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ABSTRACT

Neural networks are often biased to spuriously correlated features that provide
misleading statistical evidence that does not generalize. This raises a fundamental
question: “Does an optimal unbiased functional subnetwork exist in a severely
biased network? If so, how to extract such subnetwork?” While few studies have
revealed the existence of such optimal subnetworks with the guidance of ground-
truth unbiased samples, the way to discover the optimal subnetworks with biased
training dataset is still unexplored in practice. To address this, here we first present
our theoretical insight that alerts potential limitations of existing algorithms in
exploring unbiased subnetworks in the presence of strong spurious correlations.
We then further elucidate the importance of bias-conflicting samples on structure
learning. Motivated by these observations, we propose a Debiased Contrastive
Weight Pruning (DCWP) algorithm, which probes unbiased subnetworks without
expensive group annotations. Experimental results demonstrate that our approach
significantly outperforms state-of-the-art debiasing methods despite its consider-
able reduction in the number of parameters.

1 INTRODUCTION

While deep neural networks have made substantial progress in solving challenging tasks, they often
undesirably rely on spuriously correlated features or dataset bias, if present, which is considered
one of the major hurdles in deploying models in real-world applications. For example, consider
recognizing desert foxes and cats from natural images. If the background scene (e.g., a desert) is
spuriously correlated to the type of animal, the neural networks might use the background informa-
tion as a shortcut to classification, resulting in performance degradation in different backgrounds
(e.g., a desert fox in the house).

We consider this shortcut as an inherent design issue of subnetworks. If any available information
channels in deep networks’ structure could transmit the information of spurious features, networks
would exploit those features as long as they are sufficiently predictive. It naturally follows that
pruning weights on spurious features or weights can purify the biased latent representations, leading
to improved performances on bias-conflicting samples1. Accordingly, we hypothesize that such
unbiased subnetworks may exist in the pretrained biased network.

Zhang et al. (2021) has empirically demonstrated the existence of subnetworks that are less sus-
ceptible to spurious features by using sufficient number of ground-truth bias-conflicting samples.
Based on the modular property of neural networks (Csordás et al., 2020), they prune out weights
that are irrelevant to the subtask, which is classification of the ground-truth bias-conflicting sam-
ples. Nonetheless, it is still unclear how to discover such optimal subnetworks when the dataset is
highly biased.

To formulate this idea, we present a simple theoretical example in which, in the presence of strong
spurious correlations, there exists an inevitable generalization gap of subnetworks obtained by stan-
dard pruning algorithms. Our example highlights the limitations of unbiased substructure probing
combining the cross entropy loss and sparsity regularization (Zhang et al., 2021).

1The bias-aligned samples refer to data with a strong correlation between (potentially latent) spurious fea-
tures and target labels (e.g., cat in the house). The bias-conflicting samples refer to the opposite cases where
spurious correlations do not exist (e.g., cat in the desert).
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In addition, our example provides insight that sampling more bias-conflicting data makes it possible
to identify incorrect weights. Specifically, bias-conflicting samples require that the weights associ-
ated with spurious correlations should be removed because the spurious features are not helpful in
predicting the bias-conflicting samples. It leads to the exclusive preservation of non-spurious or in-
variant weights that are useful in deriving the upper bounds of the generalization error. Furthermore,
our theoretical observations suggest that balancing the ratio between the number of bias-aligned and
bias-conflicting samples is crucial in finding the optimal unbiased subnetworks. However, due to
the potential pitfalls in data collection protocols or human prejudice, the dataset may severely lack
diversity for bias-conflicting samples. Since it is often highly laborious to supplement enough bias-
conflicting samples, it would be better to fully exploit a small set of given bias-conflicting samples
in the training data.

To this end, we propose a novel debiasing scheme, called Debiased Contrastive Weight Pruning
(DCWP), that uses the oversampled bias-conflicting data as a probe to search unbiased subnetworks.
The proposed method comprises two stages: (1) identifying the bias-conflicting samples without ex-
pensive annotations on spuriously correlated attributes and (2) training the pruning parameters to
obtain weight pruning masks with debiased loss function and the sparsity constraint. More specif-
ically, our debiased loss includes (1) a weighted cross-entropy loss that upweights the identified
bias-conflicting samples and (2) an alignment loss that further reduces the geometrical alignment
gap between bias-aligned samples and bias-conflicting samples within each class.

We demonstrate that DCWP consistently outperforms state-of-the-art debiasing methods across var-
ious biased datasets, including the Color-MNIST (Li & Vasconcelos, 2019; Nam et al., 2020), Cor-
rupted CIFAR-10 (Hendrycks & Dietterich, 2019) and Biased FFHQ (Kim et al., 2021), even without
direct supervision on the bias type. Our approach improves the accuracy on the unbiased evaluation
dataset by 86.74% → 93.41%, 27.86% → 35.90% on Colored-MNIST and Corrupted CIFAR-10
compared to the second best model, respectively, even when 99.5% of samples are bias-aligned.

2 RELATED WORKS

Spurious correlations. A series of empirical works have shown that the deep networks often find
shortcut solutions relying on spuriously correlated attributes, such as the texture of image (Geirhos
et al., 2018), language biases (Gururangan et al., 2018) or sensitive variables such as ethnicity or
gender (Narayanan, 2018; Feldman et al., 2015). Such behavior is of practical concern because it
deteriorates the reliability of deep networks in sensitive applications like healthcare, finance, and
legal services (Corbett-Davies & Goel, 2018).

Debiasing frameworks. Recent studies have attempted to train a debiased network robust to spu-
rious correlations, which can be roughly categorized into approaches (1) leveraging annotations of
spurious attributes, i.e., bias label (Sagawa et al., 2019; Wang et al., 2020), (2) presuming certain
type of bias, e.g., texture (Bahng et al., 2020; Ge et al., 2021) or (3) without using explicit kinds
of supervisions on dataset bias (Nam et al., 2020; Lee et al., 2021). Sagawa et al. (2019); Hu et al.
(2018) optimize the worst-group error by using training group information. For the practical imple-
mentation, reweighting or subsampling protocols are often used with increased model regularization
(Sagawa et al., 2020). Liu et al. (2021); Sohoni et al. (2020) extend these approaches to the settings
without expensive group annotations. Goel et al. (2020); Kim et al. (2021) provide bias-tailored aug-
mentations to synthetically balance the majority and minority groups. In particular, these approaches
have mainly focused on better approximation and regularization of worst-group error combined with
advanced data sampling, augmentation, or retraining strategies.

Studying impacts of neural architectures. In contrast to the approaches mentioned above, the ef-
fects of deep neural network architecture on generalization performance are relatively less explored.
Diffenderfer et al. (2021) employ recently advanced lottery-ticket-style pruning algorithms (Frankle
& Carbin, 2018) to design the compact and robust network architecture. Bai et al. (2021) directly
optimize the neural architecture in terms of accuracy on OOD samples, but it cannot fundamentally
eliminate the connections to the spurious input attributes. Zhang et al. (2021) demonstrate the effec-
tiveness of pruning weights on spurious attributes, but the solution for discriminating such spurious
weights lacks robust theoretical justifications, resulting in marginal performance gains. To fully
resolve the above issues, we carry out a theoretical case study, based on which we build a novel
pruning algorithm that distills the representations to be independent of the spurious attributes.

2



Under review as a conference paper at ICLR 2023

3 THEORETICAL INSIGHTS

3.1 PROBLEM SETUP

We consider a supervised setting of predicting labels Y ∈ Y from input samples X ∈ X by a
classifier fθ : X → Y parameterized by θ ∈ Θ. Following Zhang et al. (2021), let (Xe, Y e) ∼
P e, where Xe ∈ X and Y e ∈ Y refer to the input random variable and the corresponding label,
respectively, and e ∈ E = {1, 2, . . . E} denotes the index of environment, P e is the corresponding
distribution, and the set E corresponds to every possible environments. We further assume that E is
divided into training environmments Etrain and unseen test environments Etest, i.e. E = Etrain ∪
Etest.
For a given a loss function ℓ : X × Y × Θ → R+, the standard training protocol for ERM is to
minimize the expected loss with a training environment e ∈ Etrain:

θ̂ERM = argmin
θ

E(Xe,Y e)∼P̂ e

[
ℓ(Xe, Y e; θ)

]
, (1)

where P̂ e is the empirical distribution over the training data. Our goal is to learn a model with good
performance on OOD samples of e ∈ Etest.

3.2 MOTIVATING EXAMPLE

We assume that neural networks trained by ERM indiscriminately rely on predictive features, in-
cluding those spurious correlated ones (Tsipras et al., 2018). Specifically, ERM models may be
sensitive to every strongly-correlated feature regardless of whether it is causally related.

To examine this issue, we present a simple binary-classification example (Xe, Y e) ∼ P e, where
Y e ∈ Y = {−1, 1} represents the corresponding target label, and a sample Xe ∈ X =
{−1, 1}D+1 ∈ RD+1 is constituted with both the invariant feature Ze

inv ∈ {−1, 1} and spuri-
ous features Ze

sp ∈ {−1, 1}D, i.e. Xe = (Ze
inv,Z

e
sp). Suppose, furthermore, Ze

sp,i denote the i-th
spurious feature component of Ze

sp. Note that we assume D ≫ 1 to simulate the model heavily
relies on spurious features Ze

sp (Nagarajan et al., 2020; Zhang et al., 2021).

We consider the setting where the training environment e ∈ Etrain is highly biased. In other words,
we suppose that Ze

inv = Y e, and each of the i-th spurious feature component Ze
sp,i is independent

and identically distributed (i.i.d) Bernoulli variable: i.e. Ze
sp,i independently takes a value equal to

Y e with a probability pe and −Y e with a probability 1 − pe, where pe ∈ (0.5, 1],∀e ∈ Etrain.
Note that pe → 1 as the environment is severely biased. A test environment e ∈ Etest is assumed
to have pe = 0.5, which implies that the spurious feature is totally independent with Y e. Then
we introduce a linear classifier f parameterized by a weight vector w = (winv,wsp) ∈ RD+1,
where winv ∈ R and wsp ∈ RD. In this example, we consider a class of pretrained classifiers
parameterized by w̃(t) =

(
w̃inv(t), w̃sp,1(t), . . . , w̃sp,D(t)

)
, where t < T is a finite pretraining

time for some sufficiently large T . Time t will be often omitted in notations for simplicity.

Our goal is to obtain the optimal sparse classifier with a highly biased training dataset. To achieve
this, we introduce a binary weight pruning mask m as m = (minv,msp) ∈ {0, 1}D+1 for the
pretrained weights, which is a significant departure from the theoretical setting in Zhang et al.
(2021). Specifically, let minv ∼ Bern(πinv), where πinv and 1 − πinv represents the probabil-
ity of preserving (i.e. minv = 1) and pruning out (i.e. minv = 0), respectively. Similarly, let
msp,i ∼ Bern(πsp,i),∀i. Then, our optimization goal is to estimate the pruning probability param-
eter π = (π1, . . . , πD+1) = (πinv, πsp,1, . . . , πsp,D), where m ∼ P (π) is a mask sampled with
probability parameters π. Accordingly, our main loss function for the pruning parameters given the
environment e can be defined as follows:

ℓe(π) =
1

2
EXe,Y e,m[1− Y eŶ e]

=
1

2
EXe,Y e,m

[
1− Y e · sgn

(
w̃T (Xe ⊙m)

)]
,

(2)

where Ŷ e is the prediction of binary classifier, w̃ is the pretrained weight vector, sgn(·) represents
the sign function, and ⊙ represents element-wise product. The distribution function of each variable
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is omitted in expectations for notational simplicity. In practice, we apply strong sparsity constraint
as ℓ1 penalization in terms of π along with ℓe(π) to obtain a sparse solution.

We first derive the upper-bound of the training loss ℓe(π) to illustrate the difficulty of learning
optimal pruning parameters in a biased data setting.

Theorem 1. (Training and test bound) Assume that pe > 1/2 in the biased training environment
e ∈ Etrain. Define w̃(t) as weights pretrained for a finite time t < T . Then the upper bound of the
error of training environment w.r.t. pruning parameters π is derived as:

ℓe(π) ≤ 2 exp

(
−

2
(
πinv + (2pe − 1)

∑D
i=1 αi(t)πsp,i

)2
4
∑D

i=1 αi(t)2 + 1

)
, (3)

where the weight ratio αi(t) = w̃sp,i(t)/w̃inv(t) is bounded below some positive constant. Given a
test environment e ∈ Etest with pe = 1

2 , the upper bound of the error of test environment w.r.t. π is
derived as:

ℓe(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (4)

which implies that there is an unavoidable gap between training bound and test bound.

The detailed proof of Theorem 1 is provided in the supplementary material. The gap between (3)
and (4) severely deteriorates the reliability of subnetworks obtained by training π. This mismatch
of the bounds is attributed to the contribution of πsp,i on the training bound (3). Intuitively, the
networks prefer to preserve both w̃inv and w̃sp,i in the presence of strong spurious correlations due
to the inherent sensitivity of ERM to all kinds of predictive features (Ilyas et al., 2019; Tsipras et al.,
2018). This behavior is directly reflected in the training bound, where increasing either πinv or πsp,i,
i.e., the probability of preserving weights, decreases the training bound. This inertia of spurious
weights may prevent themselves from being primarily pruned against the sparsity constraint.

Remarkably, we observe some intriguing properties of αi(t): if infinitely many data and sufficient
training time is provided, the gradient flow converges to the optimal solution which is invariant to
Ze

sp, i.e., αi(t) → 0. In this ideal situation, the gap between training and test bound is closed,
thereby guaranteeing generalizations of obtained subnetworks. However, given a finite time t <
T with a strongly biased dataset in practice, αi(t) is bounded below by some positive constant,
resulting in an inevitable generalization gap. We provide details about the dynamics of αi(t) in the
appendix.

Then, how can we prioritize spurious weights to be pruned out? The above discussion illustrates the
risk of reliance on spurious features. In this regard, Theorem 1 implies that the classifier may pre-
serve pretrained spurious weights due to the lack of bias-conflicting samples, which serve as coun-
terexamples that spurious features themselves fail to explain. It motivates us to analyze the training
bound in another environment η where we can systematically augment bias-conflicting samples.
Specifically, consider Xη = (Zη

inv,Z
η
sp), where Zη

inv = Y η and mixture distribution of Zη
sp given

Y η = y is defined in an element wise as follows:

P η
mix(Z

η
sp,i | Y

η = y) = ϕP η
debias(Z

η
sp,i | Y

η = y) + (1− ϕ)P η
bias(Z

η
sp,i | Y

η = y), (5)

where ϕ is a scalar mixture weight,

P η
debias(Z

η
sp,i | Y

η = y) =

{
1, if Zη

sp,i = −y

0, if Zη
sp,i = y

(6)

is a debiasing distribution to weaken the correlation between Y η and Zη
sp,i by setting the value of

Zη
sp,i as −Y η , and

P η
bias(Z

η
sp,i | Y

η = y) =

{
pη, if Zη

sp,i = y

1− pη, if Zη
sp,i = −y

(7)

is a biased distribution similarly defined in the previous environment e ∈ Etrain. Given this new
environment η, the degree of spurious correlations can be controlled by ϕ. This leads to a training
bound as follow:
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Theorem 2. (Training bound with the mixture distribution) Assume that the defined mixture distri-
bution P η

mix is biased, i.e.,

P η
mix(Z

η
sp,i = −y | Y e = y) ≤ P η

mix(Z
η
sp,i = y | Y η = y), ∀ i (8)

Then, ϕ satisfies 0 ≤ ϕ ≤ 1 − 1
2pη . Then the upper bound of the error of training environment η

w.r.t. the pruning parameters is given by

ℓη(π) ≤ 2 exp

(
−
2(πinv + (2pη(1− ϕ)− 1)

∑D
i=1 αi(t)πsp,i)

2

4
∑D

i=1 αi(t)2 + 1

)
. (9)

Furthermore, when ϕ = 1− 1
2pη , the mixture distribution is perfectly debiased, and we have

ℓη(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (10)

which is equivalent to the test bound in (4).

The detailed proof is provided in the supplementary material. Our new training bound (9) suggests
that the significance of πsp,i on training bound decreases as ϕ progressively increases, and at the
extreme end with ϕ = 1 − 1

2pη , it can be easily shown that P η
mix(Z

η
sp,i | Y η = y) = 1

2 for both
y = 1 and y = −1 so that Zη

sp,i turns out to be random. In other words, by plugging ϕ = 1 − 1
2pη

into (9), we can minimize the the gap between training and test error bound, which guarantees the
improved OOD generalization.

4 DEBIASED CONTRASTIVE WEIGHT PRUNING (DCWP)

Our theoretical example elucidates the importance of balancing between the bias-aligned and bias-
conflicting samples in discovering the optimal unbiased subnetworks structure. While the true an-
alytical form of the debiasing distribution is unknown in practice, we aim to approximate such
unknown distribution with existing bias-conflicting samples and simulate the mixture distribution
P η
mix with modifying sampling strategy. To this end, we propose a Debiased Contrastive Weight

Pruning (DCWP) algorithms that learn the unbiased subnetworks structure from the original full-
size network by identifying and exploiting a small set of existing bias-conflicting training samples.

Consider a L layer neural networks as a function fW : X → RC parameterized by weights
W = {W1, . . . ,WL}, where C = |Y| is the number of classes. Analogous to the earlier works
on pruning, we introduce binary weight pruning masks m = {m1, . . . ,mL} to model the subnet-
works as f(·;m1⊙W1, . . . ,mL⊙WL). We denote such subnetworks as fm⊙W for the notational
simplicity. We treat each entry of ml as an independent Bernoulli variable, and model their logits as
our new pruning parameters Θ = {Θ1, . . . ,ΘL} where Θl ∈ Rnl and nl represents the dimension-
ality of the l-th layer weights Wl. Then πl,i = σ(Θl,i) denotes the probability of preserving the i-th
weight of l-th layer Wl,i where σ refers to a sigmoid function. To enable the end-to-end training, the
Gumbel-softmax trick (Jang et al., 2016) for sampling masks together with ℓ1 regularization term of
Θ is adopted as a sparsity constraint. With a slight abuse of notations, m ∼ G(Θ) denotes a set of
masks sampled with logits Θ by applying Gumbel-softmax trick.

Then our main optimization problem is defined as follows:

min
Θ

ℓdebias

(
{(xi, yi)}|S|

i=1; W̃ ,Θ
)
+ λℓ1

∑
l,i

|Θl,i|, (11)

where S denotes the index set of whole training samples, λℓ1 > 0 is a Lagrangian multiplier, W̃ rep-
resents the pretrained weights and ℓdebias is our main objective which will be illustrated later. Note
that we freeze the pretrained weights W̃ during training pruning parameters Θ. We interchangeably
use ℓdebias

(
{(xi, yi)}|S|

i=1; Θ
)

and ℓdebias
(
S; Θ

)
in the rest of the paper. For comparison with our

formulation, we recast the optimization problem of Zhang et al. (2021) with our notations as follows:
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min
Θ

ℓ
(
{(xi, yi)}|S|

i=1; W̃ ,Θ
)
+ λℓ1

∑
l,i

|Θl,i|, (12)

where Zhang et al. (2021) uses the cross entropy (CE) loss function for ℓ.

Bias-conflicting sample mining In the first stage, we identify bias-conflicting training samples
which empower functional modular probing. Specifically, we train a bias-capturing model and treat
an error set Sbc of the index of misclassified training samples as bias-conflicting sample proxies. Our
framework is broadly compatible with various bias-capturing models, where we mainly leverage the
ERM model trained with generalized cross entropy (GCE) loss (Zhang & Sabuncu, 2018):

ℓGCE(xi, yi;WB) =
1− pyi(xi;WB)

q

q
, (13)

where q ∈ (0, 1] is a hyperparameter controlling the degree of bias amplification, WB is the param-
eters of the bias-capturing model, and pyi

(xi;WB) is a softmax output value of the bias-capturing
model assigned to the target label yi. Compared to the CE loss, the gradient of the GCE loss up-
weights the samples with a high probability of predicting the correct target, amplifying the network
bias by putting more emphasis on easy-to-predict samples (Nam et al., 2020).

To preclude the possibility that the generalization performance of DCWP is highly dependent on
the behavior of the bias-capturing model, we demonstrate in Section 5 that DCWP is reasonably
robust to the degradation of accuracy on capturing bias-conflicting samples. Details about the bias-
capturing model and simulation settings are presented in the supplementary material.

Upweighting Bias-conflicting samples After mining the index set of bias-conflicting sample prox-
ies Sbc, we treat Sba = S \Sbc as the index set of majority bias-aligned samples. Then we calculate
the weighted cross entropy (WCE) loss ℓWCE

(
{xi, yi}|S|

i=1; W̃ ,Θ
)

as follows:

ℓWCE

(
S; W̃ ,Θ

)
:= Em∼G(Θ)

[
λup

|Sbc|
∑
i∈Sbc

ℓCE(xi, yi;m⊙W̃ )+
1

|Sba|
∑
i∈Sba

ℓCE(xi, yi;m⊙W̃ )

]
,

(14)
where λup ≥ 1 is an upweighting hyperparameter, and ℓCE denotes the cross entropy loss. The
expectation is approximated with Monte Carlo estimates, where the number of mask m sampled per
iteration is set to 1 in practice. To implement (14), we oversample the samples in Sbc for λup times
more than the samples in Sba. This sampling strategy is aimed at increasing the mixture weight ϕ
of the proposed mixture distribution P η

mix in (5), while we empirically approximate the unknown
bias-conflicting group distribution with the sample set Sbc.

Note that although simple oversampling of bias-conflicting samples may not lead to the OOD gener-
alization due to the inductive bias towards memorizing a few counterexamples in overparameterized
neural networks Sagawa et al. (2020), such failure is unlikely reproduced in learning pruning pa-
rameters under the strong sparsity constraint. We sample new weight masks m for each training
iteration in a stochastic manner, effectively precluding the overparameterized networks from poten-
tially memorizing the minority samples. As a result, DCWP exhibits reasonable performance even
with few bias-conflicting samples.

Bridging the alignment gap by pruning To fully utilize the bias-conflicting samples, we con-
sider the sample-wise relation between bias-conflicting samples and majority bias-aligned samples.
Zhang et al. (2022) demonstrates that the deteriorated OOD generalization is potentially attributed to
the distance gap between same-class representations; bias-aligned representations are more closely
aligned than bias-conflicting representations, although they are generated from the same-class sam-
ples. We hypothesized that well-designed pruning masks could alleviate such geometrical misalign-
ment. Specifically, ideal weight sparsification may guide each latent dimension to be independent
of spurious attributes, thereby preventing representations from being misaligned with spuriously
correlated latent dimensions. This motivates us to explore pruning masks by contrastive learning.

Following the conventional notations of contrastive learning, we denote fenc
W : X → RnL−1 as an

encoder parameterized by W = (W1, . . . ,WL−1) which maps samples into the representations at
penultimate layer. Let f cls

WL
: RnL → RC be the classification layer parameterized by WL. Then

fW (x) = f cls
WL

(fenc
W (x)),∀x ∈ X . We similarly define fenc

m⊙W and f cls
mL⊙WL

. For the i-th sample
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xi, let zi(W ) = norm(fenc
W (xi)) be the normalized representations lies on the unit hypersphere,

and similarly define zi(m ⊙ W ). We did not consider projection networks (Chen et al., 2020;
Khosla et al., 2020) for architectural simplicity. Given index subsets of training samples V,V+, the
supervised contrastive loss (Khosla et al., 2020) function is defined as follows:

ℓcon(V,V+;W) =
∑
i∈V

−1

|V+(yi)|
∑

j∈V+(yi)

log
exp

(
zi(W) · zj(W)/τ

)∑
a∈V\{i} exp

(
zi(W) · za(W)/τ

) , (15)

where τ > 0 is a temperature hyperparameter, and V+(yi) = {k ∈ V+ : yk = yi, k ̸= i} indicates
the index set of samples with target label yi. Then, we define the debiased alignment loss as follows:

ℓalign

(
{xi, yi}|S|

i=1; W̃ ,Θ
)
= Em∼G(Θ)

[
ℓcon(Sbc, S;m⊙ W̃ )+ ℓcon(Sba, Sbc;m⊙ W̃ )

]
, (16)

where the expectation is approximated with Monte Carlo estimates as in (14). Intuitively, (16) re-
duces the gap between bias-conflicting samples and others (first term), while preventing bias-aligned
samples from being aligned too close each other (second term, more discussions in appendix).

Finally, our debiased loss in (11) is defined as follows:

ℓdebias

(
S; W̃ ,Θ

)
= ℓWCE

(
S; W̃ ,Θ

)
+ λalignℓalign

(
S; W̃ ,Θ

)
, (17)

where λalign > 0 is a balancing hyperparameter.

Fine-tuning after pruning After solving (11) by gradient-descent optimization, we can obtain the
pruning parameters Θ∗. This allows us to uncover the structure of unbiased subnetworks with
binary weight masks m∗ = {m∗

1, . . . ,m
∗
L}, where m∗

l = {1(σ(Θ∗
l,i) > 1/2) | 1 ≤ i ≤ nl},∀l ∈

{1, . . . , L}, and nl is a dimensionality of the l-th weight. After pruning, we finetune the survived
weights Ŵ = m∗ ⊙ W̃ using ℓWCE in (14) and λalignℓalign in (16). Interestingly, we empirically
found that the proposed approach works well without the reset (Frankle & Carbin, 2018) (Related
experiments in Section 5). Accordingly, we resume the training while fixing the unpruned pretrained
weights. The pseudo-code of DCWP is provided in the supplementary material.

5 EXPERIMENTAL RESULTS

5.1 METHODS

Datasets To show the effectiveness of the proposed pruning algorithms, we evaluate the gener-
alization performance of several debiasing approaches on Colored MNIST (CMNIST), Corrupted
CIFAR-10 (CIFAR10-C), and Biased FFHQ (BFFHQ) with varying ratio of bias-conflicting sam-
ples, i.e., bias ratio. We report unbiased accuracy (Nam et al., 2020; Lee et al., 2021) on the test set,
which includes a balanced number of samples from each data group. We also report bias-conflict
accuracy for some experiments, which is the average accuracy on bias-conflicting samples included
in an unbiased test set. Specifically, we report the bias-conflict accuracy on BFFHQ in which half
of the unbiased test samples are bias-aligned, while the model with the best-unbiased accuracy is
selected. We also compare the unbiased accuracy on BFFHQ in Table 3.

Baselines We compare DCWP with vanilla network trained by ERM, and the following state-of-the-
art debiasing approaches: EnD (Tartaglione et al., 2021), Rebias (Bahng et al., 2020), MRM (Zhang
et al., 2021), LfF (Nam et al., 2020) and DisEnt (Lee et al., 2021). EnD relies on the annotations
on the spurious attribute of training samples, i.e., bias labels. Rebias rely on prior knowledge about
the type of dataset bias (e.g., texture). MRM, LfF, and DisEnt do not presume such bias labels or
prior knowledge about dataset bias. Notably, MRM is closely related to DCWP where it probes the
unbiased functional subnetwork with standard cross entropy. Details about other simulation settings,
datasets, and baselines are provided in the supplementary material.

5.2 EVALUATION RESULTS

As shown in Table 1, we found that DCWP outperforms other state-of-the-art debiasing methods by
a large margin. Moreover, the catastrophic pitfalls of the existing pruning method become evident,
where MRM fails to search for unbiased subnetworks. It underlines that the proposed approach for
utilizing bias-conflicting samples plays a pivotal role in discovering unbiased subnetworks.

7
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Table 1: Unbiased test accuracy evaluated on CMNIST, CIFAR10-C and bias-conflict test accuracy
evaluated on BFFHQ. Models requiring supervisions on dataset bias are denoted with ✓, while
others are denoted with ✗. Results are averaged on 4 different random seeds.

Dataset Ratio (%) ERM EnD Rebias MRM LfF DisEnt DCWP

✗ ✓ ✓ ✗ ✗ ✗ ✗

CMNIST

0.5 62.36 84.32 69.12 60.98 83.73 86.74 93.41
1.0 81.73 94.98 84.65 80.42 88.44 93.15 95.98
2.0 89.33 97.01 91.96 89.31 92.67 95.15 97.16
5.0 95.22 98.00 96.74 95.23 94.90 96.76 98.02

CIFAR10-C

0.5 22.02 23.93 21.73 23.92 27.02 27.86 35.90
1.0 28.00 27.61 28.09 27.77 31.44 34.62 41.56
2.0 34.63 36.62 35.57 33.53 38.49 41.95 49.01
5.0 45.66 43.67 48.22 47.00 46.16 49.15 56.17

BFFHQ 0.5 52.25 59.80 54.90 54.75 56.50 55.50 60.35

5.3 QUANTITATIVE ANALYSES

Ablation studies To quantify the extent of performance improvement achieved by each introduced
module, we analyzed the dependency of model performance on: (a) oversampling identified bias-
conflicting samples when learning Θ and W , (b) pruning out spurious weights following the trained
parameters, and using alignment loss for (c) training Θ, or for (d) finetuning W , and (e) using GCE
loss for training bias-capturing model. For those cases where GCE loss is not used, we replace it
with a CE loss. To emphasize the contribution of each module, we intentionally use a SGD optimizer
which results in lower baseline accuracy (and for other CMNIST experiments in this subsection as
well). Table 2 shows that every module plays an important role in OOD generalization, while (b)
pruning contributes significantly when comparing indices 3 and 8.

Table 2: Ablation study on CMNIST (Bias ratio=1%). Unbiased accuracy is reported.

Index (a) Oversampling (b) Pruning (c) ℓΘalign (d) ℓWalign (e) GCE Accuracy (%)

1 - - - - - 43.10
2 ✓ - - - - 69.78
3 ✓ - - - ✓ 73.20
4 ✓ ✓ - - - 74.80
5 ✓ ✓ - ✓ - 75.15
6 ✓ ✓ ✓ ✓ - 76.49
7 ✓ - - ✓ ✓ 79.28
8 ✓ ✓ - - ✓ 84.79
9 ✓ ✓ ✓ ✓ ✓ 87.96

Dependency on bias-capturing models To evaluate the reliability of DCWP, we compare different
version of DCWP which does not rely on the dataset-tailored mining algorithms. We posit that
early stopping (Liu et al., 2021) is an easy plug-and-play method to train the bias-capturing model
in general. Thus we newly train DCWPERM which collects bias-conflicting samples by using the
early-stopped ERM model. Table 3 shows that DCWPERM outperforms other baselines even though
the precision, the fraction of samples in Sbc that are indeed bias-conflicting, or recall, the fraction of
the bias-conflicting samples that are included in Sbc, were significantly dropped.

Do we need to reset weights? While it becomes widespread wisdom that remaining weights should
be reset to their initial ones from the original network after pruning (Frankle & Carbin, 2018), we
analyze whether such reset is also required for the proposed pruning framework. We compared
the training dynamics of different models such as: (1) ERM model, (2) MRMdebias which solves
(11) instead of (12) to obtain the weight pruning masks, (3) DCWPfine which skip training Θ
and only conduct finetuning (index 7 in Table 2), and (4) DCWP. Note that MRMdebias reset the

8



Under review as a conference paper at ICLR 2023

Table 3: Robustness dependency of DCWP on the performance of bias-capturing models. We set
bias ratio as 1% for CIFAR10-C. Results are averaged on 4 different random seeds.

Dataset Model Accuracy Mining metrics

bias-align bias-conflict unbiased precision recall

CIFAR10-C
DisEnt 80.04 26.51 34.62 - -

DCWPERM 94.33 29.75 36.21 19.71 79.53
DCWP 91.68 35.99 41.56 85.97 74.89

BFFHQ

DisEnt 89.80 55.55 72.68 - -
LfF 96.05 56.50 76.30 - -

DCWPERM 99.45 56.90 78.20 20.18 28.39
DCWP 98.85 60.35 79.60 30.61 31.25

unpruned weights to its initialization after pruning. Figure 1a shows that although MRMdebias makes
a considerable advance, weight reset inevitably limits the performance gain. Moreover, finetuning
the biased model significantly improves the generalization performance within only a few iterations,
while pruning further boosts the accuracy by about 9%. It implies that the proposed framework does
not require parameter reset, which allows debiasing large-scale pretrained models without retraining
by simple pruning and finetuning.

Sensitivity analysis on training iterations We also analyzed hyperparameter sensitivity to the
amount of training iteration Θ. The unbiased test accuracy is evaluated with weight pruning masks
generated by Θ trained for {500, 1000, 1500, 2000} iterations on every dataset. Figure 1b shows
that the accuracy increases as more (potentially biased) weights are pruned out. It implies that the
proposed method can compress the networks to a substantial extent while significantly improving
the OOD generalization performance.

(a) Weight reset (b) Training iterations for Θ

Figure 1: (a) Comparison study on finetuning and weight resetting (CMNIST, bias ratio=1%). For
DCWP and DCWPFine, after pretraining weights for 2000 iterations, we pause and start training
pruning parameters (vertical dotted line in the figure). After convergence, we mask out and finetune
weights for another 1000 iterations. For MRMdebias, we reset the unpruned weight to its initializa-
tion and retrain for 3000 iterations. (b) Sensitivity analysis on the training iterations for Θ. Bias
ratio=1% for both CMNIST and CIFAR10-C. Bias-conflict accuracy is reported for BFFHQ.

6 CONCLUSION

This paper presents a novel functional subnetwork probing method for OOD generalization. We
provided theoretical insights and empirical evidence to show that the bias-conflicting samples pro-
vide an important clue for probing the optimal unbiased subnetworks. The proposed method is
computationally efficient while fully compatible with many other debiasing methods.
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Appendix
The supplementary material is organized as follows. We begin with providing the algorithm of
DCWP. Then we present the proof for Theorem 1 and 2. In section C, we extend the presented
theoretical example in the main paper to illustrate the risks of geometrical misalignment of embed-
dings arising from strong spurious correlations. Section D presents additional experimental results
and analyses. Optimization setting, hyperparameter configuration, and other experimental details
are provided in section E.

A PSEUDOCODE

Algorithm 1 Debiased Contrastive Weight Pruning (DCWP)

1: Input: Dataset D = {(xi, yi)
|S|
i=1}, pruning parameters Θ, Training iterations T1, T2, T3.

2: Output: Trained pruning parameters Θ∗ and finetuned weights W ∗

3:
4: Stage 1. Mining debiased samples
5: Update the weights of bias-capturing network Wb on D for T1 iterations.
6: Identify Sbc and Sba.
7:
8: Stage 2. Debiased Contrastive Weight Pruning
9: Pretrain the main network on D. Denote the pretrained weights as W̃ .

10: for t = 1 to T2 do
11: Update Θ with ℓdebias

(
S; W̃ ,Θ

)
+ λℓ1

∑
l,i |Θl,i| as in (11).

12: end for
13: Prune out weight as Ŵ = W̃ ⊙ 1(Θ∗ > 0).
14: Update Ŵ with ℓWCE and λalignℓalign on D for T3 iterations.

B PROOFS

In this section, we present the detailed proofs for Theorems 1 and 2 explained in the main paper,
followed by an illustration about the dynamics of weight ratio αi(t) = w̃sp,i(t)/w̃inv(t).

B.1 PROOF OF THEOREM 1

Theorem 1. (Training and test bound) Assume that pe > 1/2 in the biased training environment
e ∈ Etrain. Define w̃(t) as weights pretrained for a finite time t < T . Then the upper bound of the
error of training environment w.r.t. pruning parameters π is derived as:

ℓe(π) ≤ 2 exp

(
−

2
(
πinv + (2pe − 1)

∑D
i=1 αi(t)πsp,i

)2
4
∑D

i=1 αi(t)2 + 1

)
, (18)

where the weight ratio αi(t) = w̃sp,i(t)/w̃inv(t) is bounded below some positive constant. Given a
test environment e ∈ Etest with pe = 1

2 , the upper bound of the error of test environment w.r.t. π is
derived as:

ℓe(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (19)

which implies that there is a unavoidable gap between training bound and test bound.

Proof. We omit time t in w̃(t) and αi(t) for notational simplicity throughout the proof of Theorem
1 and 2.

The prediction from the classifier Ŷ e is defined in (2) as

Ŷ e = sgn
(
w̃T (Xe ⊙m)

)
= sgn

(
Oe
)
,

(20)
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where

Oe := w̃invminvZ
e
inv +

D∑
i=1

w̃sp,imsp,iZ
e
sp,i. (21)

Assume that Y e is uniformly distributed binary random variable. Then,

EXe,Y e,m[Y eŶ e] =
1

2
EXe,m

[
Ŷ e|Y e = 1

]
− 1

2
EXe,m

[
Ŷ e|Y e = −1

]
, (22)

where

EXe,m

[
Ŷ e|Y e = 1

]
= EXe,m

[
sgn

(
Oe
) ∣∣∣ Y e = 1

]
= P

(
Oe > 0

∣∣ Y e = 1
)
− P

(
Oe < 0

∣∣ Y e = 1
)

= 1− 2P
(
Oe < 0

∣∣ Y e = 1
)
,

(23)

and

EXe,m

[
Ŷ e|Y e = −1

]
= P

(
Oe > 0

∣∣ Y e = −1
)
− P

(
Oe < 0

∣∣ Y e = −1
)

= −EXe,m

[
Ŷ e|Y e = 1

]
,

(24)

where we use P
(
Oe < 0

∣∣Y e = 1
)
= P

(
Oe > 0

∣∣Y e = −1
)

and P
(
Oe > 0

∣∣Y e = 1
)
= P

(
Oe <

0
∣∣ Y e = −1

)
thanks to the symmetry. Therefore, we have

ℓe(π) =
1

2
EXe,Y e,m[1− Y eŶ e]

=
1

2
− 1

2
EXe,m

[
Ŷ e|Y e = 1

]
= P

(
Oe < 0

∣∣ Y e = 1
)
.

(25)

In order to derive a concentration inequality of ℓe(π), we compute a conditional expectation as
follows:

EXe,m

[
Oe
∣∣ Y e = 1

]
= EXe,m

[
w̃invminvZ

e
inv +

D∑
i=1

w̃sp,imsp,iZ
e
sp,i

∣∣∣ Y e = 1
]

= EXe,m

[
w̃invminv +

D∑
i=1

w̃sp,imsp,iZ
e
sp,i

∣∣∣ Y e = 1
]

= w̃invπinv + EXe,m

[ D∑
i=1

w̃sp,imsp,iZ
e
sp,i

∣∣∣ Y e = 1

]

= w̃invπinv +

D∑
i=1

(2pe − 1)w̃sp,iπsp,i,

(26)

where the last equality follows from the independence of Zsp,· and msp,· as assumed in the main
paper. Then,

P
(
Oe < 0

∣∣ Y e = 1
)
= P

(
Oe − EXe,m

[
Oe
]
< −EXe,m

[
Oe
] ∣∣ Y e = 1

)
≤ P

( ∣∣∣Oe − EXe,m

[
Oe
] ∣∣∣ > EXe,m

[
Oe
] ∣∣ Y e = 1

)
≤ 2 exp

(
−

2EXe,m

[
Oe
∣∣ Y e = 1

]2
w̃2

inv +
∑D

i=1 4w̃
2
sp,i

)

≤ 2 exp

(
−

2
(
w̃invπinv +

∑D
i=1(2p

e − 1)w̃sp,iπsp,i

)2
w̃2

inv +
∑D

i=1 4w̃
2
sp,i

)

≤ 2 exp

(
−

2
(
πinv +

∑D
i=1(2p

e − 1)αiπsp,i

)2
1 +

∑D
i=1 4α

2
i

)
,

(27)
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where the second inequality is obtained using Hoeffding’s inequality, third inequality is from (26),
and last inequality is obtained by dividing both denominator and numerator with w̃2

inv . We use the
definition of weight ratio αi = w̃sp,i/w̃inv . For the second inequality, we use that w̃invminvZ

e
inv ∈

{0, w̃inv} and w̃sp,imsp,iZ
e
sp,i ∈ {−w̃sp,i, 0, w̃sp,i} ∀i in (21) to obtain the denominator.

Finally, the proof for the positivity of αi(t) comes from Proposition 1 in B.3 in this appendix. This
concludes the proof.

B.2 PROOF OF THEOREM 2

Theorem 2. (Training bound with the mixture distribution) Assume that the defined mixture distri-
bution P η

mix is biased, i.e.,

P η
mix(Z

η
sp,i = −y | Y e = y) ≤ P η

mix(Z
η
sp,i = y | Y η = y), ∀ i (28)

Then, ϕ satisfies 0 ≤ ϕ ≤ 1 − 1
2pη . Then the upper bound of the error of training environment η

w.r.t. the pruning parameters is given by

ℓη(π) ≤ 2 exp

(
−
2(πinv + (2pη(1− ϕ)− 1)

∑D
i=1 αi(t)πsp,i)

2

4
∑D

i=1 αi(t)2 + 1

)
. (29)

Furthermore, when ϕ = 1− 1
2pη , the mixture distribution is perfectly debiased, and we have

ℓη(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (30)

which is equivalent to the test bound in (4).

Proof. Recall that Zη
sp,i follows the mixture distribution P η

mix:

P η
mix(Z

η
sp,i | Y

η = y) = ϕP η
debias(Z

η
sp,i | Y

η = y) + (1− ϕ)P η
bias(Z

η
sp,i | Y

η = y). (31)

Then, with definition in (6) and (7),

Pmix(Z
η
sp,i = −y|Y η = y) = ϕ+ (1− ϕ)(1− pη)

Pmix(Z
η
sp,i = y|Y η = y) = (1− ϕ)pη,

(32)

for y ∈ {−1, 1}. Then, based on the assumption, ϕ + (1 − ϕ)(1 − pη) ≤ (1 − ϕ)pη , which
gives ϕ ≤ 1 − 1

2pη . Specifically, if ϕ = 1 − 1
2pη , it turns out that Pmix(Z

η
sp,i = −y|Y η = y) =

Pmix(Z
η
sp,i = y|Y η = y) = 1

2 , which implies that spurious features turns out to be random and the
mixture distribution becomes perfectly debiased. If ϕ = 0, the mixture distribution boils down into
a biased distribution as similarly defined in the environment e ∈ Etrain.
The prediction from the classifier Oη is defined as similar to Oe in (21). Then in order to derive a
concentration inequality of ℓη(π), we derive a conditional expectation of Oη as done in (26):

EXη,m

[
Oη
∣∣ Y η = 1

]
= EXη,m

[
w̃invminvZ

η
inv +

D∑
i=1

w̃sp,imsp,iZ
η
sp,i

∣∣∣ Y η = 1
]

= EXη,m

[
w̃invminv +

D∑
i=1

w̃sp,imsp,iZ
η
sp,i

∣∣∣ Y η = 1
]
.

(33)
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Then, with the definition in (31), the second term in the above conditional expectation of (33) is
defined as follows:

EXη,m

[ D∑
i=1

w̃sp,imsp,iZ
η
sp,i | Y

η = 1
]

=

D∑
i=1

w̃sp,iπsp,i

(
ϕEdebias[Z

η
sp,i | Y

η = 1] + (1− ϕ)Ebias[Z
η
sp,i | Y

η = 1]
)

=

D∑
i=1

w̃sp,iπsp,i

(
ϕ · (−1) + (1− ϕ)(2pη − 1)

)
=

D∑
i=1

w̃sp,iπsp,i

(
2pη(1− ϕ)− 1

)
,

(34)

where Edebias and Ebias in the first equality denote the conditional expectation with respect to
distribution P η

debias and P η
bias in (6) and (7), respectively. Plugging (34) into (33), we get

EXη,m
[
Oη
∣∣ Y η = 1

]
= w̃invπinv +

D∑
i=1

(
2pη(1− ϕ)− 1

)
w̃sp,iπsp,i. (35)

Then we can derive the upper bound of ℓη(π) = P (Oη < 0 | Y η = 1) similarly to (27):

P
(
Oη < 0

∣∣ Y η = 1
)
≤ P

( ∣∣∣Oη − EXη,m

[
Oη
] ∣∣∣ > EXη,m

[
Oη
] ∣∣ Y η = 1

)
≤ 2 exp

(
−

2EXη,m

[
Oη
∣∣ Y η = 1

]2
w̃2

inv + 4
∑D

i=1 w̃
2
sp,i

)

≤ 2 exp

(
−

2
(
w̃invπinv +

∑D
i=1

(
2pη(1− ϕ)− 1

)
w̃sp,iπsp,i

)2
w̃2

inv + 4
∑D

i=1 w̃
2
sp,i

)

≤ 2 exp
(
−

2
(
πinv +

∑D
i=1(2p

η(1− ϕ)− 1)αiπsp,i

)2
1 +

∑D
i=1 4α

2
i

)
,

(36)

where the first inequality is obtained by Hoeffding’s inequality, and second inequality is from
(35). The denominator is obtained as same as in (27), since w̃invminvZ

η
inv ∈ {0, w̃inv} and

w̃sp,imsp,iZ
η
sp,i ∈ {−w̃sp,i, 0, w̃sp,i} ∀i as-is. If we plug-in the upper bound value of ϕ = 1− 1

2pη

obtained from (32) into (36), it boils down into the test bound in (4).

B.3 DYNAMICS OF THE WEIGHT RATIO

We omit an index of environment e in the proposition below for notational simplicity.
Proposition 1. Consider a binary classification problem of linear classifier fw under exponential
loss. Let (X, Y ) ∼ P , where each input random variable X and the corresponding label Y is
generated by

X =

(
Zinv

Zsp

)
, Y = Zinv,

where Zsp = (2z − 1)Zinv for a random variable z ∈ {0, 1}D which is chosen from multivariate
Bernoulli distribution (zi ∼ Bern(p)) with p > 1

2 , i.e., p denotes pe in the main paper. Let w =(
winv

wsp

)
∈ RD+1 be the weight of the linear classifier fw(x) = wTx. Assume that 0 < winv(0),

i.e., winv is initialized with a positive value, and 0 < wsp,i(0) <
1
2 log

p
1−p . Then, after sufficient

time of training, winv diverges to +∞ and wsp,i converges to 1
2 log

p
1−p , which means αi :=

wsp,i

winv

converges to 0 for all i ∈ {1, 2, · · · , D}. More precisely,

log
(
ewinv(0) + [4p(1− p)]

D
2 t
)
≤ winv(t) ≤ log

(
ewinv(0) + t

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

))
.

However, for a fixed t < T , each αi is positive and its lower bound converges to some positive value.
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Proof. In this proof, winv(t) denotes the invariant weight at time t, while we often omit the time t
and interchangeably use winv for notational simplicity, and likewise for wsp,i(t).

Note that the network output is given by

fw(x) = wTx

= Zinvwinv +ZT
spwsp

= Zinvwinv +

D∑
i=1

Zsp,iwsp,i.

The exponential loss is defined by

L(w) = E(X,Y )[e
−fw(X)Y ]

= Ez

[
exp

(
−(Zinvwinv +

D∑
i=1

Zsp,iwsp,i)Zinv

)]
= Ez

[
exp(−winv − (2z1 − 1)wsp,1 − · · · − (2zD − 1)wsp,D)

]
= e−winv

D∏
i=1

Ez[e
−(2zi−1)wsp,i ]

= e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i).

Then, thanks to symmetry of wsp, it is enough to consider α :=
wsp,1

winv
. We first compute the gradient:

∂L

∂winv
= −e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

∂L

∂wsp,1
= −e−winv (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(pe−wsp,i + (1− p)ewsp,i).

Since d
dtwinv = − ∂L

∂winv
, the dynamics is given by the following differnetial equations.

d

dt
winv = e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

d

dt
wsp,1 = e−winv (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(pe−wsp,i + (1− p)ewsp,i).

First we show that winv(t) diverges to +∞ as t goes ∞. We show this by computing its lower
bound.

d

dt
winv = e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

≥ e−winv

D∏
i=1

(2
√
p(1− p))

= e−winv [4p(1− p)]
D
2 ,

where the inequality is obtained by AM-GM inequality. This implies ewinvdwinv ≥ [4p(1−p)]
D
2 dt.

Integrating both sides from 0 to t, we get

ewinv(t) − ewinv(0) ≥ [4p(1− p)]
D
2 t
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or

winv(t) ≥ log
(
ewinv(0) + [4p(1− p)]

D
2 t
)
, (37)

which shows that winv(t) diverges to +∞ as t → ∞. Note also that winv strictly increases since
d
dtwinv > 0.

For wsp,i, d
dtwsp,i = 0 implies wsp,i converges to w∗

sp,i such that

pe−w∗
sp,i − (1− p)ew

∗
sp,i = 0,

namely, w∗
sp,i =

1
2 log

p
1−p .

As similar to winv , wsp,1 strictly increases if and only if wsp,1 < 1
2 log

p
1−p . Based on the assump-

tions that 0 < wsp,i(0) <
1
2 log

p
1−p , we conclude that wsp,1 monotonically converges to 1

2 log
p

1−p .
As p goes to 1, 1

2 log
p

1−p is sufficiently large and we can assume wsp,i(0) <
1
2 log

p
1−p .

Now, we fix 0 < t < T for given T and compute an upper bound of winv . Using wsp,i(t) <
1
2 log

p
1−p , we get

d

dt
winv = e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

< e−winv

D∏
i=1

(
pe−wsp,i(0) + (1− p)

√
p

1− p

)

= e−winv

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)
which implies

ewinvdwinv <

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)
dt.

Integrating both sides from 0 to t, we get

winv(t) < log

(
ewinv(0) +

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)
t

)
. (38)

Similarly, we compute a lower bound of wsp,1 on 0 < t < T . Before we start, note that winv(t) <
winv(T ) =: M from monotonicity.

d

dt
wsp,1 = e−winv (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(pe−wsp,i + (1− p)ewsp,i)

> e−M (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(2
√
p(1− p))

= e−M [4p(1− p)]
D−1

2 (pe−wsp,1 − (1− p)ewsp,1)

induces
1

pe−wsp,1 − (1− p)ewsp,1
dwsp,1 > e−M [4p(1− p)]

D−1
2 dt.

Integrating both sides from 0 to t < T , we get[
1√

p(1− p)
tanh−1

(√
1− p

p
ewsp,1

)]t
0

> e−M [4p(1− p)]
D−1

2 t
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or

wsp,1(t) >
1

2
log

p

1− p
+ log tanh

(
tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t

)
.

(39)
Combining (38) and (39), we conclude that

αp(t) =
wsp,1(t)

winv(t)
(40)

>

1
2 log

p
1−p + log tanh

(
tanh−1(

√
1−p
p ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t
)

log
(
ewinv(0) + t

∏D
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)) (41)

for 0 < t < T . Note that αp(t) is positive in 0 < t < T , since both wsp,1(t) and winv(t) is
monotonically increasing in 0 < t < T , and 0 < wsp,1(0), winv(0) by assumptions.

The numerator becomes
1

2
log

p

1− p
+ log tanh

(
tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t

)
= log

[√
p

1− p
tanh

(
tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t

)]
= log

[√
p

1− p

(√
1− p

p
ewsp,1(0) + e−M2D−1[p(1− p)]

D
2 t sech2 c

)]
for some c such that

tanh−1(

√
1− p

p
ewsp,1(0)) < c < tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t.

We use f(x+ y) = f(x) + yf ′(c) by the Mean Value Theorem (MVT) at the last line.

Notably, if we take a limit p → 1, the numerator becomes

lim
p→1

log
[
ewsp,1(0) + e−M2D−1p

D+1
2 (1− p)

D−1
2 t sech2 c

]
= wsp,1(0).

Similarly, the denominator becomes

lim
p→1

log

(
ewinv(0) + t

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

))

= log

(
ewinv(0) + t

D∏
i=1

e−wsp,i(0)

)

= log

(
ewinv(0) + t exp

(
−

D∑
i=1

wsp,i(0)

))

Therefore, for a fixed 0 < t < T , we conclude that

lim
p→1

αp(t) = lim
p→1

wsp,1(t)

winv(t)

≥ wsp,1(0)

log
(
ewinv(0) + t exp

(
−
∑D

i=1 wsp,i(0)
))

>
wsp,1(0)

log(ewinv(0) + T exp
(
−
∑D

i=1 wsp,i(0)
)
)

≥ wsp,1(0)

log T + 1
T exp

(
winv(0) +

∑D
i=1 wsp,i(0)

)
−
∑D

i=1 wsp,i(0)

(42)

where we use the inequality log(x+ y) ≤ log x+ y
x in the last line.
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The key insights from Proposition 1 can be summarized as follows:

(1) Weight ratio αi(t) converges to 0 as t → ∞.

(2) However, for a fixed t < T , αi(t) > 0.

(3) When t < T and p → 1, i.e., the environment is almost perfectly biased, the convergence rate
of (1) is remarkably slow as in (42). In other words, there exists c > 0 such that c

log t < αp(t) over
0 < t < T if p is sufficiently close to 1.

This results afford us intriguing perspective on the fundamental factors behind the biased classifiers.
If we situate the presented theoretical example in an ideal scenario in which infinitely many data
and sufficient training time is provided, our result (1) shows that the pretrained classifier becomes
fully invariant to the spurious correlations. However, in practical setting with finite training time and
number of samples, our result (2) shows that the pretrained model inevitably rely on the spuriously
correlated features.

Figure 2: Implemented results of pre-
sented example.

Beyond theoretical results, we empirically observe that
the weight ratio αi of pretrained classifiers in Section 3
indeed increases as pe → 1. We simulate the exam-
ple presented in section 3, where the dimensionality D
is set to 15, and probability pe varies from 0.6 (weakly
biased) to 0.99 (severely biased). We train a linear classi-
fier for 500 epochs with batch size of 1024, and measure
the unbiased accuracy on test samples generated from
environment e ∈ Etest. We also measure weight ratio
mean(w̃sp)/w̃inv , where mean(w̄sp) denotes the average
of pretrained spurious weights {wsp,i}Di=1. To enable the
end-to-end training, we use binary cross entropy loss in-
stead of exponential loss, with setting Y = {0, 1} instead
of Y = {−1, 1}. We do not consider pruning process in
this implementation. Figure 2 shows that the weight ratio increases to 1 in average as pe → 1. It
implies that the spurious features Ze

sp participate almost equally to the invariant feature Ze
inv in the

presence of strong spurious correlations. In this worst case, it is frustratingly difficult to discriminate
weights necessary for OOD generalization in biased environment, resulting in the failure of learning
optimal pruning parameters. Simulation results are averaged on 15 different random seeds.

C EXAMPLE OF GEOMETRICAL MISALIGNMENT

In this section, we present a simple example illustrating the potential adverse effect of spurious
correlations on latent representations. Consider independent arbitrary samples within the same class
Xb

i ,X
b
j ∼ P b

Xb|Y b=y and Xd ∼ P d
Xd|Y d=y for a common y ∈ {−1, 1} and environments b, d

where b ∈ Etrain and d ∈ Etest. Let W ∈ RQ×(D+1) be a weight matrix representation of a linear
mapping T : {−1, 1}D+1 → RQ which encodes the embedding vector of a given sample. We
denote such embedding as he = WXe for some e ∈ E . We assume that W is initialized as to
be semi-orthogonal (Saxe et al., 2013; Hu et al., 2020) for simplicity. Then the following lemma
reveals the geometrical misalignment of embeddings in the presence of strong spurious correlations:
Lemma 1. Given y ∈ {−1, 1}, let hb

i ,h
b
j ,h

d be embeddings of Xb
i ,X

b
j ,X

d respectively. Then,
the expected cosine similarity between hb

i and hd is derived as:

E
[

⟨hb
i ,h

d⟩
∥hb

i∥ · ∥hd∥

∣∣∣∣ Y b = y, Y d = y

]
=

1

D + 1
, (43)

while the expected cosine similarity between hb
i and hb

j is derived as:

E
[ ⟨hb

i ,h
b
j⟩

∥hb
i∥ · ∥hb

j∥

∣∣∣∣ Y b = y

]
=

1 +D(2pb − 1)2

D + 1
, (44)

where pb is a probability parameter of Bernoulli distribution of i.i.d variable Zb
sp,i, similar to pe in

the main paper.
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Proof. Let Xe = V e
inv + V e

sp for the sample from an arbitrary environment e in general, where
ve
inv,v

e
sp ∈ {−1, 1}D+1 are invariant and spurious component vector, respectively:

V e
inv,j =

{
Ze
inv, if j = 1

0, otherwise ,
(45)

V e
sp,j =

{
Ze
sp,j , if j = 2, . . . , D + 1

0, otherwise .
(46)

Thus, V e
inv and V e

sp are orthogonal. Given Y b = y and Y d = y for some y ∈ {−1, 1}, the cosine
similarity between hb

i and hd is expressed as follows:

E
[

⟨hb
i ,h

d⟩
∥hb

i∥∥hd∥

∣∣∣∣ Y b = y, Y d = y

]
= E

[
⟨Xb

i ,W
TWXd⟩

∥hb
i∥∥hd∥

∣∣∣∣ Y b = y, Y d = y

]
= E

[
⟨Xb

i ,X
d⟩

D + 1

∣∣∣∣ Y b = y, Y d = y

]
= E

[ ⟨V b
i,inv + V b

i,sp,V
d
inv + V d

sp⟩
D + 1

∣∣∣∣ Y b = y, Y d = y

]
=

1

D + 1
,

(47)

where V b
i,inv and V b

i,sp represent the invariant and spurious component vector of Xb
i , respectively,

and the second equality comes from the semi-orthogonality of W . The last equality comes from the
orthogonality of spurious component vector from different environment b ∈ Etrain and d ∈ Etest.
On the other hand, the expected cosine similarity between two arbitrary embeddings hb

i and hb
j from

the biased environment b is expressed as follows:

E
[ ⟨hb

i ,h
b
j⟩

∥hb
i∥∥hb

j∥

∣∣∣∣ Y b = y

]
= E

[ ⟨V b
i,inv + V b

i,sp,V
b
j,inv + V b

j,sp⟩
D + 1

∣∣∣∣ Y e = y

]
=

1 +D(2pb − 1)2

D + 1
,

(48)

where the last equality comes from the expectation of product of independent Bernoulli variables.

The gap between (43) and (44) unveils the imbalance of distance between same-class embeddings
from different environments on the unit hypersphere; embeddings from the training environment
are more closely aligned to other embeddings from the same environment than embeddings from
test environment at initial even when all samples are generated within the same class. While the
Lemma 1 is only applicable to the initialized W before training, such imbalance may be worsened
if W learns to project the samples on the high-dimensional subspace where most of its basis are
independent to the invariant features. This sparks interests in designing weight pruning masks to
aggregate the representations from same-class samples all together. Indeed, in this simple example,
we can address this misalignment by masking out every weight in W except the first column, which
corresponds to the invariant feature.

From this point of view, we revisit the proposed alignment loss in main paper:

ℓalign

(
{xi, yi}|S|

i=1; W̃ ,Θ
)
= Em∼G(Θ)

[
ℓcon(Sbc, S;m⊙ W̃ )+ ℓcon(Sba, Sbc;m⊙ W̃ )

]
, (49)

where the first term reduces the gap between bias-conflicting samples and others, while the second
term prevents bias-aligned samples from being aligned too close each other. In other words, the first
term is aimed at increasing the cosine similarity between representations of same-class samples with
different spurious attributes, as hb

i and hd in this example. The second term serves as a regularizer
that pulls apart same-class bias-aligned representations, as hb

i and hb
j in this example. Thus we can

leverage abundant bias-aligned samples as negatives regardless of their class in second term, while
Zhang et al. (2022) limits the negatives to samples with different target label but same bias label,
which are often highly scarce in a biased dataset.
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D ADDITIONAL RESULTS

Figure 3: t-SNE visualization of representations encoded from unbiased test samples after (a) pre-
training, (b) pruning and (c) finetuning (CMNIST, bias ratio=0.5%). Each point is painted following
its label (i.e., bias label in first row, and target label in second row).

Visualization of learned latent representations. We visualized latent representations of unbiased
test samples in CMNIST after (a) pretraining, (b) pruning and (c) finetuning. Note that we did
not reset or finetune the weights in (b). As reported in Figure 3, biased representations in (a) are
misaligned along with bias label as discussed in section 4 and C. However, after pruning, the repre-
sentations were well-aligned with respect to the class of digits even without modifying the values of
pretrained weights. It implies that the geometrical misalignment of representations can be addressed
by pruning spurious weights, while finetuning with ℓdebias can further improve the generalizations.

E EXPERIMENTAL SETUP

E.1 DATASETS

We mainly follow Nam et al. (2020); Lee et al. (2021) to evaluate our framework on Color-MNIST
(CMNIST), Corrupted CIFAR-10 (CIFAR10-C) and Biased FFHQ (BFFHQ) as presented in Figure
4.

CMNIST. We first consider the prediction task of digit class which is spuriously correlated to the
pre-assigned color, following the existing works (Bahng et al., 2020; Nam et al., 2020; Lee et al.,
2021; Tartaglione et al., 2021). Each digit is colored with certain type of color, following (Nam
et al., 2020; Lee et al., 2021). The ratio of bias-conflicting samples, i.e., bias ratio, is varied in range
of {0.5%, 1.0%, 2.0%, 5.0%}, where the exact number of (bias-aligned, bias-conflicting) samples is
set to: (54,751, 249)-0.5%, (54,509, 491)-1%, (54,014, 986)-2%, and (52,551, 2,449)-5%.

CIFAR10-C. Each sample in this dataset is generated by corrupting original samples
in CIFAR-10 with certain types of corruption. Among 15 different corruptions intro-
duced in the original paper (Hendrycks & Dietterich, 2019), we select 10 types which
are Brightness, Contrast, Gaussian Noise, Frost, Elastic Transform,
Gaussian Blur, Defocus Blur, Impulse Noise, Saturate, and Pixelate,
following Lee et al. (2021). Each of these corruption is spuriously correlated to the object classes of
CIFAR-10, which are Plane, Car, Bird, Cat, Deer, Dog, Frog, Horse, Ship,
and Truck. We use the samples corrupted in most severe level among five different severity, fol-
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Figure 4: Example images of datasets. The images above the dotted line denote the bias-aligned
samples, while the ones below the dotted line are the bias-conflicting samples. For CMNIST and
CIFAR10-C, each column indicates each class. For BFFHQ, the group of three columns indicates
each class.

lowing Lee et al. (2021). The exact number of (bias-aligned, bias-conflicting) samples is set to:
(44,832, 228)-0.5%, (44,527, 442)-1%, (44,145, 887)-2%, and (42,820, 2,242)-5%.

BFFHQ. Each sample in this biased dataset are selected from Flickr-Faces-HQ (FFHQ) Dataset
(Karras et al., 2019), where we conduct binary classifications with considering (Age, Gender)
as target and spuriously correlated attribute pair following Kim et al. (2021); Lee et al. (2021).
Specifically, majority of training images correspond to either young women (i.e., aged 10-29) or old
men (i.e., aged 40-59). This dataset consists of 19,104 number of such bias-aligned samples and 96
number of bias-conflicting samples, i.e., old women and young men.

E.2 SIMULATION SETTINGS

Architecture details. We use a simple convolutional network with three convolution layers for
CMNIST, with feature map dimensions of 64, 128 and 256, each followed by a ReLU activation
and a batch normalization layer following Zhang et al. (2021). For CIFAR10-C and BFFHQ, we use
ResNet-18 with pretrained weights provided in PyTorch torchvision implementations. Each
convolutional network and ResNet-18 includes 1.3 × 106 and 2.2 × 107 number of parameters,
respectively. We assign a pruning parameter for each weight parameter except bias in deep networks.
Each of pruning parameter is initialized with value 1.5 so that the initial probability of preserving
the corresponding weight is set to σ(1.5) ≈ 0.8 in default.

Training details. We first train bias-capturing networks using GCE loss (q=0.7) for CMNIST and
BFFHQ, with 2000 and 10000 iterations, respectively. For CIFAR10-C, we use epoch-ensemble
based mining algorithms presented in Zhao et al. (2021), which selects samples cooperated with
ensemble of predictions at each epoch to prevent overfitting. We use b-c score threshold τ = 0.8
and confidence threshold η = 0.05 as suggested in the original paper.

Then, main networks are pretrained for 10000 iterations using an Adam optimizer with learning rate
0.01 and 0.001 for CMNIST and others, respectively.

We train pruning parameters for 2000 iterations using a learning rate 0.01, upweighting hyperparam-
eter λup = 80 and a balancing hyperparameter λalign = 0.05 for each dataset. We use a Lagrangian
multiplier λℓ1 = 10−8 for CMNIST, and λℓ1 = 10−9 for CIFAR10-C and BFFHQ. Specifically,
we set λℓ1 by considering the size of deep networks, where we found that the value within range
O(0.1 ∗ n−1) serves as a good starting point where n is the number of parameters.

After pruning, we finetune the networks with decaying learning rate to 0.001 for CMNIST and
0.0005 for others. We use λalign = 0.05 and λup = 80 for BFFHQ, and λup = {10, 30, 50, 80} for
CMNIST and CIFAR10-C with {0.5%, 1.0%, 2.0%, 5.0%} of bias ratio, respectively.
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Considering the pruning as a strong regularization, we did not use additional capacity control tech-
niques such as early stopping or strong ℓ2 regularization presented in Sagawa et al. (2020); Liu et al.
(2021).

Data augmentations. We did not use any kinds of data augmentations which may implicitly enforce
networks to encode invariances. For the BFFHQ dataset, we only apply random horizontal flip. For
the CIFAR10-C dataset, we take 32× 32 random crops from image padded by 4 pixels followed by
random horizontal flip, following Nam et al. (2020). We do not use any kinds of augmentations in
CMNIST.

Baselines. We use the official implementations of Rebias, LfF, DisEnt released by authors, and re-
produce EnD and MRM by ourselves. For DisEnt, we use the official hyperparameter configurations
provided in the original paper. We use q = 0.7 for LfF as suggested by authors on every experiment.
For Rebias, we use the official hyperparameter configurations for CMNIST, and train for 200 epochs
using Adam optimizer with learning rate 0.001 and RBF kernel radius of 1 for other datasets. For
MRM, we use λℓ1 of 10−8 for CMNIST following the original paper, and 10−9 for the others. For
EnD, we set the multipliers α for disentangling and β for entangling to 1.
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