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ABSTRACT

Diffusion-based large language models (dLLMs) are gaining attention for their
inherent capacity for parallel decoding, offering a compelling alternative to
autoregressive LLMs. Among various decoding strategies, blockwise semi-
autoregressive (semi-AR) approaches are widely adopted due to their natural sup-
port for KV caching and their favorable accuracy–speed trade-off. However, this
paper identifies two fundamental limitations in the conventional semi-AR decod-
ing approach that applies a fixed block size: i) late decoding overhead, where the
unmasking of high-confidence tokens outside the current block is unnecessarily
delayed; and ii) premature decoding error, where low-confidence tokens inside
the current block are committed too early, leading to incorrect tokens. This paper
presents the first systematic investigation challenging the fixed block size assump-
tion in semi-AR decoding. Through a statistical analysis of confidence dynamics
during the denoising process, we identify a volatility band (VB) region during
dLLM decoding, which encodes local semantic structure and can be used to guide
adaptive block sizing. Leveraging these insights, we introduce AdaBlock-dLLM,
a training-free, plug-and-play scheduler that adaptively aligns block boundaries
with semantic steps by adjusting block size during runtime. Extensive experi-
ments across diverse benchmarks show that AdaBlock-dLLM achieves up to 5.3%
accuracy improvement under the same throughput budget. Beyond inference-
time optimization, we hope our semantics-aware adaptive scheduling approach
and confidence-based analysis will inspire future training strategies for dLLMs.

1 INTRODUCTION

Diffusion-based Large Language models (dLLMs) have recently emerged as a promising alternative
to autoregressive models, offering parallel decoding, improved controllability, and greater data effi-
ciency in low-resource settings (Zhang et al., 2025; Prabhudesai et al., 2025). Open-source dLLMs
such as LLaDA (Nie et al., 2025; Zhu et al., 2025) and Dream (Ye et al., 2025) have shown com-
parable performance to autoregressive models of similar scale. Notably, in structured generation
tasks such as coding, proprietary models including Seed Diffusion (Song et al., 2025b) and Gem-
ini Diffusion (Gemini Diffusion, 2025) demonstrate throughput exceeding 1,400 tokens per second.
These advances highlight the potential of dLLMs to deliver efficient inference while maintaining
competitive algorithmic performance.

Recent works have widely adopted a semi-autoregressive (semi-AR) decoding paradigm that com-
bines blockwise KV caching (Wu et al., 2025; Chen et al., 2025; Song et al., 2025a) and confidence-
based dynamic sampling (Wang et al., 2025d; Wu et al., 2025; Wei et al., 2025) to improve inference
efficiency. However, semi-AR decoding enforces block-level causality: the current block must be fi-
nalized before decoding the next block. We take the first attempt to identify two fundamental issues
introduced by conventional semi-AR decoding with a fixed block size: i) Late Decoding Overhead.
As shown in the upper-left of Figure 1, semi-AR decoding delays the unmasking of high-confidence
tokens outside the current block. For instance, the second and third blocks are decoded in separate
iterations, incurring unnecessary computational overhead to generate a simple complete sentence. ii)
Premature Decoding Error. As shown in the lower-left of Figure 1, the autoregressiveness across
blocks forces early commitment to low-confidence tokens within each block, and this suboptimal
sampling often yields incorrect token predictions (Figure 5), particularly in reasoning tasks.
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Alice has three apples and Bob has four theyThey. has andapplestotal a

High confidence tokens not decoded
Issue-1: Late Decoding Overhead

[MASK] ...   [MASK] ...   [MASK] ...  

Denoise 1

Sample 1

haveThey.and Bob has fourAlice has three apples seven in .oranges total

[MASK] ...  

Denoise N

Sample N

Decode Low-Confidence Token
Issue-2: Premature Decoding Error

sevenhaveThey.and Bob has fourAlice has three apples

.......
... Low Confidence High Confidence

High confidence
tokens not decoded

Prompt: Alice has three apples, and Bob has four.
How many oranges do they have in total?

[MASK] [MASK] [MASK] ... [MASK]Initial 
Sequence

Alice has three apples and Bob has four theyThey. has andapplestotal a

Adaptive block size

[MASK] ...  

Denoise 1

Sample 1

haveThey.and Bob has fourAlice has three apples zero in .oranges totalDenoise 2

Sample 2 zerohaveThey.and Bob has fourAlice has three apples

and Bob has four .

in .oranges total

Adaptive block size

Conventional Approach (Fixed block size) Our Approach (Adaptive block size)

Alice has three apples Alice has three apples

Figure 1: Illustrative examples of two key issues (left) and how they can be overcome with
AdaBlock-dLLM (right). A real case study is provided in Appendix A.1.
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Figure 2: Performance improvement
over Fast-dLLM (Wu et al., 2025).

To address these limitations, we first investigate how con-
fidence scores evolve during dLLM denoising and sam-
pling. Our statistical analysis in Section 4.1 reveals a
volatility band (VB), a region where confidence fluctu-
ates dynamically. VB regions exhibit semantics structure,
which can be exploited to dynamically adapt block size
during runtime. Based on these insights and observations,
we propose an adaptive block-size decoding method for
dLLM inference, termed AdaBlock-dLLM, which adopts
a semantic-aware approach that adaptively adjusts block
boundaries (Figure 1, right). Specifically, AdaBlock-dLLM
dynamically aligns block size with the length of seman-
tic blocks, as categorized by special semantic tokens (e.g.,
periods and \n), enabling dLLM to perform efficient de-
coding while mitigating the limitations of fixed-size ap-
proaches. Importantly, AdaBlock-dLLM is a training-free and plug-and-play enhancement to the
existing semi-AR decoding paradigm. Across comprehensive experiments on various benchmarks,
we demonstrate that AdaBlock-dLLM improves accuracy by up to 5.3% while achieving throughput
comparable to prior dLLM acceleration methods (Figure 2). Gains are especially pronounced under
KV caching, where fixed block sizes further compromise semantic consistency. Our results motivate
semantics-aware training objectives for block-diffusion models that emphasize context preservation.

In summary, our contributions are threefold:

• We systematically analyze the semi-autoregressive sampling paradigm, and identify the inaccu-
racy and inefficiency behind fixed block size settings (Section 4.1 and Section 4.2).

• We propose AdaBlock-dLLM, a training-free, plug-and-play technique that enhances existing
semi-autoregressive decoding paradigm, which dynamically adjusts block sizes based on the con-
fidence of semantic delimiter tokens (Section 4.3).

• We conduct extensive experiments demonstrating that AdaBlock-dLLM improves accuracy by up
to 5.3% over state-of-the-art methods under the same speed budget (Section 5).

2 RELATED WORKS

2.1 DIFFUSION LANGUAGE MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Karras et al.,
2022) have achieved high-fidelity generation across continuous data domains, including images and
video (Peebles & Xie, 2023; Ho et al., 2022). Motivated by this success, a growing line of work
adapts diffusion to NLP tasks, giving rise to masked diffusion models (MDMs) that iteratively de-
noise an initially masked token sequence into coherent output (Austin et al., 2021a; Hoogeboom
et al., 2021; Lou et al., 2024). Recent efforts have scaled MDMs up to 8B parameters (Nie et al.,
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2025; Ye et al., 2025), highlighting their robustness and scalability. Current diffusion language mod-
els can be categorized into i) models trained from scratch (Nie et al., 2025; Yang et al., 2025); ii)
models adapted from autoregressive (AR) models (Ye et al., 2025); and iii) block-diffusion mod-
els (Cheng et al., 2025; Wang et al., 2025d), which combine the training efficiency of AR models
with the sampling efficiency of diffusion models.

2.2 EFFICIENT INFERENCE FOR DIFFUSION LLMS

Recent work has advanced inference for diffusion LLMs (dLLMs) in both speed and accuracy. In
inference acceleration, research has focused on two directions: caching mechanisms and paral-
lel decoding. Multiple caching mechanisms have been proposed to avoid recomputing key–value
(KV) pairs at each denoising step, including delayed caching (Ma et al., 2025), verification-based
caching (Liu et al., 2025), and block-level caching (Wu et al., 2025). Advances in parallel decoding
include efficient threshold-based dynamic sampling (Wu et al., 2025; Wang et al., 2025c; Wei et al.,
2025; Yu et al., 2025), sampler scheduling (Luxembourg et al., 2025), and guided diffusion (Hu
et al., 2025; Israel et al., 2025). To improve accuracy, test-time strategies such as voting (Wang
et al., 2025b), early committing (Li et al., 2025a) and remasking (Hong et al., 2025; Wang et al.,
2025a; He et al., 2025) have also been explored.

2.3 BLOCKWISE SEMI-AUTOREGRESSIVE DECODING

Semi-autoregressive (semi-AR) decoding partitions the sequence into blocks. Decoding is autore-
gressive at the block level, but non-autoregressive within blocks, allowing tokens inside the block to
be sampled in arbitrary order. This paradigm was first introduced in Block Diffusion (Arriola et al.,
2025), which interpolates between autoregressive and fully diffusion-based decoding by applying
a block-causal attention mask. Various diffusion LLMs, including LLaDA (Nie et al., 2025) and
MMaDA (Yang et al., 2025), adopt semi-AR decoding; however, they predefine a fixed generation
budget. Compared with random-order decoding over the full sequence, a key advantage of semi-AR
decoding is that it naturally supports block-level KV caching (Wu et al., 2025; Chen et al., 2025;
Song et al., 2025a), making it a prevalent scheme in recent dLLM research. To the best of our
knowledge, prior semi-AR decoding uses a fixed block size. In contrast, this paper takes the first
attempt to explore adaptive block-size decoding with semantic-aware, training-free method.

3 PRELIMINARES

The decoding process of diffusion LLMs comprises two operations: denoise and sample. In text
generation, the decoding process starts from a fully masked sequence, and the model iteratively
employs the denoise–sample cycle until no mask token is left. Taking LLaDA (Nie et al., 2025) as
an example, we formalize the decoding process.

Setup. Let V denote the vocabulary, which includes a special mask token [MASK] ∈ V . Given
a prompt q = (q0, . . . qLp−1) ∈ VLp and a generation budget L, define the index set J ≜
{0, 1, . . . , Lp+L−1}. Let T be the total number of denoise–sample iterations. At step t ∈
{T, T−1, . . . , 0}, the sequence state is y t = (y t

i )i∈J ∈ VLp+L. The initial state of the sequence is
y T = (q0, . . . , qLp−1, [MASK], . . . , [MASK]︸ ︷︷ ︸

L times

) .

Denoise. A mask predictor pθ predicts a sequence ŷt ∈ (V \ [MASK])Lp+L using greedy decoding:

ŷ t
i = argmax

v∈V
pθ
(
v | y t, i

)
, i ∈ J . (1)

Sample. Define the masked-position set:

Mt ≜ { i ∈ J : y t
i = [MASK] }. (2)

A sampler selects St ⊆Mt to unmask. For all i ∈ J , update

3
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y t−1
i =


ŷ t
i , i ∈ St (unmask),

[MASK], i ∈Mt \ St (stay masked),

y t
i , i /∈Mt (already unmasked; keep).

(3)

Then, the sequence state becomes

y t−1 = (y t−1
i )i∈J ∈ VLp+L. (4)

Repeat for t = T, T−1, . . . , 1; terminate whenMt = ∅.

Sampling Methods. LLaDA (Nie et al., 2025) proposes a linear-schedule sampler that unmasks
a fixed number of tokens L/T at each step, either at random or by confidence. LaViDa (Li et al.,
2025b) applies a shifting schedule that unmasks a variable number of [MASK] positions in each step.
Fast-dLLM (Wu et al., 2025) and Dimple (Yu et al., 2025) adopt dynamic sampling by introducing
a confidence threshold τ . At each step t, the model unmask all positions with confidence c t

i ≜
pθ(ŷ

t
i | y t, i) that cti ≥ τ . Compared to the linear-schedule or the shifting schedule, dynamic

sampling adapts to token-level uncertainty and improves the accuracy–throughput balance.

4 METHODOLOGY

Semi-AR decoding has been widely adopted in dLLMs, including LLaDA (Nie et al., 2025) and
MMaDA (Yang et al., 2025). This decoding paradigm naturally supports a block-level KV cache,
addressing a key bottleneck in dLLM inference. Additionally, combining semi-AR decoding with
dynamic sampling (Wu et al., 2025) enables multi-token prediction within a single denoise—sample
cycle (Wu et al., 2025; Wang et al., 2025c). This paradigm introduces two hyperparameters: con-
fidence threshold τ and block size B. The confidence threshold maintains a balance between
sampling speed and quality, whereas the effect of block size has not been systematically explored.

In Section 4.1, we analyze the confidence dynamics that govern dynamic sampling. Using these
patterns, we characterize the inaccuracies and inefficiencies caused by the misalignment between a
fixed block size and the model’s inductive decoding preferences in Section 4.2. This motivates an
adaptive block-size scheduler that minimizes this mismatch.

4.1 ANALYSIS OF CONFIDENCE DYNAMICS

Confidence Scores. Confidence scores are a key metric in dynamic sampling of dLLM. A high
confidence score indicates that the model is more certain about the prediction (Wei et al., 2025).
The decoding process consists of iterative denoise–sample cycles (Section 3). At each denoise step,
the model predicts the tokens in all masked positions via greedy decoding. Afterwards, tokens with
confidence ci ≥ τ are unmasked, where τ is a hyperparameter specifying the confidence threshold.

Confidence Dynamics and Global Autoregressiveness. Figure 3 visualizes confidence dynamics
at early, middle, and late decoding stages of LLaDA-8B-Base inference on GSM8K Benchmark.
Based on these statistical analyses, we summarize the following observations and patterns:

• For all stages, a high-confidence region emerges near the decoded (or prompt) tokens. This indi-
cates that masked positions adjacent to decoded (high-confidence) tokens are more likely to attain
high confidence and thus to be decoded. We attribute this to confidence locality: dLLMs exhibit
higher confidence in regions where local semantic meaning is complete.

• Although the model may generate in arbitrary order, its decoding trace shows a global autore-
gressive tendency. This pattern suggests a chain-like progression, which arises from semantic
causality where subsequent predictions depend on prior semantics.

• As the decoding process unfolds, confidence for decoded tokens remains high, and the high-
confidence region extends toward adjacent positions. In contrast, positions outside this region
maintain consistently low confidence, forming what we term the low-confidence floor.

4
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Volatility Band and Local Stochasticity. Building on these observations, we partition the
position-wise confidence landscape into three regimes: i) a high-confidence plateau with consis-
tently large scores; ii) a volatility band (VB) characterized by unstable, variable scores; and iii) a
low-confidence floor with persistently small scores. Among these regimes, the VB is the key region
where the current decoding steps take place. As illustrated in Figure 4, scores within the VB fluc-
tuate over decoding steps (time) and across positions (space), yet remain clearly separated from the
low-confidence floor. Additionally, the width of the VB varies from case to case. In contrast to the
left-to-right expansion of the high-confidence plateau that is driven by global autoregressive causal-
ity, the decoding order within the VB is locally stochastic: the positional preference diminishes, and
the sampling choice depends more heavily on the immediate semantic context.
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Figure 3: Confidence scores across sequence positions for LLaDA-8B-Base, evaluated on 100 sam-
ples from the GSM8K benchmark. The high confidence plateau expands as decoding progresses,
while positions beyond the decoded prefix exhibit high variance.
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Figure 4: Illustration of the high confidence plateau, the
volatility band (VB), and the low confidence floor across
three samples. Within VB, the distribution of confidence
scores and the width of the band vary across samples.
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Figure 5: Proportion of sampling steps
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4.2 MOTIVATION FOR ADAPTIVE BLOCK SIZE.

Despite the local stochasticity exhibited during decoding, prevailing semi-AR decoding strategies
use manually set, fixed block sizes that often fail to capture this stochasticity. This misalignment
leads to Late Decoding Overhead and Premature Decoding Error, as illustrated in Figure 1,
thereby reducing accuracy and efficiency. This motivates incorporating an adaptive block size.

Late Decoding Overhead. A fixed block size poses a hard constraint on number of tokens that
can be sampled in a single step. By fixing the block size, the sampler must exclude nearby higher-
confidence positions outside the block, especially when a small block size is used (Wang et al.,
2025d; Cheng et al., 2025). Deferred high-confidence positions undergo additional denoising in
later iterations, incurring unnecessary computation overhead and resulting in degraded throughput.

Premature Decoding Error. With a fixed block size, the sampler (Algorithm 3) must decode
all masked positions in the current block before advancing. This constraint forces the sampler to
decode low-confidence positions inside the block, instead of the high-confidence positions outside
the block. The result is systematic inaccuracy: decoding premature tokens increases token-level
error rates, propagates mismatches to subsequent steps via block-level autoregressive dependencies,
and biases the hypothesis toward poorly calibrated regions of the confidence landscape. This usually
contributes to degraded accuracy.
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4.3 SEMANTIC-AWARE ADAPTIVE BLOCK-SIZE SCHEDULER

Challenge for predicting block size. The VB characterizes the region of active decoding: posi-
tions before the VB are typically decoded and exhibit consistently dynamic confidence. As shown
in Figure 3, the VB boundary encodes semantic structure due to the confidence locality (Section 4.1).
In contrast, tokens in the low-confidence floor are repeatedly assigned placeholders or formatting
symbols (e.g., <EOS>, spaces).

Although the VB region contains semantic information, it is often too wide. As shown in Figure 7,
the token “GB” repeatedly appears with confidence scores mostly between 0.1 and 0.3, lying within
the VB. Although such tokens are contextually related, their significance to the current context is
weak, providing little guidance for the current sampling step. Consequently, VB regions often pro-
vide limited actionable signals for local decisions, requiring a fine-grained segmentation to identify
tokens that relate closely to the current decoding step.

Align Block Size With Semantic Steps. To obtain a fine-grained segmentation that reflects the
context of the current decoding step, we partition the sequence into semantic steps, which are
contiguous spans whose provisional tokens exhibit local semantic coherence. We then couple the
scheduler to the semantic step, setting the block size guided by the current semantic step length.
This allows the sampler to finalize higher-confidence positions within the step while deferring lower-
confidence positions until the semantic step is ready to close. Across semantic steps, dependencies
are enforced by the semi-AR paradigm, since each downstream step conditions on completed prede-
cessors. This alignment curbs premature commitments outside the active step and prevents splitting
a step across iterations, thereby reducing both error propagation and computational overhead.

Algorithm 1 Semantic-Aware Block Size Determination

Inputs: predicted sequence ŷ; confidences c; generation budget L; default block size B0;
delimiter set D; delimiter threshold τD; current position g.
Output: block size B

1: function COMPUTEBLOCKLENGTH(ŷ, c, L, B0, D, τD, g)
2: ▷ Sampling window boundary
3: start, remaining ← g, L− g
4: w ← min

(
max(1, ⌊0.25 · g⌋), remaining

)
5: W ← { start, . . . , start+ w − 1 } ▷ window token indices
6: ▷ Find highest-confidence delimiter
7: I ← { i ∈W | ŷi ∈ D }
8: if I ≠ ∅ then
9: pos← argmaxi∈I ci ▷ Select position with max delimiter token confidence

10: cmax ← cpos
11: else
12: cmax ← −∞
13: end if
14: ▷ Determine block size
15: if cmax ≥ τD then
16: B ← (pos− start+ 1) ▷ inclusive length up to the delimiter
17: else
18: B ← min(B0, remaining)
19: end if
20: return B
21: end function

Semantic-Aware Block Size Scheduling With AdaBlock-dLLM. To facilitate the dynamic ad-
justment of block size B, we insert an additional block-size determination procedure between de-
noising and sampling at the start of each block (Algorithm 1). Given the current predicted sequence
ŷ and confidence scores {ci}, we collect indices whose predicted tokens fall in the delimiter set
D (line 7). Among these, we choose the delimiter ŷmax with the highest confidence cmax. If
cmax ≥ τD, we set B to the position of ŷmax (lines 15–16), indicating that the model has a reli-
able preference for the end of the current semantic step. If no delimiters appear in ŷ within Wt

6
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(lines 11–12), or if all delimiter predictions are low-confidence (cmax < τD, lines 17–18), we fall
back to the default block size. Additionally, we apply an index window W that masks distant po-
sitions to avoid decoding the <EOS> token in the early stage, a cause for severe performance drop
(Nie et al., 2025). This procedure yields step-aware blocks when evidence is strong, while remaining
conservative in ambiguous regions.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Implementation Details. We evaluate AdaBlock-dLLM on representative diffusion LLMs
(dLLMs): LLaDA-8B-Instruct (Nie et al., 2025), LLaDA-1.5 (Zhu et al., 2025), and Dream-v0-
Base-7B (Ye et al., 2025). Unless otherwise noted, all experiments run on NVIDIA H100 GPUs.

Hyperparameters Settings. We use the generation budget L = 512 for all benchmarks. For
dynamic sampling, we use a confidence threshold τ = 0.9. We sweep default block sizes B ∈
{16, 32, 64}. AdaBlock-dLLM introduces two hyperparameters: the delimiter setD and the delimiter
confidence threshold τD. We set D = {\n}, since newline tokens commonly mark the end of
reasoning steps in test-time search (Snell et al., 2024) style prompting. We use τD = 0.3 for
LLaDA-series models and τD = 0.5 in Dream-series models. This is tuned on a small subset of the
GSM8K benchmark, and the selection is discussed in Section 5.3.

Benchmarks and Metrics. We evaluate AdaBlock-dLLM on standard LLM benchmarks. For
math reasoning, we use GSM8K (5-shot) (Cobbe et al., 2021) and MATH (4-shot) (Hendrycks
et al., 2021). For code generation, we use HumanEval (0-shot) (Chen et al., 2021) and MBPP
(3-shot) (Austin et al., 2021b). Generation quality is measured by accuracy: pass@1 for code gen-
eration and answer accuracy for math reasoning. All accuracy values are reported as percentages.
We evaluate accuracy across five sampling methods in total, including three baselines based on Fast-
dLLM (Wu et al., 2025): Vanilla (top-1 confidence sampling), Dynamic (dynamic sampling), and
+Cache (dynamic sampling with DualCache); and two variants enhanced with AdaBlock-dLLM:
+Ada (dynamic sampling with AdaBlock-dLLM) and +Ada+Cache (dynamic sampling with Dual-
Cache and AdaBlock-dLLM).

5.2 MAIN RESULTS

Generation Quality Across Models. Table 1 reports accuracy to quantify generation quality.
AdaBlock-dLLM achieves accuracy gains across most model and dataset pairs. Notably, on GSM8K
with LLaDA-Instruct, accuracy is improved by 3.0% without caching and 5.3% with caching.
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Figure 6: Accuracy and throughput of different sampling methods evaluated on LLaDA-Instruct. In-
tegrating AdaBlock-dLLM into Fast-dLLM (Wu et al., 2025) yields accuracy gains across all bench-
marks while maintaining little throughput overhead. Notably, Fast-dLLM with AdaBlock-dLLM is
Pareto-optimal on the GSM8K and MATH datasets.
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Table 1: Accuracy (%) across sampling methods, evaluated on LLaDA-1.5, LLaDA-Instruct, and
Dream-Base under default block sizes B0 ∈ {16, 32, 64}. Differences are shown in gray. Compar-
isons are reported relative to Dynamic and +Cache (Wu et al., 2025).

Method LLaDA-Instruct LLaDA-1.5 Dream-Base
B0 = 16 B0 = 32 B0 = 64 B0 = 16 B0 = 32 B0 = 64 B0 = 16 B0 = 32 B0 = 64

GSM8K
Vanilla 78.8 76.7 76.8 82.3 82.3 80.4 76.3 76.4 75.1
Dynamic 79.1 77.6 77.3 82.6 82.2 80.7 75.5 75.5 75.6
+Ada 80.6 +1.5 80.6 +3.0 79.5 +2.2 83.0 +0.4 82.4 +0.2 80.3 -0.4 75.7 +0.2 75.7 +0.2 75.9 +0.3
+Cache 78.0 74.5 75.4 80.7 80.2 80.0 75.6 74.5 74.6
+Ada+Cache 80.0 +2.0 78.5 +4.0 80.7 +5.3 81.3 +0.6 81.7 +1.5 79.7 -0.3 76.5 +0.9 75.1 +0.6 74.6 +0.0

HumanEval
Vanilla 43.9 43.9 42.7 39.0 36.6 38.4 53.7 52.4 54.3
Dynamic 42.7 43.9 43.3 36.6 37.8 36.6 53.0 51.2 52.4
+Ada 43.3 +0.6 43.3 -0.6 43.9 +0.6 37.8 +1.2 38.4 +0.6 38.4 +1.8 53.7 +0.7 51.2 +0.0 53.7 +1.3
+Cache 45.1 46.3 47.0 33.5 36.0 34.1 50.0 53.0 56.1
+Ada+Cache 49.4 +4.3 46.3 +0.0 48.2 +1.2 36.0 +2.5 39.0 +3.0 36.0 +1.9 52.4 +2.4 53.0 +0.0 57.3 +1.2

MATH
Vanilla 36.7 36.9 37.3 36.3 37.0 34.4 39.8 40.2 40.1
Dynamic 37.0 36.9 37.1 36.3 36.7 34.4 39.7 39.9 39.9
+Ada 36.5 -0.5 37.3 +0.4 37.4 +0.3 36.8 +0.5 36.7 +0.0 34.1 -0.3 39.6 -0.1 39.9 +0.0 39.9 +0.0
+Cache 35.4 35.8 36.0 34.9 33.2 32.1 38.0 38.5 38.8
+Ada+Cache 35.8 +0.4 35.3 -0.5 35.6 -0.4 35.2 +0.3 33.9 +0.7 32.4 +0.3 37.8 -0.2 38.4 -0.1 38.4 -0.4

MBPP
Vanilla 39.2 38.6 37.0 38.2 37.0 23.2 12.4 12.4 12.8
Dynamic 39.8 38.8 36.8 38.2 37.0 24.6 12.6 12.4 12.2
+Ada 40.2 +0.4 39.8 +1.0 36.4 -0.4 39.4 +1.2 37.6 +0.6 29.8 +5.2 12.8 +0.2 14.2 +1.8 12.4 +0.2
+Cache 35.6 37.8 36.4 38.0 34.8 19.8 12.8 11.6 9.6
+Ada+Cache 39.4 +3.8 38.0 +0.2 36.8 +0.4 36.6 -1.4 36.4 +1.6 36.6 +6.8 12.8 +0.0 11.6 +0.0 12.4 +2.8

Pronounced Accuracy Improvement With Cache. We observe that accuracy gains are partic-
ularly pronounced when KV caching is used. Unlike autoregressive decoding, where caching is
effectively lossless, block-level KV caching in dLLMs is approximated because key and value ten-
sors vary across time steps, and the decoding order within each block is non-sequential. Notably,
accuracy degrades markedly at large block sizes.

Table 3 reports accuracy gains with both PrefixCache and DualCache (Wu et al., 2025). Improve-
ments are twofold: i) For large default block sizes B0, the resulting average block size B̄ is smaller,
reducing KV-cache approximation error. ii) By enhancing semantic locality within each block, inter-
block dependencies are reduced, making decoding less sensitive to stale cache entries. The second
effect is more impactful: on GSM8K, B̄ for B0 = 64 is 33.98, yet accuracy still exceeds that of
B0 = 32 without AdaBlock-dLLM by 1.90% (no cache) and 6.20% (DualCache). Given that block-
level KV caching is a core advantage of semi-AR decoding, these results indicate that the method
integrates seamlessly with existing techniques that improve inference efficiency.

Throughput Overhead. Table 2 reports the accuracy, throughput (measured in tokens per second,
TPS), and the average number of function evaluations (NFE). The product of throughput and NFE
remains stable across methods and block sizes, indicating an approximately inverse relationship
between these metrics. This observation suggests that throughput can be improved primarily by
reducing NFE, for example, by increasing the parallelism capacity of the denoiser (Wang et al.,
2025c) or by improving the sampling efficiency of the sampler.

We observe that the Vanilla decoding, which fixes NFE to the generation budget, maintains almost
identical throughput across block sizes. In contrast, dynamic sampling with either fixed or adap-
tive block sizes benefits from increasing B0 from 4 to 64, but exhibits a drop in throughput when
the block size is increased further. We attribute this initial positive correlation between block size
and throughput to the mitigation of late-stage decoding overhead. The subsequent degradation in
throughput is mainly due to the noisy output of the denoiser: when a large block size B is used, the
semantic coherence within each block weakens, resulting in fewer tokens being decoded per step
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and thereby requiring more denoise–sample iterations. Given the approximate inverse relationship
between NFE and throughput, this increase in NFE leads to reduced throughput. The noisy output
is also reflected in the accuracy performance, with the large block size B0 = 128 experiencing a
significant performance degradation.

With AdaBlock-dLLM, throughput improves for small default block sizes (B0∈{4, 8}) and slightly
decreases for larger defaults (B0 ∈ {16, 32, 64, 128}). AdaBlock-dLLM attempts to align the block
size with semantic steps, leading to B > B0 for small defaults and B < B0 for larger defaults.
For small B0, AdaBlock-dLLM effectively reduces late decoding overhead. As B0 increases, apply-
ing B < B0 strengthens the local semantic context and improves sampling quality, at the cost of
a modest throughput decrease. Nevertheless, both Dynamic and Dynamic+Ada achieve substan-
tial speedups over Vanilla (top-1) decoding. Figure 6 presents the trade-off between accuracy and
throughput, demonstrating the improvements induced by our method.

Table 2: Performance comparison across default block sizes B0 under a generation budget of
L = 512. The product of throughput and NFE is nearly identical across methods and block sizes,
indicating an approximately inverse relationship between these quantities when no block-level KV
caching is applied. AdaBlock-dLLM yields throughput gains for B0 ∈ {4, 8}. Boldface indicates
superior performance; this convention applies to all tables unless noted otherwise.

Acc.
(%)

TPS Avg.
NFE

TPS×NFE
(103)

Acc.
(%)

TPS Avg.
NFE

TPS×NFE
(103)

Acc.
(%)

TPS Avg.
NFE

TPS×NFE
(103)

Method B0 = 4 B0 = 8 B0 = 16

Vanilla 80.9 16.1 512.0 8.2 80.5 16.1 512.0 8.2 78.8 16.1 512.0 8.2
Dynamic 81.2 43.0 189.4 8.2 80.6 60.0 135.5 8.1 79.1 74.7 109.2 8.2
+Ada 81.6 51.3 159.8 8.2 81.8 63.9 128.3 8.2 80.6 73.9 102.4 8.2
Method B0 = 32 B0 = 64 B0 = 128

Vanilla 76.8 16.1 512.0 8.2 76.8 16.1 512.0 8.2 71.0 16.0 512.0 8.2
Dynamic 77.6 85.0 94.9 8.1 77.3 89.4 91.6 8.2 70.7 81.2 101.2 8.2
+Ada 80.6 83.5 98.5 8.2 79.5 87.9 93.4 8.2 72.8 80.6 101.6 8.2

Table 3: Accuracy (%) on GSM8K for LLaDA-
Instruct across caching methods with L = 512.

Method B0 = 16 B0 = 32 B0 = 64

+PrefixCache 78.2 76.9 75.0
+Ada+PrefixCache 81.4 79.8 77.6
+DualCache 78.0 74.5 75.4
+Ada+DualCache 80.0 78.5 80.7

Table 4: Accuracy (%) on GSM8K for LLaDA-
Instruct under different generation budgets.

Method L = 256 L = 512 L = 1024

Dynamic 78.1 77.6 77.4
+Ada 78.5 80.6 79.3
+Cache 77.4 74.5 75.8
+Ada+Cache 79.2 78.5 78.1

Table 5: Accuracy (%) on GSM8K for LLaDA and Dream
across delimiter thresholds τD ∈ {0.3, 0.5, 0.7} with B0 =
32. A smaller τD provides sufficient semantic guidance for
dLLMs trained from scratch (e.g., LLaDA).

Model τD = 0.3 τD = 0.5 τD = 0.7

LLaDA-Instruct 80.59 79.08 77.94
Dream-Base 75.66 75.74 75.74

Table 6: Accuracy (%) on IFEval for LLaDA-1.5 across sam-
pling methods. AdaBlock-dLLM also improves performance.
Method B0 = 16 B0 = 32 B0 = 64

Vanilla 69.1 66.7 61.3
Dynamic 69.0 66.7 61.2
+Ada 68.4 -0.6 67.5 +0.8 64.4 +3.2
+Cache 67.5 64.6 59.4
+Ada+Cache 68.9 +1.4 66.4 +1.8 62.7 +3.3

Table 7: Accuracy (%) on GSM8K
across eight different delimiter sets
with B0 = 32. Results show
that using the newline token (\n) as
the delimiter accounts for most of
the accuracy gains, while addition-
ally including the comma and pe-
riod further improves performance.

Delimiter Set Acc. (%)

None (+Cache) 74.5
{[ \n]} 78.5
{[,]} 75.1
{[.]} 74.5
{[,],[.]} 75.1
{[ \n],[,]} 78.5
{[ \n],[.]} 78.3
{[ \n],[,],[.]} 78.7
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Discussion on Difference Between Models. The gains from AdaBlock-dLLM vary across mod-
els. In particular, AdaBlock-dLLM yields larger improvements on the LLaDA family of models. By
setting block size according to local semantics, AdaBlock-dLLM groups tokens that constitute a se-
mantic step into the same block and focuses on refining the local context. This effect is strongest for
dLLMs trained from scratch, which exhibit greater local stochasticity. In contrast, dLLMs adapted
from AR models display global autoregressive order and a high degree of local autoregressiveness
(Gong et al., 2025). In such a scenario, the improvements from AdaBlock-dLLM are correspond-
ingly smaller. Additionally, the fundamental generation quality is limited by the model’s denoising
quality; our work focuses on mitigating the performance loss due to semi-AR decoding.

5.3 ABLATION STUDIES

Performance Across Different Generation Budgets. We evaluate AdaBlock-dLLM under three
generation budgets: L ∈ {256, 512, 1024}, as shown in Table 4. Across all generation budgets
L and decoding settings, AdaBlock-dLLM improves generation quality. These results motivate a
semantics-aware block-size scheduling design for dLLMs.

Effect on Delimiter Threshold τD. We evaluate three delimiter thresholds for each model family,
as shown in Table 5. We observe that τD = 0.3 yields the best performance in most cases for
LLaDA, whereas a higher τD = 0.5 is optimal for Dream. We attribute this difference to the distinct
confidence distributions of the two models. LLaDA is trained purely from scratch and exhibits lower
variance within the volatility band, whereas Dream is adapted from autoregressive models and shows
substantially higher variance (Figure 8). Consequently, different thresholds are required to track the
boundary of a semantic step. Additionally, overly high thresholds (e.g., τD = 0.9) often cause the
scheduler to revert to its default behavior, reducing its effectiveness.

Selection of Delimiter Set D. We apply more delimiter sets D to include additional tokens
(comma and period), which often mark the termination of local semantic context. Table 7 shows
that although accuracy improvements vary, the inclusion of the comma and period achieves higher
accuracy than the dynamic sampling baseline. These results highlight the importance of aligning
block size with semantic steps in semi-AR decoding. We provide further analysis in A.4.

Performance on Non-Reasoning Benchmarks. We further evaluate the performance of
AdaBlock-dLLM on IFEval (Zhou et al., 2023), a benchmark that examines the instruction-following
capability of LLMs. As shown in Table 6, with the delimiter set D = {[ \n],[,],[.]},
AdaBlock-dLLM yields accuracy improvements, especially when integrated with block-level KV
caching. These results suggest that aligning block sizes with semantic steps effectively enhances
sampling quality, leading to improved performance on tasks other than math reasoning or coding.

Limitations. AdaBlock-dLLM effectively enhances the existing semi-AR decoding paradigm by
aligning block sizes with semantic steps. However, the proposed block scheduler may be less effec-
tive when the generation budget is small (e.g., multiple-choice questions), where semi-AR decoding
is not particularly beneficial. Additionally, the decoding process of dLLMs includes both denoising
and sampling. AdaBlock-dLLM primarily improves sampling quality; when the denoising outputs
are poor, the benefit of AdaBlock-dLLM diminishes.

6 CONCLUSION

This work proposes AdaBlock-dLLM, a training-free, plug-and-play scheduler that enhances the
existing semi-autoregressive decoding paradigm. We identify two fundamental limitations of con-
ventional semi-AR decoding (late decoding overhead and premature decoding errors) that motivate
adaptive block-size scheduling. Building on an analysis of confidence dynamics, AdaBlock-dLLM
adaptively adjusts the block size at runtime, aligning block sizes with semantic steps. Extensive ex-
periments across benchmarks demonstrate improvements in generation quality of up to 5.3% under
a comparable speed budget. We hope that our semantics-aware adaptive approach and statistical
analysis will inspire future training and inference strategies for dLLMs.
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A APPENDIX

A.1 CASE STUDY FOR THE TWO FUNDAMENTAL ISSUES IN SEMI-AUTOREGRESSIVE
DECODING

Prompt: 

Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40% of the way through the download, Windows forces a restart to install
updates, which takes 20 minutes. Then Carla has to restart the download from the beginning. How load does it take to download the file?

First, let's determine how long it would take Carla to download the entire
200 GB file without any interruptions.

Carla's download speed is 2 GB per minute. To download 200 GB, she would
need:
\[ \frac{
(56 tokens decoded)

Decoded Tokens

Block Start
2(1.000) 0(1.000) 0(1.000)  \(0.988) text(0.980) {(0.973)  GB(0.977) 
}}{(0.984)
Block End (8 tokens)
More tokens can be decoded without an additional denoising step

2(0.988)  \(0.980) text(0.949) {(0.949)  GB(0.965) /min(0.848) ute(0.703) 
}}(0.969)  =(0.957) <space>(0.949) 1(0.938) 0(0.941) 0(0.945)  \(0.949)
text(0.934) {(0.945)  minutes(0.930) }(0.871)  \(0.816) ](0.840) \n(0.770)
\n(0.922) 
Optimal Block End (30 tokens)

\n(0.240) ,(0.492)  we(0.235)  need(0.152)  to(0.185)  the(0.140)  
the( 0.209)  the(0.169)  download(0.104)  the(0.087)  download(0.104) 
.(0.102)  download(0.089) <space>(0.085) <space>(0.093) 0(0.097) 0(0.104)
0(0.116) 0(0.112) 0(0.111) 0(0.108) 0(0.105) 0(0.111) 0(0.096) 0(0.104)
0(0.103) 0(0.111) 0(0.108) 0(0.112) 0(0.123) 0(0.114) 0(0.109) 0(0.108) 
...

Current Block (Block No. 8)
Denoised Sequence

Late Decoding Overhead

First, let's determine how long it would take Carla to download the entire
200 GB file without any interruptions.

Carla's download speed is 2 GB per minute. To download 200 GB, she would
need:
\[ \frac{200 \text{ GB}}{2 \text{ GB/minute}} = 100 \text{ minutes} \]

However, Windows forces a restart 40% of the way through the download.
This means she has to restart the download from the beginning after the
restart. (120 tokens decoded)

Block Start
The(1.000)  download(0.887)  time(0.992)  for(0.992)  the(1.000) 
first(0.977) <space>(0.973) 4(0.559)
Block End (8 tokens)
Token "4" with low confidence is decoded, sub-optimal sampling

0(0.934) %(0.648)  of(0.555)  the(0.531)  file(0.203)  is(0.277) 
:(0.359) \n(0.342) 
Optimal Block End (15 tokens)

\[(0.277)  \(0.184) {(0.158) {(0.146) 0(0.124) 0(0.177)  GB(0.162)  GB(0.156) 
GB(0.205)  GB(0.248)  GB(0.266)  GB(0 .250)  GB(0.217)  GB(0.240) 
GB(0.299)  GB(0.355)  GB(0.250)  GB(0.165)  GB(0.136)  GB(0.142)  
GB(0. 126)  GB(0.185)  GB(0.157)  \(0.180)  \(0.131) {(0.143)  minutes(0.139)  
\(0.162)  \(0.214) ](0.150) \n(0.198) \n(0.198) \n(0.143) \n(0.091) \n(0.075)
\n(0.066) \n(0.062) <space>(0.075)  minutes(0.079) minutes(0.087)   
...

Premature Decoding Error

Decoded Tokens

Current Block (Block No. 16)
Denoised Sequence

"GB" tokens are in the Volatility Band, but
have weak significance to current context

Figure 7: A case study of the two fundamental issues (Late Decoding Overhead and Premature
Decoding Error). The configuration uses dynamic sampling with a generation budget of L = 512
and a block size of B = 8.

A.2 SEMI-AR DECODING ALGORITHM WITH ADAPTIVE BLOCK SIZE

Algorithm 2 Auxiliary: Denoiser

Inputs: mask predictor pθ; vocabulary V; index set J ; current sequence y.
Outputs: predicted sequence ŷ; confidences c

1: function DENOISER(pθ, V, J , y)
2: for i ∈ J do
3: ŷi ← argmaxv∈V pθ(v | y, i)
4: ci ← maxv∈V pθ(v | y, i)
5: end for
6: return ŷ, c
7: end function
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Algorithm 3 Auxiliary: Threshold-Based Dynamic Sampling

Inputs: current sequence y; predicted sequence ŷ; confidences c; unmasking threshold τ ;
index set J .
Output: sampled index set S

1: function THRESHOLD-SAMPLE(y, ŷ, c, τ, J )
2: S ← ∅
3: Jmask ← { i ∈ J | yi = [MASK] } ▷ Select all masked positions in the block
4: Select index itop with highest confidence ci
5: S ∪ itop
6: for i ∈ J do
7: if i ∈ Jmask ∧ ci ≥ τ then
8: S ← S ∪ {i}
9: end if

10: end for
11: return S
12: end function

Algorithm 4 Adaptive Semi-AR Decoding with Semantic-Aware Block Size

Inputs: mask predictor pθ; vocabulary V; initial sequence y (T ) with index set J ; generation
budget L; default block size B0; delimiter set D; delimiter threshold τD; unmasking threshold
τ .
Output: decoded sequence y.

1: generated length g ← 0, timestep t← T
2: while g < L ∧ t ≥ 1 do
3:
4: ▷ First denoising to obtain predicted sequence and confidence at step t
5: (ŷ(t), c(t))← DENOISER(pθ, V, J , y (t))
6:
7: ▷ Compute block size
8: B ← COMPUTEBLOCKLENGTH(ŷ(t), c(t), L, B0, D, τD, g)
9: Jblk ← { g, g+1, . . . , g+B−1 }

10:
11: ▷ First sample
12: S ← THRESHOLD-SAMPLE(y (t), ŷ(t), c(t), τ, Jblk)
13: for i ∈ S do
14: y t−1

i ← ŷ t
i ▷ sample tokens with high confidence

15: end for
16:
17: y

(t−1)
j ← y

(t)
j ∀j /∈ S, t← t− 1 ▷ Copy other tokens

18: Jmask ← { i ∈ Jblk | y (t)
i = [MASK] }

19:
20: ▷ In-block denoise–sample cycles
21: while Jmask ̸= ∅ ∧ t ≥ 1 do
22: (ŷ(t), c(t))← DENOISER(pθ, V, Jmask, y

t)
23: S ← THRESHOLD-SAMPLE(y t, ŷ(t), c(t), τ, Jmask)
24: for i ∈ S do
25: y

(t−1)
i ← ŷ

(t)
i

26: end for
27: y

(t−1)
j ← y

(t)
j ∀j /∈ S, t← t− 1

28: Jmask ← { i ∈ Jblk | y (t)
i = [MASK] }

29: end while
30:
31: g ← g +B
32: end while
33:
34: return y t

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 CONFIDENCE DYNAMICS FOR DREAM-BASE
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Figure 8: Confidence scores across sequence positions for Dream-v0-Base-7B, evaluated on 100
samples from the GSM8K benchmark. Adapted models such as Dream exhibit a similar degree of
global autoregressiveness to LLaDA, but with higher variance in the volatility band. This increased
variance motivates the use of a higher delimiter threshold τD to provide stronger semantic guidance.

A.4 FURTHER ANALYSIS OF THE DELIMITER SET

The choice of \n as a delimiter token is also supported by the statistics of confidence drops between
consecutive tokens. Large confidence drops indicate sharp semantic boundaries within the volatility
band and can thus be used to segment semantic steps. Evaluating 100 samples from the GSM8K
dataset, we find that \n frequently leads to large confidence drops, indicating semantic boundaries.
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Figure 9: The frequency of confidence drops between consecutive tokens.

A.5 THE USE OF LARGE LANGUAGE MODELS

LLMs were used for polishing the manuscript. Specifically, we used an LLM to assist in correcting
grammar errors to improve readability. It is important to note that the LLM was not involved in the
ideation, research methodology, or experimental design. All intellectual contributions and scientific
ideas developed in this work originated from the authors. The contributions of the LLM were solely
focused on improving the linguistic quality of the paper, with no involvement in the scientific content
or data analysis. The authors take full responsibility for the content of the manuscript, including any
text polished by the LLM. We have ensured that the LLM-polished text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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