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Abstract— Our novel skin-feature visual-tracking algorithm
enables anatomic vSLAM and (by extension) localization of
clinical tools relative to the patient’s body. Tracking naturally
occurring features is challenging due to patient uniqueness,
deformability, and lack of an accurate a-priori 3D geometric
model. Our method (i) tracks skin features in a smartphone-
camera video sequence, (ii) performs anatomic Simultaneous
Localization And Mapping (SLAM) of camera motion relative
to the patient’s 3D skin surface, and (iii) utilizes existing
visual methods to track clinical tool(s) relative to the patient’s
reconstructed 3D skin surface. (We demonstrate tracking of
a simulated ultrasound probe relative to the patient by using
an Apriltag visual fiducial). Our skin-feature tracking method
utilizes the Fourier-Mellin Transform for robust performance,
which we incorporated and extend an existing Phase Only
Correlation (POC) based algorithm to be suitable for our
application of free-hand smartphone video, wherein the distance
of the camera fluctuates relative to the patient. Our SLAM
approach further utilizes Structure from Motion and Bundle
Adjustment to achieve an accurate 3D model of the human
body with minimal drift-error in camera trajectory. We believe
this to be the first freehand smartphone-camera tracking of
natural skin features for anatomic tracking of surgical tools,
ultrasound probe, etc.

I. INTRODUCTION

Medical image-guided interventions have benefited from
the rapid evolution of computer vision algorithms and medi-
cal imaging methodologies. There is a never-ending need to
perform surgery more accurately using less harmful or lower
cost clinical tools. For example, Ultrasound (US) combines
several advantages including low-cost, real-time operation,
a small size that is easy to use and transport, and a lack
of ionizing radiation. However, US suffers from a lack of
contextual correlates due to changing and un-recorded probe
location, which makes it challenging to be applied in certain
clinical uses. Therefore, we and others before us have sought
to make a 3D tracking and visualization systems that connect
the coordinates of clinical tools with the human body, via
camera-based computer vision. Such systems could be used
for image-guided therapy, 3D US image reconstruction,
recording and replaying clinical imaging/interventions, etc.

A key challenge for 3D tracking on the human body stems
from the lack of a stable anatomic coordinate system, which
typically requires a pre-built 3D model. There are several
ways to achieve this. Sun et al. [11] used Scale-Invariant
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Feature Transform (SIFT) feature tracking [6] on images that
were taken by a low-cost camera mounted on a US probe as
input for simultaneous localization and mapping (SLAM) for
3D reconstruction. While the method is cost effective, SIFT
often fails to track natural skin features in our application,
resulting in high cumulative error. Others manually attach
known markers on the body such as the work by Lange
et al. [5]. However, tracking tissue deformation requires a
dense set of tracked points, and natural features are more
convenient than attaching or inking large numbers of arti-
ficial markers, and may be preferred by patients, especially
for publicly visible skin, e.g. on forearms or faces. Many
artificial markers protrude or cover the skin in a manner that
can get in the way of the clinician, and in any case artificial
markers do not usually persist across months or years, as
would be desirable for longitudinal patient monitoring. Some
prior work utilized traditional feature tracking methods to
either create an initial guess of sparse depth estimation or
perform initial 3D reconstruction on monocular endoscopy
images, and these approaches then further computed the
dense results with either zero-mean cross correlation [15]
or deep learning methods [14]. Nevertheless, as mentioned
above, traditional feature tracking often fails to accurately
locate natural features on the human body, so that in practice
their initial guess may not be stable enough for consistent
further dense estimation. On the other hand, Wang et al.
[13] used a commercial clinical 3D scanning system to
acquire a preoperative 3D patient model, which aided in
determining the location and orientation of the probe and
the patient. However, we want to achieve the task using only
a smartphone camera, without the time or cost of obtaining
an accurate preoperative 3D scan. More recently, Ito et al. [4]
utilized phase only correlation (POC) tracking as previously
proposed by Takita et al. [12] to robustly find subtle features
with sub-pixel precision on the human body. However, their
POC method was unable to track skin features when the
camera was held free-hand because their phase correlation
was not invariant to scale and rotation. They mounted their
camera directly on the probe and avoided tilting the probe
to maintain a fixed camera distance.

We desire camera tracking of both skin features and tools,
for which the camera must be further from the patient to have
a wider field of view. With patient motion and free-hand
operator motion, the distance from camera to patient will
naturally vary during the course of a procedure. Our chief
contribution is a flexible approach that allows a handheld
smartphone camera to robustly identify and track sub-pixel
skin features, builds a 3D reconstruction model, and monitors



Fig. 1: We incorporate our novel anatomic feature tracking
algorithm into an end-to-end 3D tracking and reconstruction
system. The blue box indicates our chief contribution to the
system. The reconstructed 3D arm features, tracked tool (i.e.
AprilTag), and computed smartphone camera trajectory are
depicted as blue, red, and green dots, respectively.

the relative movement between visually tracked tools (such
as an US probe) and a patient. We demonstrate that our
unique combination of existing approaches, including our
scale- and rotation-invariant Fourier-based feature tracking,
enables smartphone-single-camera anatomic vSLAM.

The long-term goal for this work is to enable a readily
accessible smartphone camera to achieve free-hand image-
guided clinical intervention while relegating the use of fidu-
cial tags to tools rather than patients. The overall process
is shown in Fig. 1, and the remaining paper is organized
as follows. In Section II, we present our Fourier-based
human skin feature tracking, our unique setup for anatomic
SLAM, and the combination of clinical tool tracking into
the integrated system. Section III contains our evaluation
experiments and discussion. Section IV is our conclusion
and future work. We used the human forearm and US probe
as our anatomical target in this paper. Due to COVID-19
circumstances, we used a dummy US probe consisting of a
similarly sized box, which we refer to as the “US probe” for
simplicity in the following contents.

II. APPROACH

A. Fourier-Based Feature Tracking

Our novel contribution is our robust scale- and rotation-
invariant Fourier-based feature tracking, which enables the
augmentation of an existing system into our flexible low cost
3D reconstruction and localization system.

1) Prior POC method: Our methodology is closely in-
spired by [4], which we briefly describe in the next few
equations to lay a common notation framework. Their POC
method starts by detecting feature points on the first frame
using Good Features to Track (GFtT) [10], and subsequently
tracks the features along the video sequence using Phase-
Only Correlation (POC), which relies on the Fourier shift
theorem as we will show. Let f1 and f2 be two small image
patches centered on the corresponding feature points in two
consecutive frames that differ only by a shift (x0, y0):

f2(x, y) = f1(x− x0, y − y0). (1)

From the Fourier shift theorem, the corresponding Fourier
Transformed images F1 and F2 will be:

F2(ξ, η) = e−j2π(ξx0+ηy0) ∗ F1(ξ, η). (2)

The cross-power spectrum of two image patches with
Fourier Transform is then defined as

F1(ξ, η)F
∗
2 (ξ, η)

|F1(ξ, η)F ∗2 (ξ, η)|
= ej2π(ξx0+ηy0) (3)

and the inverse Fourier Transform of the right hand side of
(3) results in an impulse function:

F−1{ej2π(ξx0+ηy0)} = δ(x− x0, y − y0) (4)

Eq. (4) can be used to estimate sub-pixel translation dis-
placements by fitting an analytical peak model of the POC
function as described in [12]. If the similarity score is too
low, the feature point will be eliminated as an outlier. When
visible regions become too sparse with too few tracked
feature points, new features are again identified in the
sparse regions using GFtT. By repeating the process, each
sequence in the video contains an acceptable number of well
distributed tracked feature points.

2) Our Fourier-Mellin enhancements over POC: Al-
though the POC feature-tracking method can accurately track
features from skin, the algorithm may rapidly lose track of
feature points through a video sequence when the distance
between the camera and the object is not fixed or the camera
is rotated during recording. Since we want to build a free-
hand system, we have refined the algorithm by utilizing the
image registration method proposed by Srinivasa et al. [16],
which utilized the Fourier Mellin Transform to first rectify
the scale and rotation between two image patches and then
calculated the shift. Their math is described next.

Assuming there are scale s, rotation θ, and shift (x0, y0)
variants between f1 and f2, we can augment (1) into

f2(x, y) =f1(s ∗ x cos θ + s ∗ y sin θ − x0,
− s ∗ x sin θ + s ∗ y cos θ − y0).

(5)

and then the Fourier Transformed F1 and F2 will become

F2(ξ, η) =
1

|s|
e−j2π(ξx0+ηy0)∗

F1(
ξ

s
cos θ +

η

s
sin θ,−ξ

s
sin θ +

η

s
cos θ).

(6)

Take the magnitude on both sides and remove the constant
1
|s| because it will be cancelled in the division of Eq. (3)

G2(ξ, η) = G1(
ξ

s
cos θ +

η

s
sin θ,−ξ

s
sin θ +

η

s
cos θ). (7)

where Gi = |Fi|. We can denote (7) in RHS Polar coordi-
nates as

G2(ξ, η) = G1(
r

s
cos θ cosψ +

r

s
sin θ sinψ,

− r

s
sin θ cosψ +

r

s
cos θ sinψ).

(8)

where ξ = r cosψ, η = r sinψ, and then apply the product-
to-sum trigonometric identities on (8) to get

G2(ξ, η) = G1(
r

s
cos (ψ − θ), r

s
sin (ψ − θ)). (9)



Fig. 2: Overview of the registration algorithm proposed
by [16]. The POC modules contain our novel algorithm
described in Section II-A.

Fig. 3: Anatomic vSLAM setup. Notice that we assign every
5 frames into a set, with one overlapped frame between sets.

The transformations of (9) from Cartesian coordinates to
Polar coordinates (10) and Log-Polar coordinates (11) are:

G2(r, ψ) = G1(
r

s
, ψ − θ). (10)

G2(log r, ψ) = G1(log r − log s, ψ − θ). (11)

We can apply the POC approach to find the “shift” of (11),
which indicates the scale and rotation of the image patches.

As shown in Fig. 2, before we apply the POC-Fourier-
Mellin methods, the image patches are passed through a high
pass filter to enhance the skin features. This helps match skin
creases, freckles, etc. rather than matching shading.

The Fourier-based feature tracking is more robust on nat-
ural skin features than POC feature tracking and traditional
feature tracking methods. The discussion is in Section III-A.

B. Experimental Setup: Anatomic vSLAM and US probe
localization

Our current vSLAM system processes images according
to small overlapping batches and the nature of Fourier-
based feature tracking as shown in Fig. 3. Since the features
are tracked frame by frame, we define a set Si which
contains 5 consecutive captured frames fi,j , i.e. Si =
{fi,0, fi,1, fi,2, fi,3, fi,4}. In fi,0, GFtT is used to find initial
features with a constraint that the features are at least 5 pixels

away from each other (POC requires separation between fea-
tures to operate reliably). From fi,1 to fi,4, we use Fourier-
based feature tracking to track the corresponding features
along the frames. After tracking features from this set Si, the
tracked good features of fi,4 will be inherited by fi+1,0 in the
new set Si+1. After we set fi+1,0 = fi,4, we then repeat the
process for Si+1 by finding new features from the areas of
fi+1,0 that lack features, while the inherited features provide
necessary overlap to maintain correspondence between the 2
sets. After that we perform feature tracking again in Si+1.
The process will go on until we reach the end of the video
sequence we are processing.

1) Anatomic SLAM: An Intrinsic Matrix is obtained by
calibration of the camera before video acquisition. Following
standard procedure, we employ the camera calibration tool-
box provided by Matlab [8] for this part after which we keep
the Intrinsic parameters fixed in our system during vSLAM.

Next, we convert color images to grayscale and then en-
hance the appearance of skin features using contrast limited
adaptive histogram equalization (CLAHE) [20] to find better
spatial frequency components for the feature detection and
our feature tracking.

While operating on a video sequence, we first do Structure
from Motion (SfM) [3] locally on every newly obtained set
Si, and then use the locally computed 3D positions as an
initialization for the global set S = {S0, S1, S2...}. Once a
new set is obtained , we use Bundle Adjustment [3] to refine
the overall 3D scheme. By doing this, we can simultaneously
update and refine the 3D feature points and camera motions
while reading in new frames from the video.

Since we want to compute SfM for every 5 frames, we
decide not to use the traditional pipeline which includes
the normalized five-point algorithm and random sample
consensus (RANSAC) [2]. Instead, we perform SfM in a
manner similar to [1]. First, we use reprojection error which
is defined by the Euclidean distance ||x − xrep||2, where
x is a tracked feature point and xrep is a point obtained
by projecting a 3D point back to the image using the
calculated projection matrix. After we obtained the initialized
3D points, camera projection matrices, and corresponding 2D
features in a set, we minimize the reprojection error (using
Ceres to solve the numerical problem). In this latter stage,
we fix the Intrinsic Matrix and let the system update the 3D
points and camera Extrinsic Matrix repeatedly.

For higher robustness, we set an additional constraint that
new feature points must persist across at least 2 consecutive
sets before they are added to our point cloud of the patient.
Higher reconstruction quality can be achieved by setting
larger constraint thresholds.

As is typical of SfM, the resulting 3D point cloud of the
arm and the camera trajectory are only recovered up to a
scale factor. Currently, we manually adjust the 3D positions
to fit into real world coordinates, and in the future we
envision briefly placing a calibrated object (such as a ruler
or a small, flat AprilTag) on the patient’s skin during the first
few frames of the video.



2) US Probe Localization: Unlike patients, it is relatively
easy to place fiducial markers on clinical tools, which tend to
be (piece-wise) rigid. We can accurately track the 3D position
and orientation of our US probe by attaching an Apriltag
marker and using the associated tracking software by [9].

After we reconstruct a patient’s skin surface (e.g. forearm
in this paper) during the first several seconds of video, our
system is ready for tools (e.g. Ultrasound) to be introduced.
Our system continues to run SfM and Bundle Adjustment
algorithms while the US probe is scanning the patient, as
necessary to accommodate (1) the hand-held movement of
the smartphone camera and (2) possible skin deformation or
patient motion. Continuous tracking of both skin and tools
relative to the moving camera allows consistent tracking of
tools relative to the skin.

Note that our feature tracking method may also find fea-
tures on US probes, which might confuse 3D reconstruction
of the skin surface. We handle this problem by first detecting
the US Apriltag, and then mask-out the US probe from our
video images before we run our feature detection algorithms.

III. EXPERIMENTS AND DISCUSSION

In the experiments in this section, we use a freehand
iPhone 8 camera to do scanning on a real arm with 1080p
resolution. Freehand smartphone video tracking requires a
wide field of view (FoV) to ensure the operating area remains
in view, for instance, the validated working range in the
paper is between 27 and 54 pixels/cm2, and we would
like to extend to other cameras at different distances in
future experiments. However, the wide FoV also introduces
many spurious objects that we do not want to track. In the
future, we would need to automatically identify which pixels
correspond to the patient (perhaps using human pose tracking
followed by semantic segmentation), but for now we simply
used a blue screen background to isolate the skin. Likewise,
we covered our dummy US probe with a blue cloth so that
only the AprilTag would require masking, but in the future
we would make use of an accurate 3D CAD model of the
real US probe to create an accurate 2D protective-view pixel
mask (with a few-pixels of safety margin). After masking
the color image, we then proceed with our vSLAM pipeline.

We minimize motion blur by forcing a short shutter speed,
i.e. 120 fps, of which we only preserve every 20th frame to
end up at our target frame rate of 6 fps (SfM requires some
degree of motion within each of our sets Si). Due to the
high fps, we carefully avoid flickering electric light sources.
Multiple soft LED lights (DC powered or else > 12kHz
PWM) from different angles is recommended. However, due
to COVID-19 circumstances, we instead used natural sun
light on a cloudy day as our light source. As aforementioned,
we update the 3D reconstruction every 4 captured frames (the
5th and 1st frames of consecutive sets overlap), so we can
update our 3D skin tracking every 2/3 second (4 frames/6
fps) (fiducial-based tool tracking could independently run
much faster).

There are 4 experiments in this section which includes III-
A Feature Matching Comparison, III-B 3D Reconstruction

(a) SURF (343 tracked feature points)

(b) POC (268 tracked feature points)

(c) OURS (308 tracked feature points)

Fig. 4: The feature tracking results from different methods.

Evaluation, III-C Systematic Cumulative Error Evaluation,
and III-D Overall vSLAM and US Probe Tracking.

A. Feature Matching Comparison

In the first experiment, we evaluated the robustness of
our Fourier-based feature matching algorithm against other
feature-trackers on natural human skin features. In this sub-
section, we will first show the real human skin feature track-
ing results from our Fourier-based method, POC method, and
other traditional methods( ORB [21], SIFT [6], SURF [7]),
and then do 3D reconstruction on the tracked features if the
method shows compelling accuracy. We use the same pre-
processing module for every feature tracking method. The
initial number of GFtT features for POC and Fourier-based
tracking is set to be 500. We empirically evaluate the size
of image patches from 51-91 pixels, and find patches with
size 71 pixels resulted in the most tracked features, which is
similar to the POC choice of [4].

Fig. 4 shows the number of tracked features on the first
and the last frame from a set. Since ORB (found 75 features)
and SIFT (found 129 features) lose track of features rapidly
and there are obvious mismatches, we show only the features
found by SURF, POC, and our Fourier-based tracking. Only
SURF can find similar number of features as we do. Thus,
we decide to do 3D reconstruction on a few sets using SURF
and our method in Fig. 5.

Although SURF may find more skin features through a
set, it fails to keep track of features when the number of
frames is increasing, which results in unstable skin surface
and camera trajectory reconstruction. Fig. 5(a) shows that not
only the camera trajectory is incorrect (which we conjecture
that it’s due to feature mismatching) but the 3D points are



(a) Viewing the 3D reconstructions from top

(b) Viewing the 3D reconstructions from side

Fig. 5: The 3D reconstructions using SURF and Fourier-
based tracking.

Fig. 6: 3D reconstruction results using POC (left) vs our
method (right), viewing the side of the arm-surface point
cloud. The skin surface (blue) and camera trajectory (red) are
also depicted. Our Fourier-based feature tracking solves for
the physical camera trajectory and tracks more feature points.
Supplementary video demonstrates another scan, showing
live 3D reconstruction and camera trajectory updates.

sparser. In Fig. 5(b) we can see that the reconstructed skin
surface from SURF is jittering.

To compare the performance differences (especially scale
changes) between POC and Fourier-based feature tracking
for freehand 3D anatomic reconstruction, we captured a
smartphone video sequence in which the distance between
the camera and the arm varies during recording as shown
in Fig. 6(a). The green arrow indicates the camera mo-
tion. Observe that our method presents higher accuracy by
showing a more representative smooth arc of the camera
motion in Fig. 6(c). The shape of the blue reconstructed
skin feature points lie on the arm where the right hand side
is the elbow and the left hand side is the wrist. The red
camera trajectory also recovers our intended smooth camera
motion. The reason for the poor reconstruction based on the
original POC tracking in this case is that it failed to track
enough feature points between frames, which leads to high
reconstruction error, while our proposed refinement solves
this problem by finding more consecutive feature points.

Fig. 7: Comparison of 3D models computed by Blaser and
our system. Our system scans a larger area, and the red lines
in (b) indicate the approximate region of overlap with (a).

B. 3D Reconstruction Evaluation

To evaluate the robustness of our system, we applied
Blaser 3D scanner [18] to obtain the 3D model of the
patient’s arm and used Iterative Closest Points (ICP) [17]
algorithm to evaluate our point cloud.

Fig. 7 shows the 3D models where Fig. 7(a) is the 3D
model generated by Blaser and Fig. 7(b) is the 3D recon-
struction found by our system. Fig. 7(c) is the registration
result where Blaser 3D model is marked as blue and our
3D reconstruction result is marked as yellow. One can see
that the overlapping regions show descent alignments, and
the RMSE of the inliers (overlapping regions) is 0.80mm.

C. Systematic Cumulative Error Evaluation

For this experiment, we sought to test the stability of
our tracking system. We design a system similar to [19]
by capturing a video sequence containing N frames, and
then we play the sequence in order from beginning to end
and then from end to beginning, producing a single long
sequence of 2N frames to input into our algorithm. This
way, for each frame in the first half of the video fi, we know
of a perfectly corresponding frame in the second half of the
video f2N−(i+1). We treat this composite video as if it were
a single freehand video, having our algorithm perform 3D
reconstruction across its entirety. By checking whether the
reconstructed 3D points are on the same skin surface and the
forward and backward camera trajectories are on the same
path, we can estimate the accumulated divergence error.

The total accumulated error includes both feature tracking
error and sequential reconstruction error, since when play-
ing the video reversely, different points will end up being
selected for tracking and will be tracked in the reversed
order. As the algorithm analyzes the second half of the
video, it becomes progressively more difficult from frame fN
to frame f2N−1 to achieve perfect correspondence between
the outputs for the corresponding frames fi and f2N−i.



(a) Viewing from top of the 3D reconstruction

(b) Viewing from side of the 3D reconstruction

Fig. 8: Accumulated divergence error. The skin surface
(blue and green) and camera trajectory (red and black) are
depicted by their corresponding colors during forward and
reverse playback, respectively. The point clouds visually
appear to be on the same surface, and the computed camera
trajectory ends close to where it began, indicating that our
system appears to be performing well with modest error
accumulation.

The result is shown in Fig. 8. One can see from Fig. 8(a)
the computed camera trajectories from the froward pass
(marked as red) and the reverse pass (marked as black)
suffer low accumulated divergence error. Also from Fig. 8(b)
the reconstructed arm surface from forward pass (marked as
blue) and reverse pass (marked as green) lie in the same
surface and have the same shape. The reason the blue and
green 3D points are distributed differently in Fig. 8(a) is that
the initial feature points found in the first frame f1 of the sets
S is now different due to finding different Good Features to
Track during the reverse pass.

D. Overall vSLAM and US Probe Tracking

For our last experiment, we moved the smartphone camera
in a circular motion above the target arm skin, to obtain
a sufficient diversity of viewpoints to perform better 3D
reconstruction. We then moved the camera further away
from the patient so that the whole arm becomes visible
to the camera. The dummy US probe is then introduced
and moves as if scanning the body, with motion toward
the right and then back to the left. Our anatomic vSLAM
tracking results are shown in Fig. 9. One can see how the
arm surface (marked in blue), the camera trajectory (marked
in red), and the US probe scanning path (marked in green) are
reconstructed and tracked by our system. The small, dense
cluster of camera-trajectory points occurs just after moving
the camera away from the arm. The spread of this point

(a) Viewing from top of the 3D reconstruction

(b) Viewing from side of the 3D reconstruction

Fig. 9: Reconstructed skin surface(blue), camera trajec-
tory(red), and US probe scanning path(green).

cluster is indicative of the freehand jittering of the camera’s
position when attempting to hold the camera still.

Our supplementary video contains the process of our
vSLAM system (before US probe tracking), in which the
smartphone also follows a circular trajectory. The video
shows frame-by-frame how the skin surface is reconstructed
in 3D, using sets of five images as previously described.
The camera trajectory is also shown, with both the primary
trajectory computed from the image sets, as well as with
intermediary (every-frame) estimates of current camera pose.
These intermediary pose estimates are not used to update the
point cloud, but are useful for continuously tracking tools
relative to the patient via the camera position.

IV. CONCLUSION AND FUTURE WORK

We presented what we believe to be the first anatomic
vSLAM system for use by a freehand smartphone imaging
natural human skin. We achieve3d sub-mm RMS error in
skin-surface reconstruction, and our free-hand smartphone
motion captures a more complete surface that wraps around
the patient than would be possible from a single perspective.
We demonstrated the robustness of our system used in
combination with Apriltag tool tracking. In the future, we
will use GPU acceleration to make our system fully real time
and validate its tracking of a real US probe on real tissue that
is partially covered with US gel. We will also place a physical
calibration object on the patient to correctly calibrate scale
for the patient’s size. Lastly, we plan to incorporate recent
smartphone 3D scanners for improved shape scanning while
using our Fourier-based method to track rotating/translating
skin features, e.g. to track arm axial arm rotation for which
3D geometry would not appreciably change.
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