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Abstract

Conversational Recommender Systems (CRS) proactively engage users in inter-
active dialogues to elicit user preferences and provide personalized recommen-
dations. Existing methods train Reinforcement Learning (RL)-based agent with
greedy action selection or sampling strategy, and may suffer from suboptimal
conversational planning. To address this, we present a novel Monte Carlo Tree
Search (MCTS)-based CRS framework SAPIENT. SAPIENT consists of a con-
versational agent (S-agent) and a conversational planner (S-planner). S-planner
builds a conversational search tree with MCTS based on the initial actions pro-
posed by S-agent to find conversation plans. The best conversation plans from
S-planner are used to guide the training of S-agent, creating a self-training loop
where S-agent can iteratively improve its capability for conversational planning.
Furthermore, we propose an efficient variant SAPIENT-e for trade-off between
training efficiency and performance. Extensive experiments on four benchmark
datasets validate the effectiveness of our approach, showing that SAPIENT out-
performs the state-of-the-art baselines. Our code and data are accessible through
https://anonymous.4open.science/r/SAPIENT/.

1 Introduction

Conversational Recommender Systems (CRSs) are developed to proactively engage users with inter-
active dialogues to understand user preferences and provide highly personalized recommendations
[1, 2]. For example, on an online dining platform such as Yelp [2], CRS can chat with users through
natural language dialogues (e.g., ask a question like, “What is your preferred food type?”) and recom-
mend products that best match the users’ preferences expressed in the conversation. Among different
settings of CRS [3–5], the Multi-turn Conversational Recommendation (MCR) setting [2, 6, 4] is
popular as it can interact/communicate with users multiple times (i.e., multiple turns) to iteratively
learn user preferences [7, 8].

A key of MCR is to decide what action (asking a question on specific attribute values or recommending
specific items) to take at each conversational turn—a conversational turn consists of the CRS taking
an action and the user responding to that action—to effectively elicit information on user preferences
and make personalized recommendations [7, 9]. To achieve this, previous methods formulated MCR
as a Marchovian Decision Process (MDP) [10], and trained policy-based [3, 2] or value-based [4, 11]
agents via Reinforcement Learning (RL) to learn conversation strategies. Despite promising, these
methods could suffer from myopic actions and limited planning capability due to the following
reasons. First, they base their planning solely on observations of the current state (e.g., items that the
user indicates a negative preference for) without exploring potential future states. As a result, they
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could take myopic actions [12, 13]. Second, they generate conversation trajectories, also referred to
as conversation plans, by sequentially sampling actions, and thus could suffer from the cumulative
error, especially when generating long trajectories for planning [14, 15].

To address these limitations, we present a novel MCTS-based MCR framework—Strategic Action
Planning with Intelligent Exploration Non-myopic Tactics, referred to as SAPIENT. SAPIENT com-
prises a conversational agent, referred to as S-agent, where S-agent utilizes an MCTS-based algorithm,
referred to as S-planner, to plan conversations. S-agent builds a global information graph and two
personalized graphs with dedicated graph encoders to extract the representation of the conversational
states, and synergizes a policy network and a Q-network to decide specific actions based on the
learned state representations. S-planner leverages MCTS [16, 17] to simulate future conversations
with lookahead explorations. This non-myopic conversational planning process ensures S-planner can
strategically plan conversations that maximize the cumulative reward, instead of greedily selecting
actions based on immediate reward. The best conversation plans with the highest cumulative rewards
found by S-planner are used to guide the training of S-agent. In this way, S-agent can engage in a
self-training loop [18]—collecting trajectories from multiple conversation simulations and training
the S-agent on selected, high-rewarded trajectories—to iteratively improve its planning capability.
During inference, S-agent can directly make well-informed decisions without S-planner, since it
inherits the S-planner’s expertise in strategic and non-myopic planning.

To make MCTS scalable w.r.t. the size of items and attributes, we introduce a hierarchical action
selection process [19], and two action types: ask and rec. At each turn, instead of searching over
all the items and attribute values, S-planner builds a conversational search tree (Figure 2) that only
searches over the two action types and uses the Q-network to decide the specific action, thus greatly
reducing the search space.

We evaluate SAPIENT against 9 state-of-the-art CRS baselines, and show SAPIENT significantly
outperforms baselines on 4 benchmark datasets. Our case study also shows that the action strategies
of SAPIENT are beneficial for information seeking and recommendation success in the conversations.

Furthermore, we develop an efficient variant of SAPIENT, denoted as SAPIENT-e. Different from
SAPIENT, which is trained on selected, high-rewarded trajectories, SAPIENT-e consumes all trajecto-
ries found by S-planner for training via a listwise ranking loss. As a result, SAPIENT-e requires less
cost of collecting training trajectories compared to SAPIENT, and enables superior efficiency.
2 Method
We introduce SAPIENT, a Monte Carlo Tree Search (MCTS)-based MCR framework that achieves
strategic and non-myopic conversation planning. SAPIENT formulates MCR as an MDP with a
hierarchical action selection process (Section 2.1). A conversational agent (S-agent) observes the
current state and decides the actions in each conversational turn (Section 2.2), and a conversational
planner (S-planner) performs non-myopic conversational planning with an MCTS-based algorithm
(Section 2.3). S-agent is trained with guidance from S-planner to iteratively refine its capability for
conversational planning (Section 2.4). An overview of the SAPIENT framework is in Figure 1 and the
training algorithm is in Appendix H. We summarize all the notations in this paper in Appendix A.

2.1 MDP Formulation for MCR
We formulate MCR as an MDP where S-agent can be trained in an RL environment to learn to plan
conversations strategically. For each user u, the MDP environmentM(u) is defined as a quintuple
M(u) = {S,A, T ,R, γ}u (index u is dropped when no ambiguity arises), where S denotes the
state space, which summarizes all the information about the conversation and the user; A denotes the
action space, which includes asking (ask) for specific attribute types and their respective values, or
recommending (rec) specific items; T : S × A → S denotes the transition to the next state after
taking an action from the current state; R : S × A → R denotes the immediate reward function
after taking an action at the current state; and γ ∈ (0, 1) denotes the discount factor. For hierarchical
action selection [19], S-agent first chooses an action type ot ∈ {ask, rec} at each conversation
round, indexed by t, then chooses the objective of that action type.

State For the t-th turn, we define the state st ∈ S as a triplet st = (P+
t ,P−

t ,V−
t ), where P+

t

denotes all the attribute values that the user has accepted until the t-th turn, P−
t and V−

t denote all
the attribute values and items that the user has rejected until the t-th turn. The state is initialized as s0
when the user specifies preference on an attribute type y0 ∈ Y and its corresponding attribute value
p0 ∈ P , and transitions to the next states as the conversation continues.
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Figure 1: SAPIENT consists of a conversational agent (S-agent) an conversational planner (S-planner).
S-planner leverages MCTS to perform non-myopic conversation planning based on the heuristics
from S-agent. The best conversation plans found by S-planner are used to guide the training of
S-agent, allowing S-agent to iteratively refine its capability for conversational planning.

Action The action at refers to asking a specific attribute value (ask) or recommending a specific
item (rec) at the t-th turn. Here, we adopt a hierarchical action selection process: we first use a new
policy network πϕ(ot|st) to decide the action type ot ∈ {ask, rec} from the current state st, and
then use a new Q-network Qθ(at|st, ot) to decide the specific action at according to the action type
ot. The action space (at the current state st) Ast = {Pc

t ,Vc
t } contains all the candidate items and

attribute values. The Q-network Qθ(at|st, ot) only selects an action from a sub action space Ast,ot :
when ot = ask, Ast,ot = Pc

t ; when ot = rec, Ast,ot = Vc
t .

Transition Transition occurs from the current state st to the next state st+1 when the user responds
to the action at (accepts or rejects items/attribute values). Candidate item set are narrowed down to
the remaining items that still satisfy the user’s preference requirement, and attribute values asked at
turn t are excluded from the candidate attribute value set. More details are in Appendix D.
Reward We denote the immediate reward at the t-th conversation turn as rt, and the cumulative
reward for each conversation is calculated as

∑T
t=1 γ

trt. Intuitively, a positive reward is assigned
when the user accepts the items or attribute values, and a negative reward is assigned when the user
rejects the items or attribute values. Details on the reward function are available in Appendix E.

2.2 S-agent
S-agent comprises three components: the state encoder, the policy network, and the Q-network.
The state encoder adopts graph neural networks to generate the state representation, as detailed in
Appendix F. This state representation is then utilized by both the policy network and the Q-network to
decide the action type and the specific actions in each conversational turn, as detailed in Appendix G.

2.3 S-planner
S-planner adopts an MCTS-based planning algorithm to simulate conversations and find the best
conversation plan for each user, strategically balancing exploration and exploitation to efficiently
expand a search tree [16, 17]. Specifically, each node in the tree represents a state st, the root
node s0 represents the initial state where the user specifies preference on an attribute type and its
corresponding value, and the leaf node represents the end of the conversation (success or fail). Each
edge between nodes st and st+1 represents an action type ot ∈ {ask, rec} and the transition from
the current state st to the next state st+1 after choosing an action type ot and a specific action at.
For each action type ot, S-planner maintains a function q(st, ot) of st and ot as the expected future
reward of selecting action type ot at the state st. For each user u, S-planner simulates N different
conversation plans (also referred to as trajectories), and the trajectory for the i-th simulation is denoted
as τ (u)i . The search tree is built in four stages, as summarized below and detailed in Appendix I:
• Trajectory selection: S-planner traverses from the root to leaves over the current tree to select the

most promising trajectory that is likely to obtain a high cumulative reward.
• Node expansion: S-planner initializes two children nodes (ask and rec) to the leaf node on the

selected trajectory to expand the tree.
• Conversation simulation: S-planner simulates future conversations between SAPIENT and the user,

starting from the expanded node and foresees how the future conversation will unfold.
• Reward back-propagation: S-planner updates the expected future reward q(st, ot) of action type ot

along the trajectory using the cumulative reward of the current conversation.

2.4 Guiding S-agent with S-planner
To empower S-agent with advanced planning capability, we use the best conversation plan (the plan
with the maximum cumulative reward) found by S-planner to guide the training of the policy network
and the Q-network. This process creates a self-training loop [18] that enables S-agent to iteratively
refine its planning capability. To avoid biased estimation from training on consecutive, temporally
correlated actions [20], we store the experiences et = (st, ot, at, rt, st+1, ot+1) at each turn t (st+1

and ot+1 are required for the target Q-network to estimate the Q value from the next state) from the
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best plans to the memory D, and use Prioritized Experience Replay (PER) [21] to sample a batch
of experiences from the memory D to update the policy network and the Q-network. To improve
efficiency, we further propose a variant SAPIENT-e. Instead of using only the highest-rewarded
trajectories, SAPIENT-e makes full use of all the trajectories found by S-planner, and thus greatly
reduces the cost of collecting enough trajectories. More details are available in Appendix J.
3 Experimental Settings
Datasets We evaluate SAPIENT on 4 benchmark datasets: Yelp [2], LastFM [2], Amazon-Book
[22] and MovieLens [23]. Dataset details are in Appendix K.1.
User Simulator Training and evaluating CRS with real-world user interactions can be impractically
expensive at scale. To address this, we adopt the user simulator approach [2] and simulate a
conversation for each user as detailed in Appendix K.2. Note that this user simulator is widely
adopted in the literature [2, 4, 11, 24, 25] and researches show the simulations are of high quality and
suitable for evaluation purposes [9, 4, 11], allowing for large-scale evaluations at low cost.
Evaluation Metrics Following the literature [4, 11], the Success Rate (SR) is adopted to measure
the ratio of successful recommendations within Tmax turns; Average Turn (AT) to evaluate the average
number of conversational turns; and hDCG [4] to evaluate the ranking order of the ground-truth item
among the list of all the recommended items. Details for hDCG calculation are in Appendix K.3.
Baselines and Implementation Details We choose 9 state-of-the-art baselines for a comprehensive
evaluation, including a Large Language Model (LLM) baseline CORE [26]. Baseline details are in
Appendix K.4. Implementation details of SAPIENT are in Appendix K.5.
4 Experimental Results
4.1 Overall Performance Comparison
We compare SAPIENT with baselines and report the results in Table 3. Our main conclusions are
(1)SAPIENT achieves consistent improvement over baselines in terms of all metrics on all the datasets,
with an average improvement of 9.1% (SR), 6.0% (AT) and 11.1% (hDCG) compared with the best
baseline. (2) SAPIENT substantially outperforms baselines in datasets demanding strong strategic
planning capacity from the CRS. (3) SAPIENT-e outperforms all baselines on recommendation
performance. More details are available in Appendix K.6.

4.2 Efficiency Analysis
We show that even with MCTS, the training efficiency of SAPIENT and SAPIENT-e is highly compa-
rable to the baselines, as detailed in Appendix K.7.

4.3 Ablation Study
We conduct ablation studies to validate the effectiveness of the key components as detailed in
Appendix K.9. Our main conclusions are: (1) Each component—G, G+, G−—from the state
encoder are crucial for state encoding. (2) Both the policy network and the Q-network are crucial for
hierarchical action selection. (3) Removing S-planner and training the S-agent on sampled trajectories
as in [4, 11] significantly degrades the performance.

4.4 Hyperparameter Sensitivity
To explore how SAPIENT balances exploration and exploitation in conversational planning, we
evaluate the performances under different exploration factor w, and find that SAPIENT performs
worse with little exploitation (small w), but too much exploration (large w) does not undermine the
performances. To determine the appropriate rollout number N , we analyze the performances with
different N , and find that the performance notably improves when increasing N from 1 to 20 and
marginally improves after N > 20, This suggests that setting N = 20 can strike a good balance
between efficiency (small N ) and performance (large N ). More details are in Appendix K.10.

4.5 In-depth Analysis
To gain insight into the conversation planning capacity of SAPIENT, we provide an analysis on the
action strategies of SAPIENT (Appendix K.11) and a case study (Appendix K.12) to show SAPIENT
can strategically take actions that are helpful for information seeking and recommendation success.

5 Conclusion
We present SAPIENT, a novel MCTS-based CRS framework with strategic and non-myopic planning
tactics in conversational turns. SAPIENT adopts a hierarchical action selection process, builds a
conversation search tree with MCTS, and uses the highest-rewarded conversation plan to train the
S-agent. Extensive experiments on 4 benchmark datasets validate the effectiveness of SAPIENT.
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A An illustration of Conversational Search Tree

An illustration of the conversational search tree is in Figure 2.

User: Hi, I'm looking for a 
restaurant in Pittsburgh.

S-agent: What star rating do you prefer? 
(A) One (B) Two (C) Three (D) Four (E) Five
User: (D)

S-agent: What price range do you prefer?
(A) Low (B) Medium (C) High (D)Premium
User: (B)

S-agent: You may like “Seviche”.
User: No!

S-agent: You may like “Enrico Biscotti”.
User: Yes! Thank you!

S-agent: You may like “Primanti Bros. 
Restaurant and Bar”.
User: No!

S-agent: You may like 
“Hofbrauhaus Pittsburgh”.
User: No!

S-agent: What restaurant type do you prefer?
(A) Buffets (B) Steakhouses (C) Diners (D) Others
User: (D)

S-agent: What food type do you prefer?
(A) Bagels (B) Donuts (C) Others
User: (C)

S-agent: You may like “P&G’s 
Pamela’s Diner”.
User: No!

S-agent: What price range do you prefer?
(A) Low (B) Medium (C) High (D)Premium
User: (B)

S-agent: You may like “Meat & Potatoes”.
User: No!

…

… …

Ask Rec

… …… …

… …

… …

A Conversational Turn (Asking for Attribute Values)

A Conversational Turn (Recommending Items)

Start of Conversation

Figure 2: An example of conversational tree search for a user. Conversation starts at the root node
with the user specifying preference on an attribute type and its corresponding value. A conversational
turn consists of the CRS taking an action and the user responding to that action. The search tree
expands as different action types—ask and recommend—are made at each turn. Red line connects
the highest-rewarded conversation plan found by the tree.

Table 1: Table of notations.
Notation Description
U ,V,Y,P the set of users, items, attribute types and attribute values
u, v, y, p the index of user, item, attribute type and attribute value
t, T the index of the current turn and the final turn of the conversation
G the global information graph
G+
t ,G−

t the user’s positive feedback graph and negative feedback graph at the t-th turn
M(u) the MDP environment for user u
S,A, T ,R, γ the state, action, transition, reward and discount factor in MDP
st, ot, at, rt the state, action type, action and reward at the t-th turn
st,at the representation of the state st, the embedding of the action at
Ast The action space at the state st
Ast,ot The sub action space at the state st after choosing the action type ot
P+

t ,P−
t ,V−

t the accepted attribute values, the rejected attribute values and the rejected items at the t-th turn
Pc

t ,Vc
t the candidate attribute values and the candidate items at the t-th turn

πϕ(ot|st) the policy network that decides the action type ot ∈ {ask, rec} from the current state st
Qθ(at|st, ot) the Q-network that decides the specific action at according to the action type ot
q(st, ot) the expected future reward of selecting action type ot at the state st
τ
(u)
i the trajectory from the i-th simulation for the user u
R(τ

(u)
i , t) the cumulative reward of trajectory τ

(u)
i from turn t to the final turn T

V (st) the visit count of node st during MCTS simulations
f(st, ot) the child node of st after choosing the action type ot
E training steps
N the number of simulations in MCTS
w the exploration factor in UCT

B Notations and Definitions
We denote U as the set of users, V as the set of items, Y as the set of attribute types (e.g., price range,
star rating), and P as the set of attribute values (e.g., medium price range, five-star rating). Each user
u ∈ U has an interaction history (e.g., view, purchase) with a set of items V(u). Each item v ∈ V is
associated with a set of attribute values P(v), and each attribute type y ∈ Y corresponds to a set of
attribute values P(y). Each conversation is initialized by a user specifying preference on an attribute
type y0 ∈ Y and its corresponding attribute value p0 ∈ P (e.g., the user says “I am looking for a
place with medium price range."). At the t-th conversational turn, S-agent can either choose to ask
for preferences over attribute values from a set of candidate attribute values Pc

t , or recommend items
from a set of candidate items Vc

t . Based on the user’s reply (accept/reject attribute values/items),
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S-agent repeatedly communicates with users until the user accepts at least one recommended item
at turn T (success), or the conversation reaches the maximum number of turns and terminates at
T = Tmax (fail). The goal of MCR in general is to successfully recommend at least one item that the
user prefers, and complete the conversation in as few turns as possible so as to prevent the user from
becoming impatient after too many turns. Notations in this paper are summarized in Table 1.

C Related Works

Conversational Recommender System CRS understands user preferences through interactive
natural language conversations to provide personalized recommendations [7, 8]. Early methods
[1, 3] ask users about their desired attribute values to narrow down the list of candidate items to
recommend, but are limited under the single-turn setting, as they can only recommend once in a
conversation. To address this, multi-turn CRSs allow for multiple turns of question inquiries and
item recommendations. For example, EAR [2] adjusts the conversation strategy based on the user’s
feedbacks with a three-staged process. SCPR [6] models MCR as a path reasoning problem over the
knowledge graph of users, items, and attribute values. UNICORN [4] introduces a graph-based RL
framework for MCR. MCMIPL [11] develops a multi-interest policy learning framework to understand
user’s interests over multiple attribute values. HutCRS [25] introduces a user interest tracing module to
track user preferences. CORE [26] designs a CRS framework powered by large language models with
user-friendly prompts and interactive feedback mechanisms. Chen et al. [27] and Montazeralghaem
et al. [28] build a tree-structured index with clustering algorithms to handle the large scale of items
and attribute values in MCR. Different from these methods, SAPIENT is able to iteratively improve its
planning ability through self-training on demonstrations from MCTS, allowing for more informed
and non-myopic conversation strategies.

Reinforcement Learning for CRS Reinforcement Learning (RL) has achieved great success in
tasks requiring strategic planning in complex and interactive environments, such as computer Go
[29, 18] and dialogue planning [30, 31]. RL is also employed to train CRS agents to make strategic
actions, and current RL-based CRS can be mainly categorized into two types of methods: (1) policy-
based methods, which train a policy network that directly outputs the probability of taking each
action [3, 9], and (2) value-based methods, which train a Q-network [32] to estimate the Q-value of
actions [4, 11]. Despite promising, these methods may suffer from myopic conversation planning
and suboptimal decisions due to their greedy action selection and sampling strategy. In contrast to
these methods, our new SAPIENT is able to achieve strategic and non-myopic conversation planning
through an MCTS-based planning and self-training algorithm.

D Transition Function

Transition occurs from the current state st to the next state st+1 when the user u responds to the
action at. The candidate items and attribute values are updated according to the user’s response.
When the action is to ask, we denote P̂+

t and P̂−
t as the attribute values that the user accepts or

rejects at the current turn, and the state is updated as Pc
t+1 = Pc

t \ (P̂+
t ∪ P̂−

t ), P−
t+1 = P−

t ∪ P̂−
t

and P+
t+1 = P+

t ∪ P̂+
t . When the action is to recommend, if the user rejects the recommended items,

we denote V̂−
t as the recommended items that have all been rejected at the current turn and update

the state as V−
t+1 = V−

t ∪ V̂−
t ; otherwise the conversation terminates since the user has accepted

a recommended item. Finally, we update the candidate item set to include only those items that
remain not rejected and whose attribute values share common traits with the accepted attribute values:
Vc
t+1 = {v|v ∈ Vp0 \ V−

t+1 and P(v) ∩ P+
t+1 ̸= ∅ and P(v) ∩ P

−
t+1 = ∅}, where Vp0 denotes the

set of items that are associated with the attribute value p0 specified at the start of the conversation.

E Reward Function

Following Lei et al. [9], Zhang et al. [11], for different conversation scenarios, we consider five
kinds of immediate rewards at given conversation turn: (1) r+rec = 1: a large positive value when
the user accepts a recommended item; (2) r+ask = 0.01: a small positive value when the user accepts
an attribute value asked by the CRS; (3) r−rec = −0.1: a negative value when the user rejects a
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recommended item; (4) r−ask = −0.1: a negative value when the user rejects an attribute value asked
by the CRS; and (5) rquit = −0.3: a large negative value if the conversation reaches the maximum
number of turns. In addition, since our system follows the multi-choice CRS setting, we sum up the
positive and negative rewards for multiple attribute values specified in a multiple-choice question:
rt =

∑
P̂+

t
r+ask +

∑
P̂−

t
r−ask.

F Details of the State Encoder

Global information graph encoder captures the global relationships between similar users and
items, as well as the correlations between items and attribute values from the global information
graph G. We build G with the following rules: an edge eu,v ∈ EU,V exists between a user u and an
item v iff. the user u has interacted with item v, and an edge ep,v ∈ EP,V exists between an attribute
value p and an item v iff. item v is associated with attribute value v. Next, let h(0)

u = eu, h(0)
v = ev

and h
(0)
p = ep denote the embeddings of user, item and attribute value, we adopt a multi-head Graph

Attention Network (GAT) [33, 34] to iteratively refine the node embeddings with neighbourhood
information:

z
(l+1)
i =

K∣∣∣∣∣∣
k=1

∑
j∈Ni

αk
ijW

(l)
2,khj αk

ij =
exp(a

(l)
k

⊤
σ(W

(l)
1,khi +W

(l)
2,khj))∑

j′∈Ni

exp(a
(l)
k

⊤
σ(W

(l)
1,khi +W

(l)
2,khj′ ))

Ni =


{v | ei,v ∈ EU,V}, if i ∈ U
{v | ei,v ∈ EP,V}, if i ∈ P
{u | eu,i ∈ EU,V}, if i ∈ V,Ni ⊂ U
{p | ep,i ∈ EP,V}, if i ∈ V,Ni ⊂ P

, (1)

where a
(l)
k ∈ Rd/K , W(l)

1,k ∈ R(d/K)×d,W(l)
2,k ∈ R(d/K)×d are the trainable parameters for the l-th

layer, K denotes the number of attention heads, σ denotes the LeakyReLU activation function, ||
denotes the concatenation operation. For the user and attribute value node, its hidden representation
of the l+1-th layer is obtain from h

(l+1)
u = σ(z

(l+1)
u ), h(l+1)

p = σ(z
(l+1)
p ). While for the item node,

its hidden representation of the l+1-th layer is obtained by aggregating the information from both
its neighbourhood users and attribute values: h(l+1)

v = σ((z
(l+1)
v,Nv⊂U + z

(l+1)
v,Nv⊂P)/2). We stack Lg

layers of GATs and fetch the hidden representations h(Lg)
u , h(Lg)

v , h(Lg)
p at the last layer as the output

of the global information graph encoder.

Positive feedback graph encoder captures the user’s positive feedback on attribute values and their
relations with candidate attribute values/items in the conversation history. For each user u, at the
t-th conversational turn, we construct a local positive graph G+t =< ({u} ∪ P+

t ∪ Pc
t ∪ Vc

t ), E+t >,
where the weight of the edge E+t (i, j) between node i and j is constructed from the following rules:

E+t (i, j) =


w

(t)
v , if i ∈ U , j ∈ V

1, if i ∈ V, j ∈ P
1, if i ∈ U , j ∈ P+

t
0, otherwise

, (2)

where w(t)
v = sigmoid(e⊤u ev +

∑
p∈P+

t
e⊤v ep−

∑
p∈P−

t
e⊤v ep) denotes the dynamic matching score

of the item v at the current conversational turn t. Next, let e(0)u = eu, e(0)v = ev and e
(0)
p = ep

denote the embeddings of user, item and attribute value, we then adopt a Graph Convolutional
Network (GCN) [35] to propagate the message on the current dynamic graph, and calculate the
hidden representation of the node at the l+1-th layer as follows:

e
(l+1)
i =σ(

∑
{j|E+

t (i,j)>0}

W
(l)
a e

(l)
j√∑̂

j

E+t (i, ĵ)
∑̂
j

E+t (j, ĵ)
+ e

(l)
i ), (3)

where W
(l)
a ∈ Rd×d are the trainable parameters for the l-th layer, σ denotes the LeakyReLU activa-

tion function. We stack La layers of GCNs and fetch the hidden representation e
(La)
u , e(La)

v ,e(La)
p at

the last layer as the output of the positive feedback graph encoder.
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Negative feedback graph encoder captures the user’s negative feedback on attribute values and
their negative correlations with candidate attribute values/items in the conversation history. Similar to
Eq. 2, for each user u, we construct a local negative graph G−t =< {u}∪P−

t ∪V−
t ∪Pc

t ∪Vc
t , E−t >,

where the weight of the edge E(t)i,j between node i and node j is constructed from the following rules:

E−t (i, j) =


w

(t)
v , if i ∈ U , j ∈ V

1, if i ∈ V, j ∈ P
1, if i ∈ U , j ∈ P−

t
0, otherwise

. (4)

We then stack Ln layers of GCNs similar to Eq. 3, and fetch the hidden representation e
(Ln)
u ,

e
(Ln)
v ,e(Ln)

p at the last layer as the output of the negative feedback graph encoder.

Transformer-based aggregator fuses the information from the graph encoders, and captures the
sequential relationships among items and attribute values mentioned in the conversation history.
Specifically, for the accepted/rejected attribute values/items at previous conversational turns, we first
project the accepted ones and rejected ones into different spaces to distinguish between the positive
and the negative feedbacks:

e
′

p = Wae
(La)
p +ba or e

′

p = Wne
(Ln)
p +bn

e
′

v = Wne
(Ln)
v +bn, (5)

where Wa,Wn ∈ Rd×d and ba,bn ∈ Rd are trainable parameters. Next, the positive/negative
feedbacks are fused with the representations from the global graph encoder with a gating mechanisms
to capture the information from both the global relationships and the local conversation feedbacks:

vp = gate(h(Lg)
p , e

′

p), vv = gate(h(Lg)
v , e

′

v)

gate(x,y) = ξ · x+ (1− ξ) · y
ξ = sigmoid(Wga

1 x+Wga
2 y + bga), (6)

where Wga
1 ,Wga

2 ∈ Rd×d, bga ∈ Rd are trainable parameters. Finally, we adopt a Transformer
encoder [36] to capture the sequential relationships about the conversation history and obtain the
current state representation st as follows:

st = Meanpooling(Transformer(V)), (7)

where V is built using all the previously mentioned attribute values and items and in the conversation
history: V = {vp|p ∈ P+

t ∪ P−
t } ∪ {vv|v ∈ V−

t }.

G Details of the Policy Network and Q-network

Based on the state representation st, S-agent adopts a policy network πϕ(ot|st) to decide action type
ot and a Q-network Qθ(at|st, ot) to decide the specific action at:

πϕ(ot|st) = softmax(MLPπ(st)) Qθ(at|st, ot) = MLPA(st||at) + MLPV (st), (8)

where MLP denotes a two-layer perceptron, at = ep or at = ev denotes the embedding of actions
(attribute value or item) at the t-th turn, A and V denote the advantage and value function of the
dueling Q-network [37] respectively.

H Training Algorithm

Training algorithm of SAPIENT is in Algorithm 1.

I Details of Building the Search Tree

The search tree in S-planner is built in the following four stages:
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Algorithm 1 Training algorithm of SAPIENT
Require: conversational MDPs for all users {M(u)}Uu=1, training steps E, # of simulations N ,

exploration factor w
for step← 1, · · · , E do

Sample a user u from U , initialize the state as s0
for n← 1, · · · , N do

Initialize the trajectory as τ (u)i ← {}, t← 0
while st has children do ▷ Trajectory Selection

Select an action type ot (Eq. 9) and an action at (Eq. 10)
Save st to τ

(u)
i , st+1 ← T (st, at), t+=1

end while
while st is not end of conversation do

Attach two children (ask and rec) to st ▷ Node Expansion
Select an action type ot with policy network ▷ Conversation Simulation
Select an action at with the Q-network
Save st to τ

(u)
i , st+1 ← T (st, at), t+=1

end while
Initialize R(τ

(u)
i , t)← rt

while t ≥ 0 do ▷ Reward Back-Propagation
Update the Q-value q(st, ot) with Eq. 11
Rt(τ

(u)
i )←γRt(τ

(u)
i ) + rt, V (st)+=1, t−=1

end while
end for
Save the highest-rewarded trajectory to the memory ▷ Training
Sample a batch of experiences, update πϕ(ot|st) and Qθ(at|st, ot)

end for

Trajectory selection S-planner selects the most promising trajectory from the tree root to a leaf
node that is likely to obtain a high future reward q(st, ot), and the selected trajectory will be further
expanded for conversation simulation later. This selection process trades off between exploitation,
measured by q(st, ot), against exploration, measured by how often the nodes are visited. Particularly,
S-planner adapts the Upper Confidence bounds applied to Trees (UCT) approach [16] to achieve the
trade-off between exploitation and exploration, and at each node st, select action type o∗t into the
trajectory that maximizes the UCT value as follows:

o∗t← argmax
ot∈{ask,rec}

[
q(st, ot) + w

√
log V (st)

V (f(st, ot))

]
, (9)

where w > 0 is the exploration factor, V (st) quantifies the visits on node st during conversation
simulations, and f(st, ot) represents the child node of st after choosing the action type ot. Intuitively,
the second term in Equation 9 is larger if the child node is less visited, encouraging more exploration.
After selecting the action type o∗t , S-planner chooses the optimal action a∗t with the Q-network:

a∗t ← argmax
at∈Ast,o

∗
t

Qθ(at|st, o∗t ). (10)

Node Expansion When a leaf node is reached, S-planner expands the leaf node by attaching two
children node (corresponding to two action type ask and rec) to it. The expected future reward
q(st+1, ot+1) of choosing ot+1 at the newly attached node st+1 is initialized as the highest value
estimated by the Q-network Qθ(at+1|st+1, ot+1) among all the candidate actions in the sub action
space Ast+1,ot+1

, serving as a heuristic guidance for the future tree search.

Conversation Simulation To predict how the future conversation unfolds, S-planner continues to
simulate conversations between SAPIENT and the user until the conversation succeeds or terminates.
Starting from the last expanded node, at each turn, the policy network decides the action type, while
the Q-network decides the specific action.
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Reward Back-propagation Once the simulated conversation succeeds or terminates, S-planner
back-propagates from the leaf node of the current trajectory τ

(u)
i to the root to increase the visit count

of each node along τ
(u)
i , and update the expected future reward q(st, ot) along τ

(u)
i as follows:

q(st, ot)←q(st, ot) +
[
Rt(τ

(u)
i )− q(st, ot)

]
/V (st), (11)

where Rt(τ
(u)
i ) denotes the cumulative reward up until the t-th turn. Intuitively, this update rule is

similar to stochastic gradient ascent: each time q(st, ot) is adjusted by step 1/V (st) in the direction
of the error Rt(τ

(u)
i )− q(st, ot).

J Details on S-agent training

S-agent is trained with the best conversation plan from S-planner to improve its planning capability.
The policy network in S-agent is updated with supervised cross-entropy loss, and the Q-network is
updated with double Q-learning [32]. Also, an efficient algorithm SAPIENT-e is proposed to improve
the training efficiency. Details are as follows:

Policy Network Update The policy network is updated with the supervised cross-entropy loss,
aligning its decision with MCTS demonstrations:

Lϕ = Eet∼D [− log πϕ(ot|st)] . (12)

Q-Network Update The Q-network is updated with double Q-learning [32], which maintains
a target network Qθ̃(at|st, ot) as a periodic copy of the online network Qθ(at|st, ot) and trains
Qθ(at|st, ot) to minimize the temporal difference error [38]:

Lθ = Eet∼D

[
(Qθ(at|st, ot)− rt − γ max

at+1∈Ast+1,ot+1

Qθ̃(at+1|st+1, ot+1))
2
]
, (13)

where γ is the discount factor in MDP, θ̃ is the parameters of the target network.

Improving Training Efficiency The aforementioned training process only selects the highest-
rewarded conversation plan as demonstrations. This guarantees the quality of training data, but may
be inefficient because it requires simulating a large number of conversations to collect enough highest-
rewarded trajectories. To improve efficiency, we further propose a variant SAPIENT-e. Instead of
using only the highest-rewarded trajectories, SAPIENT-e makes full use of all the trajectories found by
S-planner, and thus greatly reduces the cost of collecting enough trajectories. Since some trajectories
are good while others are suboptimal (e.g., user quits the conversation after Tmax turns), we would
like to encourage πθ(ot|st) to increase the likelihood for good trajectories and decrease the likelihood
for suboptimal ones. To this end, we employ the Plackett-Luce model [39, 40] to train πθ(ot|st) with
listwise likelihood estimations. For each user u, assuming that all the N trajectories are ranked by
their cumulative rewards in the order of τ (u)1 , τ

(u)
2 , · · · , τ (u)N , we update the policy network as:

Lϕ=Eu∼U

[
− logP (τ

(u)
1 ≻ τ

(u)
2 ≻ · · · ≻ τ

(u)
N )

]
=Eu∼U

[
−log

N∏
n=1

exp
∑

st,ot∈τ
(u)
n

log πϕ(ot|st)

N∑
j=n

exp
∑

st,ot∈τ
(u)
j

log πϕ(ot|st)

]
,

(14)
where τ

(u)
1 ≻ τ

(u)
2 indicates τ (u)1 is preferred over τ (u)2 , and the denominator sums the likelihood of

all the trajectories preferred over the j-th trajectory. The Q-network is still updated as in Equation 13
except that the sampled experiences come from all the trajectories instead of only the highest-
rewarded trajectories. In this way, all the trajectories found by S-planner can be utilized, thus
saving the search cost. SAPIENT-e only performs slightly worse than SAPIENT and much better than
baselines (Section 4.1), and can be viewed as a good trade-off between efficiency and performance.
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K Experimental Details

K.1 Dataset Details and Statistics

We evaluate our method on four benchmark datasets: Yelp [2], LastFM [2], Amazon-Book [22, 41]
and MovieLens [23]. Detailed dataset information is introduced as follows and the statistics are
presented in Table 2.

• Yelp1: This dataset contains the users’ reviews on business venues such as restaurants and bars.
Lei et al. [2] build a 2-layer taxonomy for the original attribute values in this dataset, and we adopt
the first-layer categories as attribute types, and the second-layer categories as attribute values.

• LastFM2: This dataset contains music artist listening information of users from an online music
system. Following Lei et al. [9], Zhang et al. [11], we adopt cluster the original attribute values
into 34 attribute types.

• Amazon-Book3: The Amazon review dataset [22, 41] is a large-scale collection of online shopping
data featuring users’ product reviews across various domains. We select the book domain from this
collection. Following Wang et al. [42] we choose entities and relations within knowledge graph
as attribute values and types, and only retain entities associated with at least 10 items to ensure
dataset quality.

• MovieLens4[23]: This dataset records users’ activities in an online movie recommendation plat-
form. We select the version with about 20M interactions, choose entities and relations within
knowledge graph as attribute values, and only retain the user-item interactions ratings greater than
3 to ensure dataset quality.

Table 2: Statistics of datasets after preprocessing.

Dataset Yelp LastFM Amazon- MovieLens
Book

#Users 27,675 1,801 30,291 20,892
#Items 70,311 7,432 17,739 16,482
#Interactions 1,368,609 76,693 478,099 454,011
#Attribute Values 590 8,438 988 1,498
#Attribute types 29 34 40 21
#Entities 98,576 17,671 49,018 38,872
#Relations 3 4 2 2
#Triplets 2,533,827 228,217 565,069 380,016

K.2 Details of the User Simulator

Training and evaluating CRS with real user interactions can be impractically expensive at scale. To
address this issue, we follow Zhang et al. [11] and simulate a conversation session for each observed
user-item set interaction pair (u,V(u)). In each simulated conversation, we regard an item vi ∈ V(u)
as the ground-truth target item. Each conversation is initialized with a user specifying preference on
an attribute value p0 that this user clearly prefers, which is randomly chosen from the shared attribute
values of all items in V(u). As the conversation continues, in each turn, the simulated user feedback
follows these rules: (1) when the CRS asks a question, the user will only accept attribute values
associated with any item in V(u) and reject others; (2) when the CRS recommends a list of items, the
user will accept it only if at least one item in V(u) is in the recommendation list; (3) the user will
become impatient after Tmax = 15 turns and quit the conversation.

K.3 Detailed Calculation of hDCG

Normalized Discounted Cumulative Gain@K (NDCG@K) is a common ranking metric to evaluate
the relevance of items recommended by a system. Deng et al. [4] extend the normal NDCG to a
two-level hierarchical version suitable for evaluating CRS. The hierarchical normalized Discounted

1https://www.yelp.com/dataset/
2https://grouplens.org/datasets/hetrec-2011/
3https://jmcauley.ucsd.edu/data/amazon/
4https://grouplens.org/datasets/movielens/
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Figure 3: Success rate under different exploration factor w.
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Figure 4: Success rate and training time for 100 gradient descent steps under different rollout number
N .

Cumulative Gain@(T,K) (hDCG@(T,K)) is defined as follows:

hDCG@(T,K) =

T∑
t=1

K∑
k=1

r(t, k)

[
1

log2(t+ 2)
+

(
1

log2(t+ 1)
− 1

log2(t+ 2)

)
1

log2(k + 1)

]
,

(15)
where T represents the number of conversation turns, K represents the number of items recommended
at each turn, r(t, k) denotes the relevance of the result at turn t and position k. Since we have a
maximum of Tmax conversation turns, and the CRS may recommend a maximum number of Kv items,
we report the hDCG metric where T = Tmax and K = Kv .

K.4 Details of Baseline Methods

For a comprehensive evaluation, we compare our method with the following baselines:

• Max Entropy [2]. This method chooses to ask attribute values with the maximum entropy among
candidate items, or chooses to recommend the top-ranked items with certain probability.

• Abs Greedy [1]. This method only recommends items in each turn without asking questions. If the
recommended items are rejected, the model updates by treating them as negative samples.

• CRM [3]. This method adopts a policy network to decide when and what to ask. As it is originally
designed for single-turn CRS, we follow Lei et al. [2] to adapt it to the MCR setting.

• EAR [2]. This method designs a three-stage strategy to better converse with users. It first builds
predictive models to estimate user preferences, then learns a policy network to take action, and
finally updates the recommendation model with reflection mechanism.

• SCPR [6]. This method models CRS as an interactive path reasoning problem over the knowledge
graph. It leverages the graph structure to prune irrelevant candidate attribute values and adopts a
policy network to choose actions.

• UNICORN [4]. This method designs a unified CRS policy learning framework with graph-based
state representation learning and deep Q-learning.

• MCMIPL [11]. This method develops a multi-choice questions based multi-interest policy learning
framework for CRS, which enables users to answer multi-choice questions in attribute combinations.

• HutCRS [25]. This method proposes a user interest tracking module integrated with the decision-
making process of the CRS to better understand the preferences of the user.

• CORE [26]. This is a Large Language Model (LLM) powered CRS chatbot with user-friendly
prompts and interactive feedback mechanisms.
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K.5 Implementation Details

Following Zhang et al. [11] for a more realistic multi-choice setting, if the CRS agent decides to ask,
top-Kp attribute values with the same attribute type will be asked from the candidate attribute value
set Pc

t to form a multi-choice question; and if the CRS agent decides to recommend, top-Kv items
will be recommended from the candidate item set Vc

t . Following Lei et al. [6], Deng et al. [4], each
dataset is randomly split into train, validation and test by a 7:1.5:1.5 ratio. We set the embedding
dimension d as 64, batch size as 128. We adopt an Adam optimizer [43] with a learning rate of 1e-4.
We set the discount factor γ as 0.999. The memory size of experience replay is set as 10000. For
the GPM module, the number of the collaborative graph encoder layers Lc is set as 2, and both the
number of the positive graph encoder layer La and the number of the negative graph encoder layer Ln

are set as 1, the number of the Transformer-based aggregator layers are set as 2, and we follow Deng
et al. [4], Zhang et al. [11] to adopt TranE [44] from OpenKE [45] to pretrain the node embeddings
with the training set. Following Lei et al. [2], Deng et al. [4], we set the size of recommendation list
Kv as 10, the maximum number of turns Tmax = 15. We set the default exploration factor w as 1.5,
the default number of rollouts N as 20, and variants are explored in Section 4.3.

K.6 Overall Performance Comparison

Table 3: Performances on benchmark datasets. The best performance and the second-best performance
on each dataset is in bold and underlined respectively. ∗ indicates the improvement is statistically
significant (p < 0.01).

Models
Yelp LastFM Amazon-Book MovieLens

SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑
Abs Greedy 0.195 14.08 0.069 0.539 10.92 0.251 0.214 13.50 0.092 0.752 4.94 0.481
Max Entropy 0.375 12.57 0.139 0.640 9.62 0.288 0.343 12.21 0.125 0.704 6.93 0.448
CRM 0.223 13.83 0.073 0.597 10.60 0.269 0.309 12.47 0.117 0.654 7.86 0.413
EAR 0.263 13.79 0.098 0.612 9.66 0.276 0.354 12.07 0.132 0.714 6.53 0.457
SCPR 0.413 12.45 0.149 0.751 8.52 0.339 0.428 11.50 0.159 0.812 4.03 0.547
UNICORN 0.438 12.28 0.151 0.843 7.25 0.363 0.466 11.24 0.170 0.836 3.82 0.576
MCMIPL 0.482 11.87 0.160 0.874 6.35 0.396 0.545 10.83 0.223 0.882 3.61 0.599
HutCRS 0.528 11.33 0.175 0.900 6.52 0.348 0.638 9.84 0.227 0.902 4.16 0.475
CORE 0.210 12.82 0.166 0.862 7.05 0.356 0.462 11.49 0.182 0.810 6.51 0.429

SAPIENT-e 0.612∗ 10.41∗ 0.208∗ 0.922∗ 6.32 0.358 0.682∗ 9.51∗ 0.239∗ 0.928∗ 3.76 0.607∗

SAPIENT 0.622∗ 10.02∗ 0.229∗ 0.928∗ 6.15∗ 0.398 0.718∗ 9.28∗ 0.252∗ 0.930∗ 3.48∗ 0.610∗

We compare SAPIENT with 9 state-of-the-art baselines and report the experimental results in Table 3.
We have the following observations:

(1) SAPIENT achieves consistent improvement over baselines in terms of all metrics on all the
datasets, with an average improvement of 9.1% (SR), 6.0% (AT) and 11.1% (hDCG) compared with
the best baseline. Different from baselines, which base their planning solely on the observation of
current state without looking ahead, SAPIENT foresees how the future conversation unfolds with an
MCTS-based planning algorithm. This enables SAPIENT to take actions that maximize the cumulative
rewards instead of settling for the immediate reward, enabling strategic, non-myopic conversational
planning and superior performances.

(2) SAPIENT substantially outperforms baselines in datasets demanding strong strategic planning
capability from the CRS. The performance gain of SAPIENT is higher on datasets with a larger AT
(Yelp and Amazon-Book) compared to datasets with a smaller AT (LastFM and MovieLens), and
higher AT in these datasets indicates the need for more strategic planning over long conversational
turns. Compared with baselines, SAPIENT is equipped with S-planner and excels in conversational
planning, hence showing remarkable improvements on these two datasets.

(3) SAPIENT-e outperforms all baselines on recommendation success rate. Although the training
data for SAPIENT-e still contain a portion of low-quality trajectories , SAPIENT-e still significantly
outperforms the best baselines across most metrics, indicating that SAPIENT-e is a good trade-off
between efficiency and performance.

K.7 Efficiency Analysis
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Table 4: Training GPU hours on four datasets.
Model Yelp LastFM Book MovieLens
UNICORN 16.15 4.30 6.03 7.96
MCMIPL 15.57 5.08 6.40 7.93
HutCRS 14.05 4.66 5.83 8.40
SAPIENT-e 16.40 5.57 6.88 8.45
SAPIENT 38.15 11.07 13.21 20.97

Training efficiency of SAPIENT and SAPIENT-e
is highly comparable to the baselines. As shown
in Table 4, SAPIENT-e takes similar training time
with baselines as it collects all the trajectories
from MCTS and do not incur additional search
cost. Even with SAPIENT, the training time is
only about 2 times longer than baselines. This
is because conversation simulation only requires
forward propagation without gradient backward,

so even conducting 20 rollouts per user will not significantly reduce efficiency. Also note that during
inference, the efficiency of SAPIENT is comparable with baselines, as tree search is not required
during inference.

K.8 Additional Analysis on Efficiency

Although training SAPIENT requires conducting multiple simulated rollouts for each user, we find that
such design will not significantly compromise efficiency compared with the baseline CRS methods.
Under the same training pipeline with a single Tesla V100 GPU, SAPIENT with 20 rollouts per user
takes 698 seconds per 100 iteration steps on the LastFM dataset and 1049 seconds per 100 iteration
steps on the Amazon-Book dataset on average, which is about twice as slow as the two competitive
baselines (HutCRS: 305 seconds/100 steps on LastFM, 465 seconds/100 steps on Amazon-Book;
MCMIPL: 429 seconds/100 steps on LastFM, 548 seconds/100 steps on Amazon-Book). This is
because the simulation process only requires forward calculation without the need for gradient
backward update, so even conducting 20 rollouts per user will only reduce the training speed by half.
Also, we note that during inference, the efficiency of SAPIENT is comparable with baseline methods,
because no tree search is required during inference. Therefore, we think that it is worthwhile to
introduce tree search for CRS, as such design only compromises efficiency during training and can
be accelerated by adopting parallel methods for MCTS [46] in the future.

K.9 Ablation Study

Table 5: Experimental results of the ablation study.

Models Yelp LastFM Amazon-Book MovieLens
SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑ SR↑ AT↓ hDCG↑

SAPIENT 0.622 10.02 0.229 0.928 6.15 0.398 0.718 9.28 0.252 0.930 3.48 0.610
w/o Global G 0.520 11.39 0.171 0.906 6.56 0.345 0.626 10.15 0.217 0.878 5.30 0.397
w/o Pos. G+ 0.482 11.56 0.163 0.862 7.53 0.313 0.560 11.15 0.184 0.886 4.17 0.496
w/o Neg. G− 0.532 10.80 0.185 0.905 6.92 0.336 0.656 10.01 0.227 0.860 5.42 0.389
w/o Policy net. 0.519 11.08 0.186 0.894 6.37 0.361 0.628 9.61 0.240 0.896 4.59 0.516
w/o Q-net. 0.582 10.69 0.190 0.808 7.92 0.332 0.594 10.62 0.198 0.866 5.47 0.386
w/o S-planner 0.520 11.06 0.193 0.902 6.80 0.335 0.650 10.20 0.218 0.860 5.53 0.396

To validate the effectiveness of the key components, we conduct ablation studies and report the results
in Table 5. Based on the result, we have the following observations.

Effectiveness of state encoding To validate the effectiveness of the key components, we conduct
ablation studies and report the results in Table 5. We have the following observations:

(1) Each graph—G,G+,G− is vital for S-agent to encode the state information. Removing each
graph from S-agent degrades performance, verifying the necessity of each graph in state encod-
ing: global information graph G is crucial for mining user-item relations and item-attribute value
associations, while positive (G+) and negative (G−) feedback graphs are vital for capturing users’
preferences (likes/dislikes on items and attribute values) expressed in the conversation.

(2) Both the policy network and the Q-network are critical to conversational planning. We design
two variants: replacing the policy network with random action type selection (w/o Pol. net.); replacing
the Q-network with entropy-based action selection (w/o Q-net.). Performance drops in both variants
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suggest both networks are crucial for hierarchical action selection, and the absence of an informed
decision maker, either at the action type or the action level, leads to poor conversational planning.

(3) Guidance from S-planner is crucial for S-agent to achieve strategic conversational planning.
Removing S-planner and training S-agent on sampled on-policy trajectories as in Deng et al. [4]
degrades the performance, because sampled trajectories may bring cumulative errors and biased
estimations [14, 15], resulting in suboptimal conversational planning. By contrast, the high-rewarded
conversation plans from S-planner offers robust guidance for S-agent and boosts its capability for
strategic planning.

K.10 Hyper-parameter Sensitivity

Exploration and Exploitation The exploration factor w controls the balance between exploration
and exploitation. To study its impact, we set w from 0.0 (exploitation only) to 5.0 (mostly favours
exploration) and plot the success rate in Figure 3. We find that the performances are generally
worse with only exploitation, but too much exploration does not negatively affect the performance.
This is probably because our conversation tree has a very small search space (ask and rec), so high
exploration does not incur much cost and also ensures thorough evaluation of actions, while high
exploitation may prevent the tree from discovering the optimal action and lead to myopic solutions.

Influence of MCTS rollouts To study the influence of MCTS rollouts, we set N from 1 (equivalent
to disabling MCTS, as there is no selection and reward back-propagation when N = 1) from 50 and
plot the success rate and training time (on a single Tesla V100 GPU) in Figure 4. Unsurprisingly, we
find that more rollouts increases the chance of discovering the optimal trajectory and lead to better
performance, while disabling MCTS shows the worst performance. Nevertheless, we should also
note that more rollouts bring additional computational cost, and setting N = 20 can achieve a good
trade-off between efficiency and performance.

K.11 Additional Analysis on Action Strategies

(1) …AARR… (2) …RAAR… (3) …AAR<End>

Common Action Strategies on LastFM:

196/1801 415/1801 1000/1801
(1) …AARR… (2) …RAR… (3) …ARR<End>

9238/30291 16270/30291 3790/30291

Common Action Strategies on Amazon-Book:

(1) …AARR…

Common Action Strategies on MovieLens:

2028/20892
(1) …AARR… (2) …RAR…

11021/27675 15693/27675

Common Action Strategies on Yelp:

(2) …RAR…

7564/20892
(3) …AAR<End>

9870/20892

(3) …AAR<End>

10395/27675

Figure 5: Common action strategies identified on four datasets. A stands for ask while R stands for
recommendation. The probability of ask or recommendation at each node and the frequency of each
action pattern (# of action patterns/# of users in this dataset) are shown in the figure.

To gain an insight into the planning and decision making ability of SAPIENT, we identify some
typical action strategies of SAPIENT in Figure 5 that will be helpful for information seeking and
recommendation success in the conversation.

• ...AARR...: This action strategy occurs frequently during the conversation. The CRS first asks
the user two questions consecutively to gather crucial information on user preference, and then
quickly narrows down the candidate item list by making two targeted recommendation attempts.
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Figure 6: A case study on the Yelp dataset.

This strategy is useful as it not only addresses immediate user needs, but also incorporate long-term
planning strategy to ensure that recommendations are personalized and relevant.

• ...RAAR... and ...RAR...: These are also two frequent action strategies during the conversation. In
cases where an initial recommendation attempt fails, the CRS will adeptly adjust the action strategy
by asking one or two additional questions to better understand the user’s preference, ensuring that
subsequent recommendations are more aligned with the user’s needs. Interestingly, we find that on
the LastFM dataset, the CRS tends to ask two additional questions, while on the other datasets, the
CRS typically asks only one additional question. This is probably because the LastFM dataset has
a very large number of attribute values, so two additional questions are required to fully clarify the
user’s preference.

• ...ARR<end> and ...AAR<end>: These two strategies occur frequently at the end of the con-
versation. Once the CRS has gathered sufficient information about the user’s preferences, it is
able to reach successful recommendation with only one or two attempts. This strategy enables
the CRS to swiftly hit the target item, thereby shortening the conversation and reducing repeated
recommendations.

K.12 Case Study

We provide a case study from a randomly sampled user in Figure 6 to demonstrate how SAPIENT
makes strategic conversation planning. The user, who has visited some Thai restaurants before, is
now looking for a nightlife venue in this conversation. SAPIENT quickly grasps user preference
by asking only three questions, and makes a successful recommendation on the first attempt. By
comparison, HutCRS can also make successful recommendations but requires more questions and
recommendation attempts, while MCMIPL repeatedly makes failed recommendations. Owing to
the collaborative graph encoder in the GPM, SAPIENT can infer user preferences from historical
visits (e.g, the user’s preference on Thai food) without the need for explicitly queries, thus reducing
conversation turns and improving the comprehension of user preferences. Moreover, the progression
from broad questions (e.g., place type) to specific questions (e.g., nightlife type) exemplifies how
SAPIENT strategically plans conversations and asks information-seeking questions, with the policy
network focusing on conversation action planning and the Q-network specializing in precise attribute
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value estimation. This design helps to narrow down candidate items quickly and ultimately improve
the recommendation success rate.

L Limitations

First, our framework only supports searching over two types of actions (ask and rec) so far, which
cannot search at a more fine-grained level (e.g., defining action types as “recommending items with
a five-star rating”, “recommending items with a three-star rating”, rather than just “recommending
items”). For future work, we plan to adopt advanced action abstraction techniques [47] to divide the
search space at more fine-grained levels. Second, training SAPIENT requires conducting multiple
simulated rollouts for each user, which introduces additional computational cost compared with
existing methods. For future work, we plan to further improve the training efficiency of SAPIENT
by adopting parallel acceleration methods [46] for MCTS. Third, while the user simulator approach
can provide high quality simulations for the conversation [9, 48, 11], it may not fully represent the
dynamics and complexities of user behaviors in the real-world situations. This issue may be partially
addressed by developing an LLM-based user simulator that fully utilizes the human-likeliness of
LLMs to better simulate user behaviors in the conversation for future work.

While it is our aspiration that CRS can provide personalized and user-friendly recommendations if
correctly deployed, we also acknowledge that unintended uses of CRS may pose concerns on fairness
and bias issues [49], which may be a potential risk for CRS but can be mitigated with debiasing
algorithms as in the literature [50, 51].

M Ethics Statement

All datasets used in this research are from public benchmark open-access datasets, which are
anonymized and do not pose privacy concerns.
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