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Abstract

Computer vision models have been shown to exhibit and
amplify biases across a wide array of datasets and tasks.
Existing methods for quantifying bias in classification mod-
els primarily focus on dataset distribution and model per-
formance on subgroups, overlooking the internal workings
of a model. We introduce the Attention-IoU (Attention In-
tersection over Union) metric and related scores, which
use attention maps to reveal biases within a model’s in-
ternal representations and identify image features poten-
tially causing the biases. We analyze the CelebA dataset,
finding that Attention-IoU uncovers correlations beyond ac-
curacy disparities. Through an investigation of individual
attributes through the protected attribute of Male, we ex-
amine the distinct ways biases are represented in CelebA.
Lastly, by subsampling the training set to change attribute
correlations, we demonstrate that Attention-IoU reveals po-
tential confounding variables not present in dataset la-
bels. Our code is available at https://github.com/
aaronserianni/attention-iou.

1. Introduction
Biases in computer vision models can lead to failures
in model performance and unequal behavior for different
groups. These biases are often caused by spurious correla-
tions, where a model relies on an attribute that is associated
with, but not causally related to, the target. A model de-
pendent on such spurious correlations might then perform
poorly on out-of-distribution test data or exhibit low accu-
racy for groups for which the correlation does not hold. This
becomes more concerning for tasks involving people, since
these correlations can cause models to discriminate against
societally protected groups such as gender, race, age, eth-
nicity, and income [3, 5, 9, 25, 32, 33].

Past works have extensively investigated biases and spu-
rious correlations through the lens of dataset labeling and
model accuracy. For example, fairness metrics reveal dis-
parities in model accuracy between groups or individu-
als [4, 16, 18, 27]. Others have created tools to surface
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Figure 1. We use attention maps to understand which image re-
gions a model relies on for the target classification task. Our pro-
posed Attention-IoU framework provides insights into how mod-
els represents biases between correlated attributes. For example,
consider the spatially related attributes of blond and wavy hair in
the CelebA dataset [15], which have similarly correlations to the
Male label. They are attended to differently by the model, with
blond hair being more related to Male in both average attention
map (top) and the Attention-IoU mask score (bottom).

biases by analyzing and categorizing objects, gender, skin
tone, geographical labels, among others, sometimes in com-
bination with model predictions [2, 29].

However, these approaches are often limited by the la-
bels present within the dataset, only able to find biases at
a coarse level. For example, while these metrics excel at
identifying when the classification of a person’s attributes
might depend on gender, they are unable to highlight the
specific features of the person’s gender presentation that
the model uses to make a prediction. In the absence of
fine-grained labels, interpretability methods like attention
maps [23, 31, 34] hold the potential to reveal representa-
tions of correlations within a model, and how they might
affect the model’s output.

In this paper, we propose Attention-IoU, a generalized
intersection-over-union metric that uses attention maps to
measure biases in image classification models. We specifi-
cally aim to quantify spurious correlations for when a model
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relies on regions of images that are not directly relevant
to the target classification tasks. For example, within the
CelebA dataset [13, 15] of people’s faces, blond hair is cor-
related with a person being labeled not male. As such, a
model trained to identify the ‘blond hair’ attribute may use
gendered aspects of people’s faces in addition to using hair
features. Thus, the model may attend to regions such as the
eyes, nose, and mouth of people as well as their hair (Fig. 1).

We examine CelebA because the dataset is a widely-
used evaluation benchmark for fairness methods, span-
ning dataset bias identification to model debiasing [11, 17,
19, 20, 22, 24, 30]. With CelebA, we demonstrate that
Attention-IoU can identify specific ways in which the pro-
tected Male attribute might influence other attributes. We
also show that attributes can be unevenly influenced by the
classifier’s representation of the protected Male attribute,
and that certain attributes have biases beyond simple cor-
relations in dataset labels. These insights reveal ways in
which computer vision models might be biased, allowing
the community to develop better debiasing techniques.

2. Method
Existing bias metrics for classification models focus on how
the models perform with respect to certain groups within a
dataset [7, 27, 33]. These common approaches often only
consider the final predictions of models, but in line with
other works [1, 6, 12, 14], we aim to understand why these
biases might occur. The key insight for our bias identifica-
tion method is the following: if a model learns a spurious
correlation between a target attribute and a confounding at-
tribute in the dataset, it will learn to use features helpful
for the confounding attribute instead of the target attribute.
This lets us quantify bias by comparing a model’s attention
map for the target attribute to either attention maps of con-
founding attributes or ground-truth feature maps.
Attention Map Metrics. We use Gradient-weighted Class
Activation Mapping (GradCAM) to obtain attention maps
for target attributes [23]. Given an input image x and tar-
get attribute a, let the attribute-specific attention map be
GradCAMa(x). The metric should be able to compare
two real-valued attention maps with each other, as well as
an attention map with a binary ground-truth feature mask.
Based on these constraints, we propose a generalized IoU
metric, which we refer to as Attention-IoU, that works on
weighted dense-pixel maps and is size and scale invariant.
Given two maps M1,M2 ∈ Rh×w, which can be either at-
tention maps or feature masks, denote their L1 normalized
maps as M̂i = Mi/∥Mi∥1, which are akin to probability
density functions. The metric is defined as

BA-IoU(M1,M2) =
⟨M̂1, M̂2⟩F∥∥∥M̂1+M̂2
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Figure 2. Evaluation of mask score using GradCAM on CelebA
test set with attribute-specific feature masks, compared to
worst group accuracy with Male. Groups are considered based
on ground-truth labels for the different combinations of target at-
tribute and Male. If the number of images in a group is less than
1% of the test set, the group was excluded from consideration.

where ⟨A,B⟩F is the Frobenius inner product, i.e., the sum
of the element-wise matrix product, and ∥A∥2F is the Frobe-
nius norm, i.e., the sum of squared entries of the matrix.

Bias Scores. Using Attention-IoU, we define two methods
to score biases in a model for a given target. The heatmap
score compares the attention map for the target attribute
with the attention map of a chosen protected attribute using
BA-IoU. The mask score is computed between the target’s
attention map and a chosen ground-truth feature mask cor-
responding to the input image. As the size of the attention
map is the size of the final convolution layer, whereas the
feature mask is the size of the input image, the feature mask
is downsampled with bilinear interpolation. The heatmap
and mask scores are averaged over all images in a given set.

Advantages of Attention-IoU. Attention-IoU has several
advantages over existing bias detection methods. First,
since the metric is based on attention maps, it highlights
specific regions of the sensitive attribute that most con-
tribute to the target attribute prediction. Thus, we are able
to identify bias at a more fine-grained level than other bias
metrics. Next, by visualizing the scores separately for dif-
ferent types of images, we can infer if the bias is different
for the different sets. For example, this allows us to under-
stand if the features of the sensitive attribute are used solely
when the attribute takes on a particular value. Finally, the
metric allows us to unearth potential confounding variables;
i.e., when the bias is due to more than the simple proportion
of labels within the training dataset.

3. Analyzing CelebA

In this section, we analyze the CelebA dataset [15] us-
ing Attention-IoU. CelebA is labeled with 40 different
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Figure 3. Comparison of attributes with the Male attribute heatmap. (Left) We compare Attention-IoU with the absolute value of the
Matthews correlation coefficient between the predictions of the attribute and Male, noticing a strong positive trend. Some attributes are
outliers to this trend, including Eyeglasses and Mustache, which lie above this trend, and Wavy Hair, which lies below. (Right) We
measure the mask score for a selection of attributes. We notice that the heatmap for Male attends most strongly to the eye, eyebrows, and
mouth region, which is closely mimicked by Wearing Lipstick. We can also compare attributes like Blond Hair and Wavy Hair,
and find that the main difference between their heatmaps is in the eye region.

attributes including both attributes localized to specific
face regions (e.g., Big Nose, Mouth Slightly Open,
Blond Hair) and attributes that are more global (e.g.,
Male1, Heavy Makeup). We use Attention-IoU to under-
stand more about the attributes present in the dataset, and
how they might influence each other.

We start by evaluating heatmaps using ground-truth
masks, for attributes that are localized and have associated
masks. We choose a subset of 17 CelebA attributes that
have directly corresponding feature masks, and calculate
the respective mask score for each attribute (Fig. 2). There
is not a strong correlation between worst group accuracy
(WGA) and the mask score. This is not surprising, since
dataset bias is not immediately correlated to a singular at-
tribute’s labeling. Instead, an attribute’s WGA and bias is
dependent on the features in the image and the distribution
of its label with the labels of other attributes.

Comparison with the Male heatmap. In line with prior
works, which investigate the impact of bias due to the pro-
tected Male attribute, we next examine the correlation be-
tween the heatmaps of different attributes and the heatmap
for the Male attribute. We compute Attention-IoU for all
40 attributes with Male (Fig. 3 left). We measure the
correlation between the attribute and the Male label us-
ing the absolute value of Matthews correlation coefficient
(MCC), which is tailored for comparing two binary vari-

1We acknowledge that these binary feature labels in CelebA, especially
the Male label, forces people’s presentations to fit into binaries. The Male
label inherently assumes that an individual’s gender presentation is tied to
their gender identity. It is not clear what standards the creators of CelebA
use in their definition of the Male label and other feature labels. However,
for our goal of creating and evaluating bias metrics, we follow existing
literature in our use of CelebA labels.

ables. There is a clear positive trend between the heatmap
score and predicted label MCC. Some attributes are out-
liers to this trend, such as Mustache and Eyeglasses
having higher heatmap scores, and Wavy Hair having a
lower heatmap score. We also report the mask score for se-
lected attributes (Fig. 3 right). The mask score for Male
demonstrates that the models attend most strongly to the
eye, eyebrow, and mouth region of the face, and slightly
less to the nose and hair regions. We notice that this is
most closely replicated by Wearing Lipstick, validat-
ing the high heatmap score. This per-region score compu-
tation also allows us to understand how features of different
attributes differ: for example, the main difference between
Blond Hair and Wavy Hair appears to be in how much
the models attend to regions around the eyes and nose. We
now analyze in detail four attributes representative of those
with distinct properties.

Wearing Lipstick. Wearing Lipstick has the high-
est absolute correlation with Male out of all 40 attributes,
with an MCC of 0.88± 0.03. Furthermore, this correlation
is predictive in both directions. One would expect that the
attention map for Wearing Lipstick would highlight
the mouth region. However, the mask score shows that the
models attend to the eyes, eyebrows, nose, and hair regions,
in addition to the mouth. In fact, the mask score distribu-
tion for Wearing Lipstick is closely similar to that of
Male, only with a slightly higher mouth mask score. This
close similarity between Wearing Lipstick and Male
is reflected in the heatmap score, the highest of any attribute.

Eyeglasses. Eyeglasses is an outlier to the heatmap
score trend, having significantly higher heatmap scores
compared to other attributes with similar MCCs. The at-
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Figure 4. Average heatmaps for Male. We train models to
predict Male when Eyeglasses are absent (center-left) and
present (center-right). We notice a stark difference in the heatmaps
suggesting that the features used by the model for predicting
Eyeglasses is different from those being used to predict Male,
despite them being co-localized in the original models.

tribute is moderately correlated with Male, having an MCC
of 0.26±0.02, suggesting that Male is unlikely to influence
the prediction of Eyeglasses much (or vice versa). As
shown by the Eyeglasses mask score, the models attend
strongly to the eyes, eyebrows, and nose regions. Surpris-
ingly for an attribute with a low MCC, the heatmap score
for Eyeglasses is high at 0.86± 0.01. We posit that this
might be due to one of the weaknesses within Attention-
IoU: it’s unable to detect when features are co-localized. In
this case, we notice in Fig. 3 (right) the heatmap attends
highly to eyes and eyebrows, similar to that in Male.

To verify, we train two models to classify the Male at-
tribute, one with just images for which Eyeglasses are
present, and another for which Eyeglasses are absent.
We hypothesize that if the Male and Eyeglasses classi-
fiers are using the same features, Male would continue to
attend to the eye region, since these features would continue
to be useful. However, when Eyeglasses are present,
Male attends primarily to the mouth, not the eyes (Fig. 4).
Thus, we verify that the high heatmap score Eyeglasses
is caused by co-localized features relevant to both attributes.
Blond Hair and Wavy Hair. We choose this pair of at-
tributes as they relate to the same regions within the image
(hair) with similar MCCs (0.34±0.02 and 0.37±0.05), but
have very different heatmap scores. Despite both referring
to the hair feature, Blond Hair and Wavy Hair exhibit
distinct attention maps. Relative to the Male mask score,
for Wavy Hair the models attend to more to the hair re-
gion, and significantly less to the eyes, nose, and mouth.
This increase for hair is larger regarding Blond Hair,
which also has a smaller decrease in the eye region. Overall,
Blond Hair has a higher heatmap score of 0.72 ± 0.02,
while Wavy Hair is lower at 0.65± 0.03.

We propose that this difference is due to the presence of
an (unlabeled) confounder: one of the attributes and Male
are both correlated with the confounder, which creates an
apparent relation between Male and the attribute. To test
this, we modified the training distribution for Blond Hair
and Wavy Hair by training models on a subsampled train-
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Figure 5. Varying the correlation in the training dataset.
To understand if the correlations are indeed responsible for the
mask scores, we subsample the dataset to vary the ground-truth
MCC between Blond Hair and Wavy Hair and Male. We
find that changing the ground-truth MCC for Blond Hair (left)
does not change the heatmap score, while changing the MCC for
Wavy Hair (right) results in a strong change in the heatmap
score (orange/square indicates the original results). This sug-
gests that there might be a hidden confounder present between
Blond Hair and Male, leading to the large heatmap score.

ing set (Fig. 5). We varied the ground-truth MCC from −0.5
to −0.1 between the target attribute and Male by vary-
ing proportion of the 4 subgroups within the training set,
keeping the overall number constant (details in Sec. E). For
Blond Hair, we find that there is no statistically signif-
icant change in heatmap score, with a Kendall τ value of
0.007. However, Wavy Hair demonstrates a strong cor-
relation between MCC and heatmap score (τ = 0.785),
with the model bias decreasing as train set bias decreases.
This indicates that there might be an unlabeled confounder
present in Blond Hair: there is an innate quality to the
features distinct from dataset labels that create bias within
the model for Blond Hair, rather than the simple pro-
portion of attributes to one another in the dataset as in
Wavy Hair. This allows us to better understand when de-
biasing techniques might work: for example, methods that
attempt to rebalance the dataset for Blond Hair [22, 24]
might struggle since the bias is not due to the presence of
blond hair, but a hidden confounder.

4. Conclusion
We propose Attention-IoU, a metric for identifying and
explaining spurious correlations through attention maps.
With the CelebA dataset, we show that the metric and the
mask and heatmap scores reveal aspects beyond dataset
labels and model accuracies, recontextualizing prior
analyses of CelebA. In particular, we identify ways in
which different attributes are influenced by the Male label:
attributes can be biased more or less based on labels of
the sensitive attribute and can be biased in ways beyond
the correlation of labels within the dataset. These insights
allow us to better understand how debiasing techniques
might perform on CelebA. Future investigations of the
metric on other datasets and tasks can provide more insights
into the nature of biases within computer vision models.
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Attention IoU: Examining Biases in CelebA using Attention Maps

Supplementary Material

A. Gradients for GradCAM
In Sec. 2, we use GradCAM to calculate attention maps.
Given an input image x and target attribute a, GradCAM
computes the gradient of the class output ya with respect
to the output of a convolutional layer, usually the final
layer, to obtain activation maps of the attribute. A sim-
ple gradient-weighted linear combination of the layer’s fea-
ture activation maps produces the attribute-specific atten-
tion map GradCAMa(x). GradCAM was developed for
models trained with categorical cross entropy loss, and thus,
in its standard implementation, only able create attention
maps for positive predictions for a model trained with bi-
nary cross entropy loss. For our metric, we instead take the
gradient of the absolute value of the class output, |ya|, so
that image features that contribute positively to either pre-
diction is attended to in the attention map.

When using a model that is trained using binary cross-
entropy loss, computing the gradient w.r.t. the absolute
value of the logit (before the sigmoid) is equivalent to com-
puting the gradient w.r.t. to the predicted class for categori-
cal cross-entropy loss with two heads (one each for the posi-
tive and negative class). Concretely, let s be the value of the
logit; the probability that this model assigns to the positive
class is σ(s) = 1

1+e−s , and the probability assigned to the

negative class is 1 − σ(s) = e−s

1+e−s = σ(−s). The model
prediction is argmax(σ(s), σ(−s)) = argmax(s,−s).
Thus, taking the gradient with respect to the absolute value
of the logits allows us to find positive contributions to the
predicted binary class.

B. Proofs of Invariants
In Sec. 2, we introduce the Attention-IoU metric, BA-IoU,
which is invariant to scale and size for pixel maps.

First, we confirm that if the two input maps are identical,
M1 = M2 = M ∈ Rh×w, the Attention-IoU metric is 1:

BA-IoU(M,M) =
⟨M̂, M̂⟩F∥∥∥M̂+M̂

2

∥∥∥2
F

(1)

=
⟨M̂, M̂⟩F∥∥∥M̂∥∥∥2

F

=

∥∥∥M̂∥∥∥2
F∥∥∥M̂∥∥∥2
F

= 1. (2)

We next prove that BA-IoU is scale invariant. Given
two maps M1,M2 ∈ Rh×w, suppose the maps are mul-
tiplied by the scalars a1, a2 ∈ R+ respectively. Then their

L1 normalized maps are

âiMi =
aiMi

||aiMi||1
=

aiMi

ai||Mi||1
= M̂i (3)

So BA-IoU(a1M1, a2M2) = BA-IoU(M1,M2).
For the proof of size invariance, we assume for simplicity

that the maps are resized by a positive integer scalar α ∈ N
using nearest neighbor interpolation. Again, consider two
maps M1,M2 ∈ Rh×w. Let Mα

1 ,M
α
2 ∈ Rαh×αw be the

rescaling of the two maps by the constant α. For example,
with α = 2, a 5 × 5 box in the center of the map will be
resized to be a 10 × 10 box, with the same spacial location
within the map. Note that the L1 normalized maps are

M̂α
i =

Mα
i

||Mα
i ||1

=
Mα

i

α2||Mi||1
, (4)

as each pixel in the original map appears α2 times in the
resized map. Furthermore, the Frobenius inner product of
the two resized maps is

⟨Mα
1 ,M

α
2 ⟩F =

αh∑
i=1

αw∑
j=1

(Mα
1 )ij · (Mα

2 )ij (5)

= α2
h∑

i=1

w∑
j=1

(M1)ij · (M2)ij (6)

= α2⟨M1,M2⟩F (7)

and, for the norm,
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1 + M̂α

2

2
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2
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=
1

4

αh∑
i=1

αw∑
j=1

(
(Mα

1 )ij
||Mα

1 ||1
+

(Mα
2 )ij

||Mα
2 ||1

)2

(8)

=
1

4α4
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4α2
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Thus, combining the two parts together,

BA-IoU(M
α
1 ,M

α
2 ) =

⟨M̂α
1 , M̂

α
2 ⟩F∥∥∥M̂α

1 +M̂α
2
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(12)

=

1
α4||M1||1·||M2||1 ⟨M

α
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1
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⟨M̂1, M̂2⟩F∥∥∥M̂1+M̂2

2
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F

(15)

= BA-IoU(M1,M2). (16)

Although in the proof Mα
1 and Mα

2 are larger matrices than
M1 and M2, the same argument applies if M1 and M2 are
zero-padded to have same dimensions as the resized maps.

C. Experimental Setup
Since we require ground-truth segmentation masks, we use
CelebAMask-HQ [13] which is a subset of 30,000 images
from CelebA [15], in which each image has a high-quality
segmentation mask of different facial features, including
hair, nose, skin, hats, and jewelry. We group like fea-
tures together, e.g., {left brow, right brow} and {upper
lip, lower lip, mouth}. Large non-localized feature masks
(background, skin, and cloth) are excluded from our analy-
ses. We choose a 70%-15%-15% train-validation-test split
for training on CelebAMask-HQ. The test set was used
to compute the overall accuracy, per-group accuracy, and
Attention-IoU. To train classifiers for the attributes, we use
a ResNet-50 model [8] pretrained on ImageNet [21]. We re-
placed the final layer with two fully-connected layers with
a hidden layer size of 2,048 and a dropout layer between
them, in order to improve accuracy, following Ramaswamy
et al. for their CelebA ResNet classifier [20]. Input images
are rescaled to be 224 × 224, and augmented using ran-
dom crops and horizontal flips during training. We used a
binary cross-entropy loss, weighted proportionally to pos-
itive examples of each attribute. Models were trained for
10 epochs, with a batch size of 32. We report averages and
standard deviations over 20 individually trained models.

D. Validating the metric
In addition to evaluating on CelebA, we test the proposed
metric on Waterbirds [22]. This simple synthetic dataset
is constructed by combining cropped bird images from
the CUB dataset [28] with backgrounds from the Places
dataset [35]. In the dataset birds are labeled as either a

Bird Mask 70% bias 90% bias 95% bias 100% bias

Figure 6. Average bird mask and average heatmaps for Water-
birds at increasing levels of bias. We see that the model attends
less on the bird as the bias increases, as indicated by its mask.
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WGA:0.45±0.09
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Figure 7. Evaluation of mask score using GradCAM on Water-
birds test set. The X-axis represents the Attention-IoU mask score
for the ground-truth masks of the bird and background. We note
the dataset bias and the worst group accuracy (WGA) along the
Y-axis. As the bias increases, the worst group accuracy decreases
and the model attends less to the bird and more to the background.

waterbird or landbird, and backgrounds are similarly la-
beled as land or water. The dataset can be constructed
with different levels of correlation between the bird and
the background, introducing a single axis of bias within the
dataset. Moreover, masks of the bird and background are
clearly available within this dataset, which can be used to
compute Attention-IoU.
Experimental setup. Following prior work, we place a
specified percentage (between 50%-100%) of the water-
birds on a water background, with the remaining 0%-50%
of the waterbirds are placed on a land background, and
similarly for landbirds and land backgrounds. The vali-
dation and test sets are unbiased with a bird being 50%
likely to align with its background. We followed Sagawa
et al. [22] in using the official train-test split of the CUB
dataset, composed of 5,994 training images and 5,794 test-
ing images, and randomly choosing 20% of the training im-
ages to form the validation set. As our model, we used
ResNet-18 [8] pretrained on ImageNet [21]. Models were
trained on Waterbirds using categorical cross-entropy loss
with a batch size of 64. Other hyperparameters remain the
same as Sec. C.
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Results. We compare the heatmap generated with the
ground-truth masks for the bird. In Fig. 6, we show the
average bird mask, as well as the average heatmaps gener-
ated by GradCAM across all images in the test set for mod-
els trained at different levels of bias. As the bias increases,
models rely more on cues from the background. This is re-
flected in the heatmaps, which highlight regions other than
the bird mask. We verify that Attention-IoU captures this
effect in Fig. 7, which shows the mask scores across vary-
ing training set bias for both bird and background masks.
We also report the worst group accuracy (WGA) of models
for each. As expected, the worst group accuracy decreases
from 0.81±0.02 to 0.21±0.10 as bias increases from 50%
to 100%. The decrease from 0.72 ± 0.02 to 0.42 ± 0.03
in mask score almost exactly mirrors the proportional de-
crease in WGA, validating that the metric accurately mea-
sures model bias. Due to the simple nature of Waterbirds,
the bias in the dataset is directly represented in the training
distribution, and Attention-IoU captures this perfectly.

E. Subsampling Training Details
Here we provide experimental details for varying training
set correlations in Sec. 3. Given a target Matthews correla-
tion coefficient between the specified attribute and Male,
we find subgroup sizes that achieve the target MCC (as
MCC is dependent entirely on the sizes of the 4 subgroups)
using SciPy’s optimize.minimize with the trust re-
gion method2 (Fig. 8). We bound the sizes of the subsam-
pled subgroups to the size of the original groups, and aim to
minimize the distance to the original group sizes by the L2

norm. To reduce fluctuations between the subsampled sizes,
we initialize the optimizer with the adjacent subgroup sizes,
with the original subgroups sizes in the training set as the
starting point. Lastly, after running the optimization once
for all MCCs, we rerun the optimization process with the
additional bound of the smallest subsampled training set, so
that all the subsampled training sets are of the same size. As
the subsampling was an ablation study, the heatmap scores
reported in Fig. 5 were run on the validation set.

F. Additional CelebA Results

Model Evaluation. The average precision weighted for
all 40 attributes in CelebA, averaged across the 20 trained
models with the experimental setup detailed in Sec. C, is
0.902 ± 0.025. For reference, the normalized average pre-
cision (APN) [10] for the Male attribute is 0.994± 0.003,
the second highest after Eyeglasses (0.998± 0.001). In
Fig. 9 we show average heatmaps for select attributes.
CelebA Normalized Average Precision. As a comparison
to Fig. 2, which shows CelebA mask score against worst

2https://docs.scipy.org/doc/scipy/reference/
optimize.minimize-trustconstr.html
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Figure 8. Training set subgroup sizes under subsampling. Here
we report subgroup sizes of the training set of varying MCCs for
Blond Hair and Wavy Hair with Male, under our optimiza-
tion scheme, to compute the results in Fig. 5. Subgroup sizes are
bounded to the smallest subsampled training set size. The legend
shows the four different subgroups groups, with the first value in-
dicating the target label and the second Male.
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Mustache Blond Hair Wavy Hair

Figure 9. Average heatmaps for CelebA attributes. We visualize
average heatmaps for the selected attributes investigated in Sec. 3.
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Figure 10. Evaluation of mask score using GradCAM on
CelebA test set with attribute-specific feature masks, com-
pared to average precision. To compare per-attribute AP between
attributes, we adopt Hoiem et al.’s normalized average precision
(APN) metric [10].

group accuracy, in Fig. 10 we show the mask score of the
same 17 attributes to their normalized average precision
(APN). Compared with worst group accuracy, there is a no
correlation for normalized average precision with respect to
the mask score. Unlike worst group accuracy, to calculate
normalized average precision one does not need to assume
the correlated attribute.

Mustache. In addition to the four attributes analyzed
in Sec. 3, we also analyze Mustache as another exam-
ple of an outlier to the heatmap score trend (Fig. 3 left).
Mustache is moderately correlated with Male, with a
predicted label MCC of 0.51 ± 0.04. Mustache’s mask
score distribution reflects that of Male, with slightly more
attention to the hair and mouth regions. This is reflected by
a high heatmap score of 0.90 ± 0.02. We choose this at-
tribute since this attribute represents a one-way correlation:
images where Mustache are labeled as present are almost
often labeled Male, whereas images where Mustache are
labeled as absent are roughly evenly split among being la-
beled Male and not Male.

We investigate how Attention-IoU changes based on the
ground-truth values of these attributes (Fig. 11). The score
is extremely high (0.94 ± 0.02) among images labeled not
Male. When Male is false, the Mustache and Male
attention maps closely align, indicating that the model is
heavily relying on Male to classify Mustache. How-
ever, when the image is labeled as Male, the score is lower
(0.84 ± 0.5 and 0.82 ± 0.03 for Mustache true and false
respectively), the models attend less to Male regions in or-
der to classify Mustache. Mustache demonstrates that
even though two attributes may be one-way predictive in the

GradCAM - Target: all / Male, Subset: all GradCAM - Target: all / Arched_Eyebrows, Subset: all GradCAM - Target: all / Arched_Eyebrows, Subset: all GradCAM - Target: all / Arched_Eyebrows, Subset: all

Male heatmap not Male, no
Mustache

Male, no
Mustache

Male,
Mustache

Figure 11. Average heatmaps for Mustache. We visualize
average heatmaps for Mustache for images where Mustache
and Male are labeled false (center-left), where Mustache is
labeled false and Male is labeled true (center-right) and where
Mustache and Male are labeled true (far right), and compare
to the Male heatmap (far left). When Male is labeled as false,
Mustache and Male attention maps closely align but do not
when Male is labeled true.

dataset (and thus have a lower MCC), the models still attend
strongly to any correlation between the attributes, which is
indicated through Attention-IoU.

G. Evaluating with EfficientNet
To demonstrate the effectiveness of Attention-IoU on ar-
chitectures other than ResNet, we also evaluated the met-
ric using the EfficientNetV2-S architecture [26] on both the
Waterbirds and CelebA datasets. Aside from the change in
architecture, and averaging over 10 trained models instead
of 20, the experimental setup remained the same.

For Waterbirds, the EfficientNet models show a very
similar pattern to ResNet in attending less to the bird and
more to the background as dataset bias increases (Fig. 13).
The EfficientNet heatmap scores for CelebA also show
a strong positive trend with MCC like ResNet (Fig. 12).
The 5 highlighted attributes maintain their relative posi-
tions, with some changes owing to different architectures
and pretraining weights.
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Figure 12. EfficientNetV2 mask score on Waterbirds. The
top bars indicate Attention-IoU mask scores for EfficientNetV2-S
models, while the bottom bars are corresponding ResNet-50 scores
from Fig. 3. WGA is for the EfficientNet model. As with ResNet,
the EfficientNet models attend less to the bird and more to the
background, mirroring the decrease in WGA.
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Figure 13. EfficientNetV2 heatmap scores on CelebA at-
tributes. Orange indicates results with EfficientNetV2-S models,
and light blue are ResNet-50 results from Fig. 5. We observe a
very similar trend in EfficientNetV2 to that of ResNet-50. High-
lighted attributes maintain their relative position, with some move-
ment owing to different architectures and pretraining weights.
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