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ABSTRACT

We consider concept generalization at a large scale in a diverse and natural visual
spectrum. Established computational modes (i.e., rule-based or similarity-based)
are primarily studied isolated and focus on confined and abstract problem spaces.
In this work, we study the two modes when the problem space scales up and the
complexity of concepts becomes diverse. Specifically, at the representational level,
we seek to answer how the complexity varies when a visual concept is mapped
to the representation space. Prior psychology literature has shown that two types
of complexities (i.e., subjective complexity and visual complexity) (Griffiths and
Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun and Firestone,
2021). Leveraging Representativeness of Attribute (RoA), we computationally
confirm the following observation: Models use attributes with high RoA to de-
scribe visual concepts, and the description length falls in an inverted-U relation
with the increment in visual complexity. At the computational level, we aim to
answer how the complexity of representation affects the shift between the rule-
and similarity-based generalization. We hypothesize that category-conditioned
visual modeling estimates the co-occurrence frequency between visual and cate-
gorical attributes, thus potentially serving as the prior for the natural visual world.
Experimental results show that representations with relatively high subjective com-
plexity outperform those with relatively low subjective complexity in the rule-based
generalization, while the trend is the opposite in the similarity-based generalization.

1 INTRODUCTION

Concept generalization can be categorized into two distinct schools of thought, rule- and similarity-
based approaches (Sloman and Rips, 1998; Shepard, 1987). The first attempt to unify these two modes
was presented by Tenenbaum (1999) using Bayesian inference (Tenenbaum, 1998; Tenenbaum and
Griffiths, 2001a; Xu and Tenenbaum, 2007). Based on perception (Kersten et al., 2004), this paradigm
reconstructs human’s hypothesis space consisting of abstract features and incubates modern concept
learning algorithms (Tenenbaum et al., 2011; Lake et al., 2015; Ellis et al., 2020). However, as most
concept learners have only demonstrated in confined and abstract problem space, a challenging
problem remains: When the problem space scales up (e.g., using data collected from the natural
world), is there a unified concept representation that combines the two established modes (i.e., rule-
and similarity-based)? If it does, how does the generalization shift between the two modes w.r.t. the
complexity of concepts?

To give some concrete examples, let us consider the visual categorization problem in the natural world
(Quine, 1960). (i) We can easily generalize banana to cucumber to tennis to watermelon considering
the surface color (i.e., yellow to green), but not easy to judge that tennis is more similar to cucumber
or watermelon. (ii) We say that tiger is more similar to cat rather than dog, but hard to generalize the
rule of tiger to dog to cat to something. (iii) We see digits 1 looks like 7 than 8, but cannot figure out
7 to something given 1 to 8. How do these distinctions emerge from visual observations?

One hypothesis is that we tend to describe those visual concepts (i.e., visual complexity, the
complexity coded by pixels) by simple visual patterns (i.e., subjective complexity, the coding length
humans used to describe certain concepts) (Donderi, 2006; Wolfram et al., 2002). For a simple
concept, we may only need one attribute, e.g., the color yellow. As the concepts become more
complex, we ought to adopt more attributes, such as watermelons are green balls with waved stripes.
When the concept becomes even more complicated, we would choose not to describe it with many
attributes but instead back to simple ones, such as dogs has dog-like face.
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Figure 1: The landscape of the computation-mode-shift vs. the concept complexity. (a) Representation level:
original visual concepts of diverse complexity and visualization of their representative attributes (around the
peaks of heatmaps). (b) Computation level: an illustration of similarity- and rule-based generalization. The
former is similar to word learning (Xu and Tenenbaum, 2007): Given very few examples of known concept dax,
tell which is most likely to be dax in unseen examples. The latter is akin to concept learning (Salakhutdinov et al.,
2012): Given a rule tufa over two known concepts, tell how tufa generates the examples of unknown concepts.
As concept visual complexity increases, concept subjective complexity first increases, then decreases—and the
computation mode shifts from similarity to rules as subjective complexity increases.

Together, we observe a shift in the continuous space spanned by the rule- and similarity-based ap-
proaches w.r.t. the increase of concept complexity. Intuitively, both very simple and complex concepts
have a lower description length, which tends to generalize by similarity. In comparison, concepts
neither too simple nor too complex have a higher description length, which tends to generalize by
rules. This observation echos modern literature in both information theory and psychology, which
demonstrate that subjective and visual complexity (Griffiths and Tenenbaum, 2003) come in an
inverted-U relation (Donderi, 2006; Sun and Firestone, 2021).

In essence, we seek to quantify the relation between the prior-studied but mostly isolated modes
(i.e., rule- and similarity-based): What are the relations between the computation-mode-shift and the
concept complexity, as we hypothesized above and illustrated in Fig. 1? Specifically, we disassemble
the above question into two on the basis of Marr’s (Marr, 1982) representational level and compu-
tational level, respectively: (i) How does the complexity change when a visual concept is mapped
to the representation space? (ii) How does the complexity of representation affect the shift between
rule- and similarity-based generalization? By answering these two questions, we hope to provide a
new perspective and the very first pieces of evidence on unifying the two computational modes by
mapping out the landscape of the concept complexity vs. the computation mode.

Representation vs. complexity Representing the natural visual world merely with human prior
is insufficient (Griffiths et al., 2016) and oftentimes brittle to generalize. Despite that hierarchy
empowers large-scale Bayesian word learning (Miller, 1998; Abbott et al., 2012), extending it
to visual domains is yet challenging and may need costly elaboration. In comparison, modern
discriminative models trained for visual categorization by leveraging large-scale datasets can capture
the rich concept of attributes (Xie et al., 2020). These observations and progresses naturally lead to
the problem of concept representation complexity: If we distinguish visual concepts using attributes,
at least how many attributes should we use (Chaitin, 1977; Li et al., 2008)?

To tackle this problem, here we offer a new perspective by bridging the subjective complexity with
the visual complexity via Representativeness of Attribute (RoA), which consists of (i) the probability
of recalling an attribute z when referring to a concept c, and (ii) the probability of recalling other
concepts ĉ when referring to an attribute z. This design echoes the principles in rational analysis
(Tenenbaum and Griffiths, 2001b) yet can be obtained by frequentist statistics for large problem
spaces (e.g., natural visual world (Abbott et al., 2011)).
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Computation vs. complexity Modern statistical learning methods have demonstrated strong ex-
pressiveness in concept representation by implicitly calculating the co-occurrence frequency between
visual attributes and categories (Wu et al., 2019; Xie et al., 2016), even when scaling up to the
complex and large-scale visual domain—the learned representation fits the prior distribution of visual
concepts conditioned on categorical description (Xie et al., 2020). It can also bridge sensory-derived
and language-derived knowledge (Bi, 2021). Hence, this learning paradigm should somehow inherent
semantic properties in addition to visual properties, such as iconicity (Fay et al., 2010; 2013) and
disentanglement (Allen and Hospedales, 2019; Gittens et al., 2017; Mikolov et al., 2013).

Leveraging this observation, we hypothesize that rule-based and similarity-based generalization
reflects the analogy and relatedness properties in psycholinguistics (Gentner and Markman, 1997),
where the former pairs are two ends of a continuum of concept representation and the latter pairs are
two ends of a continuum of literal meaning. Visual categorization brings these two pairs together
because linguistic analogy and relatedness come from generalizing the corresponding appearance
instead of pure literal meaning—concepts with more easy-to-disentangle attributes (e.g., shape and
color) are more likely to generalize by rules, while concepts represented with more iconicity (Fay
et al., 2014) (i.e., those more likely to be viewed holistically) tend to generalize by similarity.

Computationally, the above hypothesis is consistent with the findings by Wu et al. (2008). Specifically
in their visual space of natural scenes, textons (low-entropy) (Zhu et al., 2005) can be composed by
very simple concepts (Wu et al., 2010), akin to rule-based generalization. In comparison, textures
(high-entropy) (Julesz, 1962) cannot be represented by rules (Zhu et al., 1997); instead, they are eval-
uated and generalized in terms of similarity by “pursuit” (Zhu et al., 1998). As such, we hypothesize
that generalization shifts from similarity to rules as subjective complexity increases.

In the remainder of the paper, we first present the new metrics, Representativeness of Attribute (RoA),
to measure the subjective complexity and analyze the computation-mode-shift in Sec. 2. Next, through
a series of experiments, we provide strong evidence to support our hypotheses in Sec. 3; we draw the
following conclusions in response to the two problems raised at the beginning:

1. Representation: the subjective complexity significantly falls in an inverted-U relation with the
increment of visual complexity.

2. Computation: rule-based generalization is significantly positively correlated with the subjective
complexity of the representation, while the trend is opposite for similarity-based generalization.

2 BAYESIAN GENERALIZATION AND COMPLEXITIES

In this section, we formulate Bayesian generalization for visual concept learning (Sec. 2.1), followed
by the definitions of subjective complexity and visual complexity (Sec. 2.2).

2.1 BAYESIAN GENERALIZATION FOR LARGE-SCALE VISUAL CONCEPT LEARNING

Concept-conditional modeling Let us consider f : R
D 7→ R

d, which maps the input x ∈ R
D

to a representation vector z ∈ R
d. Here, f might be part of a discriminative model trained for

visual categorization tasks, such as a prefix for a convolutional neural network without the last
fully-connected layer for mapping z to the category vector c ∈ R

c. Training a discriminator for
image categorization is to estimate the likelihood of concept c given a set of samples X: P (c|X) =∏

x∈X P (c|x; θ), where θ is the parameter of f . Here, we assume that f provides a good estimation

of P (z|X; θ); Tishby and Zaslavsky (2015) provides empirical evidence that a discriminative model
may first learn how to extract proper attributes to model images X conditioned on c, then learn
to discriminate their categories based on the attribute distribution. Some dimensions of z (usually
5% ∼ 10% of the total dimensions) capture concrete semantic attributes of visual concepts when
the activation score fz(X) is relatively high (Bau et al., 2020). Combining this concept-conditional
measurement with attribute modeling, we rewrite the category prediction considering the attribute as
a latent variable, and the observable joint distribution (X, c) is marginalized over z:

P (c|X; θ) =
∑

z∈Z

P (c, z|X; θ) =
∑

z∈Z

P (c|z)P (z|X; θ), (1)

where Z is the space of all attributes. This expression is essentially a Bayesian prediction view of
visual categorization, which can be derived to Bayesian generalization in the natural visual world.
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Representativeness of Attribute (RoA) as an informative prior Statistically, we treat the concept-
conditional attribute activation score as an estimation of the probability P (z|c) that recalls an attribute
z when referring to a concept c; this is similar to answering “Describe how a dog looks like.” In the
context of the natural visual world, we also have all activation scores generated by an attribute as an
estimation of the probability P (ĉ|z) that recalls all concepts ĉ ̸= c when referring to the attribute z;
this is akin to answering “What do you recall seeing a blue thing in a ball shape?”

Given the above observations and inspiration from Tenenbaum and Griffiths (2001b)), we formally
define the RoA of a specific attribute zi for concept c as:

RoA(zi, c) = log
P (zi|c)∑

ĉ ̸=c P (ĉ)P (zi|ĉ)
, (2)

where P (ĉ) is the prior of concepts in the context. We hypothesize that humans estimate P (ĉ)
through both language derivation and visual experience, essentially calculating the co-occurrence
frequency between visual attributes and categorical attributes over the joint distribution P (zi, ĉ).
Hence, modeling RoA with large-scale image datasets and language corpus should yield human-level
prior modeling. On this basis, we use f to statistically estimate P (zi, ĉ) (Xie et al., 2020):

RoA(zi, c) = log
P (zi|c)∑

ĉ ̸=c P (ĉ)P (zi|ĉ)
∝ log

P (zi|c; θ)∑
ĉ ̸=c P (ĉ|zi; θ)

, (3)

where P (z|c; θ) and P (ĉ|z; θ) are estimations of P (zi|c) and P (zi, ĉ), respectively.

Generalize to the unseen Given an appropriate modeling of P (z|X; θ), the goal is to generalize

an unknown concept c′ to a small set of unseen examples X̂ = {x1, · · · , xn}, where n tends to be a

small integer. The generalization function P (c′|X̂) is given by:

P (c′|X̂) =
∑

z∈Z

P (c′|z)P (z|X̂; θ) =
∑

z∈Z

P (c′)P (z|c′)∑
c∈C P (c)P (z|c)

P (z|X̂; θ)

∝ P (c′)︸ ︷︷ ︸
uninformative

prior

∑

z∈Z

exp (RoA(z, c′))︸ ︷︷ ︸
informative

prior

P (z|X̂; θ),
(4)

where the uninformative prior P (c′) encodes the computation-mode-shift. Specifically, the similarity-
based generalization ⟨c :: c′⟩ between a pair of concepts is defined as ∃c ∈ C, σ0(c, c

′) < δ, where
δ is a relative small neighbour. Similarly, the rule-based generalization ⟨c1 : c2 :: c3 : c′⟩ over
a quadruple of concepts is defined as ∃c1, c2, c3 ∈ C, σ1(c1 − c2, c3 − c′) < δ, where σN (·, ·) is
an arbitrary metric measurement with an N-order input. Inspired by Tenenbaum (1999), we define
P (c′) ∝ σ0σ1/(σ0 + σ1), resulting in the simplest hypotheses of concepts: The harmonic property
keeps guide to similarity-based generalization if σ0 is dominating, and vice versa.

2.2 COMPLEXITIES
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Figure 2: Visual complexity of various datasets.

Visual complexity Visual concepts come with di-
verse complexity, from very simple geometry con-
cepts such as squares and triangles, to very com-
plex natural concepts such as dogs and cats. Inspired
by Wu et al. (2008), we indicate concept-wise vi-
sual complexity by Shannon’s information entropy
(Shannon, 1948). Formally, for a set of images X =
{x1, x2, · · · } belonging to a concept c, the concept-
wise entropy is H(X|c) = EX∼P (·|c)[logP (X|c)].
As shown in Fig. 2, we compute the visual complex-
ity and order some commonly known image datasets:
2D geometries (El Korchi and Ghanou, 2020), single
concepts (Gill et al., 2022), compositional-attribute
objects (Zhang et al., 2021; Johnson et al., 2017),
human-made objects (Deng et al., 2009), scenes
(Zhou et al., 2017), and animals (Xian et al., 2018; Deng et al., 2009).
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Subjective complexity We quantify the subjective complexity over the prior model by Kolmogorov
Complexity (Li et al., 2008). We calculate the minimum description length, i.e., the minimum number
of attributes we use to discriminate a concept. Specifically, for each concept c, we rank all attributes
z ∈ Z by RoA(z, c) decreasingly, such that ∀i, j ∈ [1, d], i < j,RoA(zi, c) ≥ RoA(zj , c). Starting
from K = 1, for each iteration, we select the top-K attributes and check whether these attributes
can distinguish the concept c from the others. This process continues if the current iteration cannot
distinguish it from the others. Formally, we define subjective complexity of visual concept L(ĉ) as:

L(ĉ) = min
K

1
(

P (ĉ ̸= c) < ϵ | c = argmax
c

P (c|z1, · · · , zK ;ϕ)
)

, (5)

where ϵ is the error rate threshold, and ϕ is the parameter of the suffix of f in the same discriminative
model for visual categorization (e.g., the fully-connected layer). We calculate P (c|z1, · · · , zK ;ϕ)
by removing the neurons’ effects corresponding to zK+1, · · · , zd (Bau et al., 2020). Instead of
maintaining all error rate thresholds, we leverage the accuracy gain between every two iterations to
search for the minimum K. This process yields the concept-wise subjective complexity in RoA.

3 EMPIRICAL ANALYSIS

In this section, we provide evidences and analyses to validate the above hypotheses. We (i) conduct
empirical analyses at both representation (Sec. 3.1) and computational (Sec. 3.2) level; (ii) provide
quantitative analyses the computation-mode-shift w.r.t. the concept complexity in Sec. 3.2); and (iii)
provide qualitative analyses to interpret from the aspect of natural image statistics in Sec. 3.3.

3.1 REPRESENTATION vs. COMPLEXITY

This experiment investigates the subjective complexity of visual concepts through visual categoriza-
tion. Our predictions were that models use attributes with high RoA to describe visual concepts, and
the description length falls in an inverted-U relation with the increment of visual complexity.

Method Six discriminative models are trained from scratch on six datasets with the supervision of
concept labels. The six datasets are LEGO (Tatman, 2017), 2D-Geo (El Korchi and Ghanou, 2020),
ACRE (Zhang et al., 2021), AwA (Xian et al., 2018), Places (Zhou et al., 2017), and ImageNet
(Deng et al., 2009), ordered as the increment of concept-wise visual complexity. The six models are
all optimized to convergence on the training set and are tuned to the best hyper-parameters on the
validation set. The readers are referred to Appendix B for details.

During the evaluation, RoA is calculated for each attribute in the context of all concepts for each
dataset. Following the protocol described in Sec. 2.2, the models conduct visual categorization tasks
from exploiting only one attribute with the highest RoA to exploiting the entire attribute space.

Results The main quantitative results are illustrated in Fig. 3. Subjective complexity shows sig-
nificant diversity between the datasets. The logarithm values are as follows; see Fig. 3c. LEGO:
.10 (CI = [−.10, .52], p < .05), 2D-Geo: 2.91 (CI = [1.21, 2.95], p < .05), ACRE: 3.08 (CI =
[2.99, 3.46], p < .05), AwA: 5.08 (CI = [4.82, 5.36], p < .05), Places: 2.74 (CI = [1.63, 4.72],
p < .05), ImageNet: 1.28 (CI = [1.16, 1.51], p < .05). All models rely on only a few (less than
20% of all) attributes to reach the prediction accuracy comparable with prediction accuracy exploiting
all attributes; see Fig. 3b; most models (5 out of 6) exploit very few (less than 5% of all) attributes to
reach a higher accuracy than that of all attributes; see Fig. 3b. The models for the simplest dataset (i.e.,
LEGO) and for the most complex dataset (i.e., ImageNet) obtain a large accuracy gain (over 10%)
with the description length from 0 to 3 and obtain smaller accuracy subsequently. In comparison,
the models for ACRE and Places obtain relatively small accuracy gain (about 5%) with description
length from 0 to 8; see Fig. 3a. Fig. 3d shows the estimated inverted-U relation between subjective
complexity and visual complexity. Following the “two-lines” test proposed by Simonsohn (2018),
the relation is relatively robust across the datasets, decomposing the non-monotonic relation via a
“breakpoint”; the positive linear relation (b = 1.10, z = 253.76, p < 1e− 4) and the negative linear
relation (b = −2.57, z = −659.26, p < 1e− 4) are both significant.

Discussion The above results reveal that (i) the representation helps the models to describe concepts
with very few attributes, (ii) representation trained from very simple or very complex datasets usually
have a shorter concept description length than those trained on other datasets, and (iii) the subjective
complexity significantly comes in an inverted-U relation with the visual complexity.
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(d) Estimated inverted-U relation be-

tween visual and subjective complexity

Figure 3: Quantitative results of Representation vs. Complexity. (vector graphics; zoom for details)

3.2 COMPUTATION vs. COMPLEXITY
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Figure 4: Quantitative results of Computa-
tion vs. Complexity. (a)(b) The rank corre-
lation of similarity- and rule-based general-
ization with the four representations trained
from four datasets. (c)(d) The rank correla-
tion of similarity- and rule-based generaliza-
tion according to the visual complexity. (L:
LEGO, G:2D-Geo, A: ACRE, I: ImageNet)
These plots reflect the landscape in Fig. 1.

This experiment evaluates the capability of rule- and
similarity-based generalization by the representations in
Sec. 3.1. Our predictions were that under the same eval-
uation protocol, representations with relatively high sub-
jective complexity outperform those with low subjective
complexity in rule-based generalization, while the trend
is opposite in similarity-based generalization.

Method The evaluation of generalization is designed
with two phases: in-domain and out-of-domain generaliza-
tions. The former consists of unseen samples from the test
set of ACRE and ImageNet, whereas the latter contains
unseen samples of unknown concepts collected from the
internet. Each phase has a dataset with pairs for similarity-
based generalization evaluation and a dataset with quadru-
ples for rule-based generalization evaluation.

The evaluation protocol for similarity-based generalization
extends its definition in Sec. 2.1. Formally, given unknown
concept c′ and known concepts c ∈ C, there is a ranking
of the pairwise metric measurement S = {σ0(ci, c

′) ≥
σ0(cj , c

′)|ci, cj ∈ C}. The representation ranking Sr is
obtained by the cosine similarity between two represen-
tation vectors cos(zi, z

′). The ground-truth ranking Sh is
obtained by human judgment. Hence, the generalization
capability of the representation can be quantified through the rank correlation coefficient introduced in
Spearman (1961) as an accuracy measurement. Similarly, the evaluation protocol for rule-based gen-
eralization is defined as follows. Given incomplete rule r′(c3, c

′) and known rules ri(c1, c2) ∈ R, the
ranking score Rr of representation is reduced to a cosine similarity calculation cos(z2 − z1 + z3, c

′),
and the ground-truth ranking Rh is obtained by human judgment (Mikolov et al., 2013). We obtain
the ground-truth concepts by literal meanings through the language representation model GloVe
(Pennington et al., 2014). The image examples are retrieved from datasets (in-domain) or the internet
(out-of-domain) with label embedding matching (Vendrov et al., 2015).

Results The quantitative results for in-domain generalization evaluation are illustrated in Fig. 4.
In similarity-based generalization, the representation trained from ImageNet outperforms others
(over 15%), and LEGO outperforms its more complex counterparts 2D-Geo and ACRE (over 10%).
In rule-based generalization, the representation trained from ACRE outperforms its more complex
counterpart ImageNet (over 20%). Though the models trained on ImageNet and ACRE reach the
highest accuracy on similarity- and rule-based generalization, this is not likely due to over-fitting in
training: The objective of visual categorization is different from that of generalization, thus the over-
fitting on one visual categorization would not result in an over-fitting on other objectives. Intuitively,
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Figure 5: A landscape of similarity- and rule-based generalization over concepts with relatively high and
low subjective complexity, considering both concept complexities and concept hierarchy. Bidirectional
arrows denote the similarity judgment between concepts, wherein concepts linked by solid lines are more similar
than those linked by dashed lines. Arrows denote rules over concepts. Rule-based generalization in basic-level
generalizes given rules to unknown rules. Similarity shifts to rules when the sample hierarchy goes from
superordinate-level to subordinate-level (e.g., from block to blue cylinder, from cat to angora cat). Rules shift
to similarity as the sample hierarchy goes from subordinate-level to superordinate-level (e.g., from car on the
road to car, from dalmatian to spot). The confusing similarity judgment between blue cylinder, blue cube, and
green cylinder with distinct and shared attributes is also an interesting observation.

representations trained on more complex dataset span more complex attribute spaces. However, the
result implies that the shift between similarity- and rule-based generalization is non-monotonic as the
dataset complexity increases; it is more correlated to the subjective complexity based on Sec. 3.1.
Hence, there is a significant negative relationship between the similarity-based generalization and
the subjective complexity (r = −.48, p < .05), and a significant positive relationship between the
rule-based generalization and the subjective complexity (r = .68, p < .01).
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Figure 6: Visualization of the RoA matrix. Most
(21 out of 25) of the concepts are unknown; high
saturation indicates high RoA value. The diagonal
elements are the most representative attributes for
all concepts.

Fig. 5 illustrates the qualitative results for out-of-
domain generalization. As shown in Fig. 6, though
never tuned on the unseen examples, the representa-
tion model also captures representative attributes for
unknown concepts, which supports our argument in
Sec. 2.1 that RoA has the potential to serve as a prior
for Bayesian generalization. Further, we visualize the
most representative attributes of each concept by up-
sampling the activated feature vector to the size of
the original image (Bau et al., 2020); the attributes
are located around the peaks. Most attributes with
high RoA are explainable, such as the shape attribute
shared by blue cylinder and green cylinder, shape
and color captured by two distinct attributes in ba-
nana and watermelon, and foreground object (plane,
car) and background (road, field) attributes in airport
and car on the road. Those concepts with more than
one meaningful attributes are sensitive to rule-based
generalization. By contrast, those concepts with only
one meaningful attribute, such as dog-like face for dog, car-like shape for car, are sensitive to
similarity-based generalization.

Discussion The above experiment reveals that (i) both similarity- and rule-based generalizations
are not significantly related to the visual complexity of datasets, (ii) the capability of similarity-based
generalization has a significant negative relationship with the subjective complexity of representation,
and (iii) the capability of rule-based generalization has a positive relationship with the subjective
complexity of representation. We empirically articulate that the computation-mode-shift significantly
exists, and similarity shifts to rules as the subjective complexity increases (see Appendix C.3).

3.3 A STATISTICAL INTERPRETATION

Subjective complexity in natural image statistics According to algorithmic information theory
(Chaitin, 1977), a concept’s subjective complexity is proportional to the probability to perceive
this concept. This is consistent with the subjective complexity of visual concepts defined in our
work. An attribute z is representative for concept c when RoA(z, c) is relatively high; we have a
high probability to observe the attribute by the concept (e.g., P (z|c) = 1) or only by the concept
(i.e.,

∑
ĉ ̸=c P (ĉ|z) is small). Specifically, complex concepts (e.g., dog, cat), though consist of many

attributes (e.g., fur, ear), tend to have a unique attribute of view as a whole to distinguish these
concepts from others because we can hardly observe them in other concepts. Conversely, simple
concepts (e.g., circle, cylinder) can be observed by many other concepts (e.g., wheel, chimney) and
also have other attributes (e.g., number of angles, smoothness). Nevertheless, the attribute shape is
one of the simple attributes to describe these concepts; representation of these concepts emerges
iconicity (Guo et al., 2003; Fay et al., 2010; 2013).

Meanwhile, for those concepts that are either too simple or too complex (e.g., watermelon, airport),
no unique or a simple attribute can distinguish them from others; i.e., RoA(z, c) is not high. In these
cases, we have to describe them with more attributes. Of note, this interpretation is also in line with
the principle of rational reference (Frank and Goodman, 2012; Goodman and Frank, 2016).

From similarity to rules Since similarity gradient can be viewed as a partial order defined on a
single set (Tenenbaum, 1999), sorting hypotheses requires numerical comparison in the same domain.
Hence, similarity judgment in a single attribute space zi is simply calculating the similarity between

concepts cj and ck by d(z
(j)
i , z

(k)
i ), where d(·, ·) can be an arbitrary similarity or distance metric

(Ontañón, 2020). As the number of independent attribute spaces increases (i.e., subjective complexity
increases), the similarity becomes subtle as we have to consider multiple independent attributes. Of
note, the attribute spaces are those obtained after dimension reduction (Xie et al., 2016). According to
high-dimension geometry, those concept representations are almost distributed uniformly (Blum et al.,
2020), unless we assign weights to different attribute spaces by only considering very few attributes.
For example, watermelon is similar to tennis in the attribute space of shape, but it becomes cucumber
in the attribute space of color; airport is similar to plane in the attribute space of foreground object
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and is similar to land and sky in the attribute space of background context. In this work, we reduce
similarity judgment over multiple attribute spaces to rules defining relations over two concepts: At
least one shared attribute space serves as the bridge to connect the two concepts.

From rules to similarities As the number of independent attribute spaces (i.e., subjective complex-
ity) decreases, rules are moved back to similarity. For example, we have the rule relating dalmatian
to spotted tabby by fur texture, and can generalize it to samoyed to angora cat. However, when the
concepts are more complex (e.g., dalmatian and samoyed fall in dog, or spotted tabby and angora cat
belong to cat), rules are difficult on these concepts; instead, we directly apply similarity judgment.

Concept complexities and hierarchy When visual complexity moves from low to high, we
have visual concepts move from simple and universal to complex and unique. Inspired by Xu and
Tenenbaum (2007), we argue that these two ends consist of superordinate concepts, usually on higher
hierarchies. Objects such as watermelon, attribute-specified animals such as samoyed, are subordinate
concepts of ball and dog, respectively; scenes such as airport are compositions of subordinate
concepts like plane and land and sky. In a top-down view, we have concepts with increasing subjective
complexity and more shared attribute spaces to generalize by rules. In a bottom-up view, the attribute
spaces are reduced to the simple or unique ones, easy for similarity judgment.

4 DISCUSSION AND CONCLUSION

We have analyzed the complexity of concept generalization in natural visual world, in Marr’s
representational and computational level respectively, with the rational analysis of Representativeness
of Attribute (RoA). At the representational level, the subjective complexities significantly fall in
an inverted-U relation with the increment of visual complexity. At the computational level, the
rule-based generalization is significantly positively correlated with the subjective complexity of the
representation, while the trend is the opposite in similarity-based generalization. RoA bridges the
two levels by unifying the frequentist properties of natural images (sensory-based) and the Bayesian
properties of concepts (knowledge-derived) (Bi, 2021). It is easy to obtain based on observations, is
flexible to an extent, and captures contextual rationality, thus may serve as humans’ visual common
sense (Zhu et al., 2020). The readers are referred to Appendix A for additional remarks.

The appropriateness of the computational modeling Thanks to Marr’s paradigm (Marr, 1982),
we could separate the computational-level problem and the representational-level problem, where we
study computation problems regardless of their algorithmic representation or physical implementation
in either humans or machines (Lake et al., 2015). Hence, under the same computation problem,
whether the algorithm is neural networks or brain circuits is not the problem in the scope.

Since the two parts of our computation problem—Bayesian generalization (Tenenbaum and Griffiths,
2001a) and subjective complexity (Lake et al., 2017)—have established solid backgrounds in human
cognition, we have a sufficient prerequisite for studying the complexities in the natural visual world.
Though there may be infinite interpretations of human cognitive models (Lieder and Griffiths, 2020),
constrained by previous theories and the principle of resource-rational analysis (Lieder and Griffiths,
2020; Gershman et al., 2015), we can make assumptions about the Bayesian derivations.

Limitations and future work The limitations of this work lead to several future directions: (i)
We only demonstrated the inverted-U relation and the correlation empirically. Can we provide them
theoretically, from the aspect of information theory and statistics? (ii) On the basis of this work,
can we extend the generalization evaluation to a larger scale, that helps to probe the continuum
space between similarity and rules quantitatively? (iii) Are our findings consistent with those in
other environments, where the concepts are represented in different modalities (e.g., language, audio,
and tactile)? (iv) If using only a few attributes with high RoA improves the accuracy of the visual
categorization task, as Sec. 3.1 suggests, can we build an algorithm that samples from RoA adaptively
to task and data distribution, to obtain stronger generalization ability? (v) If RoA reflects humans’
visual commonsense, can we model the communications between individuals toward commonsense
knowledge as a pursuit of the common grounds on representative attributes for the concepts to be
communicated (Tomasello, 2010)? With many questions unanswered, we hope to shed light on future
research on Bayesian generalization.
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A ADDITIONAL REMARKS

A.1 THE UNIQUENESS OF THE NATURAL VISUAL WORLD

Why do we only use the modality of vision to investigate the complexity of Bayesian generalization?
Vision is unique for the diverse complexities both in the natural visual world and in the semantic
space (Kersten et al., 2004), which relates vision to the discussion of levels of abstraction (Wu et al.,
2008). To some extent, vision serves as the bridge between abstract language-derived knowledge
and perceptual sensory-derived knowledge (Bi, 2021). The two ends of the continuum of Bayesian
generalization touch the functional essences of rule-based symbolic signals and similarity-based
perceptual signals (Tenenbaum, 1999). In particular, the very final development of symbolic signals
leads to the emergence of language, based on the compositionality of symbols and rules as the basic
feature of language. The psychology literature supports the hypothesis that language is emerged from
visual communications by abstracting visual concepts toward hieroglyphs through their iconicity
(Fay et al., 2010; 2013; 2014). Both simple and universal visual concepts, such as geometric shapes,
and complex and unique visual concepts, such as animals and artificial objects, are all related to
corresponding abstract concepts by iconicity. By contrast, those concepts that are neither simple nor
unique are unlikely to be abstracted by iconicity since they are described by multiple representative
attributes—though each attribute can be generalized through iconicity respectively, putting different
attribute spaces together is not making sense—by contrast, those concepts naturally satisfy the
compositionality of language, thus are appropriate for rule-based generalization. In this sense, vision
is not only a modality of data but is the hallmark of human intelligence, evolving perceptual sensory
toward language for communications. Hence, vision is meaningful and sufficient for investigating the
complexity of Bayesian generalization.

Consider other modalities, say audio, the second common resource of sensory input. Although we
could define audio complexity and try to correlate it with subjective complexity, audio is only a
perceptual sensory—abstraction of raw audio is not related to any semantic meaning, thus does not
provide much insight on human intelligence; also the diversity of audio complexity is far less than
its visual counterpart. Hence, generalizing the experiments to audio data may be a bonus but never
provides us insights as deep as that provided by visual data.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTING BASIC DISCRIMINATIVE MODELS

The basic discriminative models are employed from ResNet (He et al., 2016), thus the feature space
is spanned by a 512-d or 2048-d feature vector (dimensions are different by the different depths of
ResNet architecture). All models are trained on eight NVIDIA A100 80GB GPUs.

B.2 IMPLEMENTING ROA

In general, the RoA computes a score for each attribute zi over each concept c. The output of RoA is
a matrix where the column space is the context of all the concepts in the natural visual world, and

the row space is all the attributes. Assume we have three samples {x(1), x(2), x(3)} ∈ X of concept

c, then the output of f provides the attribute vectors z(1), z(2), z(3) ∈ R
H×W×D respectively. We

then adaptively pool each feature map z
(1)
i , z

(2)
i , z

(3)
i ∈ R

H×W×d in each dimension of the attribute

vector to a scalar z
(1)
i , z

(2)
i , z

(3)
i , thus z(1), z(2), z(3) ∈ R

d. P (zi|c) is calculated by normalizing over

the dimensions of centroid vector of all z given the set of samples of concept c, e.g., ˜̄z(k), k = 1, 2, 3.

B.3 IMPLEMENTING SUBJECTIVE COMPLEXITY MEASUREMENT

Since the calculation of the absolute value of L(ĉ) may encounter multiple solutions, we employ
accuracy gain (Bau et al., 2020) to compute a relative L(ĉ) specifically for ĉ. The accuracy gain
approach considers the categorization accuracy difference for a single concept before and after
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removing the effect of a specific neuron, defined as:

∆AccK(ĉ) = P
(
ĉ = c

∣∣c = argc maxP (c|z1, . . . , zK ;ϕ)
)

−P
(
ĉ = c

∣∣c = argc maxP (c|z1, . . . , zK−1;ϕ)
)
,

(6)

where K ≥ 2 and ∆Acc1(ĉ) = P
(
ĉ = c

∣∣c = argc maxP (c|z1;ϕ)
)
. Hence, the relative L(ĉ) is

exactly computed by:
Lrelative(ĉ) = min

K
max AccK(c), (7)

which serves as the heuristic to search for the minimum K to calculate absolute L(ĉ).

C METHOD APPROPRIATENESS CHECKING

C.1 CHECKING THE ASSUMPTIONS OF THE TWO-LINES TEST

The "two-lines test" requires a weaker assumption than the mostly used quadratic regression test
for testing U-shapes (Lind and Mehlum, 2010), hence the former is employed instead of the latter.
Let y = f(x) be the ground-truth function, the U-shape assumes only a sign flip effect in discrete
data, where there exists xc such that f ′(x), x ≤ xc and f ′(x), x ≥ xc has opposite signs (Lind and
Mehlum, 2010). To note, since the data is originally discrete, there is no need to check the existence
of f ′(x) because it is estimated based on the discrete data points. Hence, the basic hypothesis of
the U-shape is that at least one such xc exists, and the null hypothesis is that no such xc exists. The
null hypothesis is rejected by estimating many xc values and run two separate linear regressions for
x ≤ xc and x ≥ xc respectively. The fact that two regression lines are of opposite sign rejects the null
hypothesis. By contrast, the quadratic regression test assumes that the first-order derivative function
f ′(x) is continuous in the domain. Hence, there is no need to employ the quadratic regression test.

C.2 CHECKING THE ASSUMPTIONS OF THE LINEAR REGRESSION TEST

The assumptions of the test are (1) linearity of the data; (2) x values are statistically inde-
pendent; (3) the errors are homoscedastic and normally distributed. We did test the applica-
bility of the linear regression test: (1) the two relations between rank correlation and sub-
jective complexity are intuitively in lines ([(0.1, 7.8), (1.28, 79.1), (2.91, 46.7), (3.08, 99.5)] and
[(0.1, 17.1), (1.28, 33.2), (2.91, 15.8), (3.08, 10.2)]); (2) all the evaluations are run separately with
different random seeds, thus the predictors are statistically independent; (3) since the only independent
variable is the dataset, which is not likely to be the source of constant variance of the errors, the
errors are homoscedastic. Consider the null hypothesis of the linear regression test that the coefficient
β1 is zero, which leads to a trivial solution. However, the p-values of both the positive and negative
relations are less than 0.05, rejecting the null hypothesis.

C.3 THE CORRECTNESS FOR COMBINING REPRESENTATION AND COMPUTATION

As illustrated in Fig. 4, we integrated the results in representation vs. complexity into this plot to use
these plots to demonstrate the computation-mode-shift—the two U-shapes come with opposite trends
intuitively show the landscape for concept complexity vs. the computation mode, that similarity-based
generalization tends to emerge in concepts with very low or very high visual complexity (i.e., the
concepts with low subjective complexity, on the left and right ends of the visual complexity axis),
and rule-based generalization tends to emerge in concepts with neither very low nor very high visual
complexity (i.e., the concepts with high subjective complexity, in the middle of the visual complexity
axis). This is the exact claim of the paper. The quantitative results on the significant positive relation
between rule-based generalization rank correlation and subjective complexity, and the significant
negative relation between similarity-based generalization rank correlation and subjective complexity,
both support the claim.
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D DATASET CONSTRUCTION

D.1 DEFINITION OF THE VOCABULARY

We leverage a fully-connected probabilistic graph model to obtain the representativeness of every
attribute for every concept, where each node is a piece of natural language that serves as either a
concept or an attribute describing other concepts. We exploit the RoA in language to generate the
in-domain and out-of-domain visual datasets for Bayesian generalization. Technically, we use the

Given the concept pair, please evaluate whether the image pair below shows the corresponding concept.

Sun                                                 Sunlight

Figure 7: The Amazon Mechanical Turk (AMT) interface used to collect human judgments.

vocabulary from a WordPiece model (e.g., the base version of Bert Vaswani et al. (2017)), where a
word is tokenized into word pieces (also known as subwords) so that each word piece is an element of
the dictionary. Non-word-initial units are prefixed with the sign “##” as a continuation symbol. In this
way, there is no Out-Of-Vocabulary. This brings the benefit of generalization over all words. Using
all these words as attributes or features leads to sufficient coverage. Moreover, some symbols are
reserved for unused placeholders, leaving room for features that the language cannot describe. The
readers can refer to vocab.txt in the supplementary materials for more details about the attribute
list.

D.2 HUMAN-IN-THE-LOOP DATASET VALIDATION

We constructed the similarity-based generalization and the rule-based generalization datasets using
both manual approaches and automatic approaches. Details of all datasets are demonstrated in Tab. 1.

For in-domain similarity-based generalization, a concept pair with a human-annotated similarity
score was first retrieved from MEN dataset (Bruni et al., 2014) and ImageNet dataset (Deng et al.,
2009). Next, we used AMT to crowd-source the image aligned to the concept. In total, 305 pairs were
selected from 500 candidates. One image was aligned to each concept.

For in-domain rule-based generalization, we generated dataset using objects of easy-to-disentangle
attributes (e.g., shape and color) (Zhang et al., 2021; Johnson et al., 2017). Based on these attributes,
we constructed the quadruple relation (e.g., blue cube:red cube::blue cylinder:red

cylinder). In total, 4800 images and 24 quadruple relations were collected.

For out-of-domain similarity-based generalization and out-of-domain rule-based generalization, we
collected images from an open internet image dataset (Krasin et al., 2017) based on a predefined set
of similarity pairs and rule quadruples. Of note, all the selected pairs or rules were uniformly sampled
from the dataset instead of manually picked. All the selected images were under human validation.
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LEGO

2D-Geo

ACRE

AwA

Places365

ImageNet

Metal Blue Cube Metal Purple Cylinder Rubber Cyan Sphere Metal Brown Cylinder  Rubber Red Sphere

Giant Panda GiraffeFox ElephantKiller Whale

Triangle Square Star Hexagon Circle

Technic Lever 3MPeg 2MPlate 1*2 Brick 2*2 Brick 1*1

Alley Arch Bridge Farm Ocean

Cock HenStingray Jay Magpie

Figure 8: Examples of datasets used in our work.

In the study, AMT workers recruited have acceptance rates higher than or equal to 90% and approved
hits more than 500. Each AMT worker was compensated at the rate of 0.01 dollar per selection. In
total, we have tested 1000 judgments for 500 concept pairs; two judgments per pair. Fig. 7 shows an
example of the AMT interface.

Table 1: Details of the datasets for generalization evaluation. Subordinate level indicates the concept being
generalized to is a subordinate concept of the known ones, whereas superordinate level indicates the concept being
generalized to is a superordinate concept of the known ones. Subordinate level, basic level, and superordinate
level are terms introduced in Xu and Tenenbaum (2007).

Group In-domain Out-of-domain

Generalization type Similarity-based Rule-based Similarity-based Rule-based

Concept hierarchy basic level basic level basic level basic level subordinate level superordinate level

Test-set size 305 24 21 10 10 10
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E ADDITIONAL RESULTS

E.1 THE CONVERGENCE OF REPRESENTATION vs. GENERALIZATION

Does the training setting of the representation model affect its generalization ability? Fig. 9 shows
the rank correlation on in-domain generalization evaluation w.r.t. the number of training epochs for
visual categorization. This result empirically shows that the generalization ability converges when the
representation models are well trained after 6-10 epochs, and that ability is stable after convergence.
The regression line is significantly vertical to the y-axis (b = .03, a = 69.67, p < 1e− 4). Hence, we
can assume that there are no significant distinctions of generalization ability between representation
models being trained to convergence but with different training settings.
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Figure 9: Rank correlation of generalization w.r.t. the number of training epochs for visual categorization.

E.2 ADDITIONAL VISUALIZATION RESULTS OF ROA

Additional visualization results of RoA are illustrated in Fig. 10. Most (21 out of 25) concepts are
unknown; high saturation indicates high RoA value.

Fig. 10a shows the concatenation of the 7 confusion matrices where the n-th diagonal indicates the
n-top RoA of the concepts.

Fig. 10b shows the concatenation of 120 highest (from the left) and 60 lowest (from the right)
attributes with the mean of RoA in the context.

Fig. 10c shows the concatenation of 120 highest (from the left) and 60 lowest (from the right)
attributes with the variance of RoA in the context.
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