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Abstract Neural network search (NAS) automates the design of neural architectures. However,

training the candidates generated by the search algorithm for performance evaluation

incurs considerable computational overhead. We propose a method dubbed NASGraph that

remarkably reduces computational costs by converting neural architectures to graphs and

searching in the graph space. We empirically find a graph measure average degree, despite

its simplicity, powerful enough as the NAS proxy in lieu of the evaluation metric. Our

proposed method is training-free, data-agnostic, and lightweight. Besides, our method is

able to achieve competitive performance on various NAS benchmarks including NASBench-

101, NASBench-201, and NDS. We also demonstrate that NASGraph generalizes to more

challenging tasks on Micro TransNAS-Bench-101.

1 Introduction
The objective of NAS is to find an optimal neural architecture 𝑎∗ = argmin𝑎∈A 𝑓 (𝑎), where 𝑓 (𝑎)
denotes the performance (e.g., a task-specific loss function) of the neural architecture 𝑎 trained

for a fixed number of epochs using a dataset, and A is the search space. The recent emergence of

training-free NAS Mellor et al. (2021); Abdelfattah et al. (2021) pushes the boundary of efficient NAS

techniques further and greatly eases the computational burden. Training-Free NAS computes a

proxy metric in place of accuracy to rank the candidate architectures. The proxy metric is obtained

by a single forward/backward propagation using a training dataset.

In this paper, we take a novel perspective on mapping neural networks to graphs: we treat

inputs to neural components as graph nodes and use relationship between inputs to neighboring

graph components to determine the connectivity between pairs of graph nodes. In this way, we

are able to convert a neural architecture to a DAG 𝐺 (𝑉 , 𝐸) where node set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and
edge set 𝐸 = {𝑒𝑖 𝑗 } ∀𝑖, 𝑗 s.t. there exists an edge from 𝑣𝑖 to 𝑣 𝑗 . After establishing the mapping, we

extract the associated graph measures as NAS metrics to rank neural architectures. We note that

the entire process is training-free and data-agnostic (i.e. do not require any training data).

We summarize our main contributions as follows:

• We propose NASGraph, a training-free and data-agnostic method for NAS. NASGraph maps the

neural architecture space to the graph space.

• Using the extracted graph measures for NAS, NASGraph achieves competitive performance on

NAS-Bench-101, NAS-Bench-201, Micro TransNAS-Bench-101 and NDS benchmarks.

• In comparison to existing training-free NAS techniques, we show that the computation of

NASGraph is lightweight (only requires CPU).

2 Related Work
One-shot NAS. One-shot NAS constructs a supernet subsuming all candidate architectures in

the search space. In other words, subnetworks of the supernet are candidate architectures. The

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:uangz12@rpi.edu
mailto:tejaswinip@us.ibm.com
mailto:pin-yu.chen@ibm.com
mailto:iangchunheng@gmail.com
mailto:gaoj8@rpi.edu
https://creativecommons.org/licenses/by/4.0/


Graph block

0    0
0    0

0.6 0.1
0.2 0.1

1    1
1    1

0    0
0    0

0    0
0    0

0    0
0    0

Graph block

 0   0.3
0.2   0

0.1 0.3
0.4   0

0    0
0    0

0    0
0    0

1    1
1    1

0    0
0    0

Graph block

 0   0.1
0.2   0

 0   0.1
0.2   0

0    0
0    0

1    1
1    1

0    0
0    0

Graph block

0    0
0    1

 0   0.8
0.2   0

0    0
0    0

0    0
0    0

1    1
1    1

0    0
0    0

0    0
0    0

1st channel of 1st branch 2nd channel of 1st branch 1st channel of 2nd branch 2nd channel of 2nd branch

Cell Cell Cell Cell

Module

Cell

Graph block

Graph block Graph block

Graph block

Module

Neural architecture

NASGraph

Conversion

. . . . . .

Graph
a b

c

Figure 1: An overview of the NASGraph framework: the connectivity of graph nodes is determined by

the forward propagation of the corresponding graph blocks. In the toy example shown in

the bottom of the figure, if the output from the forward propagation is all-zeros matrix O,

there is no connection. Otherwise, the connection is built between a pair of graph nodes.

The orange rectangles in (b) and (c) mark how a subgraph generated by a single forward

propagation constitutes a part of the whole graph.

supernet method is faster than the conventional NAS methods because it enables weight sharing

among all the candidate architectures in the search space.

Training-Free NAS. Training-Free NAS uses models with randomly initialized weights to obtain

the saliency metrics that rank these models. Since there is no need for training models, this routine

is considerably faster even compared to one-shot NAS. NASWOT Mellor et al. (2021) applies the

theory on the linear regions in deep networks Hanin and Rolnick (2019) to achieve NAS without

training. The saliency metrics for the pruning-at-initialization work in network pruning are also

found to be effective in zero-cost NAS Abdelfattah et al. (2021). In addition, TENAS Chen et al.

(2021) uses metrics from the condition number of neural tangent kernel and the number of linear

regions. A comparison of saliency metrics Krishnakumar et al. (2022) finds that these metrics might

contain complementary information and hence a combination of metrics can be helpful in NAS.

3 NASGraph: A Graph-Based Framework for Data-Agnostic and Training-Free NAS

Figure 1 shows an overview of our proposed NASGraph framework. A neural architecture is

uniquely mapped to a DAG, i.e. 𝑎 ↦→ 𝐺 (𝑉 , 𝐸). After the conversion, graph measures are computed
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to rank the performance of the corresponding neural architectures. We also note that our notion of

graph refers to the specific graph representation of a neural architecture 𝑎 via our proposed graph

conversion techniques, instead of the original computation graph of 𝑎.

Graph block. The basic element in the NASGraph framework is the graph block. We use the

notation 𝑓 (𝑙 ) (x(𝑙 ) ;𝜃 (𝑙 ) ) to represent the 𝑙-th graph block, where x(𝑙 ) is the input to the graph block

and 𝜃 (𝑙 )
is the model parameter. We combine several neural components (e.g. Conv and ReLU) to a

graph block such that the output of the graph block 𝑦 (𝑙 ) = 𝑓 (𝑙 ) (x(𝑙 ) ;𝜃 (𝑙 ) ) is non-negative.
Conversion method. Inspired by the iterative re-evaluation method in the network pruning

Verdenius et al. (2020); Tanaka et al. (2020), we apply conversion to each graph block independently.

Similarly, we also use all-ones matrix as the input to the graph block x(𝑙 ) = 1𝐶
(𝑙−1)×𝐻 (𝑙−1)×𝑊 (𝑙−1)

in the forward propagation process, where 𝐶 (𝑙−1)
is the number of channels, 𝐻 (𝑙−1)

is the image

height, and𝑊 (𝑙−1)
is the image width for the input to 𝑙-th graph block. This helps us get an unbiased

estimate of the contribution of the input to the output. Further, to determine the contribution of the

𝑐-th channel of the input on the channels of the output for the 𝑙-th graph block, we apply a mask

M(𝑙 )
𝑐 to the input so that only the 𝑐-th channel (x(𝑙 )

𝑑1𝑑2𝑑3
)𝑑1=𝑐 is an all-ones matrix 1𝐻

(𝑙−1)×𝑊 (𝑙−1)
and

other channels are zero matrices O𝐻 (𝑙−1)×𝑊 (𝑙−1)
. A toy example is shown in the bottom of Figure 1.

We evaluate the contribution of the 𝑐-th channel (x(𝑙 )
𝑑1𝑑2𝑑3

)𝑑1=𝑐 to the output y(𝑙 )
by performing a

forward propagation as described by:

y(𝑙 )
𝑐 = 𝑓 (𝑙 ) (M(𝑙 )

𝑐 ⊙ x(𝑙 ) ;𝜃 (𝑙 ) ) (1)

where 𝑓 (𝑙 ) (·) is the 𝑙-th graph block, ⊙ is the Hadamard product, and 𝜃 (𝑙 )
is the parameters of the

𝑙-th graph block. The score 𝜔𝑖 (𝑙−1) 𝑗 (𝑙 ) for the edge 𝑒𝑖 𝑗 between node 𝑖 (𝑙−1) and 𝑗 (𝑙 ) is determined by:

𝜔𝑖 (𝑙−1) 𝑗 (𝑙 ) =

𝐻 (𝑙 )∑︁
𝑑2=1

𝑊 (𝑙 )∑︁
𝑑3=1

((𝑦 (𝑙 )
𝑖

)𝑑1𝑑2𝑑3)𝑑1=𝑗 (2)

If 𝜔𝑖 (𝑙−1) 𝑗 (𝑙 ) is larger than 0, we build an edge between node 𝑖 (𝑙−1) and node 𝑗 (𝑙 ) that indicates the

relationship between 𝑖-th channel of the input x(𝑙 )
and 𝑗-th channel of the output y(𝑙 )

. We use a

virtual input graph block of identity operation to take the input to the neural architecture into

consideration. After looping though all graph blocks, we can uniquely construct a graph.

Improving the search efficiency of NASGraph. To reduce computational overhead, NAS

typically uses a training-reduced proxy to obtain the performance of neural architectures. A

systematic study is reported in EcoNAS Zhou et al. (2020) where four reducing factors are analyzed:

(1) number of epochs, (2) resolution of input images, (3) number of training samples, (4) number

of channels for Convolution Neural Networks (CNNs). Following their convention, to accelerate

NASGraph, we also consider the surrogate models, i.e. models with computationally reduced

settings. We dub the surrogate model NASGraph(h, c, m), where ℎ is the number of channels, 𝑐 is

the number of search cells in a module, and𝑚 is the number of modules.

4 Performance Evaluation

4.1 Experiment Setup

We use AMD EPYC 7232P CPU in the computation of NASGraph. To compute the performance of

baselines requiring GPUs, a single NVIDIA A40 GPU is used. We reduce the number of channels to

be 16 and the number of cells to be 1, i.e. NASGraph(16, 1, 3) is used as the surrogate model.

4.2 Scoring neural architectures using average degree

The distribution of the average degree of graphs vs the performance of neural architectures is

plotted in Figure 2 (a)-(l). Colorbar indicates the number of architectures in logarithmic base
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10. We compute both Spearman’s ranking correlation 𝜌 and Kendall’s Tau ranking correlation 𝜏

between them. In Table 1 we compare the performance of average degree against all the baselines

on NAS-Bench-201 benchmark. Our method can rank architectures effectively and outperforms

the baselines on most of the datasets.

We also evaluate our method on the NDS benchmark. The result is summarized in Table 4.

Similar to NASWOT Mellor et al. (2021), we use 1000 randomly sampled architectures. Same subset

of architectures is used for all methods.

NAS-Bench-101 CIFAR-10 NAS-Bench-201 CIFAR-10 NAS-Bench-201 CIFAR-100 NAS-Bench-201 ImageNet-16-120

TransNAS-Bench101 Class object TransNAS-Bench101 Class scene TransNAS-Bench101 Semantic NDS-AMOEBA CIFAR-10

NDS-DARTS CIFAR-10 NDS-ENAS CIFAR-10 NDS-NASNet CIFAR-10 NDS-PNAS CIFAR-10

b c da

f g he

j k li

Figure 2: The ranking correlation between the performance of neural architecture 𝑎 and the graph

measures of the corresponding graph 𝐺 (𝑉 , 𝐸). In the NASGraph framework, each neural

architecture is uniquely mapped to a graph, i.e. 𝑎 ↦→ 𝐺 (𝑉 , 𝐸).

To explore the generality of the proposed NASGraph framework, we examine the performance

of the graph measure on micro TransNAS-Bench-101. The comparison is shown in Table 5. As

reported in Krishnakumar et al. (2022), there is a pronounced variation in the ranks of training-free

proxies when changing NAS benchmarks. For the class_object downstream task, the average degree

gives the best performance. For other downstream tasks, our method also exhibits a competitive

performance.

4.3 Training-Free architecture search using NASGraph

We evaluate the performance of our metric when used as an alternative to validation accuracy

during random search. 𝑁 = 100 and 𝑁 = 200 architectures are randomly sampled from NAS-Bench-

201 and the training-free metrics are used to perform the search. We repeat the search process

100 times, and the mean and the standard deviation are reported in Table 6. Ground truth (GT)

indicates the highest validation accuracy and the highest test accuracy for the validation and the

test columns respectively. It is essential to highlight the fact that all the metrics in baselines are
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computed based on single A40 GPU (in GPU second) while NASGraph score is calculated on single

CPU (in CPU second). NASGraph using the surrogate model NASGraph(16, 1, 3) can outperform

the other training-free metrics on CIFAR-10 and CIFAR-100 datasets with a higher mean value and

a lower standard deviation. At a small cost of performance, the surrogate model NASGraph(1, 1, 3)

can have a significant improvement in the computation efficiency.

5 Broader Impact Statement
We propose a way to bridge the graph space and neural network space. Various benchmarks prove

the efficacy of the proposed method. The establishment of the bridge enables one to shed light

on neural architecture design through the graph theory. Besides, the computation of the graph

measures is light-weight compared to the forward and backward process of neural architectures.

In terms of efficiency, graph measures are good candidates for the NAS metric.

6 Limitation
In this work, we focus on simple graph measures such as average degree. The average degree

is a global property for a graph. Dedicated graph measures such as graph measures related to

communities in a graph enable a deeper understanding of neural architectures.

7 Discussion
In this paper, we proposed NASGraph, a novel graph-based method for NAS featuring lightweight

(CPU-only) computation and is data-agnostic and training-free. Extensive experimental results

verified the high correlation between the graph measure of NASGraph and performance of neural

architectures in several benchmarks. Compared to existing NAS methods, NASGraph provides a

more stable and accurate prediction of the architecture performance and can be used for efficient

architecture search. We also show that our graph measures can be combined with existing data-

dependent metrics to further improve NAS. We believe our findings provide a new perspective and

useful tools for studying NAS through the lens of graph theory and analysis.

Our method addresses some limitations in current NAS methods (e.g. data dependency, GPU

requirement, and operation preference) and attains new state-of-the-art NAS performance. The

authors do not find any immediate ethical concerns or negative societal impacts from this study.
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Submission Checklist
All submissions must include a section containing the AutoML submission checklist, shown below.

The submission checklist does not count towards the page limit and must be included at submission

and camera-ready time. The submission checklist draws upon related submission checklists: the

NeurIPS ’22 checklist and the nas checklist.

For each question, change the default \answerTODO{} (typeset [TODO]) to

\answerYes{[justification]} (typeset [Yes]), \answerNo{[justification]} (typeset [No]), or
\answerNA{[justification]} (typeset [N/A]). You must include a brief justification to your
answer, either by referencing the appropriate section of your paper or providing a brief inline

description. For example:

• Did you include the license of the code and datasets? [Yes] See Section 1.

• Did you include all the code for running experiments? [No] We include the code we wrote

for conducting the experiments, but complete replication depends on proprietary libraries for

executing on a private compute cluster. The code therefore is not runnable without modification.

To compensate, we provide a runnable but non-parallelized version of the code that could replicate

the results at the expense of a greater wall-clock time.

• Did you include the license of the datasets? [N/A] Our experiments were conducted on publicly

available datasets and we have not introduced new datasets.

Please note that if you answer a question with \answerNo{}, we expect that you provide an

explanation and/or compensation for the omission. For example, if you cannot provide complete

evaluation code for some reason, you might instead provide code for a minimal reproduction of the

main insights of your paper.

Please do not modify the questions and only use the provided macros for your answers. Note

that the submission checklist does not count towards the page limit. If you choose to modify

instructions.tex, please delete these instructions and only keep the Submission Checklist section

heading above along with the questions/answers below.

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s con-

tributions and scope? [Yes] The abstract and introduction accurately reflect the contribution

and scope.

(b) Did you describe the limitations of your work? [Yes] It is in the section 6.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work does

not have negative societal impacts.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] We read the guidelines and con-

firm that our paper conforms to them.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] We use the same evaluation protocol

for all methods.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes]We include the experiment setup in subsection

4.1 and search spaces in B.
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(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] We repeat experiment for 100

times for the search efficiency comparison and 8 times for the correlation computation.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] We report the standard deviation.

(e) Did you report the statistical significance of your results? [No] We report the mean and

standard deviation. There is no statistical hypothesis testing, so we do not report statistical

significance.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] We use the

standard benchmarks.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] We compare the running efficiency and report in the table 6.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] We report the computational resources.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[N/A] Our method focuses on the NAS metric. We test different graph measures.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] We include our code in the section A and the

instruction on how to run the code in the code repository.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] The example is included in the instruction.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] Code repository is well documented.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No] We do not include the raw results. There is an instruction on how to

run our code.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] There is an instruction on how to

reproduce our results shown in tables.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] We cite all benchmarks we use.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] We only use publicly available benchmarks.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The benchmark we use does not contain personally

identifiable information or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .
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(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

We do mention the license.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] We include the code in GitHub URL.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] Our work does not involve crowdsourcing or research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] Our work does not involve crowdsourcing or research

with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] Our work does not involve crowdsourcing or research

with human subjects.

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We include full set

of assumptions for graph measures.

(b) Did you include complete proofs of all theoretical results? [N/A] We do not have theory

proof.
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A Code Availability

Our code is publicly available at https://github.com/Zhenhan-Huang/NASGraph-Public.

B NAS Benchmarks and Baseline Models

NAS benchmarks. To examine the effectiveness of our proposed NASGraph, we use neural architec-
tures on NAS-Bench-101 Ying et al. (2019), NAS-Bench-201 Dong and Yang (2020), TransNAS-Bench-

101 Duan et al. (2021) and Network Design Space (NDS) Radosavovic et al. (2019). NAS-Bench-101 is

the first NAS benchmark consisting of 423,624 neural architectures trained on the CIFAR-10 dataset

Krizhevsky et al. (2009). The training statistics are reported at 108th epoch. NAS-Bench-201 is

built for prototyping NAS algorithms. It contains 15,625 neural architectures trained on CIFAR-10,

CIFAR-100 Krizhevsky et al. (2009) and ImageNet-16-120 Chrabaszcz et al. (2017) datasets. The

training statistics are reported at 200th epoch for these three datasets. In addition to standard NAS

benchmarks, we also examine the performance of NASGraph on TransNAS-Bench-101, specifically

the micro search space. The micro (cell-level) TransNAS-Bench-101 has 4,096 architectures trained

on different tasks using the Taskonomy dataset Zamir et al. (2018). The NDS benchmark includes

AmoebaNet Real et al. (2019), DARTS Liu et al. (2018b), ENAS Pham et al. (2018), NASNet Zoph

and Le (2016) and PNAS search spaces Liu et al. (2018a).

Baselines. We use metrics in training-free NAS as our baselines. zico Li et al. (2023) is based on
the theory of Gram Matrix Du et al. (2018). relu_logdet (also dubbed naswot) Mellor et al. (2021)

applies the theory on the number of linear regions to represent the model expressivity. jacob_cov
Mellor et al. (2021) is based on the correlation of Jacobians with inputs. grad_norm Abdelfattah et al.

(2021) sums the Euclidean norm of the gradients. snip Lee et al. (2018) is related to the connection

sensitivity of neural network model. grasp Wang et al. (2020) is based on the assumption that

gradient flow is preserved in the efficient training. fisher Theis et al. (2018) estimates fisher

information of model parameters, synflow Tanaka et al. (2020) preserves the total flow of synaptic

strength.

C Performance Comparison on Various NAS Benchmarks

Table 1 shows the performance comparison on the NAS-Bench-201 benchmark. The correlation is

computed on all architectures in the search space. Ourmethod overall achieves the best performance.

Table 1: Comparison of the ranking correlation between NASGraph and training-free NAS methods

using single metric on NAS-Bench-201. Correlations are calculated between the metrics and

test accuracies.

Method Metric

CIFAR-10 CIFAR-100 ImageNet-16-120

𝜌 𝜏 𝜌 𝜏 𝜌 𝜏

NASWOT naswot 0.76 0.57 0.79 0.61 0.71 0.55

ZiCo
‡ zico 0.74 0.55 0.78 0.58 0.76 0.56

TENAS

NTK - - - -0.42 - -

NLR - - - -0.50 - -

Zero-Cost NAS

grad_norm 0.58 0.42 0.64 0.47 0.58 0.43

snip 0.58 0.43 0.63 0.47 0.58 0.43

grasp 0.48 0.33 0.54 0.38 0.56 0.40

fisher 0.36 0.26 0.39 0.28 0.33 0.25

synflow 0.74 0.54 0.76 0.57 0.75 0.56

jacob_cov 0.73 0.55 0.71 0.55 0.71 0.54

Ours avg_deg 0.78 0.58 0.80 0.60 0.77 0.57

‡ Original implementation of ZiCo uses cutout data augmentation. To make a fair comparison, we recalculate the

correlation without cutout data augmentation.
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Table 2: Comparison of the ranking correlations using multiple metrics with training-free NAS meth-

ods on NAS-Bench-201. Correlations between the combined metric and NAS Benchmark

performance are reported. TENASChen et al. (2021) combines rankings byNTK andNLR. Zero-

Cost NAS Abdelfattah et al. (2021) takes a majority vote among the three metrics: synflow,
jacob_cov and snip. Our method combines the rankings of avg_deg and jacob_cov.

Method

CIFAR-10 CIFAR-100 ImageNet-16-120

𝜌 𝜏 𝜌 𝜏 𝜌 𝜏

TENAS Rank combine - - - 0.64 - -

Zero-Cost NAS Voting 0.82 - 0.83 - 0.82 -

Ours Rank combine 0.85 0.66 0.85 0.67 0.82 0.64

Table 2 shows the performance of combining multiple NAS metrics. The decision is made by

either voting or a combination of ranks. We find that a combination of graph measure avg_deg
with jacob_cov is able to achieve the best performance.

Table 3 compares the bias existing in NAS metrics. Bias exhibits the preference of NAS metrics

on various operations in the NAS search space. Our method overall has the lowest bias compared

to baseline methods.

Table 3: Comparison of the accumulated frequency difference between training-free NAS methods

and GT on top 10% architectures of the NAS-Bench-201. GT ranks architectures ranked by

test accuracies. Lower value means less bias (i.e. closer to GT).

Metric CIFAR-10 CIFAR-100 ImageNet-16-120 Average bias

relu_logdet 0.3 0.27 0.19 0.25

grad_norm 0.32 0.3 0.24 0.29

snip 0.31 0.29 0.24 0.28

grasp 0.31 0.28 0.24 0.28

fisher 0.52 0.52 0.53 0.52

synflow 0.22 0.18 0.27 0.22

jacob_cov 0.39 0.42 0.22 0.34

Our method

avg_deg 0.22 0.14 0.27 0.21

comb_rank 0.17 0.17 0.12 0.15

Table 4 shows the performance on the NDS benchmark that consists of multiple search spaces

such as DARTS search space.

Table 4: Comparison of Kendall’s Tau ranking correlations 𝜏 between test accuracies and training-free

NAS metrics on the NDS benchmark.

Metric AMOEBA DARTS ENAS NASNet PNAS

grad_norm -0.12 0.22 0.06 -0.05 0.15

snip -0.09 0.26 0.10 -0.02 0.18

grasp 0.02 -0.04 0.03 0.18 -0.01

fisher -0.12 0.19 0.04 -0.07 0.14

jacov_cov 0.22 0.19 0.11 0.05 0.10

synflow -0.06 0.30 0.14 0.04 0.21

naswot 0.22 0.47 0.37 0.30 0.38

avg_deg (Ours) 0.32 0.45 0.41 0.37 0.40

Table 5 shows the performance on the micro TransNAS-Bench-101 benchmark. Our proposed

method is comparable with the baseline methods. We notice that NAS methods hardly have a

consistent performance. For example, although jacob_cov has an inferior performance on the
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NAS-Bench-201 benchmark, it has a relatively good performance on the TransNAS-Bench-101

benchmark.

Table 5: Comparison of Spearman’s ranking correlations 𝜌 between validation accuracies and training-

free NAS metrics on micro TransNAS-Bench-101. The baseline performance is extracted

from Krishnakumar et al. (2022). Note that synflow and avg_deg are data-agnostic. CO is

class_object, CS is class_scene, RL is room_layout, SS is segment_semantic.

Metric

Micro TransNAS-Bench-101

CO CS RL SS

plain 0.34 0.24 0.36 -0.02

grasp -0.22 -0.27 -0.29 0.00

fisher 0.44 0.66 0.30 0.12

epe_nas 0.39 0.51 0.40 0.00

grad_norm 0.39 0.65 0.25 0.60

snip 0.45 0.70 0.32 0.68

synflow 0.48 0.72 0.30 0.00

l2_norm 0.32 0.53 0.18 0.48

params 0.45 0.64 0.30 0.68

zen 0.54 0.72 0.38 0.67

jacob_cov 0.51 0.75 0.40 0.80
flops 0.46 0.65 0.30 0.69

naswot 0.39 0.60 0.25 0.53

zico 0.55 0.68 0.26 0.61

avg_deg (Ours) 0.55 0.70 0.37 0.66

Table 6 shows the efficiency comparison. Although our method can achieve a fast running time

using only CPU. By using the proxy model, our method is the fastest.

Table 6: Comparison of training-free NAS metrics using random search method. The same subset

of architectures is randomly chosen from NAS-Bench-201 for all metrics. GT reports the

performance of the best architecture in that subset.

Metric Running time

CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

N = 100

relu_logdet 52.72 GPU sec. 89.51 ± 0.96 89.22 ± 1.03 69.48 ± 1.44 69.58 ± 1.50 42.92 ± 2.41 43.27 ± 2.62

grad_norm 364.68 GPU sec. 88.28 ± 1.42 87.94 ± 1.48 65.96 ± 3.11 66.13 ± 3.10 34.97 ± 6.82 34.96 ± 7.06

snip 363.71 GPU sec. 88.29 ± 1.42 87.95 ± 1.48 66.14 ± 2.96 66.32 ± 2.97 35.44 ± 6.49 35.44 ± 6.72

grasp 377.29 GPU sec. 88.06 ± 1.55 87.74 ± 1.58 66.27 ± 3.50 66.38 ± 3.55 35.20 ± 6.76 35.19 ± 6.93

fisher 315.57 GPU sec. 84.08 ± 6.68 83.70 ± 6.67 61.77 ± 7.26 61.89 ± 7.44 30.80 ± 8.02 30.49 ± 8.33

synflow 360.15 GPU sec. 89.91 ± 0.87 89.67 ± 0.88 70.03 ± 1.79 70.17 ± 1.79 41.89 ± 4.13 42.23 ± 4.24

jacob_cov 360.48 GPU sec. 88.68 ± 1.56 88.32 ± 1.59 67.45 ± 2.91 67.57 ± 3.03 40.64 ± 3.54 40.76 ± 3.77

avg_deg (NASGraph(1, 1, 3)) 7.78 CPU sec. 89.74 ± 0.77 89.53 ± 0.75 69.90 ± 1.38 70.01 ± 1.43 42.00 ± 2.80 40.73 ± 4.14

avg_deg (NASGraph(16, 1, 3)) 106.18 CPU sec. 89.95 ± 0.49 89.73 ± 0.52 70.17 ± 1.06 70.29 ± 1.10 42.72 ± 2.33 43.15 ± 2.29

GT - 90.98 ± 0.36 90.77 ± 0.31 71.48 ± 0.86 71.69 ± 0.81 45.45 ± 0.67 45.74 ± 0.65

N = 200

relu_logdet 90.39 GPU sec. 89.64 ± 0.81 89.33 ± 0.84 69.65 ± 1.36 69.87 ± 1.33 43.25 ± 2.22 43.62 ± 2.37

grad_norm 644.23 GPU sec. 88.23 ± 1.51 87.87 ± 1.53 65.46 ± 3.34 65.67 ± 3.42 35.08 ± 7.05 35.00 ± 7.26

snip 712.58 GPU sec. 88.23 ± 1.51 87.87 ± 1.54 65.68 ± 3.16 65.89 ± 3.21 35.08 ± 7.05 35.00 ± 7.26

grasp 692.74 GPU sec. 88.31 ± 1.35 87.96 ± 1.37 65.97 ± 3.21 66.16 ± 3.28 34.83 ± 6.63 34.74 ± 6.81

fisher 622.92 GPU sec. 85.55 ± 4.91 85.24 ± 4.92 61.69 ± 5.62 61.86 ± 5.77 29.39 ± 6.38 29.04 ± 6.65

synflow 742.74 GPU sec. 89.87 ± 0.85 89.61 ± 0.85 69.93 ± 1.84 70.05 ± 1.89 41.54 ± 3.76 41.93 ± 3.77

jacob_cov 688.77 GPU sec. 88.34 ± 1.67 88.00 ± 1.71 67.39 ± 2.93 67.55 ± 3.05 40.95 ± 3.24 41.04 ± 3.41

avg_deg (NASGraph(1, 1, 3)) 15.98 CPU sec. 89.92 ± 0.61 89.69 ± 0.62 70.25 ± 1.20 70.42 ± 1.21 41.96 ± 2.44 42.48 ± 2.39

avg_deg (NASGraph(16, 1, 3)) 217.21 CPU sec. 89.96 ± 0.38 89.73 ± 0.43 70.22 ± 0.99 70.45 ± 0.98 42.27 ± 2.36 42.76 ± 2.36

GT - 91.14 ± 0.25 90.91 ± 0.24 71.84 ± 0.76 72.04 ± 0.72 45.72 ± 0.54 46.01 ± 0.50

13


	Introduction
	Related Work
	NASGraph: A Graph-Based Framework for Data-Agnostic and Training-Free NAS
	Performance Evaluation
	Experiment Setup
	Scoring neural architectures using average degree
	Training-Free architecture search using NASGraph

	Broader Impact Statement
	Limitation
	Discussion
	Code Availability
	NAS Benchmarks and Baseline Models
	Performance Comparison on Various NAS Benchmarks

