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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated impressive
capabilities across tasks, yet they often exhibit difficulty in distinguishing task-
relevant from irrelevant signals—particularly in tasks like Visual Question An-
swering (VQA)—which can lead to susceptibility to misleading or spurious in-
puts. We refer to this broader limitation as the Cross-Modality Competency Prob-
lem—the model’s inability to fairly evaluate all modalities. This vulnerability
becomes more evident in modality-specific tasks—such as image classification or
pure text question answering—where models are expected to rely solely on one
modality. In such tasks, spurious information from irrelevant modalities often lead
to significant performance degradation. We refer to this failure as Modality Inter-
ference, which serves as a concrete and measurable instance of the cross-modality
competency problem, and we further design a perturbation-based causal diagnos-
tic experiment to verify and quantify this problem. To mitigate modality interfer-
ence, we propose a novel framework to finetune MLLMs, including perturbation-
based data augmentations with both heuristic perturbations and adversarial per-
turbations, and a consistency regularization strategy applying on model outputs
with original and perturbed inputs. Experiments on multiple benchmark datasets
(image-heavy, text-heavy and multimodal tasks) and multiple model families with
different scales demonstrate significant improvements in robustness and cross-
modality competency, indicating our method’s effectiveness in boosting unimodal
reasoning ability while enhancing performance on multimodal tasks.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have made significant strides in integrating vision
and language understanding within a unified architecture (Liu et al., 2023b; Luo et al., 2023; Bai
et al., 2025). By combining powerful visual encoders and large language models through alignment
mechanisms, MLLMs such as LLaVA (Liu et al., 2023b) and Qwen-VL (Bai et al., 2025) demon-
strate strong capabilities across a wide range of multimodal tasks. However, beneath their seemingly
impressive performance lies a critical limitation: MLLMs often fail to distinguish between relevant
and irrelevant signals across modalities, leading to unreliable predictions (Wang et al., 2024a; Zhu
et al., 2024; Hosseini et al., 2025). Moreover, while MLLMs are designed for multimodal tasks,
their failure on unimodal tasks—where only a single modality (e.g. text) should guide the predic-
tion—raises concerns about whether the model can preserve modality-specific competencies. For
instance, MLLMs frequently underperform on pure visual recognition (Zhang et al., 2024; Tong
et al., 2024) and textual reasoning (Zhu et al., 2024; Wang et al., 2023; Lin et al., 2024), suggesting
that cross-modal fusion may induce unintended interference and degrade unimodal performance.

Recent studies have attributed this phenomenon to a variety of symptoms arising during the vision-
language alignment process, such as catastrophic forgetting (Zhang et al., 2024; Tong et al., 2024;
Wang et al., 2023; Lin et al., 2024), knowledge conflict (Wang et al., 2024a; Zhu et al., 2024),
and spurious correlations (Chen et al., 2024a; Hosseini et al., 2025). Catastrophic forgetting has
been identified as a key factor in visual degradation (Zhang et al., 2024; Tong et al., 2024), where
multimodal tuning of MLLM overrides its pretrained visual features. Cross-modal knowledge con-
flict (Wang et al., 2024a; Zhu et al., 2024) impairs pure-text reasoning, as models often produce
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Figure 1: Performance degradation under irrelevant perturbations reveals modality interference in
MLLMs. Left: Mini-ImageNet (image-heavy) with Original input, Unrelated Facts, and Misleading
Descriptions. Right: OpenBookQA (text-heavy) with Random Pixels, Full Black Canvas, and Ir-
relevant Real Images. Misleading descriptions induces the most severe degradation in image-heavy
tasks, while irrelevant real images cause the largest drop in text-heavy reasoning.

inconsistent outputs when visual inputs are introduced, reflecting misaligned visual and textual para-
metric memories. Additionally, studies on spurious correlations (Chen et al., 2024a; Hosseini et al.,
2025; Zhou et al., 2025) show that MLLMs tend to rely on superficial cross-modal cues rather than
task-relevant grounding. While these symptoms shed light on MLLMs’ limitations, most works
treat these issues in isolation. For instance, architectural issues such as shallow cross-modal fu-
sion have been widely discussed: lightweight projectors in models like LLaVA (Liu et al., 2023b)
fail to fully align vision and language representations, resulting in unstable modality reliance (Tong
et al., 2024; Zhu et al., 2024; Zhao et al., 2025). Others attribute performance bottlenecks to data
limitations—insufficient modality-specific supervision leads to impaired visual decoding (Zhang
et al., 2024) and diminished language understanding (Lin et al., 2024). Inspired by these observa-
tions, our insight is to unify these challenges under a broader perspective: the model’s inability to
identify and rely on the modality that contributes most relevant information to the task. We argue
that the fundamental limitation lies in MLLMs’ lack of cross-modality competency (Gardner et al.,
2021)—the ability to fairly evaluate and integrate information across modalities. Current MLLMs
lack mechanisms to support this competency during inference, making them vulnerable to mislead-
ing cross-modal signals—a failure mode we refer to as Modality Interference.

To systematically diagnose and mitigate modality interference, we introduce a two-stage method-
ology grounded in causal analysis. First, we design a perturbation-based evaluation experiment
inspired by causal intervention principles (Pearl, 1995; Chen et al., 2024a) to diagnose the extent
of modality interference across tasks and model scales. Second, we propose a robust fine-tuning
framework to mitigate modality interference. Specifically, in our evaluation analysis, we first focus
on modality-heavy settings using a multiple-choice question answering format, where the model
selects an answer from a fixed set of options based on both image and text input. We then include
image-heavy tasks (e.g., image classification), text-heavy tasks (e.g., pure-text QA), and balanced
multimodal tasks (e.g., VQA), allowing us to examine how models behave under different modality-
reliance scenarios. To further induce modality interference, we introduce heuristic perturbations:
In image-heavy tasks, we perturb the text input by prepending either (i) unrelated scientific facts
or (ii) misleading descriptions that falsely associate an incorrect option with the image content. In
text-heavy tasks, where the default visual input is random noise, we perturb the visual input with
(i) semantically meaningful real images, (ii) full black canvas, or (iii) full white canvas. These
perturbations are designed to either introduce spurious cues or reinforce irrelevant modality sig-
nals. We evaluate the resulting changes in model predictions to assess the robustness of modality
selectivity. While the perturbation-based evaluations offer empirical insights, we further frame our
analysis through a causal intervention framework and in which we model modality interference
through a causal graph abstraction. Building on this framework, we evaluate a range of pretrained
MLLMs across different architectures and scales with results shown in Fig. 1. In image-heavy tasks,
unrelated textual facts moderately reduce performance, while misleading descriptions cause severe
degradation—revealing the model’s vulnerability to spurious textual cues. In text-heavy tasks, can-
vas inputs have little effect, but unrelated real images mostly hurt performance, indicating improper
fusion of irrelevant visual signals into reasoning.
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The empirical results from Fig. 1 confirm the presence of modality interference and reveal the limi-
tations of current MLLMs in lack of cross-modality competency. To mitigate modality interference,
we propose a perturbation-based fine-tuning framework for MLLMs. Specifically, to alleviate data
insufficiency, we apply a perturbation-based data augmentation strategy, where we construct a di-
verse mixture of modality-specific, perturbation-augmented samples and original VQA samples.
The perturbations include both heuristic variants (e.g., injecting unrelated facts into image-heavy
prompts) and adversarial training-time perturbations, which expose the model to worst-case align-
ment disruptions and thus serve as a stronger form of regularization. To further improve robustness,
we introduce a consistency regularization strategy(e.g., via Jensen–Shannon divergence), which en-
forces output stability between original and perturbed samples. In summary, the main contributions
of this paper are threefold. First, we introduce the notion of the Cross-Modality Competency Prob-
lem to describe how multimodal models may struggle to balance different modalities, and analyze
modality interference as one concrete instance of such challenges in MLLMs. Second, we design
a perturbation-based causal evaluation experiment that systematically quantifies modality reliance
and reveals models’ susceptibility to modality interference. Third, we propose a fine-tuning strat-
egy that combines supervised augmentation with both heuristic and adversarial perturbations and
consistency regularization to mitigate modality interference. Extensive experiments across multiple
MLLM families and diverse benchmarks demonstrate the superiority of our method.

2 RELATED WORKS

Improving Modality Alignment in Multimodal Language Models Recent studies have revealed
that modality misalignment remains a key obstacle in MLLMs, leading to degraded performance on
both image-heavy and text-heavy tasks. For visual understanding, catastrophic forgetting occurs
when multimodal tuning overrides pretrained visual features (Zhang et al., 2024; Tong et al., 2024;
Wang et al., 2023). In text-heavy scenarios, knowledge conflict (Zhu et al., 2024) arises when incon-
sistent parametric knowledge from different modalities confuse reasoning. Moreover, mDPO (Wang
et al., 2024a) identifies language bias in training, where models fail to condition their responses on
visual input. Some works attribute such issues to shallow fusion (Wang et al., 2023)—e.g., LLaVA
uses lightweight projectors to bridge vision and language spaces, leaving a representational gap and
resulting in loosely coupled features (Tong et al., 2024; Zhu et al., 2024; Zhao et al., 2025). Oth-
ers highlight data limitations: even well-encoded visual features fail to support reasoning without
adequate supervision to guide decoding (Zhang et al., 2024).

Building on these diagnoses, recent models have proposed multiple solutions. MoF (Tong et al.,
2024) mitigates this by fusing features from multiple vision encoders, while VLMClassifier (Zhang
et al., 2024) enhances recognition via vision-only finetuning, though it struggles with VQA due to
lack of cross-modal alignment. CogVLM (Wang et al., 2023) introduces a visual expert module to
improve vision-language integration. VILA (Lin et al., 2024), QwenVL (Bai et al., 2025), and In-
ternVL (Zhu et al., 2025) incorporate text-only supervision in different ways to preserve or enhance
language capabilities during multimodal training—through stage-wise separation, parallel preser-
vation, and unified joint optimization, respectively. Similar patterns arise in multimodal structural
reasoning, where models must rely on relevant modalities to generalize to unseen relations (Cai
et al., 2024). These works motivate us to hypothesize on the root cause—the model’s inability to as-
sess modality relevance. We further propose a causal framing of modality interference and introduce
a perturbation-based fine-tuning strategy to improve the inference-time robustness of MLLMs.

Adversarial Robustness Across Modalities Adversarial perturbations threaten the reliability of
both vision and text tasks by exposing vulnerabilities through deliberate and imperceptible perturba-
tions. Existing robustness methods can be broadly categorized by modality, targeting either contin-
uous image embeddings or discrete token spaces. In vision tasks, attacks like FGSM (Goodfellow
et al., 2015) and CW (Carlini & Wagner, 2017) first revealed the fragility of neural networks to
imperceptible input changes. PGD (Madry et al., 2018) formalized this under a saddle-point frame-
work, becoming the standard for adversarial training. AutoAttack (Croce & Hein, 2020) further
unified strong attacks, including PGD variants, into a reliable benchmark. In text tasks, adversarial
methods must contend with discrete inputs. TextFooler (Jin et al., 2020) substitutes key words with
semantically similar ones to mislead predictions, while CodeAttack (Jha & Reddy, 2023) adapts
this idea to code-language models. More recently, PGD has been extended to LLMs via continuous
relaxation (Geisler et al., 2024), enabling efficient attacks in embedding space. Beyond evaluation,
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PGD has also been used as a regularizer to improve optimization. PTP (Chen et al., 2023a) applies
PGD-style perturbations in the prompt embedding space to smooth training and enhance stabil-
ity. Inspired by this, our work extends PGD to the multimodal embedding space, enabling unified
gradient-based control over both visual and textual inputs.

3 CAUSAL ANALYSIS ON MODALITY INTERFERENCE

Cross-Modality Competency Problems in Multimodal Large Language Models Competency
problems describe scenarios where models rely on spurious correlations between isolated input fea-
tures and output labels to make predictions, instead of leveraging meaningful interactions among
multiple features (Gardner et al., 2021). We extend this concept to the multimodal setting by treat-
ing entire modalities (e.g., image XI or text XT ) as structured feature sources. We define the
Cross-Modality Competency as an ability for MLLM to fairly evaluate and integrate all modalities,
identifying which ones carry task-relevant signals while ignoring misleading or irrelevant ones. For
instance, in a pure-text question answering task, the model receives both a question and an image,
as is standard in MLLM input formats. However, the image is not required to answer the question.
If the model relies on spurious visual cues—such as objects or scenes that frequently co-occur with
certain answers—it violates the task’s competency condition by grounding predictions in irrelevant
modality signals. This manifests as Modality Interference, where the presence of an irrelevant but
misleading modality disrupts the model’s reasoning.

Modality-Specific Problem
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Figure 2: Causal graph illustrating modality interference in our perturbation-based evaluation anal-
ysis. Controlled interventions (heuristic) perturb either the image or text inputs, affecting their
intermediate representations and ultimately the model prediction.

Perturbation-based Evaluation Experiment To systematically measure cross-modality compe-
tency, we propose a perturbation-based evaluation framework. The core idea is to inject controlled
noise into the irrelevant modality and assess the model’s robustness to such perturbations. Specifi-
cally, for image-heavy tasks, we perturb the text input by: (1)Prepending unrelated scientific facts;
(2) Prepending misleading descriptions that falsely link incorrect options to the image content. For
text-heavy tasks, we perturb the visual input by: (1) Attaching a real but irrelevant image; (2) Sub-
stituting with a full black or full white canvas image. Models with strong modality selectivity should
maintain high prediction consistency when irrelevant modality signals are perturbed. We select
multiple image-heavy and text-heavy tasks for evaluation. Each task is framed as a multiple-choice
classification problem, requiring the model to choose the correct option based on image and text
modalities as input, with perturbations applied as described above. Details in §5, §C.1 and Tab. 8.

Causal Modeling of Modality Interference We formalize modality interference through a causal
intervention perspective with a causal graph, as shown in Fig. 2, where visual inputs (XI ) and
textual inputs (XT ) are processed into their respective representations (ZI , ZT ) before being fused to
produce the final prediction (A). To study the model’s reliance on different modalities, we introduce
perturbations directly at the input level, serving as causal interventions (Pearl, 1995) on XI and XT .
Under ideal cross-modality competency, the model’s prediction should primarily depend on the
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task-relevant pathway (e.g., XI → ZI → A in image-heavy tasks, XT → ZT → A in text-heavy
tasks). Causal interventions at the input level allow us to diagnose whether the model improperly
fuses irrelevant signals into its decision process. We use x′

I to denote an intervention on image XI

and use x′
T as an intervention on text XT . Following Pearl’s causal framework (Pearl, 1995; int,

2022), we quantify the impact of modality perturbations on model predictions by formalizing causal
effects in our multimodal setting. Specifically, we define the pre-intervention prediction distribution
as P (A|XI , XT ), and the post-intervention prediction distribution after applying a perturbation on
XI or XT as P ′(A|do(XI = x′

I) or do(XT = x′
T )). The do-operation represents an intervention

to specific modality, and the causal effect (CE) of an intervention is evaluated via a distance metric
δ comparing P and P ′ as CE = δ(P, P ′). We assess the causal effect via prediction changes using
δcp(P, P

′) := I (a ̸= a′) in which a = argmaxx P (x) is the predicted answer before intervention,
a′ = argmaxx P

′(x) is the predicted answer after intervention and I(·) is the indicator function that
outputs 1 if a ̸= a′ and 0 otherwise. Thus, δcp captures whether the model’s final decision A changes
under perturbations to the input modality. In all interventions, a high value of δcp indicates the
model’s susceptibility to modality interference, revealing spurious reliance on irrelevant modality.

4 METHODS

To mitigate modality interference and enhance cross-modality competency, we propose a unified
perturbation-aware training framework that introduces interventions at both the input level (on XI

and XT ) and the representation level (on ZI and ZT ) with consistency regularization. Overall
pipeline is displayed in Fig. 3.

4.1 PERTURBATION-BASED DATA AUGMENTATION
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Figure 3: Overview of our proposed framework.

To increase causal robustness along the desired
paths XI → ZI → A (for image-heavy tasks)
or XT → ZT → A (for text-heavy tasks), we
first adopt a causally grounded data augmenta-
tion method by augmenting each sample with
both heuristic perturbations and training time
adversarial perturbations.

Mixture of Multi-Task Training data
with Heuristic Perturbations Let
D = (xI , xT , a) denote the full multi-
modal training dataset, where (xI , xT ) are the
image and text inputs and a is the ground-truth
answer. The dataset D can be partitioned into
three subsets based on tasks: 1) Image-heavy set Dimg: samples where visual input xI is the domi-
nant information source; 2) Text-heavy set Dtext: samples where textual input xT provides the main
reasoning signal; 3) VQA set Dvqa: samples from vision-language datasets with naturally balanced
multimodal dependencies. In practice, we transform these image-heavy and text-heavy datasets into
VQA format to construct Dimg and Dtext, and derive VQA samples from the supervised finetuning
stage of each MLLM as Dvqa. For each sample (xI , xT , a) ∈ Dimg ∪ Dtext, we maintain its original
version and apply heuristic perturbation to construct Origin Samples and Perturbation-Augmented
Samples. Origin samples are used to reinforce the desired causal path (e.g., XI → ZI → A).
Perturbation-augmented samples are variants of the same instance with perturbations applied to the
irrelevant modality, which are denoted as (xI , x̃T , a) ∈ Dimg

pert and (x̃I , xT , a) ∈ Dtext
pert where x̃T and

x̃I are perturbed text and image respectively. Together, the augmented dataset can be written as:

DAUG = Dimg ∪ Dimg
pert ∪ Dtext ∪ Dtext

pert ∪ DVQA. (1)

We sample Nimg and Ntext examples from Dimg and Dtext to construct Bimg
orig and Btext

orig respectively,
and the remaining Nvqa examples are VQA samples from Dvqa to construct Bvqa . With dynamically
generated perturbed variants for each sample, the final training batch is:

B = Bimg
orig ∪ Bimg

pert ∪ Btext
orig ∪ Btext

pert ∪ Bvqa, (2)

where Bimg
pert and Btext

pert are perturbation-augmented variants generated from Bimg
orig and Btext

orig, respec-
tively. For the full training batch B, which includes both original and perturbed samples, we define
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the supervised loss Lsft as the cross-entropy loss computed over all answer tokens in the ground-truth
sequences. Let Lcls(xI , xT , a) denote the standard autoregressive loss for a sample (xI , xT , a), then:

Lsft =
1

|B|
∑

(xI ,xT ,a)∈B

Lcls(xI , xT , a). (3)

Adversarial Perturbation with Cross-modality Masking While heuristic perturbations simulate
realistic but limited modality noise at the input level, they may not fully capture the worst-case fail-
ure modes of MLLMs, especially under complex spurious alignments in the representation space.
To overcome this limitation, we introduce a stronger and more generalizable intervention through
adversarial training. These perturbations simulate worst-case alignment disruptions during training,
serving as targeted interventions on latent nodes (ZI , ZT ) to reveal the Direct Causal Effect (DCE)
of irrelevant modalities on A. By optimizing the model under such adversarial conditions, we reduce
the model’s reliance on spurious cross-modal signals and reinforce task-relevant causal pathways.
Inspired by PGD (Madry et al., 2018; Chen et al., 2023b), we design a tailored perturbation strategy
for multimodal token embeddings (ZI , ZT ). Unlike standard PGD that applies coarse sign-based up-
dates, our method introduces two critical modifications: (1) Modality-specific perturbation masking,
which restricts perturbations to task-irrelevant modalities via a binary mask, thereby transforming
noise into targeted causal probes rather than indiscriminate corruption. (2) Raw-gradient updates,
where we remove the sign operator and apply the raw gradient directly, yielding smoother, more
diverse, and more realistic perturbations that better simulate modality interference. Formally, we
construct perturbations δ = (δI , δT ) in the latent space that maximize the model’s predictive loss:

δ = argmax
∥δ∥∞≤ϵ

Lcls(f(ZI + δI , ZT + δT )), (4)

where ϵ bounds the perturbation strength and f is the prediction function. We optimize δ through n
raw-gradient steps, updating at each step t as:

δ(t+1) = Π∥δ∥∞≤ϵ

(
δ(t) + α · ∇δLcls(f(Z + δ(t)))

)
, (5)

where α is the step size, Π projects the noise into the ℓ∞ ball, and Z = [ZI ;ZT ] is the concatenated
embedding. In practice, we integrate a modality-specific binary mask M ∈ {0, 1}L×d, where L
is the sequence length and d the hidden dimension, ensuring that perturbations only affect task-
irrelevant tokens. Given multimodal embeddings E ∈ RL×d, the perturbed embeddings are:

Ẽ = E+ δ ⊙M, (6)

with ⊙ denoting element-wise masking. We initialize δ with Gaussian noise N (0, ϵ2) and update it
for T steps. The final adversarial objective is Ladv = Lcls(f(Ẽ)).

4.2 CONSISTENCY REGULARIZATION UNDER PERTURBATIONS

While perturbation-based augmentation exposes the model to diverse interventions, it does not con-
strain how intermediate representations (ZI , ZT ) should respond, and even small changes in the
task-irrelevant modality may cause undesirable shifts in fused features. To address this, we intro-
duce a consistency regularization strategy that enforces output stability between original and per-
turbed inputs, serving as an indirect constraint on ZI and ZT to mitigate modality interference. By
minimizing the divergence between the prediction distributions of original and perturbed inputs, the
model is encouraged to maintain invariant behavior along the task-relevant causal paths. Formally,
given an original input x and its perturbed counterpart x̃, with predictive distributions pθ(A|x) and
pθ(A|x̃), the consistency loss follows the general form:

Lconsistency = Consistency
(
pθ(A|x) ∥ pθ(A|x̃)

)
. (7)

In practice, we instantiate this by applying distributional divergence (e.g., KL or JS) at the token
level. Let lorig, lpert ∈ RLA×V denote the pre-softmax logits for the original and perturbed samples,
where LA is the number of answer tokens and V the vocabulary size. Using KL divergence with
temperature τ as an example, the loss becomes (equally apply to image-heavy and text-heavy tasks):

Lconsistency =
1

LA

LA∑
i=1

V∑
v=1

softmax
(

lorig
i

τ

)
v
· log

softmax
(

lorig
i

τ

)
v

softmax
(

lpert
i

τ

)
v

. (8)
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Table 1: Evaluation on unimodal and VQA datasets. For unimodal datasets, we report accuracy un-
der the original input (Orig) and the worst-performing perturbation (Perturbed). For VQA datasets,
we report accuracy on the original setting. Best results are highlighted in bold.

Model Settings Mini-ImageNet Caltech-101 OpenBookQA MMLU ScienceQA MM-Bench Seed-Bench
Orig Perturbed Orig Perturbed Orig Perturbed Orig Perturbed Accuracy Accuracy Accuracy

LLaVA-1.5-7B 95.3 43.5 97.0 57.4 62.4 56.4 46.3 45.2 64.5 64.3 63.4
+ CoT (Wei et al., 2022) 81.7 28.9 80.9 36.0 38.8 38.9 39.6 38.7 64.7 65.2 64.1
+ VLMClassifier-1 (Zhang et al., 2024) 15.1 0.0 15.6 0.0 61.5 61.5 47.8 47.5 61.1 36.2 35.9
+ VLMClassifier-2 (Zhang et al., 2024) 15.6 0.0 15.1 0.0 61.8 61.2 47.4 47.8 61.8 35.8 36.0

Ours 98.6 98.4 99.3 98.9 81.8 81.0 51.5 51.0 67.8 73.1 64.6
LLaVA-1.5-13B 95.6 73.0 97.9 77.4 65.9 63.8 51.8 50.8 66.1 72.1 64.5

+ CoT (Wei et al., 2022) 92.9 62.8 96.6 67.8 55.6 53.0 47.3 45.5 65.6 70.2 64.9
+ I-MoF (Tong et al., 2024) 93.9 70.1 97.8 80.9 69.2 64.5 46.2 39.1 66.8 73.0 66.6

Ours 98.5 98.4 99.2 98.6 83.0 82.1 56.6 55.8 62.6 73.7 68.4

4.3 FINAL TRAINING OBJECTIVE

Our final training objective integrates both perturbation-based data augmentation and consistency
regularization into a unified framework. For each batch, we begin with a set of original samples Borig
and dynamically construct their heuristic perturbed counterparts Bpert via input-level augmentations.
We then apply adversarial perturbations on both Borig and Bpert, and enforce consistency between the
predictions of original and all perturbed samples. The overall loss is:

Ltotal = Lsft + Ladv + λcons · Lconsistency, (9)

where Lsft is the supervised loss computed over B, Ladv is the adversarial loss computed on all ad-
versarial perturbed samples and Lconsistency is the consistency loss between original and all perturbed
sample pairs. By aligning all three losses with the causal structure of multimodal reasoning, we
systematically mitigate modality interference and improve cross-modality competency in MLLMs.

5 EXPERIMENTS

Models. We conduct experiments on three MLLM families with different parameter size: Qwen2.5-
vl-3b (Bai et al., 2025), LLaVA-1.5-7B & LLaVA-1.5-13B (Liu et al., 2023a) and InstructBLIP-
Vicuna-7B (Luo et al., 2023). Following LLaVA and Qwen-VL, we freeze the vision encoder and
train the multimodal projector and language model; for InstructBLIP, we instead freeze both the
vision encoder and Q-Former, fine-tuning only the projection layer and language model (see §B).
Baselines. We include following baselines for comparison: LLaVA-1.5-13B + I-MoF (Tong et al.,
2024): By applying the designed Interleaved Mixture-of-Features (I-MoF) module on LLaVA-1.5-
13B to spatially combine CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2023) visual
tokens, it enhances visual grounding by integrating complementary features from contrastive and
self-supervised vision encoders. VLMClassifier (Zhang et al., 2024): it enhances visually-grounded
language models for image classification by fine-tuning them on ImageNet (Deng et al., 2009)
(VLMClassifier-1) or ImageNet combining LLaVA-Instruct (Liu et al., 2023b) (VLMClassifier-2).
Chain-of-Thought (CoT) Prompting (Wei et al., 2022): we further evaluate prompt-based mitigation
by encouraging structured reasoning through CoT-style prompting. The specific prompt design and
results are reported in §C.4.
Datasets. We evaluate models on benchmarks covering three task types: (i) Image-heavy tasks:
Mini-ImageNet (Russakovsky et al., 2015) and Caltech-101 (Fei-Fei et al., 2004), used in both
training and evaluation, originally designed for image classification; (ii) Text-heavy tasks: Open-
BookQA (Mihaylov et al., 2018) and MMLU (Hendrycks et al., 2020), consisting purely of textual
question answering data; (iii) VQA tasks: For training, we use LLaVA-Instruct-dataset (Liu et al.,
2023b) as the instruction-tuning dataset for related models. For InstructBLIP, we additionally use
TextCaps (Sidorov et al., 2020) as another publicly available VQA dataset used in instruction tuning.
For Qwen2.5-VL, whose instruction-tuning data is proprietary, we adopt LLaVA-Instruct as a stan-
dardized alternative. For evaluation, we adopt three multiple-choice VQA benchmarks: ScienceQA-
IMG (Lu et al., 2022), MM-Bench-EN (Liu et al., 2023c), and Seed-Bench-IMG (Li et al., 2023).
For ScienceQA and Seed-Bench, we only include examples with image context. For MM-Bench,
we use the English version. All datasets are converted into a unified multiple-choice VQA format,
enabling consistent modeling and evaluation across tasks and models. We report the accuracy of all
multiple choice tasks and quantify the causal effect with the prediction change rate δcp. All models
are fine-tuned for 1 epoch with a fixed batch size Nbatch. All the hyperparameters are listed in §D.
For each dataset, results are averaged over multiple independent runs. Following standard practice,
inference is performed with deterministic decoding (temperature fixed at 0).
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Table 2: Multimodal reasoning accuracy (%) on VQA benchmarks under various ablation study
configurations. The best accuracy is marked in bold. Arrows (↑ / ↓) indicate relative changes com-
pared to the Vanilla baseline of each model. Overall performance is computed as a weighted average
across datasets, with weights proportional to each dataset’s test size Tab. 13.(full results in Tab. 7)

Model Method ScienceQA-IMG MM-Bench-EN Seed-Bench-IMG VQA Overall
3B Multimodal Models

Qwen2.5-VL-3B
Bai et al. (2025)

Vanilla 63.0 (100%) 81.8 (100%) 72.3 (100%) 72.5 (100%)
FFT with DVQA 75.3 (↑19.5%) 82.0 (↑0.2%) 74.7 (↑3.3%) 76.1 (↑5.0%)
FFT with DAUG 73.6 (↑16.8%) 81.7 (↓0.1%) 75.3 (↑4.1%) 76.2 (↑5.1%)

+ KL 72.8 (↑15.6%) 80.9 (↓1.1%) 74.9 (↑3.6%) 75.9 (↑4.7%)
+ JS 73.4 (↑16.5%) 82.0 (↑0.2%) 75.2 (↑4.0%) 76.2 (↑5.1%)
+ RG 73.4 (↑16.5%) 81.8 (↑0.0%) 75.0 (↑3.7%) 76.0 (↑4.8%)
+ ADV 73.1 (↑16.0%) 81.7 (↓0.1%) 75.3 (↑4.1%) 76.1 (↑5.0%)

Ours 73.8 (↑17.1%) 81.5 (↓0.4%) 75.5 (↑4.4%) 76.4 (↑5.4%)
7B Multimodal Models

LLaVA-1.5-7B
Liu et al. (2023a)

Vanilla 64.5 (100%) 64.3 (100%) 63.4 (100%) 63.8 (100%)
FFT with DVQA 61.6 (↓4.5%) 71.4 (↑11.0%) 62.4 (↓1.6%) 64.0 (↑0.3%)
FFT with DAUG 65.4 (↑1.4%) 71.1 (↑10.6%) 63.9 (↑0.8%) 65.6 (↑2.8%)

+ KL 65.9 (↑2.2%) 72.5 (↑12.8%) 64.5 (↑1.7%) 66.3 (↑3.9%)
+ JS 63.8 (↓1.1%) 73.5 (↑14.3%) 63.7 (↑0.5%) 65.6 (↑2.8%)
+ RG 66.3 (↑2.8%) 71.8 (↑11.7%) 63.7 (↑0.5%) 65.7 (↑3.0%)
+ ADV 66.7 (↑3.4%) 71.4 (↑11.0%) 63.6 (↑0.3%) 65.7 (↑3.0%)

Ours 67.8 (↑5.1%) 73.1 (↑13.7%) 64.6 (↑1.9%) 66.8 (↑4.7%)

InstructBlip-7B
Luo et al. (2023)

Vanilla 52.1 (100%) 65.5 (100%) 54.8 (100%) 56.4 (100%)
FFT with DVQA 61.8 (↑18.6%) 68.4 (↑4.4%) 57.6 (↑5.1%) 60.4 (↑7.1%)
FFT with DAUG 65.4 (↑25.5%) 71.1 (↑8.5%) 61.2 (↑11.7%) 63.9 (↑13.3%)

+ KL 65.9 (↑26.5%) 71.7 (↑9.5%) 60.9 (↑11.1%) 63.9 (↑13.3%)
+ JS 66.9 (↑28.4%) 72.3 (↑10.4%) 60.7 (↑10.8%) 64.1 (↑13.7%)
+ RG 62.8 (↑20.5%) 70.9 (↑8.2%) 62.5 (↑14.0%) 64.2 (↑13.8%)
+ ADV 66.0 (↑26.7%) 69.0 (↑5.3%) 61.8 (↑12.8%) 64.0 (↑13.5%)

Ours 64.0 (↑22.8%) 71.4 (↑9.0%) 63.0 (↑14.9%) 64.8 (↑14.9%)
13B Multimodal Models

LLaVA-1.5-13B
Liu et al. (2023a)

Vanilla 65.8 (100%) 72.1 (100%) 64.5 (100%) 66.2 (100%)
FFT with DVQA 60.8 (↓7.6%) 73.6 (↑2.1%) 64.9 (↑0.6%) 65.8 (↓0.6%)
FFT with DAUG 63.5 (↓3.5%) 75.0 (↑4.0%) 65.7 (↑1.9%) 67.1 (↑1.4%)

+ KL 62.5 (↓5.0%) 74.6 (↑3.5%) 67.6 (↑4.8%) 68.0 (↑2.7%)
+ JS 65.8 (↑0.0%) 74.7 (↑3.6%) 67.6 (↑4.8%) 68.6 (↑3.6%)
+ RG 58.3 (↓11.4%) 73.5 (↑1.9%) 67.4 (↑4.5%) 66.9 (↑1.1%)
+ ADV 57.6 (↓12.5%) 74.2 (↑2.9%) 68.3 (↑5.9%) 67.5 (↑2.0%)

Ours 62.6 (↓4.9%) 73.7 (↑2.2%) 68.4 (↑6.0%) 68.4 (↑3.3%)

Achieving Pareto-Optimality Across Unimodal and Multimodal Tasks As shown in Tab. 1,
our method outperforms all baselines across different base MLLMs, demonstrating stronger ro-
bustness to modality interference and improved cross-modality competency. While CoT slightly
improves performance in certain VQA settings, its overall gains are minimal and inconsistent,
and it fails to mitigate modality interference under perturbed conditions (e.g., 85.9% vs. 97.9%
on Mini-ImageNet). While I-MoF enhances visual grounding by integrating multiple visual fea-
tures, it still suffers from modality interference: e.g. LLaVA-1.5-13B + I-MoF achieves 93.9% on
original Mini-ImageNet but drops to 70.1% under perturbation (↓23.8%), indicating reliance on spu-
rious textual cues. In contrast, our method maintains perturbed performance at 98.4% (↓0.1%). On
the other hand, VLMClassifier, adopts vision-only fine-tuning, which leads to two critical limita-
tions: vulnerability to cross-modal interference and degradation on VQA tasks, as LLaVA-1.5-7b
+ VLMClassifier-1 only reaches 35.8%/36.2% on MM-Bench/SeedBench, notably lower than both
base LLaVA and our method (73.7%/68.4%). These results highlight that vision-centric strategies,
without addressing modality alignment, are insufficient for robust multimodal understanding. In
text-heavy tasks such as OpenBookQA and MMLU, our method also achieves superior perturbed
performance(e.g., 55.8% vs. 39.1% on MMLU on LLaVA-1.5-13B)—highlighting that address-
ing modality interference directly, rather than merely improving representations, is key to robust
multimodal reasoning. Overall, unlike prior methods that often trade off between unimodal and
multimodal performance, our method consistently improves both, achieving Pareto-optimality.

Ablation Studies To evaluate the effectiveness of each component in our framework, we con-
duct a comprehensive ablation study across multiple models and scales. We compare the pretrained
models with the following strategies: FFT with DVQA (standard finetuning on VQA data), FFT with
DAUG (supervised finetuning on mixed multi-task datasets with heuristic perturbations), FFT+KL/JS

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: Evaluation of Caltech-101 (image-heavy)
and MMLU (text-heavy) across different ablation
study settings (full results in Tab. 6).

Model Method Caltech-101 MMLU
Orig Perturbed Orig Perturbed

LLaVA-1.5-7B

Vanilla 97.0 57.4 46.3 45.2
+DVQA 96.2 46.3 46.8 45.6
+DAUG 98.5 98.6 51.1 50.7

+KL 98.6 98.7 51.1 50.7
+ADV 98.7 98.5 50.6 50.3

Ours 99.3 99.0 51.5 51.0

InstructBLIP-7B

Vanilla 90.3 17.5 35.3 35.2
+DVQA 92.1 23.1 40.9 40.2
+DAUG 99.0 56.1 50.0 49.7

+JS 98.9 98.4 50.7 49.3
+ADV 99.1 85.2 49.3 48.4

Ours 99.2 98.3 50.2 49.7

Table 4: OOD robustness evaluation on
Caltech-101 and MMLU, with OCR noise and
Screenshot distractors (full results in Tab. 11).

Model Method Caltech-101 MMLU
Orig OCR Orig Screenshot

LLaVA-1.5-7B

Vanilla 97.0 92.8 46.3 44.8
+DAUG 98.5 98.0 51.1 50.6

+ADV 98.7 98.4 50.6 51.3
Ours 99.3 99.0 51.5 51.3

InstructBLIP-7B

Vanilla 90.3 83.6 35.3 34.9
+DAUG 99.0 98.4 50.0 49.2

+ADV 99.1 98.8 49.3 49.3
Ours 99.2 99.0 50.2 49.2

Qwen2.5-VL-7B

Vanilla 99.1 99.2 69.3 57.0
+DAUG 99.7 99.3 70.4 63.7

+ADV 99.6 99.6 70.4 69.7
Ours 99.6 99.5 69.8 69.7

(adding consistency regularization on KL or JS divergence), FFT+RG (injecting random Gaus-
sian noise into token embeddings), FFT+ADV (FFT with heuristic & adversarial perturbations),
and Ours (combining both perturbation-based data augmentation and consistency regularization).
Tab. 2 presents overall VQA performance, and Tab. 3 evaluates model robustness under unimodal
settings. ( Tab. 5 reports results with all perturbations.) Together, these results show the effec-
tiveness of our method in improving both general VQA accuracy and robustness under modality
interference. Across all model families (Qwen2.5-VL, InstructBLIP, LLaVA-1.5) and model sizes
(3B/7B/13B), our method consistently achieves best overall performance, improving accuracy on
both unimodal and multimodal benchmarks. For instance, it boosts overall VQA accuracy (e.g.,
+14.9% on InstructBLIP-7B), but also enhances robustness to modality interference–improve the
performance under perturbations by over 50% on image-heavy tasks(e.g. 17.5% → 98.3% with
InstructBLIP-7B on Caltech101). We also extend evaluation from MCQA to free-form QA (§C.5).

We observe consistent improvements across both unimodal and multimodal tasks when moving from
FFT w/ DVQA to FFT w/ DAUG, highlighting the importance of incorporating modality-specific su-
pervision and heuristic perturbations. Building upon this, adding consistency regularization yields
further gains by stabilizing model predictions under controlled perturbations on XI or XT . Both
KL and JS objectives lead to similar improvements, suggesting that the model equally benefits from
all heuristic perturbations regardless of anchor choice.Finally, we compare adversarial perturbations
with random Gaussian noise, and find that FFT+ADV consistently outperforms FFT+RG across
most backbones, indicating that structured perturbations more effectively suppress spurious short-
cuts and promote robust, task-relevant representations. To further validate generalization, we intro-
duce two real-world out-of-distribution perturbations at test time: (i) noisy OCR snippets sampled
from FUNSD (Jaume et al., 2019) as irrelevant text into image-heavy tasks; and (ii) unrelated UI
screenshots from RICO (Deka et al., 2017) as distractor images in text-heavy tasks. As shown
in Tab. 4, adversarial training significantly improves robustness under these unseen perturbations
with consistent gains (e.g., on InstructBLIP-7B, 83.6% → 99.0% under OCR noise). These results
demonstrate that the modest overhead of adversarial training (see §E) yields substantial gains
in out-of-domain generalization, a crucial property for reliable deployment.

6 CONCLUSION

In this paper, we identify and formalize modality interference as a concrete manifestation of the
broader cross-modality competency problem in Multimodal Large Language Models—namely,
the inability to distinguish task-relevant from irrelevant modality signals. Through a designed
perturbation-based causal evaluation experiment, we demonstrate that even state-of-the-art MLLMs
systematically exhibit degraded performance under irrelevant but misleading inputs, revealing a fun-
damental vulnerability in their inference-time reasoning. To mitigate this issue, we propose a robust
fine-tuning strategy that combines modality-specific data augmentation, consistency regularization,
and adversarial perturbation in the embedding space. These designs explicitly constrain the model
to produce stable outputs under spurious modality shifts, thereby reducing reliance on non-causal
correlations and improving robustness. Extensive experiments across diverse architectures, scales,
and task regimes confirm that our approach consistently improves both unimodal reasoning and
multimodal generalization, achieving Pareto-optimal performance.
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This work adheres to the ICLR Code of Ethics.1 Our research focuses on analyzing and mitigat-
ing modality interference in Multimodal Large Language Models. All experiments are conducted
on publicly available benchmark datasets, including Mini-ImageNet, Caltech-101, OpenBookQA,
MMLU, ScienceQA, MM-Bench, and Seed-Bench, which contain no personally identifiable or sen-
sitive information beyond what is publicly released. We do not foresee direct risks of harm to
individuals or groups arising from this research. Nevertheless, potential societal impacts include
bias amplification or misinterpretation when deploying MLLMs in real-world applications. We
note these risks and emphasize that our contributions are methodological and diagnostic rather than
application-specific. No human subjects were involved, and no IRB approval was required. All
funding sources are acknowledged in the main paper. Further discussions of limitations, broader
impacts and LLM use are provided in Appendix §F, Appendix §G and Appendix §H.

REPRODUCIBILITY STATEMENT
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• Code and Implementation: We will release a full open-source codebase, including data
processing, training, and evaluation scripts, upon publication.

• Datasets: All datasets used in this work are publicly available (Mini-ImageNet, Caltech-
101, OpenBookQA, MMLU, ScienceQA, MM-Bench, Seed-Bench). Detailed preprocess-
ing steps and dataset conversions into unified multiple-choice VQA format are described
in §5 and Appendix §C.

• Model and Training Details: Hyperparameters (learning rates, batch sizes, epochs, opti-
mizer choices) and architectural specifications are reported in §5 and Appendix §B, §D,
§E.

• Evaluation: Metrics, baselines, and evaluation protocols are fully documented in §5 and
Appendix §C with complete ablation results.

Together, these materials should enable independent researchers to reproduce our findings.

1https://iclr.cc/public/CodeOfEthics
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A APPENDIX SUMMARY

This appendix provides comprehensive supplementary materials and discussion to support the main
findings of our paper on diagnosing and mitigating modality interference in MLLMs. We organize
the appendix into several sections:

Finetuning Strategies (§B): We elaborate on our design choice to freeze the Q-Former in
InstructBLIP-based models. This decision is motivated by the need to retain strong visual represen-
tations while avoiding overfitting to perturbed or misleading multimodal inputs. ( Tab. 13 records
the size for each dataset)

Detailed Experimental Results (§C): This section includes three key tables— Tab. 5, Tab. 6 and
Tab. 7—which report model performance on unimodal and multimodal tasks under various per-
turbation settings and ablation conditions(additional models included). Tab. 8 records the perfor-
mance of different vanilla MLLMs under modality interference across modality-heavy datasets. We
also include radar plots ( Fig. 4) that visualize task-wise robustness across different MLLMs. We
provided the detailed experimental results on Qwen2.5-VL-7b (Bai et al., 2025) and InstructBlip-
Vicuna-13b (Luo et al., 2023) and make further discussion on the selection of specific consistency
loss. In Tab. 11, we examine the generalization benefits of adversarial training by evaluating ro-
bustness under two types of out-of-distribution (OOD) perturbations: real-world OCR noise (from
FUNSD (Jaume et al., 2019)) and unrelated screenshots (from RICO (Deka et al., 2017)). In Tab. 9,
we assess the impact of Chain-of-Thought prompting in mitigating modality interference, comparing
its effectiveness against our method and standard baselines across both visual and textual modalities.
In Tab. 10, we report results on the free-form generative VQA benchmark TextVQA (Singh et al.,
2019), highlighting our method’s generalizability beyond multiple-choice formats.

Hyperparameter Settings (§D): We present full training configurations used in our experiments,
including optimization strategies, perturbation settings, and sampling ratios for different task types.
This section enables reproducibility and highlights the computational efficiency of our proposed
training scheme. We provide parameter analysis on iterations of adversarial training in Fig. 5.

Compute Resource Details (§E): We document hardware specifications, training durations, and re-
source costs for models of different scales. These details contextualize the feasibility of our approach
in academic environments.

Limitations (§F): We discuss the granularity of our current modality interference analysis, the se-
lections of perturbations, and propose directions for more fine-grained future studies.

Broader Impacts (§G): We reflect on the ethical implications and societal benefits of our research.
While our methods improve model robustness and alignment, we also acknowledge the dual-use
nature of adversarial perturbations and advocate for safety-aware deployment.

LLM Use (§H): Finally, we clarify that LLMs were only used to polish the writing of this paper.

Together, these sections provide a complete view of our technical contributions, empirical findings,
and responsible research considerations.

B FINETUNING STRATEGIES

In our adaptation of InstructBLIP-Vicuna-7B, we choose to freeze the Q-Former and only fine-tune
the language model and the projection layer. This decision is grounded in the nature of the Q-Former
as a highly task-specific visual query encoder, originally pre-trained on VQA-style datasets where
fine-grained and semantically aligned image-text pairs dominate.

However, in our setting, we deliberately introduce perturbations to the input modalities (e.g., inject-
ing unrelated or misleading text/image content), which breaks the expected alignment structure. We
observe that training the Q-Former under such noisy supervision leads to unstable representations
and overfitting to spurious modality correlations. In contrast, freezing the Q-Former allows us to
preserve its original strong visual grounding capabilities, while letting the downstream language
model learn to filter or suppress misleading signals introduced during training.

This alternative tuning strategy enhances robustness under modality interference and aligns with our
overall goal of improving cross-modal competency in MLLMs under perturbed conditions.
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Table 5: Unimodal ability evaluation on image-heavy and text-heavy tasks under perturbation. Left:
Mini-ImageNet and Caltech-101; Right: OpenBookQA and MMLU. UF = Unrelated Facts, MD =
Misleading Descriptions, RP = Random Pixels, RI = Real Image, FB & FW = Full Black/White
Canvas. The best accuracy is marked in bold.

Model Method Mini-ImageNet Caltech-101 OpenBookQA MMLU
Orig UF MD Orig UF MD RP RI FB FW RP RI FB FW

Qwen2.5-VL-3B
Bai et al. (2025)

Vanilla 98.9 98.5 94.9 98.8 99.0 94.4 79.9 74.6 80.0 79.7 63.5 61.1 64.0 63.6
FFT with DVQA 98.8 98.5 95.3 98.8 98.1 94.3 80.7 74.3 80.1 80.2 63.0 61.7 63.0 63.3
FFT with DAUG 98.8 98.8 98.6 99.6 99.3 99.6 87.1 86.7 87.4 87.2 64.8 63.9 64.8 64.7

+ KL 98.9 98.7 99.1 99.6 99.5 99.7 87.1 86.2 86.7 86.8 66.0 65.5 65.9 65.9
+ JS 99.1 98.8 98.3 99.6 99.4 98.0 85.0 84.2 85.1 85.1 65.6 65.1 65.5 65.5
+ RG (σ=0.05) 99.0 99.1 98.9 99.5 99.5 99.2 86.4 86.9 86.9 87.2 64.6 64.3 64.6 64.8
+ ADV 99.3 99.3 99.1 99.5 99.4 99.5 86.6 85.8 86.8 86.6 65.3 64.0 65.4 65.3

Ours 99.3 99.2 99.2 99.7 99.7 99.5 86.7 86.4 86.6 86.6 64.8 64.5 65.0 65.1

Qwen2.5-VL-7B
Bai et al. (2025)

Vanilla 99.3 99.3 96.3 99.1 98.9 97.2 85.9 77.5 85.8 86.0 69.3 63.7 68.9 68.9
FFT with DVQA 99.2 99.3 96.0 99.5 99.5 95.7 86.3 82.3 86.5 86.3 69.2 67.4 69.4 69.3
FFT with DAUG 99.6 99.5 99.4 99.7 99.7 99.5 90.2 90.2 90.3 90.3 70.4 69.9 70.4 70.3

+ KL 99.3 99.3 99.1 99.6 99.6 99.6 92.0 91.7 92.2 92.1 71.2 70.7 71.0 71.0
+ JS 99.5 99.4 99.4 99.7 99.3 99.6 91.6 92.1 92.2 92.1 71.5 69.9 71.5 71.6
+ RG (σ=0.05) 99.4 99.4 99.2 99.6 99.3 99.4 89.1 87.9 89.1 89.1 66.7 65.6 66.5 66.5
+ ADV 99.4 99.3 99.2 99.6 99.5 99.6 91.7 92.2 91.8 91.8 70.4 70.0 70.4 70.4

Ours 99.6 99.5 99.5 99.6 99.6 99.7 90.9 89.7 90.8 91.0 69.8 68.2 69.8 70.0

LLaVA-1.5-7B
Liu et al. (2023a)

Vanilla 95.3 93.4 43.5 97.0 95.9 57.4 62.4 56.4 62.5 63.4 46.3 45.2 45.9 45.8
FFT with DVQA 94.3 92.7 41.5 96.2 94.0 46.3 61.3 55.5 62.0 62.9 46.8 45.6 47.5 47.7
FFT with DAUG 98.2 98.2 98.1 98.5 98.6 99.0 78.6 77.2 78.7 78.4 51.1 50.7 51.1 51.3

+ KL 99.1 99.0 98.9 98.6 98.7 98.8 81.4 81.3 81.4 81.2 52.0 51.8 52.0 52.2
+ JS 98.7 98.8 99.0 99.1 99.0 99.2 81.6 81.6 81.7 81.5 51.6 51.8 52.4 52.4
+ RG (σ=0.05) 98.4 98.4 98.5 98.9 98.9 99.1 80.5 79.8 79.9 80.3 49.5 49.5 49.9 49.6
+ ADV 98.7 98.7 98.5 98.7 98.5 98.8 81.7 81.0 81.4 80.8 50.6 50.3 50.9 50.7

Ours 98.6 98.4 98.7 99.3 98.9 99.3 81.8 81.0 81.7 81.7 51.5 50.9 51.5 51.4

LLaVA-1.5-13B
Liu et al. (2023a)

Vanilla 95.6 94.1 73.0 97.9 97.1 77.4 65.9 63.8 68.0 69.1 51.8 50.8 52.7 52.7
FFT with DVQA 94.6 93.9 72.0 97.8 96.5 80.2 67.5 64.2 69.1 69.3 52.4 52.2 53.1 53.3
FFT with DAUG 98.1 96.8 98.4 96.7 96.9 97.0 81.0 78.7 81.1 81.3 52.1 51.7 51.8 51.6

+ KL 98.3 98.0 98.6 98.8 98.5 98.9 83.0 82.6 83.3 83.0 55.7 55.1 55.6 55.6
+ JS 98.3 98.1 98.0 98.7 98.4 98.7 83.1 81.5 83.1 83.1 56.7 56.2 56.6 56.5
+ RG (σ=0.05) 98.5 98.0s 98.1 98.9 98.5 98.9 83.5 82.5 83.1 82.8 55.4 55.3 55.7 55.5
+ ADV 98.7 98.2 98.6 99.0 98.6 99.0 82.2 82.6 82.6 82.8 55.6 55.4 55.6 55.5

Ours 98.5 98.4 98.7 99.2 98.6 99.2 83.0 82.1 82.7 83.1 56.7 55.8 56.7 56.7

InstructBlip-7B
Luo et al. (2023)

Vinilla 92.0 87.1 13.6 90.3 90.2 17.5 50.8 46.2 50.9 50.7 35.3 35.8 35.2 35.7
FFT with DVQA 95.6 86.6 16.3 98.3 91.0 23.1 49.8 45.2 49.5 50.7 40.9 40.2 41.0 41.6
FFT with DAUG 98.5 98.0 38.2 99.0 98.7 56.1 75.0 74.9 74.8 75.8 50.0 49.7 50.0 50.0

+ KL 98.7 98.1 98.3 99.5 99.0 99.6 76.9 77.0 76.9 77.3 51.3 50.6 51.3 51.5
+ JS 98.5 97.7 98.5 98.9 98.4 98.9 78.0 76.6 77.7 78.0 50.7 50.1 50.7 50.8
+ RG (σ=0.05) 98.9 97.2 72.5 99.1 99.0 82.2 75.2 72.6 76.0 76.9 48.3 47.6 48.9 49.1
+ ADV 98.7 98.5 32.2 99.5 98.9 49.2 76.8 76.8 76.5 76.3 49.3 48.4 49.5 49.4

Ours 98.4 97.9 98.0 99.2 98.3 99.0 79.0 77.3 79.3 79.0 50.2 49.7 50.3 50.2

InstructBlip-13B
Luo et al. (2023)

Vanilla 95.6 94.1 73.0 97.9 97.1 77.4 65.9 63.8 68.0 69.1 51.8 50.8 52.7 52.7
FFT with DVQA 95.6 85.8 8.0 97.0 87.5 11.6 58.6 55.4 59.7 60.6 43.7 42.8 43.6 44.1
FFT with DAUG 98.4 98.2 9.3 99.2 98.8 13.8 82.0 80.4 81.2 81.2 52.1 51.3 52.4 53.0

+ KL 98.5 98.3 98.7 99.1 99.2 99.5 82.5 81.4 82.1 82.9 53.4 52.5 53.4 53.4
+ JS 98.7 98.1 98.9 99.3 99.2 99.5 83.5 83.1 83.1 83.3 52.8 52.2 53.2 53.3
+ RG (σ=0.05) 98.4 97.8 87.0 99.4 99.3 94.4 80.0 76.6 79.6 80.4 50.9 50.0 51.4 51.8
+ ADV 98.6 98.0 80.9 98.7 98.6 99.1 79.8 79.0 80.9 80.9 51.3 50.7 51.4 52.4

Ours 98.7 97.9 98.0 98.7 98.7 98.8 83.2 81.2 83.8 83.0 52.2 51.6 52.3 53.4

C DETAILED EXPERIMENTAL RESULTS

Please see Tab. 5, Tab. 6, Fig. 4, Tab. 8, Tab. 7, Tab. 11, Tab. 9 and Tab. 10 for more details.
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Table 6: Evaluation of unimodal and multimodal tasks across different ablation study settings. For
unimodal datasets, we report accuracy on the original setting (Orig) and the worst-performing pertur-
bation (Perturbed). For VQA datasets, we report accuracy on the original setting. The best accuracy
is marked in bold.

Model Method Mini-ImageNet Caltech-101 OpenBookQA MMLU VQA Overall
Orig Perturbed Orig Perturbed Orig Perturbed Orig Perturbed Accuracy

3B Multimodal Models

Qwen2.5-VL-3B
Bai et al. (2025)

Vanilla 98.9 94.9 98.8 94.4 79.9 74.6 63.5 61.1 72.5
FFT with DVQA 98.8 95.3 98.8 94.3 80.7 74.3 63.0 61.7 76.1
FFT with DAUG 98.8 98.6 99.6 99.3 87.1 86.2 64.8 63.9 76.2

+ KL 98.9 98.7 99.6 99.5 87.1 86.7 66.0 65.5 75.9
+ JS 99.1 98.3 99.6 98.0 85.0 84.2 65.6 65.1 76.2
+ RG 99.0 98.9 99.5 99.2 86.4 86.4 64.6 64.3 76.0
+ ADV 99.3 99.1 99.5 99.4 86.6 85.8 65.3 64 76.1

Ours 99.3 99.2 99.7 99.5 86.7 86.6 64.8 64.5 76.4
7B Multimodal Models

LLaVA-1.5-7B
Liu et al. (2023a)

Vanilla 95.3 43.5 97.0 57.4 62.4 56.4 46.3 45.2 63.8
FFT with DVQA 94.3 41.5 96.2 46.3 61.3 55.5 46.8 45.6 64.0
FFT with DAUG 98.2 98.1 98.5 98.6 78.6 77.2 51.1 50.7 65.6

+ KL 99.1 99.0 98.6 98.7 81.4 81.2 51.1 50.7 66.3
+ JS 98.7 98.8 99.1 99.0 81.6 81.5 52.0 51.8 65.6
+ RG 98.4 98.4 98.9 98.9 80.5 79.8 49.5 49.5 65.7
+ ADV 98.7 98.5 98.7 98.5 81.7 80.8 50.6 50.3 65.7

Ours 98.6 98.6 99.3 99.0 81.8 81.5 51.5 51.0 66.8

InstructBlip-7B
Luo et al. (2023)

Vanilla 92.0 13.6 90.3 17.5 50.9 46.2 35.3 35.2 56.4
FFT with DVQA 95.6 16.3 98.3 23.1 49.8 45.2 40.9 40.2 60.4
FFT with DAUG 98.5 38.2 99.0 56.1 75.0 74.8 50.0 49.7 63.9

+ KL 98.7 98.1 99.5 99.0 76.9 76.9 51.3 50.6 63.9
+ JS 98.5 97.7 98.9 98.4 78.0 76.6 50.7 50.1 64.1
+ RG 98.9 72.5 99.1 82.2 76.0 72.6 48.3 47.6 64.2
+ ADV 98.7 72.2 99.5 85.2 76.8 76.3 49.3 48.4 64.0

Ours 98.4 98.0 99.2 98.3 79.0 78.3 50.2 49.7 64.8

Qwen2.5-VL-7B
Luo et al. (2023)

Vanilla 99.3 96.3 99.1 97.2 85.9 77.5 69.3 63.7 80.3
FFT with DVQA 99.2 96.0 99.5 95.7 86.3 82.3 69.2 67.4 79.5
FFT with DAUG 99.6 99.4 99.7 99.5 90.2 90.2 70.4 69.9 79.9

+ KL 99.3 99.1 99.6 99.6 92.0 91.7 71.2 70.7 80.6
+ JS 99.5 99.4 99.7 99.3 91.6 92.1 71.5 69.9 80.3
+ RG 99.4 99.3 99.7 99.5 91.7 91.8 70.4 69.9 78.0
+ ADV 99.4 99.2 99.6 99.5 91.7 91.8 70.4 70.0 79.9

Ours 99.6 99.5 99.6 99.7 90.9 89.7 69.8 68.2 80.9
13B Multimodal Models

LLaVA-1.5-13B
Liu et al. (2023a)

Vanilla 95.6 73.0 97.9 77.4 65.9 63.8 51.8 50.8 66.2
FFT with DVQA 94.6 72.0 97.8 80.2 67.5 64.2 52.4 52.2 65.8
FFT with DAUG 98.1 96.8 96.7 96.9 81.0 78.7 52.1 51.6 67.1

+ KL 98.3 98.0 98.8 98.5 83.0 82.6 55.7 55.1 68.0
+ JS 98.3 98.1 98.7 98.4 83.1 81.5 56.7 56.2 68.6
+ RG 98.5 98.0 98.9 98.5 83.5 82.5 55.4 55.3 66.9
+ ADV 98.7 98.2 99.0 98.6 82.2 82.5 55.6 55.4 67.5

Ours 98.5 98.4 99.2 98.7 83.0 82.1 56.7 56.0 68.4

InstructBlip-13B
Luo et al. (2023)

Vanilla 95.6 73.0 97.9 77.4 65.9 63.8 51.8 50.8 65.8
FFT with DVQA 95.6 8.0 97.0 11.6 58.6 55.4 43.7 42.8 59.4
FFT with DAUG 98.4 9.3 99.2 13.8 82.0 80.4 52.1 51.3 65.9

+ KL 98.5 98.3 99.1 99.2 82.5 81.4 53.4 52.5 66.2
+ JS 98.7 98.1 99.3 99.2 83.5 83.1 52.8 52.2 66.5
+ RG 98.4 97.8 99.4 99.3 80.0 76.6 50.9 50.0 66.3
+ ADV 98.6 80.9 98.7 98.6 79.8 79.0 51.3 50.7 66.4

Ours 98.7 97.9 98.7 98.7 83.2 81.2 52.2 51.6 66.5
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Table 7: Detailed multimodal reasoning accuracy (%) on multiple-choice VQA datasets across dif-
ferent ablation study settings with extra models: Qwen2.5-vl-7B, Instructblip-Vicuna-13B. The best
accuracy is marked in bold. Overall performance is computed as a weighted average across datasets,
with weights proportional to each dataset’s test size.

Model Method ScienceQA-IMG MM-Bench-EN Seed-Bench-IMG VQA Overall
Qwen2.5-VL Models (Bai et al., 2025)

Qwen2.5-VL-3B
Bai et al. (2025)

Vanilla 63.0 (100%) 81.8 (100%) 72.3 (100%) 72.5 (100%)
FFT with DVQA 75.3 (↑19.5%) 82.0 (↑0.2%) 74.7 (↑3.3%) 76.1 (↑5.0%)
FFT with DAUG 73.6 (↑16.8%) 81.7 (↓0.1%) 75.3 (↑4.1%) 76.2 (↑5.1%)

+ KL 72.8 (↑15.6%) 80.9 (↓1.1%) 74.9 (↑3.6%) 75.9 (↑4.7%)
+ JS 73.4 (↑16.5%) 82.0 (↑0.2%) 75.2 (↑4.0%) 76.2 (↑5.1%)
+ RG 73.4 (↑16.5%) 81.8 (↑0.0%) 75.0 (↑3.7%) 76.0 (↑4.8%)
+ ADV 73.1 (↑16.0%) 81.7 (↓0.1%) 75.3 (↑4.1%) 76.1 (↑5.0%)

Ours 73.8 (↑17.1%) 81.5 (↓0.4%) 75.5 (↑4.4%) 76.4 (↑5.4%)

Qwen2.5-VL-7B
Bai et al. (2025)

Vanilla 85.1 (100%) 86.6 (100%) 77.0 (100%) 80.3 (100%)
FFT with DVQA 81.4 (↓4.3%) 86.4 (↓0.2%) 76.8 (↓0.3%) 79.5 (↓1.0%)
FFT with DAUG 83.2 (↓2.2%) 86.1 (↓0.6%) 77.0 (-0.0%) 79.9 (↓0.5%)

+ KL 86.0 (↑1.1%) 86.7 (↑0.1%) 77.2 (↑0.3%) 80.6 (↑0.4%)
+ JS 85.5 (↑0.5%) 85.9 (↓0.8%) 77.0 (-0.0%) 80.3 (-0.0%)
+ RG 81.6 (↓4.1%) 82.9 (↓4.2%) 75.5 (↓1.9%) 78.0 (↓2.8%)
+ ADV 85.2 (↑0.1%) 85.8 (↓0.9%) 76.6 (↓0.5%) 79.9 (↓0.5%)

Ours 83.9 (↓1.4%) 86.4 (↓0.2%) 78.3 (↑1.7%) 80.9 (↑0.7%)
Instructblip-Vicuna Models (Luo et al., 2023)

InstructBlip-7B
Luo et al. (2023)

Vanilla 52.1 (100%) 65.5 (100%) 54.8 (100%) 56.4 (100%)
FFT with DVQA 61.8 (↑18.6%) 68.4 (↑4.4%) 57.6 (↑5.1%) 60.4 (↑7.1%)
FFT with DAUG 65.4 (↑25.5%) 71.1 (↑8.5%) 61.2 (↑11.7%) 63.9 (↑13.3%)

+ KL 65.9 (↑26.5%) 71.7 (↑9.5%) 60.9 (↑11.1%) 63.9 (↑13.3%)
+ JS 66.9 (↑28.4%) 72.3 (↑10.4%) 60.7 (↑10.8%) 64.1 (↑13.7%)
+ RG 62.8 (↑20.5%) 70.9 (↑8.2%) 62.5 (↑14.0%) 64.2 (↑13.8%)
+ ADV 66.0 (↑26.7%) 69.0 (↑5.3%) 61.8 (↑12.8%) 64.0 (↑13.5%)

Ours 64.0 (↑22.8%) 71.4 (↑9.0%) 63.0 (↑14.9%) 64.8 (↑14.9%)

InstructBlip-13B
Luo et al. (2023)

Vanilla 65.8 (100%) 72.1 (100%) 63.8 (100%) 65.8 (100%)
FFT with DVQA 61.7 (↓6.2%) 68.5 (↓5.0%) 56.0 (↓12.2%) 59.4 (↓9.7%)
FFT with DAUG 66.6 (↑1.2%) 71.5 (↓0.8%) 64.0 (↑0.3%) 65.9 (↑0.2%)

+ KL 67.2 (↑2.2%) 72.6 (↑0.7%) 64.0 (↑0.3%) 66.2 (↑0.6%)
+ JS 67.9 (↑3.2%) 72.7 (↑0.8%) 64.2 (↑0.6%) 66.5 (↑1.1%)
+ RG 65.4 (↓0.6%) 73.5 (↑1.9%) 64.3 (↑0.7%) 66.3 (↑0.8%)
+ ADV 66.1 (↑0.5%) 74.0 (↑2.6%) 64.1 (↑0.5%) 66.4 (↑0.9%)

Ours 66.2 (↑0.6%) 73.2 (↑1.5%) 64.3 (↑0.7%) 66.5 (↑1.1%)
LLaVA1.5 Models (Liu et al., 2023a)

LLaVA-1.5-7B
Liu et al. (2023a)

Vanilla 64.5 (100%) 64.3 (100%) 63.4 (100%) 63.8 (100%)
FFT with DVQA 61.6 (↓4.5%) 71.4 (↑11.0%) 62.4 (↓1.6%) 64.0 (↑0.3%)
FFT with DAUG 65.4 (↑1.4%) 71.1 (↑10.6%) 63.9 (↑0.8%) 65.6 (↑2.8%)

+ KL 65.9 (↑2.2%) 72.5 (↑12.8%) 64.5 (↑1.7%) 66.3 (↑3.9%)
+ JS 63.8 (↓1.1%) 73.5 (↑14.3%) 63.7 (↑0.5%) 65.6 (↑2.8%)
+ RG 66.3 (↑2.8%) 71.8 (↑11.7%) 63.7 (↑0.5%) 65.7 (↑3.0%)
+ ADV 66.7 (↑3.4%) 71.4 (↑11.0%) 63.6 (↑0.3%) 65.7 (↑3.0%)

Ours 67.8 (↑5.1%) 73.1 (↑13.7%) 64.6 (↑1.9%) 66.8 (↑4.7%)

LLaVA-1.5-13B
Liu et al. (2023a)

Vanilla 65.8 (100%) 72.1 (100%) 64.5 (100%) 66.2 (100%)
FFT with DVQA 60.8 (↓7.6%) 73.6 (↑2.1%) 64.9 (↑0.6%) 65.8 (↓0.6%)
FFT with DAUG 63.5 (↓3.5%) 75.0 (↑4.0%) 65.7 (↑1.9%) 67.1 (↑1.4%)

+ KL 62.5 (↓5.0%) 74.6 (↑3.5%) 67.6 (↑4.8%) 68.0 (↑2.7%)
+ JS 65.8 (↑0.0%) 74.7 (↑3.6%) 67.6 (↑4.8%) 68.6 (↑3.6%)
+ RG 58.3 (↓11.4%) 73.5 (↑1.9%) 67.4 (↑4.5%) 66.9 (↑1.1%)
+ ADV 57.6 (↓12.5%) 74.2 (↑2.9%) 68.3 (↑5.9%) 67.5 (↑2.0%)

Ours 62.6 (↓4.9%) 73.7 (↑2.2%) 68.4 (↑6.0%) 68.4 (↑3.3%)

Note. While Qwen2.5-VL was originally instruction-tuned with proprietary in-house data (Bai
et al., 2025), our reproduced version uses only publicly available LLaVA instruction-tuning data.

Even under this constraint and without access to VQA-specific tuning samples, our models achieve
comparable or even better performance across all VQA datasets—highlighting the robustness and

effectiveness of our proposed perturbation-consistent fine-tuning strategy.
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Table 8: Performance (%) of Vinilla models under modality interference across four datasets. We
show accuracy under clean (origin) and various perturbations: Left: Mini-ImageNet and Caltech-
101; Right: OpenBookQA and MMLU. UF = Unrelated Facts, MD = Misleading Descriptions, RP
= Random Pixels, RI = Real Image, FB & FW = Full Black/White Canvas. (The results are averaged
on multiple runs with standard deviation < 0.2)

Model Mini-ImageNet Caltech-101 Open-Book QA MMLU
Orig UF MD Orig UF MD RP RI FB FW RP RI FB FW

InternVL2-2B (Chen et al., 2024b) 91.9 88.6 25.5 94.6 91.3 33.2 46.3 36.2 45.2 45.3 39.1 36.9 39.3 39.2
LLaVA-1.5-7B (Liu et al., 2023a) 95.3 93.4 43.5 97.0 95.9 57.4 62.4 56.4 62.5 63.4 46.3 45.2 45.9 45.8
LLaVA-Next-7B (Liu et al., 2024) 93.4 90.0 28.5 97.0 93.4 31.6 54.6 52.9 55.9 55.5 45.9 45.0 45.9 45.8
LLaVA-Next-34B (Liu et al., 2024) 98.0 96.3 90.2 99.1 97.3 93.6 87.7 85.7 88.4 88.0 71.5 70.9 71.5 71.5
LLaVA-Next-72B (Liu et al., 2024) 97.7 97.8 83.0 98.9 98.8 91.2 88.2 86.2 89.1 88.9 73.6 72.9 73.9 73.9
LLaVA-Next-110B (Liu et al., 2024) 98.4 98.3 93.3 98.4 98.3 93.1 89.5 89.2 89.9 89.7 73.5 73.0 73.9 73.9
LLaVA-1.5-13B (Liu et al., 2023a) 95.6 94.1 73.0 97.9 97.1 77.4 65.9 63.8 68.0 69.1 51.8 50.8 52.7 52.7
InstructBlip-7B (Luo et al., 2023) 92.0 87.1 13.6 90.3 90.2 17.5 50.8 46.2 50.9 50.7 36.3 35.2 36.2 36.7
InstructBlip-13B (Luo et al., 2023) 93.0 81.6 50.9 94.1 82.7 51.0 44.7 39.4 45.6 46.1 40.1 37.4 40.5 42.9
QwenVL2-2B (Wang et al., 2024b) 98.7 98.6 75.8 99.1 99.1 66.8 59.6 54.7 63.4 63.8 49.5 44.6 49.7 50.0
QwenVL2.5-3B (Bai et al., 2025) 98.9 98.5 94.9 98.8 99.0 94.4 79.9 74.6 80.0 79.7 63.5 61.1 64.0 63.6
QwenVL2-7B (Wang et al., 2024b) 99.0 99.1 96.3 99.6 99.5 97.6 82.5 80.9 83.7 83.2 66.9 65.3 67.7 67.8
QwenVL2.5-7B (Bai et al., 2025) 99.3 99.3 96.5 99.3 99.4 96.8 86.2 80.9 86.3 86.4 69.5 67.6 69.1 69.1

C.1 PERTURBATION-BASED EVALUATION EXPERIMENT RESULTS

We conduct a controlled perturbation-based evaluation across various MLLMs, as shown in Tab. 8.
Our results reveal that both vision and language tasks are vulnerable to cross-modal interference.
In vision classification tasks, misleading textual descriptions (e.g., text contradicting image con-
tent) lead to severe performance drops. For example, InternVL2-2B and InstructBLIP-7B on Mini-
ImageNet drop from 91.9% to 25.5% and from 92.0% to 13.6%, respectively. Conversely, for lan-
guage tasks such as OpenBookQA and MMLU, irrelevant visual inputs—particularly semantically
unrelated real images—also degrade performance. LLaVA-1.5-7B drops from 46.3% to 45.2% on
MMLU, while InstructBLIP-13B sees over 5 points of degradation.

A consistent trend is that larger models exhibit greater robustness. Models like LLaVA-1.5-13B
and QwenVL2.5-7B maintain high accuracy across all perturbation types—e.g., QwenVL2.5-7B
sustains over 96% on Mini-ImageNet with misleading text and over 86% on OpenBookQA with
irrelevant images—indicating improved modality disentanglement and reduced sensitivity to spuri-
ous correlations. Nonetheless, performance still degrades relative to clean inputs, highlighting that
interference effects remain non-negligible even in stronger models.

We further observe a clear scaling trend within the LLaVA-Next family. As model size increases
from 7B to 34B, 72B, and 110B, performance under perturbations steadily improves, reflecting
stronger representation power and enhanced robustness to spurious cues. For instance, LLaVA-
Next-7B achieves 90.3% on Mini-ImageNet (Orig) but drops to 28.5% with misleading descriptions,
whereas LLaVA-Next-110B maintains 98.4% and 93.3% under the same conditions. Similarly, on
MMLU, accuracy under irrelevant real images increases from 45.9% (7B) to 73.6% (72B). These re-
sults confirm that scaling up helps mitigate modality interference. However, such gains come
at substantial computational and resource costs, and the improvements remain incremental
relative to the clean–perturbed gap. This underscores that scaling alone is insufficient, and more
targeted interventions—such as our proposed framework—are necessary for robust cross-modal rea-
soning.

C.2 EXPERIMENT RESULTS ON INSTRUCTBLIP-VICUNA-13B AND QWENVL-2.5-7B

To enable a more equitable comparison with existing multimodal models, we extend our method to
two additional backbones: InstructBLIP-Vicuna-13B and QwenVL-2.5-7B. As shown in Tab. 7, our
approach consistently improves performance across multiple VQA benchmarks, even under different
instruction-tuning conditions, demonstrating its robustness and general applicability.
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C.3 DISCUSSION ON KL&JS USE FOR CONSISTENCY REGULARIZATION

Although both KL and JS divergence serve as effective objectives for consistency regularization,
we find that JS consistently achieves slightly better results across most settings. Specifically, in
both unimodal tasks (e.g., Mini-ImageNet, MMLU) and multimodal reasoning benchmarks (e.g.,
ScienceQA, SeedBench), JS-regularized models consistently outperform their KL counterparts by
a small but observable margin. This trend holds across different model backbones and training
configurations, including our final unified method (see “Ours” rows in Table 5 and 7). This suggests
a marginal advantage of JS regularization in enhancing model robustness.

C.4 EVALUATING CHAIN-OF-THOUGHT PROMPTING FOR MODALITY INTERFERENCE
MITIGATION

To further investigate the potential of prompt-based methods in mitigating modality interference,
we conduct additional experiments using Chain-of-Thought Wei et al. (2022) style prompting. This
approach aims to encourage structured reasoning by guiding the model through an explicit reasoning
process before producing its final answer.

Specifically, we prepend the following CoT prompt to each input question:

Let’s think step by step:
1. What information does the image provide?
2. What is the question asking?
3. Are there any misleading parts?
4. Now give your final answer. Only write the final answer
on a separate line like: ‘‘Answer: B’’

Results are presented in Table 9. The results suggests that structured reasoning alone cannot resolve
the interference problem, as the issue stems from misaligned cross-modal representations rather than
shallow reasoning steps.

Table 9: Accuracy (%) under different interference settings across tasks and models. Each task
includes original inputs and multiple types of perturbations.

Model Method Mini-ImageNet Caltech-101 OpenBookQA MMLU
Orig UF MD Orig UF MD RP RI FB FW RP RI FB FW

vanilla llava-1.5-7b 95.3 93.4 43.5 97.0 95.9 57.4 62.4 56.4 62.5 63.4 46.3 45.2 45.9 45.8
CoT llava-1.5-7b 81.7 70.9 28.9 80.9 71.8 36.0 38.8 38.9 41.0 41.0 39.6 38.7 40.2 40.4
Ours llava-1.5-7b 98.6 98.4 98.7 99.3 98.9 99.3 81.8 81.0 81.7 81.7 51.5 50.9 51.5 51.4

vanilla llava-1.5-13b 95.6 94.1 73.0 97.9 97.1 77.4 65.9 63.8 68.0 69.1 51.8 50.8 52.7 52.7
CoT llava-1.5-13b 92.9 85.9 62.8 96.6 92.1 67.8 55.6 53.0 56.5 57.3 47.3 45.5 47.3 47.8
Ours llava-1.5-13b 98.7 97.9 98.0 98.7 98.7 98.8 83.2 81.2 83.8 83.0 52.2 51.6 52.3 53.4

vanilla qwen2.5-vl-3b 98.9 98.5 94.9 98.8 99.0 94.4 79.9 74.6 80.0 79.7 63.5 61.1 64.0 63.6
CoT qwen2.5-vl-3b 92.3 96.8 88.2 94.7 96.1 86.0 61.0 52.8 61.3 61.1 51.5 48.7 51.6 51.4
Ours qwen2.5-vl-3b 99.3 99.2 99.2 99.7 99.7 99.5 86.7 86.4 86.6 86.6 64.8 64.5 65.0 65.1

vanilla qwen2.5-vl-7b 99.3 99.3 96.3 99.1 98.9 97.2 85.9 77.5 85.8 86.0 69.3 63.7 68.9 68.9
CoT qwen2.5-vl-7b 99.1 98.9 91.4 98.5 98.5 92.5 77.8 68.8 77.3 77.6 61.5 57.4 60.8 60.9
Ours qwen2.5-vl-7b 99.6 99.5 99.5 99.6 99.6 99.7 90.9 89.7 90.8 91.0 69.8 68.2 69.8 70.0

C.5 EVALUATION ON FREE-FORM VQA

To further assess the generalizability of our method beyond multiple-choice VQA tasks, we evaluate
on TextVQA (Singh et al., 2019), a free-form generative visual question answering dataset that
requires reasoning over both textual and visual content in natural images. We follow the benchmark
adopted by LLaVA Liu et al. (2023b), which evaluates a model’s ability to both recognize textual
characters within images and effectively handle noisy outputs generated by OCR systems.

Following standard evaluation protocols and existing MLLM baselines (e.g., LLaVA, Qwen2.5-VL,
InstructBLIP), we report model performance averaged over multiple runs (standard deviation < 0.4).
Results are presented in Table 10.
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Our method achieves consistent improvements across most model families, indicating its effective-
ness not only in MCQA scenarios but also in open-ended multimodal reasoning settings.

Table 10: Accuracy (%) on the TextVQA dataset across different model families.

Setting Model TextVQA
Vanilla InstructBLIP-Vicuna-7B 19.7
Ours InstructBLIP-Vicuna-7B 32.4
Vanilla LLaVA-1.5-7B 49.8
Ours LLaVA-1.5-7B 51.2
Vanilla Qwen2.5-VL-7B 81.4
Ours Qwen2.5-VL-7B 84.8

C.6 IMPROVING GENERALIZABILITY THROUGH ADVERSARIAL TRAINING

To assess the generalization benefits of adversarial training, we evaluate model robustness under two
types of out-of-distribution (OOD) perturbations at test time:

• Document OCR noise: Real-world noisy OCR snippets are sampled from the FUNSD
dataset (Jaume et al., 2019) and inserted as irrelevant textual distractors into visual classi-
fication tasks (Mini-ImageNet, Caltech-101).

• Unrelated screenshots: Unrelated UI screenshots are drawn from the RICO dataset (Deka
et al., 2017) and added as visual distractors to language-dominant VQA tasks (Open-
BookQA, MMLU).

Each experiment is repeated multiple times, and we report average accuracy across runs (standard
deviation < 0.1). Results are presented in Table 11. Across all model scales and task types, adversar-
ial training consistently improves robustness to both types of perturbations. These findings indicate
that the additional training overhead introduced by adversarial perturbation is well-justified by the
improved generalization to unseen distribution shifts—a desirable property for reliable deployment
in real-world settings.

Table 11: Accuracy (%) on original and perturbed inputs. OCR snippets are inserted into image
classification tasks, and RICO screenshots are added to VQA tasks.

Setting Model Mini-ImageNet Caltech-101 OpenBookQA MMLU
Origin OCR Origin OCR RandPixels Screenshot RandPixels Screenshot

vanilla instructblip-vicuna-7b 92.0 81.4 90.3 83.6 50.9 40.0 35.3 34.9
SFT instructblip-vicuna-7b 98.5 95.7 99.0 98.4 75.0 74.4 50.0 49.2
SFT + ADV instructblip-vicuna-7b 98.7 97.5 99.5 98.8 76.8 76.2 49.3 49.3
Ours instructblip-vicuna-7b 98.4 97.3 99.2 99.0 79.0 77.8 50.2 49.2

vanilla llava-1.5-7b 95.3 88.9 97.0 92.8 62.4 50.2 46.3 44.8
SFT llava-1.5-7b 98.2 98.0 98.5 98.0 78.6 78.0 51.1 50.6
SFT + ADV llava-1.5-7b 98.7 98.2 98.7 98.4 81.7 81.3 50.6 51.3
Ours llava-1.5-7b 98.6 98.2 99.3 99.0 81.8 81.2 51.5 51.3

vanilla qwen2.5-vl-7b 99.3 99.2 99.1 99.2 85.9 69.3 69.3 57.0
SFT qwen2.5-vl-7b 99.6 99.5 99.7 99.3 90.2 85.8 70.4 63.7
SFT + ADV qwen2.5-vl-7b 99.4 99.5 99.6 99.6 91.7 91.5 70.4 69.7
Ours qwen2.5-vl-7b 99.6 99.5 99.6 99.5 90.9 90.7 69.8 69.7
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Figure 4: Task-wise robustness under perturbation. Each radar chart shows model accuracy (%)
across Mini-ImageNet, Caltech-101 (image-heavy) and OpenBookQA, MMLU (text-heavy) under
various perturbations. (a) uses raw accuracy of different pretrained MLLMs directly. (b–d) are
normalized relative accuracy of each MLLMs. (We normalize each absolute accuracy into relative
accuracy, which refers to absolute tested accuracy / accuracy of vanilla MLLMs in origin setting
without perturbation.)
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Table 12: Hyperparameter Settings Example

Category Setting

Model and Training Strategy

Base Model LLaVA-1.5-7B
Finetune Type Full
Adversarial Type PGD-alike
Step size α 0.1
Epsilon-hall ϵ 0.001
Avdersarial Training Steps T 2
Consistency Regularization Type JS
Loss Weight λconsistency 0.01
Temperature τ 1

Optimization

Epochs 1
Batch Size per GPU |B| 8
Img/Text Ratio 0.25/0.25
Learning rate 2× 10−5

Table 13: Dataset Statistics

Dataset Train Test
Mini-ImageNet 4935 2000
Caltech-101 8124 1020
OpenBookQA 4957 1000
MMLU 7M 5469
LLaVA-Instruct 624610 -
TextCaps 109765 -
MMBench-EN - 4377
ScienceQA-IMG - 4114
SeedBench-IMG - 14243
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Figure 5: Comparison of VQA performance across adversarial training iterations for different model
sizes.

D HYPER-PARAMETER SETTING AND TRAINING DETAILS

Please see Tab. 12 for more details.

D.1 PARAMETER ANALYSIS WITH ADVERSARIAL TRAINING ITERATIONS

To investigate the effect of adversarial strength on model performance, we vary the number of adver-
sarial training iterations from 1 to 5 and evaluate the resulting VQA accuracy. As shown in Fig. 5,
both LLaVA-1.5-7B and LLaVA-1.5-13B models benefit from adversarial consistency training, with
performance peaking at 2-step adversarial training (66.82% and 68.37%, respectively). Notably, ex-
cessive iterations (e.g., 4 or 5 steps) may lead to slight degradation, especially in larger models,
likely due to over-perturbation and optimization difficulty.

These findings suggest that a moderate adversarial training setting (2 steps with ϵ=1e-3 and α=0.1 in
LLaVA-1.5-7b, ϵ=1e-4 and α=0.1 in LLaVA-1.5-13b) offers an optimal balance between robustness
and training stability, and that model size influences sensitivity to adversarial signal strength.
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E EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on 8×A100 GPUs using DeepSpeed ZeRO-3 (Contributors, 2024)
with CPU offloading.

To quantify the computational overhead introduced by our adversarial training, we provide both
theoretical FLOPs analysis and empirical wall-clock training time across model scales.

In the standard supervised fine-tuning (SFT) setting, the FLOPs per batch can be approximated as:

FLOPsSFT ≈ Bs · (fLLM + bLLM), (10)

where Bs is the batch size, fLLM denotes the FLOPs of a forward pass through the LLM, and bLLM
the backward pass. In our adversarial training, each sample undergoes N adversarial training steps,
each requiring an additional forward pass through the frozen LLM. Since gradients are computed
only with respect to input embeddings via torch.autograd.grad, the overhead is minimal
and thus ignored. After perturbation, clean and adversarial inputs are concatenated, resulting in a
forward cost of 2Bs · fLLM, followed by one backward pass. The total cost becomes:

FLOPsADV+SFT = Bs · (NfLLM + 2fLLM + bLLM). (11)

The relative overhead compared to vanilla SFT is:

Nf + 2f + b

f + b
. (12)

Assuming bLLM ≈ 2fLLM, this simplifies to:

N + 4

3
. (13)

For our default N = 1, the theoretical FLOPs increase to approximately 1.66× that of SFT.

We further report the actual training time across model scales, as shown in Table 14.

Table 14: Training time (in hours) across model scales. ∆ denotes additional overhead per adver-
sarial training iteration step.

Model SFT SFT + KL SFT + ADV Ours (ADV + KL)
Qwen2.5-VL-3B 1.5h 1.5–1.75h 3–3.5h (∆ = 0.5h) 3.5–4h (∆ = 0.5h)
LLaVA-1.5-7B 4h 4–4.5h 6–6.5h (∆ = 0.5h) 6–6.5h (∆ = 0.5h)
LLaVA-1.5-13B 10h 10–11h 13–14h (∆ = 1h) 13–14h (∆ = 1h)

Although the theoretical FLOPs suggest a ∼66% increase in cost when N = 1, the actual wall-clock
time increase is much smaller. This is because our designed adversarial training leverages forward-
only passes over frozen LLMs, avoiding costly backward and optimizer updates. As a result, the
added runtime remains modest even on large models (e.g., only +2.5h for LLaVA-13B). Moreover,
KL consistency training introduces negligible overhead compared to SFT.

F LIMITATIONS

Our analysis of modality interference is conducted from a coarse-grained perspective, primarily
categorizing tasks into image-heavy and text-heavy types. A more fine-grained investigation—such
as dynamic attention tracking—could provide deeper insights into how MLLMs rely on or ignore
specific modalities during reasoning.

Moreover, while our perturbation strategies (e.g., unrelated facts, misleading descriptions, irrelevant
images) effectively reveal failure modes of current MLLMs, they remain heuristic and task-specific.
Designing perturbations is, by nature, an open-ended process—one can always propose new forms of
misleading inputs. Thus, an ultimate goal is to develop perturbation-agnostic methods that improve
robustness without requiring exhaustive enumeration of possible attacks.
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While our use of adversarial training represents a strong and generalizable perturbation strategy,
it still operates within a defined input space (e.g., embedding-level noise bounded by L∞ norms).
Hence, adversarial perturbation should be viewed as a practical but partial solution rather than a
comprehensive defense. Developing mechanisms that generalize across both semantic and modality
perturbations remains an open and challenging direction.

G BROADER IMPACTS

This work investigates the limitations of current multimodal large language models in reasoning
across modalities and proposes methods to mitigate modality interference—a concrete failure case
of cross-modality competency. By improving the robustness and alignment behavior of MLLMs, our
approach may benefit a variety of downstream applications that rely on accurate visual-linguistic
understanding, including education, accessibility tools (e.g., visual question answering for blind
users), and scientific multimodal reasoning tasks.

Our findings also highlight the hidden risks of over-relying on irrelevant modality signals, which can
degrade performance or lead to misleading predictions. Making such failure modes measurable and
diagnosable can support safer deployment and more transparent evaluation of MLLMs in practice.

On the other hand, techniques such as adversarial perturbation may be dual-use. While our imple-
mentation uses perturbations to improve model alignment, similar strategies could be misused to
manipulate model behavior. To reduce such risks, we restrict all experiments to open-source aca-
demic models and do not include harmful or sensitive content in training or evaluation. We encour-
age future work to further assess modality interference in safety-critical contexts and to investigate
alignment-aware perturbation techniques with explicit safety constraints.

H THE USE OF LARGE LANGUAGE MODELS

We used large language models only to edit the manuscript for clarity, grammar, and academic style.
No part of the research design, data analysis, or scientific content relied on language models, and
the authors retain full responsibility for the paper’s ideas and conclusions.
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