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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated impressive
capabilities across tasks, yet they often exhibit difficulty in distinguishing task-
relevant from irrelevant signals—particularly in tasks like Visual Question An-
swering (VQA)—which can lead to susceptibility to misleading or spurious in-
puts. We refer to this broader limitation as the Cross-Modality Competency Prob-
lem—the model’s inability to fairly evaluate all modalities. This vulnerability
becomes more evident in modality-specific tasks—such as image classification or
pure text question answering—where models are expected to rely solely on one
modality. In such tasks, spurious information from irrelevant modalities often lead
to significant performance degradation. We refer to this failure as Modality Inter-
ference, which serves as a concrete and measurable instance of the cross-modality
competency problem, and we further design a perturbation-based causal diagnos-
tic experiment to verify and quantify this problem. To mitigate modality interfer-
ence, we propose a novel framework to finetune MLLMs, including perturbation-
based data augmentations with both heuristic perturbations and adversarial per-
turbations, and a consistency regularization strategy applying on model outputs
with original and perturbed inputs. Experiments on multiple benchmark datasets
(image-heavy, text-heavy and multimodal tasks) and multiple model families with
different scales demonstrate significant improvements in robustness and cross-
modality competency, indicating our method’s effectiveness in boosting unimodal
reasoning ability while enhancing performance on multimodal tasks.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have made significant strides in integrating vision
and language understanding within a unified architecture (Liu et al.| [2023b; |Luo et al., 2023 |Bai
et al.| [2025). By combining powerful visual encoders and large language models through alignment
mechanisms, MLLMs such as LLaVA (Liu et al., 2023b) and Qwen-VL (Bai et al., 2025)) demon-
strate strong capabilities across a wide range of multimodal tasks. However, beneath their seemingly
impressive performance lies a critical limitation: MLLMs often fail to distinguish between relevant
and irrelevant signals across modalities, leading to unreliable predictions (Wang et al. [2024a}; Zhu
et al., 2024} Hosseini et al., [2025). Moreover, while MLLMs are designed for multimodal tasks,
their failure on unimodal tasks—where only a single modality (e.g. text) should guide the predic-
tion—raises concerns about whether the model can preserve modality-specific competencies. For
instance, MLLMs frequently underperform on pure visual recognition (Zhang et al., 2024; Tong
et al.,[2024)) and textual reasoning (Zhu et al.| 2024; Wang et al.; 2023} [Lin et al., [2024), suggesting
that cross-modal fusion may induce unintended interference and degrade unimodal performance.

Recent studies have attributed this phenomenon to a variety of symptoms arising during the vision-
language alignment process, such as catastrophic forgetting (Zhang et al., [2024; [Tong et al., 2024;
Wang et al., 2023} Lin et al.| [2024), knowledge conflict (Wang et al., |2024a; [Zhu et al. 2024),
and spurious correlations (Chen et al., |2024a; |Hosseini et al.l 2025). Catastrophic forgetting has
been identified as a key factor in visual degradation (Zhang et al., |2024; |Tong et al.| 2024), where
multimodal tuning of MLLM overrides its pretrained visual features. Cross-modal knowledge con-
flict (Wang et al.| 2024a; Zhu et al., 2024) impairs pure-text reasoning, as models often produce
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Figure 1: Performance degradation under irrelevant perturbations reveals modality interference in
MLLMs. Left: Mini-ImageNet (image-heavy) with Original input, Unrelated Facts, and Misleading
Descriptions. Right: OpenBookQA (text-heavy) with Random Pixels, Full Black Canvas, and Ir-
relevant Real Images. Misleading descriptions induces the most severe degradation in image-heavy
tasks, while irrelevant real images cause the largest drop in text-heavy reasoning.

inconsistent outputs when visual inputs are introduced, reflecting misaligned visual and textual para-
metric memories. Additionally, studies on spurious correlations (Chen et al.| [2024a}; |Hosseini et al.}
2025} Zhou et al., 2025)) show that MLLMs tend to rely on superficial cross-modal cues rather than
task-relevant grounding. While these symptoms shed light on MLLMs’ limitations, most works
treat these issues in isolation. For instance, architectural issues such as shallow cross-modal fu-
sion have been widely discussed: lightweight projectors in models like LLaVA (Liu et al., |2023b)
fail to fully align vision and language representations, resulting in unstable modality reliance (Tong
et al., 2024} Zhu et al., 2024; [Zhao et al., 2025). Others attribute performance bottlenecks to data
limitations—insufficient modality-specific supervision leads to impaired visual decoding (Zhang
et al., [2024) and diminished language understanding (Lin et al., 2024). Inspired by these observa-
tions, our insight is to unify these challenges under a broader perspective: the model’s inability to
identify and rely on the modality that contributes most relevant information to the task. We argue
that the fundamental limitation lies in MLLMSs’ lack of cross-modality competency (Gardner et al.}
2021)—the ability to fairly evaluate and integrate information across modalities. Current MLLMs
lack mechanisms to support this competency during inference, making them vulnerable to mislead-
ing cross-modal signals—a failure mode we refer to as Modality Interference.

To systematically diagnose and mitigate modality interference, we introduce a two-stage method-
ology grounded in causal analysis. First, we design a perturbation-based evaluation experiment
inspired by causal intervention principles (Pearl, 1995} |Chen et al. 2024a) to diagnose the extent
of modality interference across tasks and model scales. Second, we propose a robust fine-tuning
framework to mitigate modality interference. Specifically, in our evaluation analysis, we first focus
on modality-heavy settings using a multiple-choice question answering format, where the model
selects an answer from a fixed set of options based on both image and text input. We then include
image-heavy tasks (e.g., image classification), text-heavy tasks (e.g., pure-text QA), and balanced
multimodal tasks (e.g., VQA), allowing us to examine how models behave under different modality-
reliance scenarios. To further induce modality interference, we introduce heuristic perturbations:
In image-heavy tasks, we perturb the text input by prepending either (i) unrelated scientific facts
or (ii) misleading descriptions that falsely associate an incorrect option with the image content. In
text-heavy tasks, where the default visual input is random noise, we perturb the visual input with
(i) semantically meaningful real images, (ii) full black canvas, or (iii) full white canvas. These
perturbations are designed to either introduce spurious cues or reinforce irrelevant modality sig-
nals. We evaluate the resulting changes in model predictions to assess the robustness of modality
selectivity. While the perturbation-based evaluations offer empirical insights, we further frame our
analysis through a causal intervention framework and in which we model modality interference
through a causal graph abstraction. Building on this framework, we evaluate a range of pretrained
MLLMs across different architectures and scales with results shown in[Fig. T} In image-heavy tasks,
unrelated textual facts moderately reduce performance, while misleading descriptions cause severe
degradation—revealing the model’s vulnerability to spurious textual cues. In text-heavy tasks, can-
vas inputs have little effect, but unrelated real images mostly hurt performance, indicating improper
fusion of irrelevant visual signals into reasoning.



The empirical results from [Fig. T|confirm the presence of modality interference and reveal the limi-
tations of current MLLMs in lack of cross-modality competency. To mitigate modality interference,
we propose a perturbation-based fine-tuning framework for MLLMs. Specifically, to alleviate data
insufficiency, we apply a perturbation-based data augmentation strategy, where we construct a di-
verse mixture of modality-specific, perturbation-augmented samples and original VQA samples.
The perturbations include both heuristic variants (e.g., injecting unrelated facts into image-heavy
prompts) and adversarial training-time perturbations, which expose the model to worst-case align-
ment disruptions and thus serve as a stronger form of regularization. To further improve robustness,
we introduce a consistency regularization strategy(e.g., via Jensen—Shannon divergence), which en-
forces output stability between original and perturbed samples. In summary, the main contributions
of this paper are threefold. First, we introduce the notion of the Cross-Modality Competency Prob-
lem to describe how multimodal models may struggle to balance different modalities, and analyze
modality interference as one concrete instance of such challenges in MLLMs. Second, we design
a perturbation-based causal evaluation experiment that systematically quantifies modality reliance
and reveals models’ susceptibility to modality interference. Third, we propose a fine-tuning strat-
egy that combines supervised augmentation with both heuristic and adversarial perturbations and
consistency regularization to mitigate modality interference. Extensive experiments across multiple
MLLM families and diverse benchmarks demonstrate the superiority of our method.

2 RELATED WORKS

Improving Modality Alignment in Multimodal Language Models Recent studies have revealed
that modality misalignment remains a key obstacle in MLLMs, leading to degraded performance on
both image-heavy and text-heavy tasks. For visual understanding, catastrophic forgetting occurs
when multimodal tuning overrides pretrained visual features (Zhang et al., |2024; Tong et al.| 2024;
Wang et al.,|2023). In text-heavy scenarios, knowledge conflict (Zhu et al.|[2024)) arises when incon-
sistent parametric knowledge from different modalities confuse reasoning. Moreover, mDPO (Wang
et al.l 2024a)) identifies language bias in training, where models fail to condition their responses on
visual input. Some works attribute such issues to shallow fusion (Wang et al.| [2023)—e.g., LLaVA
uses lightweight projectors to bridge vision and language spaces, leaving a representational gap and
resulting in loosely coupled features (Tong et al., 2024} Zhu et all [2024; |Zhao et al.|, 2025). Oth-
ers highlight data limitations: even well-encoded visual features fail to support reasoning without
adequate supervision to guide decoding (Zhang et al., 2024).

Building on these diagnoses, recent models have proposed multiple solutions. MoF (Tong et al.,
2024)) mitigates this by fusing features from multiple vision encoders, while VLMClassifier (Zhang
et al., [2024) enhances recognition via vision-only finetuning, though it struggles with VQA due to
lack of cross-modal alignment. CogVLM (Wang et al.,[2023) introduces a visual expert module to
improve vision-language integration. VILA (Lin et al.l [2024)), QwenVL (Bai et al., 2025), and In-
ternVL (Zhu et al., 2025) incorporate text-only supervision in different ways to preserve or enhance
language capabilities during multimodal training—through stage-wise separation, parallel preser-
vation, and unified joint optimization, respectively. Similar patterns arise in multimodal structural
reasoning, where models must rely on relevant modalities to generalize to unseen relations (Cai
et al.| [2024). These works motivate us to hypothesize on the root cause—the model’s inability to as-
sess modality relevance. We further propose a causal framing of modality interference and introduce
a perturbation-based fine-tuning strategy to improve the inference-time robustness of MLLMs.

Adversarial Robustness Across Modalities Adversarial perturbations threaten the reliability of
both vision and text tasks by exposing vulnerabilities through deliberate and imperceptible perturba-
tions. Existing robustness methods can be broadly categorized by modality, targeting either contin-
uous image embeddings or discrete token spaces. In vision tasks, attacks like FGSM (Goodfellow
et al.l 2015) and CW (Carlini & Wagner, 2017)) first revealed the fragility of neural networks to
imperceptible input changes. PGD (Madry et al.||2018) formalized this under a saddle-point frame-
work, becoming the standard for adversarial training. AutoAttack (Croce & Heinl [2020) further
unified strong attacks, including PGD variants, into a reliable benchmark. In text tasks, adversarial
methods must contend with discrete inputs. TextFooler (Jin et al., 2020) substitutes key words with
semantically similar ones to mislead predictions, while CodeAttack (Jha & Reddy, [2023) adapts
this idea to code-language models. More recently, PGD has been extended to LLMs via continuous
relaxation (Geisler et al.| [2024), enabling efficient attacks in embedding space. Beyond evaluation,



PGD has also been used as a regularizer to improve optimization. PTP (Chen et al.| 2023a)) applies
PGD-style perturbations in the prompt embedding space to smooth training and enhance stabil-
ity. Inspired by this, our work extends PGD to the multimodal embedding space, enabling unified
gradient-based control over both visual and textual inputs.

3 CAUSAL ANALYSIS ON MODALITY INTERFERENCE

Cross-Modality Competency Problems in Multimodal Large Language Models Competency
problems describe scenarios where models rely on spurious correlations between isolated input fea-
tures and output labels to make predictions, instead of leveraging meaningful interactions among
multiple features (Gardner et al., 2021). We extend this concept to the multimodal setting by treat-
ing entire modalities (e.g., image X or text Xr) as structured feature sources. We define the
Cross-Modality Competency as an ability for MLLM to fairly evaluate and integrate all modalities,
identifying which ones carry task-relevant signals while ignoring misleading or irrelevant ones. For
instance, in a pure-text question answering task, the model receives both a question and an image,
as is standard in MLLM input formats. However, the image is not required to answer the question.
If the model relies on spurious visual cues—such as objects or scenes that frequently co-occur with
certain answers—it violates the task’s competency condition by grounding predictions in irrelevant
modality signals. This manifests as Modality Interference, where the presence of an irrelevant but
misleading modality disrupts the model’s reasoning.
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Figure 2: Causal graph illustrating modality interference in our perturbation-based evaluation anal-
ysis. Controlled interventions (heuristic) perturb either the image or text inputs, affecting their
intermediate representations and ultimately the model prediction.

Perturbation-based Evaluation Experiment To systematically measure cross-modality compe-
tency, we propose a perturbation-based evaluation framework. The core idea is to inject controlled
noise into the irrelevant modality and assess the model’s robustness to such perturbations. Specifi-
cally, for image-heavy tasks, we perturb the text input by: (1)Prepending unrelated scientific facts;
(2) Prepending misleading descriptions that falsely link incorrect options to the image content. For
text-heavy tasks, we perturb the visual input by: (1) Attaching a real but irrelevant image; (2) Sub-
stituting with a full black or full white canvas image. Models with strong modality selectivity should
maintain high prediction consistency when irrelevant modality signals are perturbed. We select
multiple image-heavy and text-heavy tasks for evaluation. Each task is framed as a multiple-choice
classification problem, requiring the model to choose the correct option based on image and text
modalities as input, with perturbations applied as described above. Details in §5] §C.T]and [Tab. 8]

Causal Modeling of Modality Interference We formalize modality interference through a causal
intervention perspective with a causal graph, as shown in where visual inputs (X7) and
textual inputs (X 1) are processed into their respective representations (£, Zr) before being fused to
produce the final prediction (A). To study the model’s reliance on different modalities, we introduce
perturbations directly at the input level, serving as causal interventions (Pearl,[1995) on X and X 7.
Under ideal cross-modality competency, the model’s prediction should primarily depend on the



task-relevant pathway (e.g., X; — Z; — A in image-heavy tasks, X7 — Zp — A in text-heavy
tasks). Causal interventions at the input level allow us to diagnose whether the model improperly
fuses irrelevant signals into its decision process. We use x; to denote an intervention on image X
and use ;U’T as an intervention on text X7. Following Pearl’s causal framework (Pearl, |1995; |int,
2022)), we quantify the impact of modality perturbations on model predictions by formalizing causal
effects in our multimodal setting. Specifically, we define the pre-intervention prediction distribution
as P(A|Xr, Xr), and the post-intervention prediction distribution after applying a perturbation on
X1 or X as P'(Aldo(X; = z) or do(Xp = z.)). The do-operation represents an intervention
to specific modality, and the causal effect (CE) of an intervention is evaluated via a distance metric
§ comparing P and P’ as CE = §(P, P’). We assess the causal effect via prediction changes using
dep(P, P') :=1(a # @) in which a = arg max, P(z) is the predicted answer before intervention,
a’ = argmax, P’'(x) is the predicted answer after intervention and I(-) is the indicator function that
outputs 1 if a # a’ and 0 otherwise. Thus, d, captures whether the model’s final decision A changes
under perturbations to the input modality. In all interventions, a high value of ¢, indicates the
model’s susceptibility to modality interference, revealing spurious reliance on irrelevant modality.

4 METHODS

To mitigate modality interference and enhance cross-modality competency, we propose a unified
perturbation-aware training framework that introduces interventions at both the input level (on X7
and X7) and the representation level (on Z; and Z7) with consistency regularization. Overall

pipeline is displayed in
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We sample Ny and Ny examples from D™e and D to construct B:)':}g and ffr?é respectively,

and the remaining N,q, examples are VQA samples from D9 to construct BY4 . With dynamically
generated perturbed variants for each sample, the final training batch is:

B = Bimg U Bimg U Blext U Btext U Bvqa, (2)

orig pert orig pert

where B and By are perturbation-augmented variants generated from BiiE and Bigy, respec-

tively. For the full training batch BB, which includes both original and perturbed samples, we define



the supervised loss L as the cross-entropy loss computed over all answer tokens in the ground-truth
sequences. Let Ls(x 1, z7, a) denote the standard autoregressive loss for a sample (x, z7, a), then:

1
ﬁsft = 75 Z ﬁcls(xla xT, a)~ (3)

B,
1,zT,a)EB

Adversarial Perturbation with Cross-modality Masking While heuristic perturbations simulate
realistic but limited modality noise at the input level, they may not fully capture the worst-case fail-
ure modes of MLLMs, especially under complex spurious alignments in the representation space.
To overcome this limitation, we introduce a stronger and more generalizable intervention through
adversarial training. These perturbations simulate worst-case alignment disruptions during training,
serving as targeted interventions on latent nodes (Z;, Zr) to reveal the Direct Causal Effect (DCE)
of irrelevant modalities on A. By optimizing the model under such adversarial conditions, we reduce
the model’s reliance on spurious cross-modal signals and reinforce task-relevant causal pathways.
Inspired by PGD (Madry et al.,|2018; |Chen et al., 2023b), we design a tailored perturbation strategy
for multimodal token embeddings (Zr, Zr). Unlike standard PGD that applies coarse sign-based up-
dates, our method introduces two critical modifications: (1) Modality-specific perturbation masking,
which restricts perturbations to task-irrelevant modalities via a binary mask, thereby transforming
noise into targeted causal probes rather than indiscriminate corruption. (2) Raw-gradient updates,
where we remove the sign operator and apply the raw gradient directly, yielding smoother, more
diverse, and more realistic perturbations that better simulate modality interference. Formally, we
construct perturbations 6 = (4, d7) in the latent space that maximize the model’s predictive loss:

0 = argmax Les(f(Z1 + 01, Z7 + 61)), €]
[10]] oo <€

where € bounds the perturbation strength and f is the prediction function. We optimize  through n
raw-gradient steps, updating at each step ¢ as:

5D = Mgy <e (5<t> - Vilalf(Z + 5<t>))), 5)

where « is the step size, II projects the noise into the £, ball, and Z = [Z; Z] is the concatenated
embedding. In practice, we integrate a modality-specific binary mask M € {0,1}£*<, where L
is the sequence length and d the hidden dimension, ensuring that perturbations only affect task-
irrelevant tokens. Given multimodal embeddings E € RZ*4, the perturbed embeddings are:

E=E+00 M, ©)

with ® denoting element-wise masking. We initialize  with Gaussian noise A/(0, €?) and update it
for T steps. The final adversarial objective is Laay = Los(f(E)).

4.2 CONSISTENCY REGULARIZATION UNDER PERTURBATIONS

While perturbation-based augmentation exposes the model to diverse interventions, it does not con-
strain how intermediate representations (Z;, Zr) should respond, and even small changes in the
task-irrelevant modality may cause undesirable shifts in fused features. To address this, we intro-
duce a consistency regularization strategy that enforces output stability between original and per-
turbed inputs, serving as an indirect constraint on Z; and Zr to mitigate modality interference. By
minimizing the divergence between the prediction distributions of original and perturbed inputs, the
model is encouraged to maintain invariant behavior along the task-relevant causal paths. Formally,
given an original input  and its perturbed counterpart &, with predictive distributions py(A|z) and
po(A|Z), the consistency loss follows the general form:

Leonsistency = Consistency (pg (A|z) || po (A|i)) @)

In practice, we instantiate this by applying distributional divergence (e.g., KL or JS) at the token
level. Let (¢, [Pt ¢ RL4*V denote the pre-softmax logits for the original and perturbed samples,
where L 4 is the number of answer tokens and V' the vocabulary size. Using KL divergence with
temperature 7 as an example, the loss becomes (equally apply to image-heavy and text-heavy tasks):

orig
1 La v o softmax( L )
£consistency = T Z Z softmax (| -~ : IOg —penv (8)
Laigo T softmax(i—)
- - T
v



Table 1: Evaluation on unimodal and VQA datasets. For unimodal datasets, we report accuracy un-
der the original input (Orig) and the worst-performing perturbation (Perturbed). For VQA datasets,
we report accuracy on the original setting. Best results are highlighted in bold.

Mini-ImageNet Caltech-101 OpenBookQA MMLU ScienceQA | MM-Bench | Seed-Bench

Model Settings ‘

Orig Perturbed | Orig Perturbed | Orig Perturbed | Orig Perturbed | Accuracy Accuracy Accuracy
LLaVA-1.5-7B 953 435 97.0 574 62.4 56.4 46.3 452 64.5 64.3 63.4
+ CoT (Wei et al.|2022] 81.7 289 80.9 36.0 38.8 38.9 39.6 38.7 64.7 65.2 64.1
+ VLMClassifier- I (Zhang et al.|2024) | 15.1 0.0 15.6 0.0 61.5 61.5 47.8 475 61.1 36.2 359
+ VLMClassifier-2 (Zhang et al.|2024) | 15.6 0.0 15.1 0.0 61.8 61.2 474 478 61.8 35.8 36.0
Ours 98.6 98.4 99.3 98.9 81.8 81.0 51.5 51.0 67.8 73.1 64.6
LLaVA-1.5-13B 95.6 73.0 979 774 65.9 63.8 51.8 50.8 66.1 72.1 64.5
+ CoT (Wei et al.|2022} 929 62.8 96.6 67.8 55.6 53.0 47.3 455 65.6 70.2 64.9
+ I-MoF (Tong et al.|[2024}) 93.9 70.1 97.8 80.9 69.2 64.5 46.2 39.1 66.8 73.0 66.6
Ours 98.5 98.4 99.2 98.6 83.0 82.1 56.6 55.8 62.6 73.7 68.4

4.3  FINAL TRAINING OBJECTIVE

Our final training objective integrates both perturbation-based data augmentation and consistency
regularization into a unified framework. For each batch, we begin with a set of original samples Big
and dynamically construct their heuristic perturbed counterparts B,y via input-level augmentations.
We then apply adversarial perturbations on both By and Byeri, and enforce consistency between the
predictions of original and all perturbed samples. The overall loss is:

»Ctolal = »Csfl + »Cadv + Acons - Econsistencyy 9

where L is the supervised loss computed over B, L4y is the adversarial loss computed on all ad-
versarial perturbed samples and Lconsisiency 1S the consistency loss between original and all perturbed
sample pairs. By aligning all three losses with the causal structure of multimodal reasoning, we
systematically mitigate modality interference and improve cross-modality competency in MLLMs.

5 EXPERIMENTS

Models. We conduct experiments on three MLLM families with different parameter size: Qwen2.5-
vl-3b (Bai et al.l [2025), LLaVA-1.5-7B & LLaVA-1.5-13B (Liu et al., [2023a) and InstructBLIP-
Vicuna-7B (Luo et al.} [2023). Following LLaVA and Qwen-VL, we freeze the vision encoder and
train the multimodal projector and language model; for InstructBLIP, we instead freeze both the
vision encoder and Q-Former, fine-tuning only the projection layer and language model (see §B).

Baselines. We include following baselines for comparison: LLaVA-1.5-13B + I-MoF (Tong et al.,
2024): By applying the designed Interleaved Mixture-of-Features (I-MoF) module on LLaVA-1.5-
13B to spatially combine CLIP (Radford et al., 2021) and DINOv2 (Oquab et al. [2023) visual
tokens, it enhances visual grounding by integrating complementary features from contrastive and
self-supervised vision encoders. VLM Classifier (Zhang et al., 2024)): it enhances visually-grounded
language models for image classification by fine-tuning them on ImageNet (Deng et al., 2009)
(VLMClassifier-1) or ImageNet combining LLaVA-Instruct (Liu et al., [2023b) (VLM Classifier-2).
Chain-of-Thought (CoT) Prompting (Wei et al.l | 2022): we further evaluate prompt-based mitigation
by encouraging structured reasoning through CoT-style prompting. The specific prompt design and
results are reported in

Datasets. We evaluate models on benchmarks covering three task types: (i) Image-heavy tasks:
Mini-ImageNet (Russakovsky et al.| |2015) and Caltech-101 (Fei-Fei et al., 2004)), used in both
training and evaluation, originally designed for image classification; (ii) Text-heavy tasks: Open-
BookQA (Mihaylov et al.,2018) and MMLU (Hendrycks et al., [2020), consisting purely of textual
question answering data; (iii) VQA tasks: For training, we use LLaVA-Instruct-dataset (Liu et al.,
2023b) as the instruction-tuning dataset for related models. For InstructBLIP, we additionally use
TextCaps (Sidorov et al.,2020) as another publicly available VQA dataset used in instruction tuning.
For Qwen2.5-VL, whose instruction-tuning data is proprietary, we adopt LLaVA-Instruct as a stan-
dardized alternative. For evaluation, we adopt three multiple-choice VQA benchmarks: ScienceQA-
IMG (Lu et al.l [2022), MM-Bench-EN (Liu et al., 2023c), and Seed-Bench-IMG (L1 et al., [2023)).
For ScienceQA and Seed-Bench, we only include examples with image context. For MM-Bench,
we use the English version. All datasets are converted into a unified multiple-choice VQA format,
enabling consistent modeling and evaluation across tasks and models. We report the accuracy of all
multiple choice tasks and quantify the causal effect with the prediction change rate d.,. All models
are fine-tuned for 1 epoch with a fixed batch size Npaen. All the hyperparameters are listed in §[E
For each dataset, results are averaged over multiple independent runs. Following standard practice,
inference is performed with deterministic decoding (temperature fixed at 0).



Table 2: Multimodal reasoning accuracy (%) on VQA benchmarks under various ablation study
configurations. The best accuracy is marked in bold. Arrows (T / ]) indicate relative changes com-
pared to the Vanilla baseline of each model. Overall performance is computed as a weighted average

across datasets, with weights proportional to each dataset’s test size (full results in [Tab. 7)

Model Method ScienceQA-IMG MM-Bench-EN  Seed-Bench-IMG  VQA Overall
3B Multimodal Models
Vanilla 63.0 (100%) 81.8 (100%) 72.3 (100%) 72.5 (100%)
FFT with DY 753 (119.5%) 82.0 (10.2%) 74.7 (13.3%) 76.1 (15.0%)
FFT with DAUS  73.6 (116.8%) 81.7 (10.1%) 75.3 (14.1%) 76.2 (15.1%)
Qwen2.5.VL-3  +KL 72.8 (115.6%) 80.9 (11.1%) 74.9 (13.6%) 75.9 (14.7%)
e, +IS 73.4 (116.5%) 82.0 (10.2%) 75.2 (14.0%) 76.2 (15.1%)
+RG 73.4 (116.5%) 81.8 (10.0%) 75.0 (13.7%) 76.0 (14.8%)
+ADV 73.1 (116.0%) 81.7 (10.1%) 75.3 (14.1%) 76.1 (15.0%)
Ours 73.8 (117.1%) 81.5 (10.4%) 75.5 (14.4%) 76.4 (15.4%)
7B Multimodal Models
Vanilla 64.5 (100%) 64.3 (100%) 63.4 (100%) 63.8 (100%)
FFT with DY 61.6 (J4.5%) 714 (111.0%) 62.4 (11.6%) 64.0 (10.3%)
FFT with DAUS  65.4 (11.4%) 71.1 (110.6%) 63.9 (10.8%) 65.6 (12.8%)
LLaVA-15.7B +KL 65.9 (12.2%) 72.5 (112.8%) 64.5 (11.7%) 66.3 (13.9%)
Liu et al {202%) +1JS 63.8 (11.1%) 73.5 (114.3%) 63.7 (10.5%) 65.6 (12.8%)
+RG 66.3 (12.8%) 71.8 (111.7%) 63.7 (10.5%) 65.7 (13.0%)
+ ADV 66.7 (13.4%) 71.4 (111.0%) 63.6 (10.3%) 65.7 (13.0%)
Ours 67.8 (15.1%) 73.1 (113.7%) 64.6 (11.9%) 66.8 (14.7%)
Vanilla 52.1 (100%) 65.5 (100%) 54.8 (100%) 56.4 (100%)
FFT with DY 61.8 (118.6%) 68.4 (14.4%) 57.6 (15.1%) 60.4 (17.1%)
FFT with DAUS  65.4 (125.5%) 71.1 (18.5%) 612 (111.7%)  63.9 (113.3%)
o +KL 65.9 (126.5%) 71.7 (19.5%) 60.9 (111.1%)  63.9 (113.3%)
InstructBUp-78 s 669 (1284%) 723 (1104%)  60.7(110.8%) 641 (113.7%)
’ +RG 62.8 (120.5%) 70.9 (18.2%) 62.5 (114.0%) 64.2 (113.8%)
+ ADV 66.0 (126.7%) 69.0 (15.3%) 61.8 (112.8%) 64.0 (113.5%)
Ours 64.0 (122.8%) 71.4 (19.0%) 63.0 (114.9%)  64.8 (114.9%)
13B Multimodal Models
Vanilla 65.8 (100%) 72.1 (100%) 64.5 (100%) 66.2 (100%)
FFT with DYQA  60.8 (17.6%) 73.6 (12.1%) 64.9 (10.6%) 65.8 (10.6%)
FFT with DAUS  63.5 (13.5%) 75.0 (14.0%) 65.7 (11.9%) 67.1 (11.4%)
e +KL 62.5 (15.0%) 74.6 (13.5%) 67.6 (14.8%) 68.0 (12.7%)
LL;:Y,%_};SB?B +IS 65.8 (10.0%) 74.7 (13.6%) 67.6 (14.8%) 68.6 (13.6%)
+RG 58.3 (111.4%) 73.5 (11.9%) 67.4 (14.5%) 66.9 (11.1%)
+ADV 57.6 (112.5%) 74.2 (12.9%) 68.3 (15.9%) 67.5 (12.0%)
Ours 62.6 (14.9%) 73.7 (12.2%) 68.4 (16.0%) 68.4 (13.3%)

Achieving Pareto-Optimality Across Unimodal and Multimodal Tasks As shown in
our method outperforms all baselines across different base MLLMs, demonstrating stronger ro-
bustness to modality interference and improved cross-modality competency. While CoT slightly
improves performance in certain VQA settings, its overall gains are minimal and inconsistent,
and it fails to mitigate modality interference under perturbed conditions (e.g., 85.9% vs. 97.9%
on Mini-ImageNet). While I-MoF enhances visual grounding by integrating multiple visual fea-
tures, it still suffers from modality interference: e.g. LLaVA-1.5-13B + I-MoF achieves 93.9% on
original Mini-ImageNet but drops to 70.1% under perturbation ({23.8%), indicating reliance on spu-
rious textual cues. In contrast, our method maintains perturbed performance at 98.4% (]0.1%). On
the other hand, VLMClassifier, adopts vision-only fine-tuning, which leads to two critical limita-
tions: vulnerability to cross-modal interference and degradation on VQA tasks, as LLaVA-1.5-7b
+ VLMClassifier-1 only reaches 35.8%/36.2% on MM-Bench/SeedBench, notably lower than both
base LLaVA and our method (73.7%/68.4%). These results highlight that vision-centric strategies,
without addressing modality alignment, are insufficient for robust multimodal understanding. In
text-heavy tasks such as OpenBookQA and MMLU, our method also achieves superior perturbed
performance(e.g., 55.8% vs. 39.1% on MMLU on LLaVA-1.5-13B)—highlighting that address-
ing modality interference directly, rather than merely improving representations, is key to robust
multimodal reasoning. Overall, unlike prior methods that often trade off between unimodal and
multimodal performance, our method consistently improves both, achieving Pareto-optimality.

Ablation Studies To evaluate the effectiveness of each component in our framework, we con-
duct a comprehensive ablation study across multiple models and scales. We compare the pretrained
models with the following strategies: FFT with DV4 (standard finetuning on VQA data), FFT with
DAYC (supervised finetuning on mixed multi-task datasets with heuristic perturbations), FFT+KL/JS



Table 3: Evaluation of Caltech-101 (image-heavy) Table 4: OOD robustness evaluation on
and MMLU (text-heavy) across different ablation Caltech-101 and MMLU, with OCR noise and

study settings (full results in[Tab. 6). Screenshot distractors (full results in[Tab. 11J).
Caltech-101 MMLU Caltech-101 MMLU
Model Method Orig  Perturbed ‘ Orig  Perturbed Model Method Orig OCR ‘ Orig  Screenshot
Vanilla ~ 97.0 57.4 463 452 Vanilla ~ 97.0 92.8 | 463 448
+DVA 962 46.3 46.8 45.6 +DAUG 985 98.0 | 51.1 50.6
LLaVA-1.5-7B +DAUG 98.5 98.6 51.1 50.7 LLaVA-1.5-7B +ADV  98.7 984 | 50.6 51.3
+KL 98.6 98.7 51.1 50.7 Ours 99.3 99.0 | 51.5 51.3
+ADV  98.7 98.5 50.6 50.3 Vanilla 903 83.6 | 35.3 349
Ours 99.3 99.0 51.5 51.0 +DAUG 99.0 984 | 50.0 492
Vanilla 903 175 353 352 InstructBLIP-7B +ADV  99.1 98.8 | 493 49.3
LDYOA 901 231 209 202 Ours 992 99.0 | 50.2 492
InstructBLIP-7B 4+ DAUG 990 56.1 50.0 49.7 Vanilla 99.1  99.2 | 69.3 57.0
+JS 98.9 98.4 50.7 493 +DAYG 997 993 | 70.4 63.7
+ADV  99.1 85.2 493 48.4 Qwen2.5-VL-7B +ADV  99.6 99.6 | 70.4 69.7
Ours 99.2 98.3 50.2 49.7 Ours 99.6 99.5 | 69.8 69.7

(adding consistency regularization on KL or JS divergence), FFT+RG (injecting random Gaus-
sian noise into token embeddings), FFT+ADV (FFT with heuristic & adversarial perturbations),
and Ours (combining both perturbation-based data augmentation and consistency regularization).
presents overall VQA performance, and evaluates model robustness under unimodal
settings. ([Tab. 5| reports results with all perturbations.) Together, these results show the effec-
tiveness of our method in improving both general VQA accuracy and robustness under modality
interference. Across all model families (Qwen2.5-VL, InstructBLIP, LLaVA-1.5) and model sizes
(3B/7B/13B), our method consistently achieves best overall performance, improving accuracy on
both unimodal and multimodal benchmarks. For instance, it boosts overall VQA accuracy (e.g.,
+14.9% on InstructBLIP-7B), but also enhances robustness to modality interference—improve the
performance under perturbations by over 50% on image-heavy tasks(e.g. 17.5% — 98.3% with
InstructBLIP-7B on Caltech101). We also extend evaluation from MCQA to free-form QA (§C.5).

‘We observe consistent improvements across both unimodal and multimodal tasks when moving from
FFT w/ DV to FFT w/ DAY, highlighting the importance of incorporating modality-specific su-
pervision and heuristic perturbations. Building upon this, adding consistency regularization yields
further gains by stabilizing model predictions under controlled perturbations on X; or X7. Both
KL and JS objectives lead to similar improvements, suggesting that the model equally benefits from
all heuristic perturbations regardless of anchor choice.Finally, we compare adversarial perturbations
with random Gaussian noise, and find that FFT+ADV consistently outperforms FFT+RG across
most backbones, indicating that structured perturbations more effectively suppress spurious short-
cuts and promote robust, task-relevant representations. To further validate generalization, we intro-
duce two real-world out-of-distribution perturbations at test time: (i) noisy OCR snippets sampled
from FUNSD (Jaume et al.| [2019) as irrelevant text into image-heavy tasks; and (ii) unrelated UI
screenshots from RICO (Deka et al., 2017) as distractor images in text-heavy tasks. As shown
in adversarial training significantly improves robustness under these unseen perturbations
with consistent gains (e.g., on InstructBLIP-7B, 83.6% — 99.0% under OCR noise). These results
demonstrate that the modest overhead of adversarial training (see §E) yields substantial gains
in out-of-domain generalization, a crucial property for reliable deployment.

6 CONCLUSION

In this paper, we identify and formalize modality interference as a concrete manifestation of the
broader cross-modality competency problem in Multimodal Large Language Models—namely,
the inability to distinguish task-relevant from irrelevant modality signals. Through a designed
perturbation-based causal evaluation experiment, we demonstrate that even state-of-the-art MLLMs
systematically exhibit degraded performance under irrelevant but misleading inputs, revealing a fun-
damental vulnerability in their inference-time reasoning. To mitigate this issue, we propose a robust
fine-tuning strategy that combines modality-specific data augmentation, consistency regularization,
and adversarial perturbation in the embedding space. These designs explicitly constrain the model
to produce stable outputs under spurious modality shifts, thereby reducing reliance on non-causal
correlations and improving robustness. Extensive experiments across diverse architectures, scales,
and task regimes confirm that our approach consistently improves both unimodal reasoning and
multimodal generalization, achieving Pareto-optimal performance.



ETHICS STATEMENT

This work adheres to the ICLR Code of Ethicsp_-] Our research focuses on analyzing and mitigat-
ing modality interference in Multimodal Large Language Models. All experiments are conducted
on publicly available benchmark datasets, including Mini-ImageNet, Caltech-101, OpenBookQA,
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A APPENDIX SUMMARY

This appendix provides comprehensive supplementary materials and discussion to support the main
findings of our paper on diagnosing and mitigating modality interference in MLLMs. We organize
the appendix into several sections:

Finetuning Strategies (§B): We elaborate on our design choice to freeze the Q-Former in
InstructBLIP-based models. This decision is motivated by the need to retain strong visual represen-
tations while avoiding overfitting to perturbed or misleading multimodal inputs. ([Tab. 13| records
the size for each dataset)

Detailed Experimental Results (§C): This section includes three key tables— and
Tab. 7}—which report model performance on unimodal and multimodal tasks under various per-
turbation settings and ablation conditions(additional models included). [Tab. 8|records the perfor-
mance of different vanilla MLLMs under modality interference across modality-heavy datasets. We
also include radar plots ([Fig. 4) that visualize task-wise robustness across different MLLMs. We
provided the detailed experimental results on Qwen2.5-VL-7b (Bai et al., [2025) and InstructBlip-
Vicuna-13b (Luo et al} [2023) and make further discussion on the selection of specific consistency
loss. In we examine the generalization benefits of adversarial training by evaluating ro-
bustness under two types of out-of-distribution (OOD) perturbations: real-world OCR noise (from
FUNSD (Jaume et al,[2019))) and unrelated screenshots (from RICO (Deka et al.,[2017)). In
we assess the impact of Chain-of-Thought prompting in mitigating modality interference, comparing
its effectiveness against our method and standard baselines across both visual and textual modalities.
In [Tab. 10} we report results on the free-form generative VQA benchmark TextVQA (Singh et al.,
2019), highlighting our method’s generalizability beyond multiple-choice formats.

Hyperparameter Settings (§D): We present full training configurations used in our experiments,
including optimization strategies, perturbation settings, and sampling ratios for different task types.
This section enables reproducibility and highlights the computational efficiency of our proposed
training scheme. We provide parameter analysis on iterations of adversarial training in

Compute Resource Details (: We document hardware specifications, training durations, and re-
source costs for models of different scales. These details contextualize the feasibility of our approach
in academic environments.

Limitations (§F): We discuss the granularity of our current modality interference analysis, the se-
lections of perturbations, and propose directions for more fine-grained future studies.

Broader Impacts (§G)): We reflect on the ethical implications and societal benefits of our research.
While our methods improve model robustness and alignment, we also acknowledge the dual-use
nature of adversarial perturbations and advocate for safety-aware deployment.

LLM Use (§H): Finally, we clarify that LLMs were only used to polish the writing of this paper.

Together, these sections provide a complete view of our technical contributions, empirical findings,
and responsible research considerations.

B FINETUNING STRATEGIES

In our adaptation of InstructBLIP-Vicuna-7B, we choose to freeze the Q-Former and only fine-tune
the language model and the projection layer. This decision is grounded in the nature of the Q-Former
as a highly task-specific visual query encoder, originally pre-trained on VQA-style datasets where
fine-grained and semantically aligned image-text pairs dominate.

However, in our setting, we deliberately introduce perturbations to the input modalities (e.g., inject-
ing unrelated or misleading text/image content), which breaks the expected alignment structure. We
observe that training the Q-Former under such noisy supervision leads to unstable representations
and overfitting to spurious modality correlations. In contrast, freezing the Q-Former allows us to
preserve its original strong visual grounding capabilities, while letting the downstream language
model learn to filter or suppress misleading signals introduced during training.

This alternative tuning strategy enhances robustness under modality interference and aligns with our
overall goal of improving cross-modal competency in MLLMs under perturbed conditions.
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Table 5: Unimodal ability evaluation on image-heavy and text-heavy tasks under perturbation. Left:
Mini-ImageNet and Caltech-101; Right: OpenBookQA and MMLU. UF = Unrelated Facts, MD =
Misleading Descriptions, RP = Random Pixels, RI = Real Image, FB & FW = Full Black/White
Canvas. The best accuracy is marked in bold.

Mini-ImageNet Caltech-101 OpenBookQA MMLU
Model Method Oig UF MD |Odg UF MD|RP RI FB FW |RP RI FB FW
Vanilla 989 985 949 | 988 990 944 | 799 746 800 797 | 635 611 640 636
FFTwith DYOA | 988 985 953 | 988 98.1 943 | 807 743 80.1 802 | 630 617 630 633
FFTwith DAUG | 088 988 98.6 | 99.6 993 99.6 | 87.1 867 87.4 872 | 648 639 648 647
Qwen25.VL3B | KL 989 987 99.1 | 99.6 995 997 | 87.1 862 867 868 | 660 655 659 659
i +IS 99.1 938 983 | 99.6 994 980|850 842 851 851|656 651 655 655
+RG (0=0.05) | 9.0 99.1 989 | 995 99.5 992 | 864 869 869 872 | 646 643 646 648
+ADV 993 993 991 | 995 994 995|866 858 868 866|653 640 654 653
Ours 993 992 992|997 997 995 | 867 864 866 866 | 648 645 650 65.1
Vanilla 993 993 963 | 99.1 989 972|859 77.5 858 860 | 693 637 689 689
FFTwith DVOA | 992 993 960 | 99.5 99.5 957 | 863 823 865 863 | 692 674 694 693
FFTwith DAV | 996 995 994 | 9.7 997 995 | 902 902 90.3 90.3 | 704 699 704 703
Qwen2.5-VL-7B +KL 993 993 99.1 | 996 99.6 99.6 920 917 922 921|712 707 710 710
B et al 2025 +1S 995 994 994|997 993 996|916 921 922 921|715 699 715 716
+RG (0=0.05) | 994 994 992|996 993 99.4 | 89.1 879 89.1 89.1 | 667 656 665 665
+ADV 994 993 992|996 995 996|917 922 918 918 | 704 700 704 704
Ours 99.6 995 995|996 996 99.7 | 909 897 908 910|698 682 698 70.0
Vanilla 953 934 435|970 959 574 | 624 564 625 634 | 463 452 459 458
FFTwith DYOA | 943 927 415|962 940 463 | 613 555 620 629 | 468 456 475 477
FFTwith DAUG | 982 982 98.1 | 985 986 990 | 786 772 787 784|511 507 511 513
LLaVA.L5.7B +KL 99.1 99.0 989 | 986 987 988 | 814 813 814 812|520 518 520 522
L ) +1S 987 938 990|991 99.0 992|816 816 817 815|516 518 524 524
: +RG (0=0.05) | 984 984 985|989 989 99.1|80.5 798 799 803 |49.5 495 499 496
+ADV 987 987 985|987 985 988|817 810 814 808|506 503 509 507
Ours 986 984 987|993 989 99.3 | 818 81.0 8.7 817|515 509 515 514
Vanilla 956 941 730|979 971 774|659 638 680 69.1 |518 508 527 527
FFTwith DVOA | 046 939 720 | 97.8 965 802 | 67.5 642 69.1 693 524 522 531 533
FFT with DAUG | 98,1 968 984 | 967 969 97.0 | 81.0 787 811 813|521 517 518 516
LlaVAls.se | *KL 983 980 986|988 985 989 | 830 826 833 830|557 551 556 556
Al o +IS 983 981 980|987 984 987|831 815 831 831|367 562 566 3565
+RG (0=0.05) | 98.5 98.0s 98.1 | 989 985 989 835 825 831 828|554 553 557 555
+ADV 987 982 986|990 986 990 | 822 82.6 826 828|556 554 556 555
Ours 985 984 987|992 98.6 992|830 821 827 831|567 558 56.7 567
Vinilla 920 871 136|903 902 175 | 508 462 509 507 | 353 358 352 357
FFTwith DV | 956 866 163 | 983 910 231|498 452 495 507 | 409 402 410 416
FFTwith DAUG | 985 980 382 | 99.0 987 561|750 749 748 758|500 497 500 500
. +KL 987 98.1 983|995 99.0 99.6 | 769 77.0 769 773 | 513 50.6 513 515
InstructBip7B 1 1) 985 977 985|989 984 989 | 780 766 777 780 | 507 501 507 50.8
+RG (0=0.05) | 989 972 725|991 99.0 822|752 726 760 769 | 483 476 489 491
+ADV 987 985 322|995 989 492|768 768 765 763 | 493 484 495 494
Ours 984 979 980|992 983 990|790 773 793 79.0 | 502 497 503 502
Vanilla 956 941 730|979 971 774|659 638 680 69.1 |518 508 527 527
FFT with DV® | 956 858 80 | 970 875 11.6|58.6 554 59.7 60.6 | 437 428 436 44.1
FFTwith DAUG | 984 982 93 | 992 988 13.8 | 820 804 812 812|521 513 524 530
. +KL 985 983 987|991 992 995|825 814 821 829|534 525 534 534
InstructBlip 3B 1 115 987 931 989|993 992 995|835 831 831 833|528 522 532 533
+RG (0=005) | 984 978 87.0 | 994 993 944 [ 800 766 796 804|509 500 514 518
+ADV 986 980 809|987 986 991|798 790 809 809 | 513 507 514 524
Ours 987 979 980|987 987 988|832 812 838 830|522 516 523 534

C DETAILED EXPERIMENTAL RESULTS

Please see [Tab. 3} [Tab. 6] [Fig. 4] [Tab. 8] [Tab. 7| [Tab. 11} [Tab. 9|and [Tab. 10| for more details.
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Table 6: Evaluation of unimodal and multimodal tasks across different ablation study settings. For
unimodal datasets, we report accuracy on the original setting (Orig) and the worst-performing pertur-
bation (Perturbed). For VQA datasets, we report accuracy on the original setting. The best accuracy
is marked in bold.

Mini-ImageNet Caltech-101 OpenBookQA MMLU VQA Overall
Model Method Orig  Perturbed | Orig  Perturbed | Orig  Perturbed | Orig Perturbed |  Accuracy
3B Multimodal Models
Vanilla 989 949 | 988 944 | 799 746 |635 6Ll 725
FFT with DV®* 988 953 | 988 943 |807 743 | 630 617 76.1
FFT with DAUS 988 986 | 996 993 [ 871 862 | 648 639 76.2
2s.vLap  tKL 989 987 |996 995 |87.1 8.7 | 660 655 75.9
Quen2> VL +18 99.1 983 | 996 980 | 850 842 | 656 651 762
: +RG 99.0 989 | 995 992 | 864 864 | 646 643 76.0
+ADV 993 991 | 995 994 |866 858 | 653 64 76.1
Ours 993 992 | 997 995 |87 866 | 648 645 76.4
7B Multimodal Models
Vanilla 953 435 | 970 574 | 624 564 | 463 452 63.8
FFT with DV 943 415 [ 962 463 | 613 555 | 468 456 64.0
FFT with DAYS 982 98.1 | 985 986 | 786 772 |5L1 507 65.6
+KL 991 990 |986 987 |8l4 812 |51 507 66.3
Lﬁfgﬁﬂ;}f;zB +1IS 98.7 98.8 99.1 99.0 81.6 81.5 52.0 51.8 65.6
+RG 984 984 |989 989 |805 798 |495 495 65.7
+ADV 987 985 |987 985 |817 808 |506 503 65.7
Ours 986 986 |993 990 |81L8 8L5 |515 510 66.8
Vanilla 920 136 |903 175 | 509 462 [353 352 56.4
FFTwith DV®* 956 163 | 983  23.1 | 498 452 | 409 402 60.4
FFT with DAYS 985 382 | 990 561 | 750 748 | 500 497 63.9
I Blin-7B +KL 987 981 |995 990 |769 769 |513 506 63.9
sl +IS 985 977 | 989 984 |780 766 | 507 50l 64.1
: +RG 989 725 | 991 822 | 760 726 | 483 476 64.2
+ADV 987 722 | 995 852 | 768 763 | 493 484 64.0
Ours 984 980 |992 983 |790 783 |502 497 64.8
Vanilla 993 963 | 991 972 |859 775 | 693 637 80.3
FFTwith DY®* 992 960 | 995 957 |863 83 |692 674 79.5
FFT with DAUS 996 994 | 997 995 |902 902 |704 699 79.9
+KL 993 991 | 996 996 |920 917 |712 707 80.6
QV{f:‘if] “2{)];3;73 +78 995 994 [997 993 |9l6 921 |7L5 699 80.3
: +RG 994 993 997 995 |917 918 | 704  69.9 78.0
+ADV 994 992 | 996 995 |917 918 |704 700 79.9
Ours 99.6 995 | 996 997 | 909 87 |698 682 80.9
13B Multimodal Models
Vanilla 956 730 | 979 774 |659 638 |518 508 66.2
FFTwith DV®* 946 720 | 978 802 | 675 642 |524 522 65.8
FFT with DAUS 981 968 | 967 969 |810 787 |[521 516 67.1
+KL 983 980 |988 985 |830 8.6 |557 551 68.0
LLaVA-15-138 +JS 983 981 |987 984 |81 815 |[567 562 68.6
+RG 985 980 |989 985 |85 825 |554 553 66.9
+ADV 987 982 |990 986 |82 825 |[556 554 67.5
Ours 985 984 |992 987 |830 821 |567 560 68.4
Vanilla 956 730 | 979 774 |659 638 |518 508 65.8
FFTwith DY®* 956 80 | 970 116 | 586 554 | 437 428 59.4
FFTwith DAY 984 93 | 992 138 |80 804 |521 513 65.9
InstructBlin-138 + KL 985 983 | 991 992 |85 814 |534 525 66.2
s +1S 987 981 | 993 992 |835 831 | 528 522 665
: +RG 984 978 | 994 993 |80 766 |509 500 66.3
+ADV 986 809 |987 986 |798 790 |513 507 66.4
Ours 987 979 | 987 987 |832 812 |522 516 66.5
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Table 7: Detailed multimodal reasoning accuracy (%) on multiple-choice VQA datasets across dif-
ferent ablation study settings with extra models: Qwen2.5-vl-7B, Instructblip-Vicuna-13B. The best
accuracy is marked in bold. Overall performance is computed as a weighted average across datasets,
with weights proportional to each dataset’s test size.

Model Method ScienceQA-IMG MM-Bench-EN Seed-Bench-IMG  VQA Overall
Qwen2.5-VL Models (Bai et al.| 2025)

Vanilla 63.0 (100%) 81.8 (100%) 72.3 (100%) 72.5 (100%)

FFT with DVQA 753 (119.5%) 82.0 (10.2%) 74.7 (13.3%) 76.1 (15.0%)

FFT with DAYC  73.6 (116.8%) 81.7 (10.1%) 75.3 (14.1%) 76.2 (15.1%)

Qwen2.5-VL-3B +KL 72.8 (115.6%) 80.9 (11.1%) 74.9 (13.6%) 75.9 (14.7%)
Bareral}20Ts] +IS 73.4 (116.5%) 82.0 (10.2%) 75.2 (14.0%) 76.2 (15.1%)
+RG 73.4 (116.5%) 81.8 (10.0%) 75.0 (13.7%) 76.0 (14.8%)

+ ADV 73.1 (116.0%) 81.7 (10.1%) 75.3 (14.1%) 76.1 (15.0%)

Ours 73.8 (117.1%) 81.5 (10.4%) 75.5 (14.4%) 76.4 (15.4%)

Vanilla 85.1 (100%) 86.6 (100%) 77.0 (100%) 80.3 (100%)

FFT with DVQA 81.4 (14.3%) 86.4 (10.2%) 76.8 (10.3%) 79.5 (}1.0%)

FFT with DAV 83.2 (12.2%) 86.1 (10.6%) 77.0 (-0.0%) 79.9 (10.5%)

Qwen2.5-VL-7B +KL 86.0 (11.1%) 86.7 (10.1%) 77.2 (10.3%) 80.6 (10.4%)
Eareral}a0T] +IS 85.5 (10.5%) 85.9 (10.8%) 77.0 (-0.0%) 80.3 (-0.0%)
+RG 81.6 (14.1%) 82.9 (14.2%) 75.5 (11.9%) 78.0 (12.8%)

+ ADV 85.2 (10.1%) 85.8 (10.9%) 76.6 (10.5%) 79.9 (10.5%)

Ours 83.9 (11.4%) 86.4 (10.2%) 78.3 (11.7%) 80.9 (10.7%)

Instructblip-Vicuna Models (Luo et al.|2023)

Vanilla 52.1 (100%) 65.5 (100%) 54.8 (100%) 56.4 (100%)

FFT with DV 61.8 (118.6%) 68.4 (14.4%) 57.6 (15.1%) 60.4 (17.1%)

FFT with DAUS 654 (125.5%) 71.1 (18.5%) 61.2 (111.7%) 63.9 (113.3%)

. +KL 65.9 (126.5%) 71.7 (19.5%) 60.9 (111.1%) 63.9 (113.3%)
InstructBlip78 g 66.9 (1284%) 723 (1104%)  60.7(110.8%)  64.1 (113.7%)
) +RG 62.8 (120.5%) 70.9 (18.2%) 62.5 (114.0%) 64.2 (113.8%)

+ADV 66.0 (126.7%) 69.0 (15.3%) 61.8 (112.8%) 64.0 (113.5%)
Ours 64.0 (122.8%) 71.4 (19.0%) 63.0 (114.9%)  64.8 (114.9%)

Vanilla 65.8 (100%) 72.1 (100%) 63.8 (100%) 65.8 (100%)

FFT with DVQA 61.7 (16.2%) 68.5 (15.0%) 56.0 (112.2%) 59.4 (19.7%)

FFT with DAUG 66.6 (11.2%) 71.5 (10.8%) 64.0 (10.3%) 65.9 (10.2%)

. +KL 67.2 (12.2%) 72.6 (10.7%) 64.0 (10.3%) 66.2 (10.6%)
I“Sg:'jfgomeB +IS 67.9 (13.2%) 72.7 (10.8%) 64.2 (10.6%) 66.5 (11.1%)
' +RG 65.4 (10.6%) 73.5 (11.9%) 64.3 (10.7%) 66.3 (10.8%)

+ ADV 66.1 (10.5%) 74.0 (12.6%) 64.1 (10.5%) 66.4 (10.9%)

Ours 66.2 (10.6%) 73.2 (11.5%) 64.3 (10.7%) 66.5 (11.1%)

LLaVA1.5 Models (Liu et al., 2023a)

Vanilla 64.5 (100%) 64.3 (100%) 63.4 (100%) 63.8 (100%)

FFT with DVQA 61.6 (14.5%) 71.4 (111.0%) 62.4 (11.6%) 64.0 (10.3%)

FFT with DAVUS 65.4 (11.4%) 71.1 (110.6%) 63.9 (10.8%) 65.6 (12.8%)

LLaVA-1.5-7B +KL 65.9 (12.2%) 72.5 (112.8%) 64.5 (11.7%) 66.3 (13.9%)
Liu et al {2023) +IS 63.8 (11.1%) 73.5 (114.3%) 63.7 (10.5%) 65.6 (12.8%)
+RG 66.3 (12.8%) 71.8 (111.7%) 63.7 (10.5%) 65.7 (13.0%)

+ ADV 66.7 (13.4%) 71.4 (111.0%) 63.6 (10.3%) 65.7 (13.0%)

Ours 67.8 (15.1%) 73.1 (113.7%) 64.6 (11.9%) 66.8 (14.7%)

Vanilla 65.8 (100%) 72.1 (100%) 64.5 (100%) 66.2 (100%)

FFT with DVQA 60.8 (17.6%) 73.6 (12.1%) 64.9 (10.6%) 65.8 (10.6%)

FFT with DAYS 63.5 (13.5%) 75.0 (14.0%) 65.7 (11.9%) 67.1 (11.4%)

s +KL 62.5 (15.0%) 74.6 (13.5%) 67.6 (14.8%) 68.0 (12.7%)
L';ﬁgﬁ}gf%ﬂw +JS 65.8 (10.0%) 74.7 (13.6%) 67.6 (14.8%) 68.6 (13.6%)
+RG 58.3 (111.4%) 73.5 (11.9%) 67.4 (14.5%) 66.9 (11.1%)

+ADV 57.6 (112.5%) 74.2 (12.9%) 68.3 (15.9%) 67.5 (12.0%)

Ours 62.6 (14.9%) 73.7 (12.2%) 68.4 (16.0%) 68.4 (13.3%)

Note. While Qwen2.5-VL was originally instruction-tuned with proprietary in-house data (Bai
et al.| 20235)), our reproduced version uses only publicly available LLaVA instruction-tuning data.
Even under this constraint and without access to VQA-specific tuning samples, our models achieve
comparable or even better performance across all VQA datasets—highlighting the robustness and
effectiveness of our proposed perturbation-consistent fine-tuning strategy.
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Table 8: Performance (%) of Vinilla models under modality interference across four datasets. We
show accuracy under clean (origin) and various perturbations: Left: Mini-ImageNet and Caltech-
101; Right: OpenBookQA and MMLU. UF = Unrelated Facts, MD = Misleading Descriptions, RP
= Random Pixels, RI = Real Image, FB & FW = Full Black/White Canvas. (The results are averaged
on multiple runs with standard deviation < 0.2)

Mini-ImageNet Caltech-101 Open-Book QA MMLU
Orig UF MD |Orig UF MD|RP RI FB FW | RP RI FB FW

InternVL2-2B (Chen et al.|2024b) | 91.9 88.6 25.5|94.6 91.3 33.2|46.3 362 452 453|39.1 369 393 39.2
LLaVA-1.5-7B (Liu et al.{[2023a) 953 93.4 43.5]97.0 959 574|624 564 625 63.4|463 452 459 458
LLaVA-Next-7B (Liu et al./2024) | 93.4 90.0 28.5|97.0 93.4 31.6|54.6 52.9 55.9 555|459 45.0 459 4538
LLaVA-Next-34B (Liu et al.|{2024) | 98.0 96.3 90.2|99.1 97.3 93.6|87.7 85.7 838.4 88.0|71.5 70.9 71.5 71.5
LLaVA-Next-72B (Liu et al.|2024) |97.7 97.8 83.0|98.9 98.8 91.2|88.2 86.2 89.1 88.9|73.6 729 739 73.9
LLaVA-Next-110B (Liu et al.2024) | 98.4 98.3 93.3|98.4 98.3 93.1|89.5 89.2 89.9 89.7|73.5 73.0 73.9 73.9
LLaVA-1.5-13B (Liu et al./2023a) |95.6 94.1 73.0|97.9 97.1 774|659 63.8 68.0 69.1 |51.8 50.8 52.7 52.7
InstructBlip-7B (Luo et al./[2023) 92.0 87.1 13.6/90.3 90.2 17.5|50.8 46.2 50.9 50.7|36.3 352 36.2 36.7
InstructBlip-13B (Luo et al.|[2023) | 93.0 81.6 50.9|94.1 82.7 51.0|44.7 39.4 45.6 46.1|40.1 37.4 40.5 429
QwenVL2-2B (Wang et al.|2024b) | 98.7 98.6 75.8|99.1 99.1 66.8|59.6 54.7 63.4 63.8|49.5 44.6 49.7 50.0
QwenVL2.5-3B (Bai et al.|[2025) 98.9 98.5 94.9198.8 99.0 944|799 74.6 80.0 79.7|63.5 61.1 64.0 63.6
QwenVL2-7B (Wang et al.|{2024b) | 99.0 99.1 96.3|99.6 99.5 97.6|82.5 80.9 83.7 832|669 653 67.7 67.8
QwenVL2.5-7B (Bai et al.}[2025) 99.3 99.3 96.5/99.3 994 96.8(86.2 80.9 86.3 86.4|69.5 67.6 69.1 69.1

Model

C.1 PERTURBATION-BASED EVALUATION EXPERIMENT RESULTS

We conduct a controlled perturbation-based evaluation across various MLLMs, as shown in|Tab. §
Our results reveal that both vision and language tasks are vulnerable to cross-modal interference.
In vision classification tasks, misleading textual descriptions (e.g., text contradicting image con-
tent) lead to severe performance drops. For example, InternVL2-2B and InstructBLIP-7B on Mini-
ImageNet drop from 91.9% to 25.5% and from 92.0% to 13.6%, respectively. Conversely, for lan-
guage tasks such as OpenBookQA and MMLU, irrelevant visual inputs—particularly semantically
unrelated real images—also degrade performance. LLaVA-1.5-7B drops from 46.3% to 45.2% on
MMLU, while InstructBLIP-13B sees over 5 points of degradation.

A consistent trend is that larger models exhibit greater robustness. Models like LLaVA-1.5-13B
and QwenVL2.5-7B maintain high accuracy across all perturbation types—e.g., QwenVL2.5-7B
sustains over 96% on Mini-ImageNet with misleading text and over 86% on OpenBookQA with
irrelevant images—indicating improved modality disentanglement and reduced sensitivity to spuri-
ous correlations. Nonetheless, performance still degrades relative to clean inputs, highlighting that
interference effects remain non-negligible even in stronger models.

We further observe a clear scaling trend within the LLaVA-Next family. As model size increases
from 7B to 34B, 72B, and 110B, performance under perturbations steadily improves, reflecting
stronger representation power and enhanced robustness to spurious cues. For instance, LLaVA-
Next-7B achieves 90.3% on Mini-ImageNet (Orig) but drops to 28.5% with misleading descriptions,
whereas LLaVA-Next-110B maintains 98.4% and 93.3% under the same conditions. Similarly, on
MMLU, accuracy under irrelevant real images increases from 45.9% (7B) to 73.6% (72B). These re-
sults confirm that scaling up helps mitigate modality interference. However, such gains come
at substantial computational and resource costs, and the improvements remain incremental
relative to the clean—perturbed gap. This underscores that scaling alone is insufficient, and more
targeted interventions—such as our proposed framework—are necessary for robust cross-modal rea-
soning.

C.2 EXPERIMENT RESULTS ON INSTRUCTBLIP-VICUNA-13B AND QWENVL-2.5-7B

To enable a more equitable comparison with existing multimodal models, we extend our method to
two additional backbones: InstructBLIP-Vicuna-13B and QwenVL-2.5-7B. As shown in [Tab. 7] our
approach consistently improves performance across multiple VQA benchmarks, even under different
instruction-tuning conditions, demonstrating its robustness and general applicability.
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C.3 DISCUSSION ON KL&JS USE FOR CONSISTENCY REGULARIZATION

Although both KL and JS divergence serve as effective objectives for consistency regularization,
we find that JS consistently achieves slightly better results across most settings. Specifically, in
both unimodal tasks (e.g., Mini-ImageNet, MMLU) and multimodal reasoning benchmarks (e.g.,
ScienceQA, SeedBench), JS-regularized models consistently outperform their KL counterparts by
a small but observable margin. This trend holds across different model backbones and training
configurations, including our final unified method (see “Ours” rows in Table[5]and[7). This suggests
a marginal advantage of JS regularization in enhancing model robustness.

C.4 EVALUATING CHAIN-OF-THOUGHT PROMPTING FOR MODALITY INTERFERENCE
MITIGATION

To further investigate the potential of prompt-based methods in mitigating modality interference,
we conduct additional experiments using Chain-of-Thought Wei et al.| (2022)) style prompting. This
approach aims to encourage structured reasoning by guiding the model through an explicit reasoning
process before producing its final answer.

Specifically, we prepend the following CoT prompt to each input question:

Let’s think step by step:

1. What information does the image provide?

2. What is the question asking?

3. Are there any misleading parts?

4. Now give your final answer. Only write the final answer
on a separate line like: ‘‘Answer: B’’

Results are presented in Table[9] The results suggests that structured reasoning alone cannot resolve
the interference problem, as the issue stems from misaligned cross-modal representations rather than
shallow reasoning steps.

Table 9: Accuracy (%) under different interference settings across tasks and models. Each task
includes original inputs and multiple types of perturbations.

Mini-ImageNet Caltech-101 OpenBookQA MMLU
Org UF MD |[Orig UF MD | RP RI FB FW | RP RI FB FW

vanilla | llava-1.5-7b 953 934 435|970 959 574|624 564 625 634|463 452 459 458
CoT llava-1.5-7b 81.7 709 289|809 71.8 36.0| 388 389 41.0 41.0| 39.6 387 40.2 404
Ours llava-1.5-7b 98.6 98.4 987|993 989 993|818 810 817 817|515 509 515 514

vanilla | llava-1.5-13b | 956 94.1 73.0 | 979 97.1 774|659 638 68.0 69.1]|51.8 50.8 527 527
CoT llava-1.5-13b | 929 859 62.8 | 96.6 92.1 67.8 | 55.6 53.0 56.5 573|473 455 473 478
Ours llava-1.5-13b | 98.7 979 98.0 | 98.7 987 988 | 832 81.2 83.8 83.0| 522 51.6 523 534

vanilla | qwen2.5-vl-3b | 989 985 949 | 98.8 99.0 944|799 746 80.0 79.7| 635 61.1 640 63.6
CoT qwen2.5-vl-3b | 92.3 96.8 882 | 947 96.1 86.0 | 61.0 528 613 61.1 |515 487 51.6 514
Ours qwen2.5-vl-3b | 99.3 992 992 | 99.7 99.7 99.5 | 86.7 86.4 86.6 86.6 | 648 645 650 65.1

vanilla | gwen2.5-vI-7b | 99.3 993 963 | 99.1 989 972|859 775 858 86.0| 693 637 689 689
CoT qwen2.5-vl-7b | 99.1 989 91.4 | 985 985 925|778 688 773 776|615 574 608 60.9
Ours qwen2.5-vl-7b | 99.6  99.5 99.5 | 99.6 99.6 99.7 | 90.9 89.7 908 91.0 | 69.8 682 69.8 70.0

Model | Method

C.5 EVALUATION ON FREE-FORM VQA

To further assess the generalizability of our method beyond multiple-choice VQA tasks, we evaluate
on TextVQA (Singh et al., [2019), a free-form generative visual question answering dataset that
requires reasoning over both textual and visual content in natural images. We follow the benchmark
adopted by LLaVA [Liu et al|(2023b)), which evaluates a model’s ability to both recognize textual
characters within images and effectively handle noisy outputs generated by OCR systems.

Following standard evaluation protocols and existing MLLM baselines (e.g., LLaVA, Qwen2.5-VL,
InstructBLIP), we report model performance averaged over multiple runs (standard deviation < 0.4).
Results are presented in Table
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Our method achieves consistent improvements across most model families, indicating its effective-
ness not only in MCQA scenarios but also in open-ended multimodal reasoning settings.

Table 10: Accuracy (%) on the TextVQA dataset across different model families.

C.6 IMPROVING GENERALIZABILITY THROUGH ADVERSARIAL TRAINING

Setting Model TextVQA
Vanilla  InstructBLIP-Vicuna-7B 19.7
Ours InstructBLIP-Vicuna-7B 324
Vanilla LLaVA-1.5-7B 49.8
Ours LLaVA-1.5-7B 51.2
Vanilla Qwen2.5-VL-7B 81.4
Ours Qwen2.5-VL-7B 84.8

To assess the generalization benefits of adversarial training, we evaluate model robustness under two
types of out-of-distribution (OOD) perturbations at test time:

* Document OCR noise: Real-world noisy OCR snippets are sampled from the FUNSD
dataset (Jaume et al.l [2019) and inserted as irrelevant textual distractors into visual classi-
fication tasks (Mini-ImageNet, Caltech-101).

* Unrelated screenshots: Unrelated Ul screenshots are drawn from the RICO dataset (Deka
et al.l 2017) and added as visual distractors to language-dominant VQA tasks (Open-
BookQA, MMLU).

Each experiment is repeated multiple times, and we report average accuracy across runs (standard
deviation < 0.1). Results are presented in Table[IT] Across all model scales and task types, adversar-
ial training consistently improves robustness to both types of perturbations. These findings indicate
that the additional training overhead introduced by adversarial perturbation is well-justified by the
improved generalization to unseen distribution shifts—a desirable property for reliable deployment
in real-world settings.

Table 11: Accuracy (%) on original and perturbed inputs. OCR snippets are inserted into image
classification tasks, and RICO screenshots are added to VQA tasks.

Setting Model Mini-ImageNet Caltech-101 OpenBookQA MMLU
Origin ~ OCR  Origin OCR  RandPixels  Screenshot  RandPixels  Screenshot

vanilla instructblip-vicuna-7b 92.0 81.4 90.3 83.6 50.9 40.0 353 34.9
SFT instructblip-vicuna-7b 98.5 95.7 99.0 98.4 75.0 74.4 50.0 49.2
SFT + ADV  instructblip-vicuna-7b 98.7 97.5 99.5 98.8 76.8 76.2 49.3 49.3
Ours instructblip-vicuna-7b 98.4 97.3 99.2 99.0 79.0 77.8 50.2 49.2
vanilla llava-1.5-7b 95.3 88.9 97.0 92.8 62.4 50.2 46.3 44.8
SFT llava-1.5-7b 98.2 98.0 98.5 98.0 78.6 78.0 51.1 50.6
SFT + ADV  llava-1.5-7b 98.7 98.2 98.7 98.4 81.7 81.3 50.6 51.3
Ours llava-1.5-7b 98.6 98.2 99.3 99.0 81.8 81.2 51.5 51.3
vanilla qwen2.5-vl-7b 99.3 99.2 99.1 99.2 85.9 69.3 69.3 57.0
SFT qwen2.5-vl-7b 99.6 99.5 99.7 99.3 90.2 85.8 70.4 63.7
SFT + ADV  gqwen2.5-vl-7b 99.4 99.5 99.6 99.6 91.7 91.5 70.4 69.7
Ours qwen2.5-v1-7b 99.6 99.5 99.6 99.5 90.9 90.7 69.8 69.7
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Figure 4: Task-wise robustness under perturbation. Each radar chart shows model accuracy (%)
across Mini-ImageNet, Caltech-101 (image-heavy) and OpenBookQA, MMLU (text-heavy) under
various perturbations. (a) uses raw accuracy of different pretrained MLLMs directly. (b—d) are
normalized relative accuracy of each MLLMs. (We normalize each absolute accuracy into relative
accuracy, which refers to absolute tested accuracy / accuracy of vanilla MLLMs in origin setting
without perturbation.)
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Table 12: Hyperparameter Settings Example Table 13: Dataset Statistics

Category | Setting Dataset Train Test
Model and Training Strategy Mini-ImageNet 4935 2000
Base Model LLaVA-1.5-7B Caltech-101 8124 1020
Finetune Type Full OpenBOOkQA 4957 1000
Adversarial Type PGD-alike MMLU ™ 5469
Step size a 0.1 LLaVA-Instruct 624610 -
Epsilon-hall € 0.001 TextCaps 109765 -
Avdersarial Training Steps 7' 2 MMBench-EN - 4377
Consistency Regularization Type | JS ScienceQA-IMG _ 4114
Loss Weight )\consislenCy 0.01 SeedBench-IMG - 14243
Temperature 7 1
Optimization
Epochs 1
Batch Size per GPU |B| 8
Img/Text Ratio 0.25/0.25
Learning rate 2x107°
VQA Performance across PGD lIterations(LLaVA-1.5-7b) VQA Performance across PGD lIterations(LLaVA-1.5-13b)
Ours ——- FFT +KL 690
68 ~== Vanilla FFT +JS
_ —=-- FFTwith DY®"  ——- FFT + RG 68.5
9 —-—- FFTwith DAY === FFT + PGD 3
< % 68.0
é é 67.5
% * SESESESESESESESSSSSSSSSSS3ETTSIESSSSSSSSSSZSZZZZZEES g 67.0
§ 65 § 66.5
g 6ad - e g F e Ours ===_FFT+-KL
777777777777777777777777777777777777777777777777777 —=~ Vanilla FFT +)S
65.5 —=- FFTwith DY®"  —=- FFT + RG
=== FFT with DAYS === FFT + PGD
& ; 3 Z 5 =0 : ; : 3
Iterations Iterations

Figure 5: Comparison of VQA performance across adversarial training iterations for different model
sizes.

D HYPER-PARAMETER SETTING AND TRAINING DETAILS
Please see [Tab. 12| for more details.

D.1 PARAMETER ANALYSIS WITH ADVERSARIAL TRAINING ITERATIONS

To investigate the effect of adversarial strength on model performance, we vary the number of adver-
sarial training iterations from 1 to 5 and evaluate the resulting VQA accuracy. As shown in
both LLaVA-1.5-7B and LLaVA-1.5-13B models benefit from adversarial consistency training, with
performance peaking at 2-step adversarial training (66.82% and 68.37%, respectively). Notably, ex-
cessive iterations (e.g., 4 or 5 steps) may lead to slight degradation, especially in larger models,
likely due to over-perturbation and optimization difficulty.

These findings suggest that a moderate adversarial training setting (2 steps with e=1e-3 and @=0.1 in
LLaVA-1.5-7b, e=le-4 and a=0.1 in LLaVA-1.5-13b) offers an optimal balance between robustness
and training stability, and that model size influences sensitivity to adversarial signal strength.
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E EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on 8 x A100 GPUs using DeepSpeed ZeRO-3 (Contributors, [2024)
with CPU offloading.

To quantify the computational overhead introduced by our adversarial training, we provide both
theoretical FLOPs analysis and empirical wall-clock training time across model scales.

In the standard supervised fine-tuning (SFT) setting, the FLOPs per batch can be approximated as:
FLOPsspr ~ Bs - (fiim + buim), (10)

where Bj is the batch size, fi1y denotes the FLOPs of a forward pass through the LLM, and by v
the backward pass. In our adversarial training, each sample undergoes N adversarial training steps,
each requiring an additional forward pass through the frozen LLM. Since gradients are computed
only with respect to input embeddings via torch.autograd.grad, the overhead is minimal
and thus ignored. After perturbation, clean and adversarial inputs are concatenated, resulting in a
forward cost of 2By - fim, followed by one backward pass. The total cost becomes:

FLOPsapviser = B - (N fuim + 2fiim + brm)- (11)

The relative overhead compared to vanilla SFT is:

N 2 b
M (12)
f+0
Assuming by ~ 2 fLLMm, this simplifies to:
N+4
TJF. (13)

For our default N = 1, the theoretical FLOPs increase to approximately 1.66x that of SFT.

We further report the actual training time across model scales, as shown in Table

Table 14: Training time (in hours) across model scales. A denotes additional overhead per adver-
sarial training iteration step.

Model SFT SFT + KL SFT + ADV Ours (ADV + KL)

Qwen2.5-VL-3B  1.5h  1.5-1.75h 3-3.5h (A =0.5h) 3.5-4h (A = 0.5h)
LLaVA-1.5-7B  4h 4-45h  6-65h(A=05h) 6-6.5h(A=0.5h)
LLaVA-1.5-13B 10h  10-11h  13-14h (A =1h)  13-14h (A = 1h)

Although the theoretical FLOPs suggest a ~66% increase in cost when N = 1, the actual wall-clock
time increase is much smaller. This is because our designed adversarial training leverages forward-
only passes over frozen LLMs, avoiding costly backward and optimizer updates. As a result, the
added runtime remains modest even on large models (e.g., only +2.5h for LLaVA-13B). Moreover,
KL consistency training introduces negligible overhead compared to SFT.

F LIMITATIONS

Our analysis of modality interference is conducted from a coarse-grained perspective, primarily
categorizing tasks into image-heavy and text-heavy types. A more fine-grained investigation—such
as dynamic attention tracking—could provide deeper insights into how MLLMs rely on or ignore
specific modalities during reasoning.

Moreover, while our perturbation strategies (e.g., unrelated facts, misleading descriptions, irrelevant
images) effectively reveal failure modes of current MLLMs, they remain heuristic and task-specific.
Designing perturbations is, by nature, an open-ended process—one can always propose new forms of
misleading inputs. Thus, an ultimate goal is to develop perturbation-agnostic methods that improve
robustness without requiring exhaustive enumeration of possible attacks.
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While our use of adversarial training represents a strong and generalizable perturbation strategy,
it still operates within a defined input space (e.g., embedding-level noise bounded by L., norms).
Hence, adversarial perturbation should be viewed as a practical but partial solution rather than a
comprehensive defense. Developing mechanisms that generalize across both semantic and modality
perturbations remains an open and challenging direction.

G BROADER IMPACTS

This work investigates the limitations of current multimodal large language models in reasoning
across modalities and proposes methods to mitigate modality interference—a concrete failure case
of cross-modality competency. By improving the robustness and alignment behavior of MLLMs, our
approach may benefit a variety of downstream applications that rely on accurate visual-linguistic
understanding, including education, accessibility tools (e.g., visual question answering for blind
users), and scientific multimodal reasoning tasks.

Our findings also highlight the hidden risks of over-relying on irrelevant modality signals, which can
degrade performance or lead to misleading predictions. Making such failure modes measurable and
diagnosable can support safer deployment and more transparent evaluation of MLLMs in practice.

On the other hand, techniques such as adversarial perturbation may be dual-use. While our imple-
mentation uses perturbations to improve model alignment, similar strategies could be misused to
manipulate model behavior. To reduce such risks, we restrict all experiments to open-source aca-
demic models and do not include harmful or sensitive content in training or evaluation. We encour-
age future work to further assess modality interference in safety-critical contexts and to investigate
alignment-aware perturbation techniques with explicit safety constraints.

H THE USE OF LARGE LANGUAGE MODELS

We used large language models only to edit the manuscript for clarity, grammar, and academic style.
No part of the research design, data analysis, or scientific content relied on language models, and
the authors retain full responsibility for the paper’s ideas and conclusions.
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