k

) k∑
j=0

(−1)j
(
k

j

)(
8(k − j)

p

)
. (3)

Proof. Let K denote the number of codewords that contain at least 1-bit error. Since the Reed–Solomon decoder can correct
up to t codewords with errors, the Success Rate is given by:

Pd(p) = P (K ≤ t)

=

t∑
k=⌈ p

8 ⌉

P (K = k)

=
1(
Nd

n

) t∑
k=⌈ p

8 ⌉

|{K = k}|.

(6)

Let Sk(p) denote the number of ways in which exactly k distinct codewords each contain at least 1-bit error, given that there
are p bit errors in total. Then, under the condition that all k selected codewords include at least one erroneous bit, the value
of Sk(p) is given by

|{K = k}| =
(
M

k

)
Sk(p). (7)

Let U be the set of all ways to choose n error-bit positions out of the 8k bits of the k selected codewords (so |U | =
(
8k
p

)
).

Define Ai ⊆ U as the subset of error assignments in which the i-th codeword contains no bit errors. Then, the number of
assignments in which every codeword contains at least 1-bit error is given by:

Sk(p) =

∣∣∣∣ k⋂
i=1

Ac
i

∣∣∣∣
= |U | −

∣∣∣∣ k⋃
i=1

Ai

∣∣∣∣.
(8)

To evaluate the number of assignments in which every codeword contains at least one erroneous bit, we apply the principle
of inclusion-exclusion, as formalized in Lemma I.1. Specifically, applying it to the sets A1, A2, . . . , Ak ⊆ U , we obtain:∣∣∣∣ k⋃

i=1

Ai

∣∣∣∣ = k∑
j=1

(−1)j−1
∑

L⊆[k],|L|=j

∣∣∣∣ ⋂
l∈L

Al

∣∣∣∣ (9)

The term
∣∣∣∣⋂l∈L Al

∣∣∣∣ denotes the number of cases in which j codewords, selected from the k total codewords, are all

error-free; thus, ∑
L⊆[k],|L|=j

∣∣∣∣ ⋂
l∈L

Al

∣∣∣∣ = (
k

j

)(
8(k − j)

p

)
. (10)
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From Equations (8) to (10), it follows that

Sk(p) = |U | −
∣∣∣∣ k⋃
i=1

Ai

∣∣∣∣
=

(
8k

p

)
−

k∑
j=1

(−1)j−1

(
k

j

)(
8(k − j)

p

)

=

(
8k

p

)
+

k∑
j=1

(−1)j
(
k

j

)(
8(k − j)

p

)

=

k∑
j=0

(−1)j
(
k

j

)(
8(k − j)

p

)
.

(11)

Therefore, from Equations (6), (7) and (11), we obtain

Pd(p) =
1(
Nd

p

) t∑
k=⌈ p

8 ⌉

|K = k|

=
1(
Nd

p

) t∑
k=⌈ p

8 ⌉

(
M

k

) k∑
j=0

(−1)j
(
k

j

)(
8(k − j)

p

)
.

(12)

Pf (q) - Success Rate in Format Information. The format information is encoded into 15 bits using a (15, 5) BCH code
and placed in two separate locations in the QR code. If error correction works in either one of the two, the format information
can be correctly read. The (15, 5) BCH code can correct up to 3-bit errors. Under these conditions, the probability that the
format information is correctly recovered is given below:

Theorem 4.3 (Success Rate of Error Correction in Format Information). Let q denote the number of erroneous bits affecting
the format information, and let i and j represent the number of bit errors in each of the two respective instances. Then, the
success rate of error correction —denoted by Pf—is given by

Pf(q) =

∣∣{(i, j) ∈ N2
0 | i+ j = q, min(i, j) ≤ 3}

∣∣
q + 1

. (4)

Proof. When exactly q bit-errors occur in the format information, there are q + 1 ways to distribute those errors across the
two (15, 5) BCH codeword blocks. Decoding of the format information succeeds if at least one of the two blocks contains
at most 3-bit errors. Labeling by i and j the numbers of errors in the first and second blocks respectively, the number of
allocations that lead to successful decoding can be written as |{(i, j) ∈ N2

0 | i+ j = q, min(i, j) ≤ 3}|. Hence,

Pf(q) =

∣∣{(i, j) ∈ N2
0 | i+ j = q, min(i, j) ≤ 3}

∣∣
q + 1

. (13)

I. Principle of Inclusion–Exclusion
Lemma I.1 (Principle of Inclusion–Exclusion). Let A1, A2, . . . , Ak be subsets of a finite set U . Then, the cardinality of
their union is given by: ∣∣∣∣∣

k⋃
i=1

Ai

∣∣∣∣∣ =
k∑

j=1

(−1)j−1
∑

L⊆[k],|L|=j

∣∣∣∣∣⋂
l∈L

Al

∣∣∣∣∣ , (14)

where [k] = {1, 2, . . . , k}.
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Proof. We prove the identity by counting how many times each element x ∈ U is counted on the right-hand side. Fix an
element x ∈ U , and suppose that x belongs to exactly m of the sets A1, A2, . . . , Ak. Without loss of generality, assume
x ∈ A1, A2, . . . , Am, and x /∈ Am+1, . . . , Ak. On the right-hand side, x contributes to each term of the form

∣∣⋂
l∈L Al

∣∣,
where L ⊆ [k] and x ∈ Al for all l ∈ L. Since x belongs to exactly m of the Ai, the total number of such contributing terms
is:

(−1)0
(
m

1

)
+ (−1)1

(
m

2

)
+ · · ·+ (−1)m−1

(
m

m

)
=

m∑
j=1

(−1)j−1

(
m

j

)
. (15)

This sum can be evaluated using the binomial theorem:

0 = (1− 1)m

=

m∑
j=0

(−1)j
(
m

j

)

= 1−
m∑
j=1

(−1)j−1

(
m

j

)
.

(16)

From Equation (16), it follows that

m∑
j=1

(−1)j−1

(
m

j

)
= 1. (17)

Therefore, every x ∈
⋃k

i=1 Ai contributes exactly once to the right-hand side. Elements not in the union contribute zero.
Hence, the right-hand side counts exactly the number of elements in the union.
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