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ABSTRACT

Deep learning has significantly advanced time series analysis (TSA), enabling the
extraction of complex patterns for tasks like classification, forecasting, and regres-
sion. While dimensionality reduction has traditionally focused on the variable
space—achieving notable success in minimizing data redundancy and computa-
tional complexity—less attention has been paid to reducing the temporal dimension.
In this study, we revisit Principal Component Analysis (PCA), a classical dimen-
sionality reduction technique, to explore its utility in temporal dimension reduction
for time series data. It is generally thought that applying PCA to the temporal
dimension would disrupt temporal dependencies, leading to limited exploration in
this area. However, our theoretical analysis and extensive experiments demonstrate
that applying PCA to sliding series windows not only maintains model performance
but also enhances computational efficiency. In auto-regressive forecasting, the
temporal structure is partially preserved through windowing, and PCA is applied
within these windows to denoise the time series while retaining their statistical
information. By preprocessing time series data with PCA, we reduce the temporal
dimensionality before feeding it into TSA models such as Linear, Transformer,
CNN, and RNN architectures. This approach accelerates training and inference
and reduces resource consumption. Notably, PCA improves Informer training and
inference speed by up to 40% and decreases GPU memory usage of TimesNet
by 30%, without sacrificing model accuracy. Comparative analysis against other
reduction methods further highlights the effectiveness of PCA in enhancing the
efficiency of TSA models. Code is provided in the supplementary materials.

1 INTRODUCTION

Time series analysis (TSA) plays a pivotal role across various fields (Van Zyl et al., 2024; Hittawe et al.,
2024), owing to its ability to extract valuable information from sequential data, facilitating accurate
predictions and classifications. Recent advancements in the field have witnessed the emergence of
sophisticated deep-learning models (Eldele et al., 2024; Wu et al., 2023; Zhou et al., 2021) designed
to effectively analyze time series data.

Dimensionality reduction techniques have been successfully applied to reduce complexity in time
series data, but their focus has primarily been on the variable dimension (Xu et al., 2023; Hyndman
et al., 2015). These methods, which aim to minimize redundancy in variable space, have been
effective in reducing computational complexity and improving model performance. However, far
less attention has been given to reducing the temporal dimension, despite the potential benefits of
alleviating the burdens associated with processing long time series.

The time series lengths are generally larger than the number of the variable sizes, suggesting that
temporal dimensionality reduction should provide better compression. The long time series is
segmented to time series windows in the auto-regressive forecasting task, and recent studies show that
larger window length includes more temporal information and hence brings better forecasting results
(Zeng et al., 2023; Nie et al., 2022). Therefore, a fundamental paradox arises: the contradiction
between the length of the series windows and the ease of TSA model learning. While longer
windows provide more information, they also increase the difficulty of model learning: raw series
data inherently contains redundancy (Li et al., 2023; Prichard & Theiler, 1995), and inputting such
data can significantly increase both the computational and spatial burdens associated with model
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Figure 1: When PCA is applied to normal data, the order of data features is irrelevant, and there is
no temporal correlation between features, as shown in (a); Our research demonstrates that PCA can
also be applied to time series data, where the order of features (time steps) is significant and there is
temporal correlation, as illustrated in (b).

training and inference. This challenge persists across TSA models, from RNNs (Hewamalage et al.,
2021) and CNNs (Wu et al., 2023) to Transformers (Wen et al., 2022).

To the best of our knowledge, there has been no systematic method for compressing time series data
in temporal dimension while preserving critical information before feeding it into deep-learning
models. Simple downsampling the series inevitably results in information loss within time series
data, while merely shortening the input window leads to degraded prediction performance (Nie et al.,
2022; Gao et al., 2023). Existing time series feature extraction methods (Ye & Keogh, 2009; Schäfer
& Leser, 2017) are typically tailored to specific tasks like classification and are computationally
expensive, prioritizing performance over efficiency.

To address these challenges, we explore the use of Principal Component Analysis (PCA) (Pearson,
1901) for feature extraction and temporal dimensionality reduction of time series data before inputting
it into deep-learning models. PCA is effective at capturing essential information while reducing
data dimensionality across various domains (Gewers et al., 2021). The PCA algorithm identifies
principal components that represent directions of maximal variance, and projecting the data onto these
components extracts fundamental features and uncovers latent patterns. However, PCA’s application
to time series preprocessing has been underutilized due to the unique characteristics of time series
data. In normal data, the order of features is irrelevant, and there is no temporal correlation between
features, as shown in Fig. 1 (a). In contrast, in time series data, each time step can be considered
a “feature”, and the sequential order of these features (time steps) is crucial, introducing temporal
correlations, as illustrated in Fig. 1 (b). Although PCA might disrupt the temporal structure, it
also refines the information by retaining key statistical characteristics and reducing overfitting and
redundancy, which enhances training efficiency without compromising model performance.

We propose that PCA is well-suited for compressing redundant time series in temporal dimension
and extracting salient features. Specifically, PCA mitigates noise and redundancy by isolating key
features and reducing correlations among different time steps, thereby lowering the risk of overfitting
in deep-learning models. Additionally, by analyzing the entire training dataset, PCA captures shared
patterns and maps time series onto principal components that represent common features. This process
preserves key statistical information while shortening the original series. Therefore, preprocessing
time series with PCA before inputting it into deep-learning models can alleviate computational
burdens, reduce learning difficulty, while retaining performance in TSA tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To substantiate our hypothesis, experiments are conducted on three typical TSA tasks: time series
classification (TSC) (Middlehurst et al., 2024), time series forecasting (TSF) (Chen et al., 2023),
and time series extrinsic regression (TSER) (Mohammadi Foumani et al., 2024). Four types of
advanced deep-learning based TSA models are evaluated: MLP(linear)-based model (Zeng et al.,
2023), Transformer-based models (Zhou et al., 2021; 2022; Nie et al., 2022), CNN-based model (Wu
et al., 2023), and RNN-based models (Chung et al., 2014; Hochreiter, 1997). The findings show that
PCA preprocessing maintains model performance while reducing training/inference burdens across
all assessed TSA models and tasks. Additionally, PCA outperforms other dimensionality reduction
methods, such as shortening/downsampling the historical input series and adding a linear/1D-CNN
dimensionality reduction layer before the original TSA model.

In summary, the contribution of this study is threefold:

• This study initially establishes the utility of PCA as an efficient tool for time series reduction
in temporal dimension in the domain of TSA. We conduct theoretical discussions on PCA’s
effectiveness in denoising time series and preserving their statistical information, providing
a theoretical foundation for its efficacy.

• This study integrates PCA with advanced deep-learning models for TSA, including Linear,
Transformer, CNN, and RNN models, demonstrating its ability to reduce computational
costs and memory requirements. Notably, PCA accelerates Informer’s training and inference
by up to 40% and decreases TimesNet’s GPU memory usage by 30%. These results highlight
the generalization of PCA’s application across various TSA models.

• We apply PCA across diverse TSA tasks: classification, forecasting, and extrinsic regression,
proving its versatility in different applications.

2 RELATED WORK

Time Series Analysis Models. Traditional TSA models like ARMA and ARIMA (Box et al., 2015)
rely on statistical foundations, assuming linear relationships between past and present observations
to discern patterns in the time series data. However, the rise of deep-learning models has gained
significant attention in TSA due to their enhanced expressive capability and ability to effectively
utilize available data, leading to improved performance over traditional statistical models. RNN-
based models (Chung et al., 2014; Hochreiter, 1997) are initially employed in TSA tasks due to their
capability to process sequences and capture temporal dependencies. However, due to their inherent
difficulties in propagating gradients through many time steps, RNN-based models often encounter
issues of gradient vanishing or gradient explosion (Hanin, 2018). CNN-based models (Liu et al.,
2022; Luo & Wang, 2024) constitute a major branch within deep-learning, aiming to capture temporal
dependencies through convolutional layers. Notably, TimesNet (Wu et al., 2023) transforms 1D time
series into a set of 2D tensors based on multiple periods and employs a CNN structure to extract
features from these tensors. Transformer-based models have also found widespread application
in TSA, leveraging self-attention (Vaswani et al., 2017) to capture long-term dependencies across
different time steps. Informer (Zhou et al., 2021) achieves a complexity reduction to O(L logL) by
replacing the conventional self-attention mechanism with KL-divergence-based ProbSparse attention.
FEDformer (Zhou et al., 2022) achieves a complexity reduction to O(L) by employing frequency-
domain self-attention through the use of Fourier or wavelet transforms and the random selection
of frequency bases. Fredformer (Piao et al., 2024) is designed to address frequency bias in TSF by
ensuring equal learning across various frequency bands. PatchTST (Nie et al., 2022) partitions the
time series into multiple segments, treating each as a token, and employs an attention module to
learn the relationships between these tokens. Additionally, DLinear (Zeng et al., 2023) leverages a
linear model to attain noteworthy results in TSF tasks, demonstrating the efficacy of linear models
in the domain of TSA. SparseTSF (Lin et al., 2024b) is a lightweight Linear-based model that uses
Cross-Period Sparse Forecasting to decouple periodicity and trend, achieving superior performance
with fewer parameters.

PCA applications in various domains. PCA (Pearson, 1901) has diverse applications in various
domains (Marukatat, 2023). In computer vision, (Zhang et al., 2023) proposes a texture-defect
detection method using PCA, requiring only a few unlabelled samples and outperforming traditional
and deep-learning methods for small and low-contrast defects. (Lin et al., 2024a) introduces a tensor
robust kernel PCA model to effectively capture the intrinsic low-rank structure of image data. For
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natural language processing, Rémi and Ronan simplify word embeddings via PCA, outperforming
existing methods on named entity recognition and movie review tasks (Lebret & Collobert, 2013).
In bioinformatics, (Elhaik, 2022) examines the application of PCA in population genetic studies.
Moreover, in the domain of engineering, (Hasnen et al., 2023) proposes a PCA-based drift correction
method for Nitric Oxides emissions prediction in industrial water-tube boilers.

While PCA has seen extensive use across domains, its application specifically to TSA in temporal
dimension has been underexplored until recently. A recent study (Xu et al., 2023) incorporates PCA
preprocessing into a Transformer-based forecasting framework to reduce redundant information.
However, their approach has several limitations. Firstly, it applies PCA to reduce the variable
dimension rather than the temporal dimension, making it similar to conventional PCA applications
and not an actual series reduction. Secondly, it is designed for scenarios where a multivariate series
forecasts a univariate series, focusing on reducing the variable dimension of covariate series without
preprocessing the target variable series, even if the covariate series may have minimal association
with the target series. Lastly, its exclusive use of the Transformer model and its focus on forecasting
tasks limit the method’s applicability to other types of time series models or tasks, thereby restricting
its utility for time series data. Other related works involving PCA in TSA (Hyndman et al., 2015;
Rea & Rea, 2016) either focus on reducing the variable dimension or on reducing the dimensions of
manually extracted features from the original time series, neither of which constitutes actual temporal
dimension reduction.

3 METHODOLOGY

Given a historical series window H = {X1, ..., XL}, where L represents the length of the series
window, we consider three TSA core tasks. 1) Time Series Classification (TSC): The objective is to
predict a discrete class label C for the series H; 2) Time Series Forecasting (TSF): The goal is to
forecast future values of the same series, denoted as F = {XL+1, ..., XL+T }, where T is the number
of future time steps to predict; 3) Time Series Extrinsic Regression (TSER): In some applications like
predicting heart rate from photoplethysmogram and accelerometer data (Tan et al., 2021), neither
forecasting nor classification is applicable. TSER involves predicting a single continuous target value
V external to the series based on the input historical series H.

By encapsulating all inputs (historical series window H) and outputs (class label C, future series F
or external target value V), a complete series dataset D can be formed, where D = [X;Y]. Here,
X is composed of all the historical series, X = [H1; . . . ;Hm], with m representing the number
of samples, and Y consists of the corresponding targets to be predicted (C, F, or V). The entire
dataset D can be split into the training set Dtrain, validation set Dval, and test set Dtest. PCA-related
parameters (covariance matrix, eigenvalues, and eigenvectors) are obtained from the training set Dtrain
and subsequently applied to both the validation set Dval and the test set Dtest without re-estimation.

3.1 ENHANCING TIME SERIES ANALYSIS WITH PCA

Principal Component Analysis (PCA) (Pearson, 1901) is a classical technique for dimensionality
reduction and feature extraction. For the training set of the series dataset Dtrain, which consists of n
training samples, each with L features (where L is also the length of the series window, and each
time step corresponding to a feature), PCA aims to transform the series data into a new coordinate
system where the data variance is maximized along the principal components. The process can be
summarized as follows:

1. Mean-Centering: Before applying PCA, the mean of each feature (time step) is subtracted from
the corresponding column to center the data. The mean-centered matrix is denoted as Dcentered, with
each element given by:

Dcentered(i, j) = Dtrain(i, j)− D̄train(j), (1)

where D̄train(j) is the mean of the j-th column.

2. Covariance Matrix: The covariance matrix C is computed based on the mean-centered data:

C =
1

n− 1
DT

centered ·Dcentered. (2)
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Figure 2: PCA is utilized for time series reduction in temporal dimension to enhance the efficiency of
model training and inference in TSA.

3. Eigenvalue Decomposition: PCA involves finding the eigenvalues λ1, λ2, ..., λm and correspond-
ing eigenvectors v1, v2, ..., vm of the covariance matrix C. The eigenvalues represent the variance
along each principal component.

4. Selecting Principal Components: The principal components are selected based on the proportion
of variance they explain. The k-th principal component is given by PCk = Dcentered · vk, where vk is
the k-th eigenvector.

5. Reducing Dimensionality: To reduce the dimensionality of the time series data, the original data
matrix is projected onto the first k principal components, forming a new matrix Dpca ∈ Rn×k:

Dpca = Dcentered · Vk, (3)

where Vk is a matrix containing the first k eigenvectors as columns. k s typically much smaller than
m, thereby achieving series dimensionality reduction.

When dealing with high-dimensional and large datasets, the original PCA technique might pose
computational challenges. However, optimization algorithms such as Randomized PCA (Rokhlin
et al., 2010), Sparse PCA (Zou et al., 2006), and parallel computation (Andrecut, 2009) can signifi-
cantly expedite the PCA computation process, making PCA preprocessing computationally efficient
compared to the subsequent deep-learning model training/inference stage.

In our study, PCA is utilized in the preprocessing stage for time series dimensionality reduction
before feeding the data into various deep-learning based TSA models. The original time series is
transformed into a PCA series containing the top k principal components. The essence of PCA
guarantees that the transformed PCA series preserves the fundamental features of the original series.
Prior to training the TSA model, PCA is fitted on the training set to obtain PCA-related parameters
(covariance matrix, eigenvalues, and eigenvectors). During inference, each time series sample is
preprocessed with the fitted PCA before being input into the TSA model. For typical time series
models (Zeng et al., 2023; Zhou et al., 2021), the original historical series can be directly transformed
using PCA. In contrast, for patch-based models (Nie et al., 2022) that split the series into patches, all
patches from the original series are transformed separately using PCA and then concatenated. The
reduced-dimensional PCA series serves as the input for the subsequent TSA model and is applied to
the various downstream TSA task, as illustrated in Fig. 2. This method enables more efficient training
and inference while retaining the essential information captured by the principal components. While
this PCA-based preprocessing method is originally designed for univariate TSA, it can readily be
extended to multivariate TSA if subsequent TSA models are channel-independent (Nie et al., 2022).

3.2 INTUITIONAL JUSTIFICATIONS ON PCA’S EFFECTIVENESS IN TIME SERIES REDUCTION

PCA is effective in time series data reduction due to several key advantages. It serves as an effi-
cient noise reduction tool by filtering out low-variance noise and retaining high-variance features.
Additionally, PCA preserves the critical statistical characteristics of the original series.

PCA acts as an efficient tool for noise reduction within historical series. By projecting the
original historical series onto a new set of orthogonal components, PCA effectively filters out
the noise contained in the lower variance components, thus retaining the core information of the
historical series. This noise reduction can be visualized through PCA-inverse transformations, which
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Figure 3: (a) PCA-inversed series. The PCA-inversed series is significantly smoother than the original
series, indicating that PCA effectively filters out noise while preserving essential features. (b) Mean
value distribution. The distributions of mean values for the original series and the PCA-reduced series
show a high degree of overlap, demonstrating that PCA retains the key statistical characteristics.

reconstruct the original time series from the principal components. Fig. 3 (a) demonstrates that the
inverse-transformed series is significantly smoother than the original series, indicating that PCA
effectively filters out noise while preserving essential features. Consequently, the PCA process helps
to mitigate overfitting in subsequent TSA models.

PCA retains the critical statistical characteristics of the original time series data. The key
statistical characteristics preserved by PCA include the mean, sum, peak values, and higher-order
moments. Specifically, for the mean/sum values of historical series, PCA simply maps the original
time points into a different coordinate system, preserving the relative mean/sum values of different
historical series. Fig. 3 (b) illustrates the mean values distributions of 30 original series and their
corresponding PCA series, demonstrating a high degree of overlap between the two distributions. For
the peak values, the distribution of peaks in the PCA series also shows a high degree of similarity to
that of the original series. Furthermore, PCA preserves higher-order moments, including skewness
and kurtosis (Bai & Ng, 2005), because its linear transformation ensures that these higher-order
statistical characteristics remain intact. The preservation of these distinctive statistical characteristics
in the PCA-reduced series enables effective learning by subsequent TSA models.

Specific trends and periodic patterns in historical series may not be crucial for the learning of
TSA models. While some time series research focuses on extracting trends or periodicity (Zhou et al.,
2022; Wu et al., 2023), we argue that these specific trends and periodic patterns are not necessarily
essential for effective TSA model learning. For example, if all positive trends in the historical series
are reversed, the relative distribution of the data remains unchanged, and the TSA model’s ability to
learn and predict is not impaired. Similarly, if the periodic components in all historical series are
minified or magnified, the model’s predictive capabilities should not be affected. These observations
suggest that the presence of specific trend or periodicity in historical series is not necessarily essential
for the learning process of TSA models. Instead, the presence of consistent and coherent patterns is
sufficient for models to provide accurate predictions. Therefore, although PCA may alter the trend or
periodicity, it introduces new coherent patterns—such as the main directions of variation, denoised
low-dimensional representations, and latent features—that effectively benefit TSA model learning.

4 EXPERIMENTS

To validate the effectiveness of PCA in time series compression and temporal dimensionality reduction,
experiments are conducted on three mainstream TSA tasks: time series classification (TSC), time
series forecasting (TSF), and time series extrinsic regression (TSER). Table 1 summarizes the
benchmarks across 13 datasets, with detailed descriptions in Appendix A. Four types of advanced
time series models are evaluated for TSA. 1) MLP(linear)-based model: Linear (Zeng et al., 2023);
2) Transformer-based models: Informer (Zhou et al., 2021), FEDformer (Zhou et al., 2022), and
PatchTST (Nie et al., 2022); 3) CNN-based model: TimesNet (Wu et al., 2023); 4) RNN-based
models: Gated Recurrent Unit (GRU) (Chung et al., 2014) and Long Short-Term Memory (LSTM)
(Hochreiter, 1997). A detailed description of these models can be found in Appendix B. Sections
4.1-4.3 compare the performance of TSA models in TSC, TSF, and TSER tasks, both with and
without PCA preprocessing. The results show that PCA maintains model performance by retaining
the principal information of the original time series. Section 4.4 highlights PCA’s optimization
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of training/inference in TSA models, notably accelerating Informer by up to 40% and reducing
TimesNet’s GPU memory usage by 30%.

Table 1: Overview of experiment benchmarks.
Task Datasets Metrics Series Length

Classification
EthanolConcentration, Handwriting,

SelfRegulationSCP1, SelfRegulationSCP2,
UWaveGestureLibrary

Accuracy 152-1751

Forecasting ETTh1, ETTh2, ETTm1, ETTm2 MSE, MAE 336

Regression FloodModeling1, FloodModeling2,
FloodModeling3, Covid3Month RMSE, MAE 84-266

4.1 TIME SERIES CLASSIFICATION

We perform sequence-level TSC experiments using five datasets from the UEA archive (Bagnall
et al., 2018). Our experiments adhere to the settings outlined in the “Time Series Library” (Wu et al.,
2023) 1, with the exception that we focus solely on the last dimension of each dataset, resulting in a
univariate TSC problem. Model performance is assessed using the accuracy metric. Historical series
lengths vary across datasets, with principal components set to 16, 48, and 96.

Table 2: TSC experiments. The accuracy metric is adopted, where higher accuracy indicates
better performance. The * symbols after models indicate the application of PCA before inputting
the series into the models. Bold font is the superior result. PCA preprocessing retains series
principal information, matching TSC performance with original series, and enabling training/inference
acceleration.

Linear Linear* Informer Informer* FEDformer FEDformer* TimesNet TimesNet*
EthanolConcentration 0.297 0.300 0.278 0.285 0.312 0.297 0.281 0.331

Handwriting 0.118 0.127 0.160 0.118 0.133 0.129 0.185 0.121
SelfRegulationSCP1 0.884 0.805 0.846 0.703 0.556 0.806 0.918 0.686
SelfRegulationSCP2 0.528 0.539 0.533 0.628 0.533 0.600 0.583 0.592

UWaveGestureLibrary 0.575 0.409 0.550 0.522 0.309 0.538 0.603 0.491

Better Count 2 3 3 2 2 3 3 2

Table 2 displays the TSC results of the Linear, Informer, FEDformer, and TimesNet models, both with
and without PCA preprocessing. From the evaluation of four models across five datasets, resulting
in a total of 20 metrics, PCA shows better performance in 10 metrics. These results reveal PCA’s
efficacy in extracting series information for TSC tasks without performance loss, enabling faster
training/inference. Details on the specific acceleration effects during training/inference for various
models can be found in Section 4.4.

4.2 TIME SERIES FORECASTING

For TSF, we follow the evaluation procedure from the study (Zhou et al., 2021), using MSE and
MAE on z-score normalized data. We assess the models on four ETT datasets (Zhou et al., 2021),
utilizing the “oil temperature” variable for both training and testing. To comprehensively evaluate the
models, we adopt four distinct prediction lengths, specifically 96, 192, 336, and 720. The historical
input series has a length of 336, and the number of principal components is set to 48.

Table 3 presents the forecasting results for different time series models. The results of Linear are
adapted from the study (Zeng et al., 2023). The remaining experiments are followed the experimental
setup of Time Series Library. The table illustrates that Informer performs better with PCA prepro-
cessing, whereas FEDformer exhibits a performance decline with PCA preprocessing. For Linear
and TimesNet, the performance remains largely unchanged, regardless of PCA preprocessing. These
findings affirm that PCA can efficiently extract features from historical series in TSF tasks with-
out compromising the TSA models’ performance, thereby achieving accelerated training/inference.
Model-specific acceleration details are in Section 4.4.

1https://github.com/thuml/Time-Series-Library

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: TSF experiments. Lower MSE/MAE indicates better performance. The * symbols after
models indicate the application of PCA before inputting the series into the models. Bold font
represents the superior result. PCA preprocessing retains series principal information, matching TSF
performance with original series, and enabling training/inference acceleration.

Models Linear Linear* Informer Informer* FEDformer FEDformer* TimesNet TimesNet*

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.189 0.359 0.063 0.087 0.177 0.352 0.188 0.365 0.074 0.217 0.088 0.231 0.336 0.490 0.244 0.424
192 0.078 0.212 0.086 0.221 0.191 0.368 0.096 0.243 0.080 0.229 0.097 0.240 0.139 0.292 0.137 0.299
336 0.091 0.237 0.091 0.237 0.148 0.311 0.103 0.251 0.074 0.218 0.081 0.227 0.220 0.398 0.252 0.432
720 0.172 0.340 0.190 0.361 0.268 0.444 0.143 0.304 0.079 0.226 0.224 0.399 0.328 0.504 0.268 0.449

E
T

T
h2

96 0.133 0.283 0.134 0.283 0.286 0.426 0.220 0.367 0.148 0.309 0.164 0.319 0.162 0.313 0.161 0.320
192 0.176 0.330 0.180 0.335 0.209 0.373 0.234 0.387 0.175 0.341 0.192 0.348 0.215 0.368 0.151 0.309
336 0.213 0.371 0.201 0.362 0.317 0.466 0.258 0.409 0.194 0.358 0.198 0.356 0.233 0.394 0.333 0.470
720 0.292 0.440 0.366 0.497 0.405 0.520 0.429 0.535 0.253 0.412 0.324 0.464 0.352 0.476 0.329 0.467

E
T

T
m

1 96 0.028 0.125 0.029 0.126 0.176 0.368 0.052 0.172 0.071 0.212 0.038 0.148 0.074 0.216 0.144 0.320
192 0.043 0.154 0.042 0.151 0.129 0.289 0.106 0.256 0.059 0.185 0.063 0.194 0.191 0.367 0.172 0.349
336 0.059 0.180 0.056 0.176 0.156 0.323 0.150 0.310 0.063 0.197 0.113 0.259 0.200 0.368 0.183 0.356
720 0.080 0.211 0.081 0.212 0.232 0.403 0.157 0.320 0.079 0.221 0.122 0.271 0.223 0.400 0.224 0.403

E
T

T
m

2 96 0.066 0.189 0.065 0.188 0.075 0.209 0.090 0.229 0.141 0.299 0.077 0.212 0.083 0.218 0.105 0.250
192 0.094 0.230 0.092 0.228 0.126 0.280 0.117 0.265 0.126 0.275 0.106 0.249 0.126 0.273 0.154 0.312
336 0.120 0.263 0.123 0.267 0.163 0.322 0.160 0.317 0.164 0.316 0.138 0.286 0.168 0.326 0.173 0.335
720 0.175 0.320 0.174 0.320 0.231 0.383 0.248 0.398 0.176 0.324 0.168 0.317 0.170 0.332 0.170 0.331

Better Count 19 17 10 22 21 11 17 16

For the patch-based model PatchTST (Nie et al., 2022), PCA preprocessing is performed separately on
each patch series, where each patch has a length of 16 and is reduced to 2 through PCA. Subsequently,
all PCA subseries are concatenated together and fed into the backbone of PatchTST. PCA can also
accelerate the training/inference of PatchTST, and its detailed TSF results are shown in Appendix
C. Furthermore, although RNN-based models are less prevalent in TSA, to more comprehensively
evaluate the impact of PCA preprocessing, two RNN-based models are assessed: GRU and LSTM.
The results show that PCA preprocessing maintains the predictive performance of these models while
providing greater acceleration during training and inference. The detailed TSF results for RNN-based
models are shown in Appendix D.

4.3 TIME SERIES EXTRINSIC REGRESSION

We conduct TSER experiments using four univariate datasets from the study (Tan et al., 2021). These
datasets are from the domains of environmental monitoring and disease diagnosis. The metrics RMSE
and MAE are used to evaluate the performance of the models. The length of historical series varies
across datasets, with a length of 266 for FloodModeling datasets and 84 for the Covid3Month dataset.
The number of principal components is set to 48 for FloodModeling and 16 for Covid3Month.

Table 4: TSER experiments. Lower RMSE/MAE indicates better performance. The * symbols
after models indicate the application of PCA before inputting the series into the models. Bold font
represents the superior result. PCA preprocessing retains series principal information, matching
TSER performance with original series, and enabling training/inference acceleration.

Models Linear Linear* Informer Informer* FEDformer FEDformer* TimesNet TimesNet*

Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
FloodModeling1 0.132 0.032 0.019 0.015 0.019 0.015 0.019 0.015 0.024 0.019 0.020 0.015 0.019 0.015 0.019 0.015
FloodModeling2 0.030 0.016 0.021 0.009 0.019 0.006 0.019 0.007 0.021 0.008 0.020 0.009 0.018 0.006 0.019 0.006
FloodModeling3 0.047 0.020 0.023 0.017 0.024 0.020 0.023 0.018 0.033 0.026 0.031 0.023 0.023 0.017 0.023 0.017

Covid3Month 0.116 0.069 0.045 0.034 0.043 0.034 0.045 0.033 0.063 0.041 0.045 0.034 0.045 0.035 0.045 0.035
Better Count 0 8 5 6 1 7 8 7

Table 4 indicates that Linear and FEDformer exhibit improved performance with PCA preprocessing
in TSER, as evidenced by lower RMSE and MAE scores. In contrast, the performance of the Informer
and TimesNet models is almost unaffected by the use of PCA preprocessing. These results illustrate
that PCA extracts series features efficiently in TSER, sustains TSA models’ performance, and speeds
up training/inference, as detailed in Section 4.4.
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4.4 TRAINING/INFERENCE OPTIMIZATION WITH PCA

The aforementioned results indicate that PCA successfully preserves essential information in time
series while maintaining TSA models’ performance across tasks of TSC, TSF, and TSER, and we also
investigate the impact of PCA on reducing computational burden and accelerating training/inference.

Figure 4: Training/inference time of various time series models with and without PCA preprocessing.

Fig. 4 illustrates the average training/inference time of various time series models with and without
PCA preprocessing across the three tasks. The running time of each model is normalized to facilitate
comparison. Since the time consumed by PCA preprocessing is negligible compared to the model
training/inference, it is not included in the figure, and the detailed results (including the time taken by
PCA processing) are presented in Appendix E. Results show significant training time acceleration for
Linear, Informer, and PatchTST, with up to 40% improvement. Additionally, PCA preprocessing
leads to varying degrees of acceleration in the model’s inference process. TimesNet shows 30%
acceleration for both training and inference, while FEDformer shows 10% improvement.

Linear Informer FEDformer TimesNet PatchTST+PCA +PCA +PCA +PCA +PCA

Time Series Model
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GPU Memory Optimization with PCA

Figure 5: GPU memory utilization of various time
series models with and without PCA preprocessing.

Fig. 5 illustrates the impact of PCA prepro-
cessing on the average GPU memory utiliza-
tion of various time series models across three
tasks. The results demonstrate that PCA pre-
processing can significantly reduce GPU mem-
ory usage for some models. Specifically, for
TimesNet, PCA preprocessing leads to a 30%
reduction in GPU memory usage. For In-
former, FEDformer, and PatchTST, the reduc-
tion is approximately 15%. However, for the
Linear model, there is almost no reduction in
GPU memory usage. These findings suggest
that PCA preprocessing can be an effective
method for reducing the computational bur-
den and accelerating training and inference
in time series models, but its impact varies
depending on the specific model and scenario.

5 COMPARISON OF PCA WITH OTHER HISTORICAL INPUT SERIES
REDUCTION METHODS

To further confirm the effectiveness of PCA as a reduction method for time series in temporal
dimension, a comparison is made between PCA and other input series reduction techniques in TSF
tasks, such as directly shortening the length of the historical series to 48, and downsampling every
7 time steps to reduce the length to 48. Table 5 indicates that both direct input shortening and
downsampling significantly compromise performance of Linear, with direct input shortening having
a more substantial impact.
Furthermore, we conduct experiments of adding linear/1D-CNN dimension reduction layer at the
beginning of the deep-learning models to automatically compress the original series before subsequent
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Table 5: The comparison of PCA, shortening and downsampling as series reduction methods. Bold
font represents the superior result.

Models Linear PCA Shortening Downsampling

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.028 0.125 0.029 0.126 0.033 0.131 0.030 0.128
192 0.043 0.154 0.042 0.151 0.052 0.167 0.045 0.155
336 0.059 0.180 0.056 0.176 0.073 0.199 0.060 0.179
720 0.080 0.211 0.081 0.212 0.103 0.240 0.084 0.215

E
T

T
m

2 96 0.066 0.189 0.065 0.188 0.081 0.208 0.068 0.194
192 0.094 0.230 0.092 0.228 0.114 0.251 0.095 0.233
336 0.120 0.263 0.123 0.267 0.148 0.292 0.124 0.268
720 0.175 0.320 0.174 0.320 0.203 0.348 0.179 0.325

Better Count 7 10 0 0

computations. This increases the complexity of the models, potentially exacerbating the inherent
overfitting issues in time series modeling. Table 6 shows that incorporating a linear/1D-CNN
dimension reduction layer (denoted as “Model+/Model++” in the table) is notably inferior to PCA-
based reduction (denoted as “Model*” in the table), and also inferior to models without such
layers (refer to Table 3). Moreover, updating the parameters of these reduction layers during each
training iteration can diminish the efficiency gains and memory advantages. These experiments
highlight PCA’s effectiveness as a reduction technique of historical input series, maintaining models’
performance while reducing temporal dimensionality.

Table 6: The comparison of PCA-based reduction and incorporation of a linear/1D-CNN dimension
reduction layer. Bold font represents the best result.

Models Linear* Linear+ Linear++ Informer* Informer+ Informer++

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.029 0.126 0.030 0.129 0.031 0.132 0.052 0.172 0.120 0.284 0.059 0.192
192 0.042 0.151 0.044 0.155 0.042 0.153 0.106 0.256 0.185 0.367 0.163 0.344
336 0.056 0.176 0.065 0.189 0.060 0.182 0.150 0.310 0.153 0.314 0.213 0.390
720 0.081 0.212 0.083 0.214 0.083 0.215 0.157 0.320 0.220 0.394 0.138 0.300

E
T

T
m

2 96 0.065 0.188 0.066 0.190 0.071 0.199 0.090 0.229 0.090 0.232 0.094 0.236
192 0.092 0.228 0.096 0.233 0.097 0.236 0.117 0.265 0.147 0.302 0.182 0.345
336 0.123 0.267 0.122 0.267 0.126 0.272 0.160 0.317 0.237 0.385 0.195 0.351
720 0.174 0.320 0.177 0.323 0.177 0.324 0.248 0.398 0.258 0.403 0.265 0.417

Better Count 15 2 1 14 1 2

6 CONCLUSION

Our study challenges the perception that PCA, by disrupting sequential relationships in time series,
is unsuitable for TSA. Instead, we find it efficient for handling TSA tasks. PCA is innovatively
applied to achieve temporal dimensionality reduction while safeguarding essential information within
time series. Its effect is evaluated on four types of advanced time series models, namely Linear,
Transformer, CNN and RNN models, across three typical TSA tasks: classification, forecasting,
and regression. The results show that PCA reduces computational burden without compromising
performance. Specifically, in TSC, the performance with PCA is better in 50.0% of cases; in TSF,
49.6% of cases; and in TSRE, 66.7%. Notably, PCA accelerates Informer’s training and inference
by up to 40%, with a minimum of 10% speedup for other models. Additionally, PCA reduces
GPU memory usage by 15% for Transformer-based models and 30% for CNN-based models. The
study discusses PCA’s theoretical effectiveness in denoising and preserving statistical information,
further substantiating its superiority over alternative dimensionality reduction methods such as series
shortening, downsampling, and the integration of additional reduction layers.
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Supplemental Materials for “Revisiting PCA for
Time Series Reduction in Temporal Dimension”
A DATA DESCRIPTION

The experimental data comprises 13 widely-used datasets from various domains, each distinguished
by unique attributes:

• ETT (Zhou et al., 2021): The ETT dataset includes two hourly-level datasets (ETTh1 and
ETTh2) and two 15-minute-level datasets (ETTm1 and ETTm2). Each dataset comprises
seven oil and load features of electricity transformers spanning from July 2016 to July
2018. There are 7 variables for each dataset, with 17,420 time steps for ETTh and 69,680
time steps for ETTm. The series in these datasets exhibit strong periodicity. For univariate
forecasting, only the “oil temperature” variable is used for training and testing.

• EthanolConcentration (Bagnall et al., 2018): The dataset comprises 544 time series formed
by the raw spectra of water and ethanol solutions in authentic whisky bottles, with each
series having a length of 1,751. Ethanol concentrations range from 35%, 38%, 40%, to 45%.
The primary objective of this dataset is to ascertain the ethanol concentration (category)
within each sample. As a multivariate dataset, each variable corresponds to measurements
at different wavelengths, spanning Ultraviolet (UV) light, Visible (VIS) light, and Near
Infrared (NIR). For our experiments, the NIR variable is selected.

• Handwriting (Bagnall et al., 2018): This dataset comprises 1,000 time series samples of
subjects wearing a smartwatch while writing the 26 English letters. Each series has a
length of 152, with three dimensions corresponding to three accelerometer values. In our
experiments, we select the last dimension.

• SelfRegulationSCP (Bagnall et al., 2018): SelfRegulationSCP encompasses two datasets,
SelfRegulationSCP1 and SelfRegulationSCP2, involving self-regulation of slow cortical
potentials. In SelfRegulationSCP1, data from a healthy subject include cursor movement on
a computer screen, with visual feedback regulating slow cortical potentials (Cz-Mastoids).
SelfRegulationSCP1 consists of 561 series samples, each with a length of 896. In Self-
RegulationSCP2, data from an artificially respirated ALS patient similarly involve cursor
movement, with auditory and visual feedback regulating slow cortical potentials. SelfRegu-
lationSCP2 comprises 380 series samples, each with a length of 1,152. The classification
objective is to categorize based on recorded slow cortical potentials, where positive and
negative potentials correspond to different classes. The analysis in both datasets focuses on
the last dimension of the data in experiments.

• UWaveGestureLibrary (Bagnall et al., 2018): The UWaveGestureLibrary dataset comprises
eight simple gestures generated from accelerometers, totaling 4,479 series samples. Each
sample includes the x, y, z coordinates of a gesture, with each series having a length of 315.
In the experiments, the analysis is focused on the z-coordinate series.

• FloodModeling (Tan et al., 2021): FloodModeling comprises three hourly datasets (Flood-
Modeling1, FloodModeling2, and FloodModeling3). These datasets aim to predict the
maximum water depth for flood modeling. The three datasets contain 673, 559, and 613
hourly rainfall events time series, respectively. Each time series in the datasets has a length
of 266 time steps. These time series are utilized to predict the maximum water depth of a
domain represented by a Digital Elevation Model (DEM). Both the rainfall events and DEM
are synthetically generated by researchers at Monash University.

• Covid3Month (Tan et al., 2021): The Covid3Month dataset comprises 201 time series, where
each time series represents the daily confirmed cases for a country. The length of each time
series is 84. The objective of this dataset is to predict the COVID-19 death rate on April 1,
2020, for each country using the daily confirmed cases over the preceding three months.

B DETAILS ON TIME SERIES MODELS

The descriptions and implementations of the evaluated time series models are provided below:
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Linear (Zeng et al., 2023): The Linear model represents a groundbreaking method utilizing a linear
model, outperforming a substantial portion of Transformer-based models for TSF. The corresponding
code is accessible at: https://github.com/cure-lab/LTSF-Linear.

Informer (Zhou et al., 2021): Informer is an efficient Transformer architecture specifically de-
signed for TSF. The code for this model can be found at https://github.com/zhouhaoyi/
Informer2020.

FEDformer (Zhou et al., 2022): FEDformer is an efficient Transformer architecture that reduces
computational complexity through frequency-domain self-attention, utilizing Fourier or wavelet
transforms and random selection of frequency bases. The code for this model can be accessed at:
https://github.com/MAZiqing/FEDformer.

TimesNet (Wu et al., 2023): TimesNet transforms 1D time series into a set of 2D tensors based on
multiple periods and utilizes a CNN-based model to extract features. The code for TimesNet can be
found at https://github.com/thuml/Time-Series-Library.

PatchTST (Nie et al., 2022): PatchTST employs a segmentation approach for time series by dividing
it into multiple time patches, treating each as a token. The model uses an attention module to learn
the relationships between these tokens. The publicly available source code for PatchTST can be
found at https://github.com/yuqinie98/patchtst.

C TSF RESULTS OF PATCHTST WITH PCA PREPROCESSING

PCA preprocessing is separately applied to each patch series in the patch-based time series model
PatchTST. Additionally, to enhance prediction stability, PatchTST employs instance normalization
technology (Kim et al., 2022). However, integrating this technology with PCA series poses challenges:
the fluctuation of PCA series is considerable, and adding instance normalization further destabilizes
the predictions. Consequently, after applying PCA processing, we exclude the instance normalization
module from PatchTST. For comparative analysis, we also assess the performance of PatchTST
without the instance normalization module on the original series.

Table 7 presents the forecasting results of PatchTST. It is observed that the original PatchTST
achieves optimal performance. However, a surprising discovery is the pivotal role played by the
instance normalization process in PatchTST. Omitting the instance normalization module results in
a significant deterioration in PatchTST performance, exhibiting much worse results compared to
training PatchTST (also without the instance normalization module) after PCA preprocessing. These
findings suggest that PCA is effective for patch-based time series models, yet further exploration is
required to identify alternative methods to instance normalization.

D TSF RESULTS OF RNN-BASED MODELS WITH PCA PREPROCESSING

Due to issues with gradient vanishing or exploding (Hanin, 2018), RNN-based models exhibit unstable
performance in TSA with long historical series windows and have consequently been increasingly
supplanted by Transformer, linear, and CNN-based models. Nonetheless, to more comprehensively
evaluate the impact of PCA preprocessing, we assess its effect on RNN-based models for TSF tasks.
Specifically, two typical RNN-based models, GRU (Chung et al., 2014) and LSTM (Hochreiter,
1997), are tested. Original historical series or PCA series are fed into the GRU or LSTM cells
to extract features, and their hidden state h, containing the feature information, are projected and
transformed to obtain the final predictions. Table 8 shows that for GRU, PCA preprocessing leads to
superior performance in 18 out of 32 settings, and for LSTM, PCA preprocessing achieves better
results in half of the settings. These results indicate that PCA preprocessing does not degrade the
performance of RNN-based models. Additionally, since RNN models process time series sequentially,
their computational cost is more sensitive to the length of the model input. Table 9 demonstrates that
PCA preprocessing has a significant acceleration effect on RNN-based models, reducing training
time to one-fourth and inference time to one-third of the original times. Although RNN-based models
are not as commonly used as other models, PCA remains an effective tool for time series reduction in
scenarios where they are appropriate.
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Table 7: TSF experiments of PatchTST. The - symbol after the model signifies the removal of instance
normalization processing, and the * symbol after the model indicates the application of PCA. The
best result is indicated in bold font, while the second-best result is underlined.

Models PatchTST PatchTST- PatchTST*

Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.055 0.179 0.141 0.300 0.073 0.214
192 0.071 0.205 0.196 0.368 0.082 0.234
336 0.081 0.225 0.186 0.360 0.087 0.237
720 0.087 0.232 0.372 0.527 0.131 0.289

E
T

T
h2

96 0.129 0.282 0.232 0.381 0.166 0.324
192 0.168 0.328 0.221 0.368 0.214 0.376
336 0.185 0.351 0.537 0.542 0.224 0.390
720 0.224 0.383 0.485 0.561 0.298 0.447

E
T

T
m

1 96 0.026 0.121 0.122 0.296 0.031 0.134
192 0.039 0.150 0.127 0.299 0.041 0.157
336 0.053 0.173 0.252 0.450 0.058 0.184
720 0.074 0.207 0.276 0.454 0.084 0.220

E
T

T
m

2 96 0.065 0.186 0.130 0.281 0.070 0.200
192 0.094 0.231 0.132 0.283 0.098 0.238
336 0.120 0.265 0.165 0.322 0.124 0.269
720 0.171 0.322 0.286 0.424 0.177 0.328

Table 8: TSF Results of RNN-based models. The * symbols after models indicate the application of
PCA before inputting the series into the models. Bold font represents the superior result.

Models GRU GRU* LSTM LSTM*

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.182 0.349 0.167 0.141 0.323 0.498 0.209 0.382
192 0.326 0.487 0.148 0.316 0.354 0.515 0.292 0.469
336 0.233 0.408 0.144 0.310 0.387 0.553 0.261 0.441
720 0.266 0.441 0.183 0.352 0.370 0.539 1.565 1.215

E
T

T
h2

96 0.307 0.405 0.257 0.403 0.153 0.313 0.419 0.516
192 0.227 0.382 0.279 0.417 0.207 0.364 0.298 0.440
336 0.320 0.462 0.273 0.419 0.333 0.461 0.249 0.497
720 0.392 0.502 0.285 0.435 0.421 0.534 0.349 0.378

E
T

T
m

1 96 0.070 0.198 0.164 0.335 0.091 0.249 0.130 0.292
192 0.141 0.295 0.188 0.360 0.175 0.349 0.131 0.280
336 0.227 0.393 0.275 0.455 0.217 0.381 0.282 0.461
720 0.400 0.547 0.268 0.446 0.368 0.525 0.289 0.467

E
T

T
m

2 96 0.074 0.200 0.141 0.298 0.086 0.218 0.151 0.310
192 0.119 0.267 0.187 0.352 0.119 0.270 0.211 0.368
336 0.193 0.360 0.161 0.310 0.218 0.378 0.158 0.314
720 0.224 0.368 0.258 0.408 0.240 0.385 0.298 0.446

Better Count 14 18 16 16

Table 9: Average training/inference time (s) of RNN-based models on TSF tasks. The * symbols after
the time series models indicate the application of PCA. Bold font represents the superior result.

GRU GRU* LSTM LSTM*
Training time 167.65 41.50 177.12 46.59

PCA time - 0.88 - 0.88

Inference time 3.02 0.97 3.06 0.99
PCA time - 0.01 - 0.01
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E DETAILED TRAINING/INFERENCE TIME

Table 10 presents the average training and inference time (including PCA processing time) for various
time series models, evaluated across different TSA tasks. With the assistance of PCA preprocessing,
the training and inference of the models are accelerated to varying degrees.

Table 10: Average training/inference time (s) of different time series models across different TSA
tasks. The * symbols after the time series models indicate the application of PCA before inputting
the series into the models.

Linear Linear* Informer Informer* FEDformer FEDformer* TimesNet TimesNet* PatchTST PatchTST*
Training time 25.47 14.82 336.74 232.16 1560.67 1450.31 488.65 372.66 118.04 67.67

PCA time - 0.88 - 0.88 - 0.88 - 0.88 - 0.88

Inference time 0.67 0.63 4.94 2.97 12.15 11.31 5.75 4.03 1.41 1.24
PCA time - 0.01 - 0.01 - 0.01 - 0.01 - 0.01

F IMPACT OF THE NUMBER OF PRINCIPAL COMPONENTS

The number of principal components is a crucial hyperparameter in PCA. If too many principal
components are selected, the reduction in dimensionality may be insufficient, failing to achieve the
desired acceleration in training/inference. Conversely, too few principal components can result in the
loss of important features, leading to a decline in model performance.

Figure 6: Impact of the number of principal components on model’s performance.

Fig. 6 illustrates the impact of the number of principal components on the performance of Linear
for the ETTm1 and ETTm2 datasets. The red line depicts the variation of the sum of variance ratio
with the number of principal components, representing the importance of the features after PCA
dimensionality reduction. As the number of principal components increases, the importance of the
selected features also increases, but the rate of increase diminishes. Notably, even with only one
principal component, the importance of the features is already approximately 90%, and after the
number of principal components reaching to 48 (the number chosen in our experiment), further
increasing the number of principal components results in minimal change in feature importance. The
blue line represents the MSE of the model on the test set as a function of the number of principal
components. As the number of principal components increases, the MSE decreases, but the rate
of decrease also diminishes. These results suggest that selecting 48 principal components strikes a
judicious balance between computational efficiency and predictive performance for TSF.

G COMPARISON OF PCA WITH FFT AND DWT

FFT (Duhamel & Vetterli, 1990) and DWT (Sundararajan, 2016) could also be used for temporal
dimensionality reduction in time series data. In the experiments comparing PCA with FFT and DWT,
the original series is first transformed from the time domain to the frequency domain using either
FFT or DWT. The top k frequency components (where k is 48, the same as the number of principle
components) are then selected and input these into the time series models. The results are shown
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in Table 11. It is evident that the top k frequency components obtained using FFT or DWT fail
to accurately capture the key information in the original series and effectively compress the series,
leading to a significant decrease in model performance.

Table 11: Comparison of PCA with FFT and DWT as series reduction methods. Bold font represents
the superior result.

Models Linear PCA FFT DWT

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.028 0.125 0.029 0.126 2.110 1.328 1.827 1.299
192 0.043 0.154 0.042 0.151 2.086 1.318 1.943 1.344
336 0.059 0.180 0.056 0.176 2.205 1.356 1.767 1.279
720 0.080 0.211 0.081 0.212 2.232 1.348 1.981 1.358

E
T

T
m

2 96 0.066 0.189 0.065 0.188 3.417 1.467 1.330 1.010
192 0.094 0.230 0.092 0.228 3.883 1.566 1.460 1.068
336 0.120 0.263 0.123 0.267 3.273 1.442 1.421 1.049
720 0.175 0.320 0.174 0.320 3.371 1.465 1.572 1.111

Better Count 7 10 0 0

H TIME SERIES CLASSIFICATION IN UCR DATASETS

The UCR dataset (Dau et al., 2019) contains many time series classification datasets. To compre-
hensively evaluate the performance of PCA in TSC tasks, five datasets from the UCR dataset are
selected for testing, as shown in Table 12. The results demonstrate that PCA preprocessing retains the
principal information of the series on the UCR dataset, matches the TSC performance of the original
series, and enables faster training and inference.

Table 12: TSC experiments on the UCR datasets. The accuracy metric is adopted. The * symbols after
models indicate the application of PCA before inputting the series into the models. Bold font is the
superior result. PCA preprocessing retains series principal information, matching TSC performance
with original series, and enabling training/inference acceleration.

Linear Linear* Informer Informer* FEDformer FEDformer*
GunPointAgeSpan 0.864 0.892 0.889 0.930 0.775 0.892

GunPointMaleVersusFemale 0.731 0.991 0.997 0.997 0.706 0.991
GestureMidAirD1 0.477 0.500 0.431 0.515 0.692 0.500
GestureMidAirD2 0.485 0.454 0.523 0.400 0.346 0.415
GestureMidAirD3 0.323 0.254 0.377 0.277 0.231 0.292

AllGestureWiimoteX 0.296 0.283 0.289 0.403 0.460 0.384
AllGestureWiimoteY 0.319 0.324 0.516 0.387 0.409 0.424
AllGestureWiimoteZ 0.320 0.320 0.296 0.372 0.480 0.366

FordA 0.504 0.507 0.523 0.817 0.639 0.822
FordB 0.532 0.546 0.549 0.709 0.672 0.685

Better Count 4 7 4 7 3 7

I COMPARISON OF PCA WITH REPRESENTATION LEARNING-BASED METHODS

Some representation learning-based methods, such as TS2Vec (Yue et al., 2021), T-Loss (Franceschi
et al., 2019), and TimeVQVAE (Lee et al., 2023), can also compress time series data by learning their
representations and then use downstream classifiers or regressors for classification or forecasting. We
compared PCA with these representation learning-based methods on classification tasks. As shown
in Table 13, the Linear + PCA model achieved the best performance in most settings. Additionally, it
is worth noting that these representation learning-based methods are not pluggable, general-purpose
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approaches and cannot be easily integrated with arbitrary time series models or tasks. Furthermore,
the primary objective of these methods is to learn better representations rather than to accelerate
training. As a result, they do not optimize for training efficiency or memory usage as extensively as
PCA does, as shown in Table 14.

Table 13: TSC experiments of T-Loss, TS2Vec, and TimeVQVAE. The accuracy metric is adopted.
Bold font is the superior result.

Linear+PCA T-Loss TS2Vec TimeVQVAE
EthanolConcentration 0.300 0.289 0.287 0.203

Handwriting 0.127 0.255 0.397 0.218
SelfRegulationSCP1 0.805 0.780 0.795 0.719
SelfRegulationSCP2 0.539 0.511 0.525 0.527

UWaveGestureLibrary 0.409 0.622 0.666 0.668
Better Count 3 0 1 1

Table 14: Computational efficiency, and memory usage comparation of T-Loss, TS2Vec, and TimeVQ-
VAE. Bold font is the superior result.

Linear+PCA T-Loss TS2Vec TimeVQVAE
Training time (s) 14.82 302.50 25.92 62.98
Inference time (s) 0.59 2.01 1.65 68.10

Memory usage (MiB) 484 1290 2424 2870

J PCA’S APPLICATIONS IN ADDITIONAL TSC MODELS

Some effective specialized TSC models, such as InceptionTime (Ismail Fawaz et al., 2020) and
ResNet (Cheng et al., 2021), have been developed and widely applied in various TSC tasks. We also
applied PCA to these models. The results in Table 15 show that PCA is model-agnostic and remains
effective even when applied to these specialized TSC models.

Table 15: TSC experiments of Inception and ResNet. The accuracy metric is adopted. The * symbols
after models indicate the application of PCA before inputting the series into the models. Bold
font is the superior result. PCA preprocessing retains series principal information, matching TSC
performance with original series, and enabling training/inference acceleration.

Inception Inception* ResNet ResNet*
EthanolConcentration 0.259 0.300 0.281 0.308

Handwriting 0.075 0.119 0.076 0.105
SelfRegulationSCP1 0.833 0.758 0.867 0.754
SelfRegulationSCP2 0.489 0.561 0.528 0.539

UWaveGestureLibrary 0.522 0.516 0.528 0.419

Better Count 2 3 2 3

K PCA’S TESTS ON ELECTRICITY AND TRAFFIC DATASETS

We also applied PCA to the commonly used TSF datasets, Electricity and Traffic. The results in Table
16 show that PCA preprocessing retains series principal information on Electricity and Traffic datasets,
matching TSF performance with original series, and enabling training/inference acceleration.
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Table 16: TSF experiments on the Electricity and Traffic datasets. The * symbols after models
indicate the application of PCA before inputting the series into the models. Bold font represents the
superior result.

Models Linear Linear* Informer Informer* FEDformer FEDformer*

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

le
ct

ri
ci

ty 96 0.213 0.326 0.212 0.325 0.307 0.391 0.322 0.413 0.495 0.526 0.286 0.388
192 0.241 0.347 0.240 0.344 0.341 0.420 0.347 0.426 0.434 0.492 0.314 0.404
336 0.275 0.372 0.273 0.369 0.475 0.515 0.422 0.476 0.545 0.548 0.346 0.433
720 0.312 0.414 0.306 0.409 0.644 0.611 0.537 0.539 0.566 0.572 0.463 0.504

Tr
af

fic

96 0.138 0.229 0.144 0.237 0.210 0.300 0.183 0.271 0.265 0.367 0.186 0.285
192 0.141 0.231 0.146 0.238 0.221 0.325 0.189 0.280 0.270 0.371 0.191 0.288
336 0.142 0.236 0.147 0.244 0.234 0.350 0.203 0.305 0.288 0.387 0.219 0.311
720 0.156 0.251 0.167 0.265 0.305 0.420 0.253 0.328 0.305 0.408 0.230 0.336

Better Count 8 8 2 14 0 16

L PCA VISUALIZATIONS

Fig. 7 depicts the shapes of series after PCA preprocessing and the series obtained by inverse
transforming PCA series. It is evident that PCA series include the primary information of the original
series with a small subset of initial values (principal components), while the remaining values exhibit
minimal fluctuations. The similarity of the original series can also be reflected in the PCA series.
Furthermore, series inverse transformed from PCA series appear significantly smoother compared to
the original series, effectively achieving denoising of the series.

Figure 7: Visualizations of original series, PCA series and PCA-inversed series.

M PREDICTION SHOWCASES

Fig. 8 presents some prediction showcases of the Linear model with and without PCA preprocessing.
It is observed that the predictions of the Linear model on the original series and the PCA series are
highly consistent.
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Figure 8: Prediction showcases on ETT datasets.
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