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Abstract

In online allocation problems, an algorithm must choose from a set of options at
each step, where each option incurs a set of costs/rewards associated with a set
of d agents. The goal is to minimize/maximize a function of the accumulated
costs/rewards assigned to the agents over the course of the entire allocation process.
Such problems are common in combinatorial optimization, including minimization
problems such as machine scheduling and network routing, as well as maximization
problems such as fair allocation for welfare maximization.

In this paper, we develop a general learning-augmented algorithmic framework for
online allocation problems that produces a nearly optimal solution using only a
single d-dimensional vector of learned weights. Using this general framework, we
derive learning-augmented online algorithms for a broad range of application prob-
lems in routing, scheduling, and fair allocation. Our main tool is convex program-
ming duality, which may also have further implications for learning-augmented
algorithms in the future.

1 Introduction

In the last few years, tremendous advances in machine learning have triggered much interest and
rapid progress in a new domain called learning-augmented online algorithms. In many practical
scenarios, one needs to solve optimization problems with dynamically evolving requirements (called
online algorithms), where uncertainty about the future significantly affects the quality of the solution.
The basic premise of the learning-augmented paradigm is to use (possibly noisy) machine-learned
predictions as a proxy for the future, and design online algorithms that can take advantage of
good predictions while not falling prey to bad ones. (The resulting algorithms are sometimes also
referred to as “online algorithms with predictions”.) The explosive growth of this new area over
the last few years has spanned a large variety of domains such as caching, scheduling, matching,
clustering, network design, and many others (see related work), and generated much excitement at
the intersection of algorithm design and machine learning. While many novel and clever algorithms
have been designed in the learning-augmented setting, these are typically tailored to the requirements
of a specific problem at hand, and do not generalize to broader problem classes. Indeed, there is a
surprising absence of unifying algorithmic models and general-purpose tools for online algorithms
with predictions, particularly when contrasted with other models of computation where algorithmic
progress has largely relied on broad, unifying models and algorithmic techniques.

In this paper, we aim to partially rectify this situation by studying a broad class of problems called
online allocation in the learning-augmented setting. The setup is the following: in each online step,
the algorithm is presented a set of options and has to choose one of them. Each option is represented
by a vector, and the final objective is a (linear or non-linear) function of the (coordinate-wise) sum
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of all the chosen vectors. As we will soon see, this captures a broad range of problems in network
routing, scheduling, fair allocation, etc. In this paper, we develop a general algorithmic strategy
for this entire class of problems in the learning-augmented setting that obtains a nearly optimal
(fractional) solution. This is in sharp contrast to strong (super-constant) lower bounds without ML
advice, for almost all problems captured by this framework.

The online allocation problem that we described above has many applications. Among the most
important is that of online routing. In this problem, we are given a network and in each online step,
the algorithm has to choose a route from a given source to a destination node. Eventually, the goal is
to minimize the maximum congestion of any network link, which is defined as the number of chosen
routes using that link. This is a classical and well-studied problem in online algorithms, and it is
well-known that the best competitive ratidﬂ achievable is logarithmic in the size of the network [3|]
(see also [4}[6L[7]). In sharp contrast, we obtain a (1 + €)-approximation for any € > 0 using learning
augmentation, by modeling the problem as online allocation where each coordinate in the vector
represents a network link and the goal is to minimize the ¢.,-norm of the congestion vector.

A second application domain for online allocation is that of online scheduling problems. Consider the
problem of processing jobs online where each job comes with a slate of options given by vectors that
represent the processing time on different machines. Overall, the goal is to minimize the makespan,
i.e., the maximum load on any machine. This problem is also described via online allocation, where
the coordinates of the vectors represent machines and the objective is again the ¢,,-norm of machine
loads given by the sum of the selected vectors. Our online allocation algorithm gives a (1 + €)-
competitive learning-augmented solution to this problem, which again sharply contrasts with lower
bounds that are logarithmic in the number of machines in the absence of learning augmentation [[10]].

We note that the flexibility of the online allocation framework also allows us to extend these problem
formulations immediately to a much broader set of objectives, such as all £,-norm objectives [5]
rather than just the ¢,,-norm. Another interesting direction is that of maximization problems. In
contrast to minimization problems where the vector coordinates can be thought of as resources whose
use needs to be minimized, we now imagine the coordinates to represent value added to agents when
a particular option is selected. This allows us to model fair allocation problems, where a set of items
have to be assigned in a way that maximizes the minimum value along all agents (or another function
such as Nash social welfare, p-means, etc.) [13}[15] Again, we observe the sharp contrast between the
traditional online setting without learning augmentation, where strong polynomial lower bounds exist
for these problems [|34} [18] and the learning-augmented setting where our online allocation algorithm
immediately yields a (1 — €)-approximation for any € > 0.

We end this section by commenting on the machine-learned parameters that we use in our learning-
augmented algorithm for the online allocation problem. As described above, we show that there
exists a set of learned parameters that allows us to approximate the optimal objective within a (1 & €)
factor of the optimal value. Importantly, we show that these parameters are bounded as a function
of € and the number of coordinates (rather than the number of steps or options) and, moreover, that
our learning-augmented algorithm is resilient to small errors in the values of the learned parameters.
This allows us to derive PAC-learning results for the learned parameters and to use them in the
learning-augmented algorithm to obtain a (1 £+ O(¢))-approximation.

Organization. The formal model and statement of results appear in Section[2] Section 3] presents
related work. The main result, which provides the learning-augmented algorithm, appears in Section 4]
Applications of this result to routing and fair allocation problems are discussed in Section [5] In
Appendix [C} we derive sample complexity bounds for the learned parameters in the PAC model. All
omitted details of proofs are in the appendix.

2  Our Contributions

First, we define the online allocation framework:

Online Allocation Problem. In this problem, we receive an initial input of a function f over a
bounded domain in Ri. Subsequently, we proceed in steps. At every time stept = 1,...,T,

we receive a set A; C Ri of d-dimensional vectors. We must select one vector VI € A, before

'As is usual in online algorithms, performance of an algorithm is measured via its competitive ratio, which is
the worst-case ratio of the algorithm’s objective to that of an optimal solution.



proceeding to time step ¢ 4 1, using only information available up to time ¢. Denote the result vector
T

Vi i = Zle vz . The goal is to maximize or minimize f (vjot) for some objective function f(-).
For ease of notation, we fix an arbitrary ordering of the vectors in A, and denote by v; , € Rff_ the
kth vector in Ay, i.e., Ay = (ve1,...,v)4,|). Accordingly, we define K (t) = {1,...,|A|} as the
set of indices of these vectors, and for each k € K (¢), we let v; + , denote the ith coordinate of vector
vy 1 in Ay. Our results apply to well-behaved functions f(-) that we define as follows:

Well-Behaved Functions. Let f : ]Ri — R be the objective function defined on the result vector.
Then, f is well-behaved if it satisfies the following properties:

Monotonicity: f is said to be monotone if for any ¢, ¢’ € R% such that ¢; > ¢} for all i € [d], we have

f0) = ().

Homogeneity: f is said to be homogeneous if for any ¢, ¢’ € R% such that £; = o - ¢; for all i € [d],
we have f(¢') = a- f(0).

These properties are satisfied by most objective functions studied in the literature including linear
functions, p-norms, Nash Social Welfare (which is the geometric mean), p-means, etc.

Our algorithmic scheme will focus on developing a fractional selection rule, which can be interpreted
as a probability distribution over the different choices in every step. We formally describe a fractional
solution as follows:

Fractional Solution. At step ¢, the algorithm has to assign a fractional value to each option

K(t)|
1

xi € [0,1] for k € K(t) such that ZL: x1., = 1. Accordingly, we have

T |Adl

fo._
Vit = Vik Tt k-

t=1 k=1

Note that in some scenarios such as the allocation of divisible items or network flow routing, a
fractional solution is already sufficient.

Learning-Based Online Scheme for Allocation Problems. Our main result is that for any d-
dimensional instance of the online allocation problem with a well-behaved objective function, there
exists a vector o € R? such that an online algorithm guided by « achieves a competitive ratio of
1 + € for minimization or 1 — € for maximization, for any € > 0.

Theorem 2.1. Given an instance of the online allocation problem with a well-behaved objective and
any € > 0, there exists a set of learned parameters oo € R? and an online algorithm that uses o such
that the resulting fractional solution achieves a (1 + O(¢))-approximation.

The online algorithm that establishes this result uses a simple exponential assignment rule, where
given a learned parameter vector v € RY, the fractional allocation x,(c) of option k € K (t) is:

d
xex (@) o< exp ( Zai L Dtk ) , where my (v) = min{vg|vie, > 0,4 € [d], k € K(¢)}.

i=1 m (v)

We further show that the learned parameters can be bounded as a function of d and ¢, and that the
algorithm is robust to small perturbations in the parameter values. This structure allows the parameter
space to be both bounded and discretized in terms of d, ¢, independent of the time horizon. This
property is crucial in applications where the number of steps (which may represent flow requests,
jobs, or items) is significantly larger than the number of dimensions (which may represent network
links, machines, or agents). Moreover, the discretization of the parameter space ensures that the
parameters are learnable, and allows us to bound the number of samples required for learning.

Learnability of Parameters. Following the PAC framework of [26], we establish the learnability of
parameter vectors for well-behaved objectives, under the additional assumption of superadditivity for
maximization or subadditivity for minimization, as introduced in [18].

We consider a setting in which each online step (i.e., a set of vectors) is drawn independently (though
not necessarily identically) from a distribution, and each step contributes only a small fraction of the
total allocation. This latter property is formalized by the standard small items assumption (see, e.g.,
[ 26} 124, 129]]), which we state below:



Small Items Assumption: There exists a { = © (loegzd) such that v;, < % forevery i € [d], t € [T,
and k € K(t).

Under this assumption, we derive a sample complexity bound for approximately learning a parameter
vector « that ensures near-optimal performance. The following informal theorem summarizes our
main learnability result; see Appendix [C|for details:

Theorem 2.2. Under standard PAC assumptions, the small items assumption, and mild regularity
conditions on the objective (subadditivity for minimization and superadditivity for maximization), the

d
logd

parameter vector o € R can be learned from O ( -log %) i.i.d. samples.

Rounding the Fractional Solution. As mentioned earlier, a fractional solution is already sufficient
for many applications. Furthermore, we show that under the small items assumption (see above), a
fractional solution can be converted into a randomized online integral solution with a (1 =+ €) loss
in the objective value, where the parameter € only depends on the parameters of the small items
assumption.

Consider the following online randomized rounding algorithm: given an online fractional solution x,
for ¢ € [T7], the algorithm chooses option k with probability x; ;. Under the small items assumption,
standard Chernoff bounds ensure that with high probability, the maximum coordinate in the rounded
vector remains within a multiplicative factor of (1 + O(e)) of its fractional counterpart. We get the
following theorem:

Theorem 2.3. Let v);,l be a fractional solution, and let V,Tm be the integer solution produced by
randomized rounding of this fractional solution. Then, under the small items assumption, the
following holds with high probability:

max vl ; < (14 ¢) - maxvy,, and
ic ’ j ’

.t .
minv! . > (1 —¢€)-min
minvl, > (1) minv,

Now, combining the above theorem with Theorem[2.1] we get the following result for integer solutions
under the small items assumption:

Corollary 2.4. Given an instance of the online allocation problem with a well-behaved objective
and under the small-item assumption, for any € > 0, there exists a set of learned parameters
a € R? and an online algorithm that uses o such that the resulting integral solution achieves a
(1 + O(e))-approximation.

Robustness—Consistency Tradeoff. Ideally, a learning-augmented algorithm should simultane-
ously exploit accurate predictions to achieve near-optimal performance (consistency), while also
maintaining strong worst-case guarantees when predictions are unreliable (robustness). The (not
learning-augmented) worst case lower bounds for allocation problems with minimization (resp.,
maximization) objectives is (log d) (resp., 2(d)). Formally, an algorithm is said to be y-consistent
and d-robust if it achieves a ~y-approximation under accurate predictions (consistency), and a -
approximation in the worst case when predictions are unreliable (robustness). In Appendix [D} we
give a slight modification of our scheme that preserves robustness while achieving consistency for
both minimization and maximization objectives.

Theorem 2.5. For minimization objectives, there exists an algorithm that uses o € RY, a predicted
parameter vector, and achieves 1-consistent and O(log d)-robust approximation.

For maximization objectives, there exists an algorithm that uses o € R?, a predicted parameter
vector, and a parameter A, which achieves a (1 — \)-consistent and X - d-robust approximation.

Applications. In Section [5] we illustrate the utility of our framework in handling a broad class of
objectives by demonstrating its use in two applications. The first is for the online routing problem,
where we are given a network and in each time-step, there is request to route a given value of flow from
a source to a destination vertex [3]. The flow needs to be routed in a way that minimizes maximum
congestion on any edge cumulatively across all time-steps. We give the first learning-augmented
algorithm for this problem as a simple corollary of our general online allocation framework. Next,



we consider a maximization problem, that of allocating items to agents so as to maximize the Nash
Social Welfare [13]]. Again, we give a learning-augmented algorithm for this problem as a simple
corollary of our general framework, matching previous results in [[18]. We note that our framework
applies to many other application problems in domains such as scheduling (makespan and £,-norm
minimization) and fair allocation (Santa Claus and p-means maximization) that we do not state here
for brevity.

3 Related Work

Previous work that is mostly closely related to ours is on learning-augmented online scheduling and
assignment problems [23] 24, 26, [18]]. These works focus on the assignment of items that arrive
online to agents, where each choice affects only a single agent. In our setting, this corresponds to
each choice being represented by a d-dimensional vector with a single nonzero dimension, where d
corresponds to the number of agents.

Lattanzi et al. [23]] focused on minimizing the makespan (maximum load) for restricted assignment.
They showed that a suitable set of learned parameters enables a proportional allocation rule that
obtains a nearly optimal result. In [24], it was further shown that these parameters are PAC-learnable.

Li and Xian [26] generalized this framework to handle unrelated scheduling. Their scheme introduces
two learned parameters per machine. The first set of parameters transform the instance into a restricted-
related setting, and they show that proportional assignment using the second set of parameters then
applies to this restricted setting.

Cohen and Panigrahi [18]] improved this result by using only a single set of parameters in an
exponential allocation scheme, and also extended it to handle a large number of maximization and
minimization objectives.

Our scheme generalizes these previous works to accommodate general vectors, which is crucial for
applications such as online routing that cannot be solved using the previous techniques. Furthermore,
we simplify the previous approaches as well by requiring only a single variable per dimension,
thereby eliminating the dependence on an additional exponent base which further simplifies the
analysis of the existence of such parameters. Our work introduces a new set of techniques based
on perturbation/sensitivity analysis because the ideas previously used for bounding the learned
parameters do not generalize to the case of arbitrary vector options.

In [[14], the authors study the Online Nash Social Welfare problem with predictions. The goal is
to compute an online divisible allocation of goods among d agents in a way that balances fairness
and efficiency. In their setting, the prediction for each agent is their monopolist value—the utility
the agent would obtain if all resources were allocated solely to them—and their algorithm achieves
an O(log d)-approximation under this assumption. In contrast, we show that by learning a different
d-dimensional parameter vector, it is possible to achieve a nearly optimal allocation.

Various papers [12} 135} 19, 20] investigate the robustness—consistency tradeoff in the context of
general packing and covering problems. These algorithms typically introduce an additional parameter
A € [0,1] to encode the algorithm’s confidence in the prediction. A primal-dual scheme is then
employed to interpolate between a worst-case baseline and a prediction-driven strategy. Unlike
our approach, these methods assume that the prediction consists of the full solution, which is often
impractical in real-world settings.

More broadly, the study of learning-augmented online algorithms was initiated by Lykouris and
Vassilvitskii [27] in the context of the caching problem and has since grown into a prominent research
area. This framework enhances online algorithms by incorporating machine-learned predictions about
the future, allowing them to surpass pessimistic worst-case competitive bounds. Over the past few
years, numerous online allocation problems have been explored within this framework, including
applications in scheduling [33}18} 19} [11} 21} 30], online matching [2} 17, 22]], and ad delivery [28, [25]].
For a broader overview of learning-augmented online algorithms, we refer the reader to the surveys
by Mitzenmacher and Vassilvitskii [31} 32].



4 Online Allocation for a Well-Behaved Objective via Learned Parameters

In this section, we show that for the general case of the online allocation problem, there exists a set
of learned parameters that guarantees a near-optimal solution. Specifically, we show the following
theorem, which is a more refined version of (and establishes) Theorem 2. T}

Theorem 4.1. Given an instance of the online allocation problem with a well-behaved objective and
any € > 0, there exists a set of learned parameters o € NET(q, s) and an online algorithm that uses
v such that the resulting fractional solution achieves a (1 £ O(€))-approximation.

Here, NET(q,s) = {& |i € [0,q" 5] }d denotes a d-dimensional discrete net with parameters g, s
that are bounded in poly(d, 1/¢).

For the minimization of a well-behaved function, we first consider the MinMax objective, which
is defined as the minimization of f, where f(v) = max;c[4 v;. Similarly, for the maximization
of a well-behaved function, we first consider the MaxMin objective, which is defined as the
maximization of f, where f(v) = min;¢(q) v;.

In this section, we focus on the MinMax objective. In Appendix [E} we address the MlaxMin
objective. In Appendix[F we explain how to extend these results to general well-behaved objectives.

4.1 Learning-Augmented Online Allocation for the MinMax Objective

We now state the main result for the MinMax objective:

Theorem 4.2. Given an instance of the online allocation problem with a MinMax objective and any
2 3
€ > 0, there exists a set of learned parameters « € NET (d? -In (g) , ‘:—3) and an online algorithm

that uses o such that the resulting fractional solution is a (1 + O(¢))-approximation.

To prove this result, we first apply a pre-processing step to convert arbitrary instances of the problem
to structured instances that we say are balanced. Note that the conversion to balanced instances is
an algorithmic technique and not a restriction on the input. We then leverage convex programming
duality on a max-entropy style convex programming formulation to show the existence of learned
parameters that can be used to obtain an near-optimal solution online. At this stage, the learned
parameters can be of arbitrary precision and are not necessarily efficiently learnable. To ensure the

latter, we need to obtain parameters that belong to NET (% In (%), ‘Z—E) We do this in the last
step by using tools from perturbation and sensitivity analysis in the convex programming literature.
Together, these steps establish Theorem [4.2]

Preprocessing of MinMax Instances. Recall that the exponential assignment scheme computes
online allocations based on the ratio :;1;(1’;) This ratio can be highly sensitive and potentially
unbounded under small perturbations to the input, thereby making it impossible to execute the last
step of designing learned parameters of bounded precision. To overcome this difficulty, we introduce
a pre-processing step that transforms the original instance into a balanced instance, incurring only a

small loss in the objective value.

An instance | (0, K ) is said to be balanced if it satisfies the following condition for all ¢ € [T,

i€ [d],and k € K(t):
d2
beZin [O,logl+6 <€2>} } .

/('}.
e {0} U {(1 +e)
< ‘:—z. Moreover, by omitting redundant options, we

mt(f))

Vi, t,k
m; (v)

may assume that the number of options per step is bounded, i.e., In |K(t)| = O (d - In(d/e)). We

construct a balanced instance I (9, K) as follows:

Note that in a balanced instance, we have

Given an instance I (v, K),

1. Define v such that

0 if —Yith < £
r[)itk _ maxqq. Vil d
vt otherwise.



2. Define K by removing option &’ from step ¢ whenever there exists another option & with
max O ¢ g > — - max ;¢ -
% ’ € %
3. Define v as follows: if ¥, = 0, then set 0,41, = 0; otherwise, set
1 Dithe
Digke = (D) - (1 + )Loglﬁ(m‘('“)”.

By definition, I (v, K ) is a balanced instance. In Appendix|A} we show that transforming I (v, K)
into I (9, K) incurs only a (1 4+ O(e)) loss in the objective value.

Lemma 4.3. Let I(v, K) be an instance of the allocation problem with the MinMax objective, and

let € > 0. Then, any (1 + €)-approximate solution to the balanced instance 1(, K) constructed via
the pre-processing algorithm yields a (1 + O(e))-approximate solution to I (v, K).

Learned Parameters for Balanced Instances. In light of Lemmal4.3] it suffices to only consider
balanced instances in Theorem4.2] We restate this goal as follows:

Lemma 4.4. Given a balanced instance of the online allocation problem with a MinMax objective
2 3
and € > 0, there exists a set of parameters o« € NET ( d? -In (g) , ‘:—3) such that the fractional solu-

tion defined by the exponential assignment scheme with parameters « is a (1 + O(¢))-approximation
to the optimal objective.

The remainder of this section gives a proof of Lemmad.4] We do this in two steps. First, we prove
the existence of parameters a(¢) that are bounded as a function of d, € using which the exponential
assignment scheme produces an (1 + ¢)-approximate optimal solution. (For the special case of ¢ = 0,
the solution is precisely optimal but the parameters may be unbounded.) Then, we show that small
errors (up to €2/d®) in the parameter values incur only a (1 + O(e)) loss in the objective value,

enabling discretization of the learned parameters to NET £ 1 4) , d—s
€ € €

We use L* to denote the optimal MinMax value, and define the following convex program for € > 0:

min Z my (v) Z e - (Inwy — 1)

te[T) keK(t)
s.t. Z Z itk - T < L (14 ¢€), Vi € [d],
te[T) keK (t)
Z Tep = 1, vt € [T],
kEK(t)
e > 0, Vk e K(t),t € [T

Figure 1: Convex Programming Formulation for the MinMax Objective

Lemma 4.5. Given an instance of the online allocation problem with the MinMax objective and any
€ > 0, there exists a vector o9 € Ri such that the fractional solution defined by the exponential

assignment scheme with parameters o) is (1 4+ O(€))-approximately optimal.

Proof. Given such instance and for fixed e consider the convex program of Figure [T} By our
assumption, L* is the optimal MinMax objective therefore there exists a feasible solution for the
convex program for any € > 0. Accordingly, define the Lagrangian L(z, «, 3) as

th(v) Z xtkln< tk)—&—zoéz Z Z Vitk-Tep—L" (14-€)) +Z Be(1— Z Ti).
te(T] keK(t) i€[d] te[T) keK(t) te[T] keK(t)

From the KKT conditions for the optimal solution to the convex program as a function of €
), a9, 39 the solution that allocates according to () is a (1 + €)-approximation to the optimal



objective L*, and al(-é) > 0 for all 7 € [d]. Furthermore,
dL
=0 forall k € K(t), which gives m;(v) - ln(xi?) + my(v) - Z ol vy, = B,

dl’tk ’

i
For any two options k,r € K (t), we obtain:

my(v) - In(zl) + 3 al? v = my(v) - n(ef) + 3 al? vy,

(e)

ﬁ — (e) _Yitr (e) Vitk . (e) _
Therefore, In o | = Zai e (0) Z % me(0)’ Coupled with Z xy, =1, we get
Tir v ! ¢ kEK (t)

€ € Vitk
xik)ocexp<—2ag)~w>. O

Bounding the Learned Parameters. For ¢ = 0, the learned parameters () in the previous lemma

may be unbounded. However, for ¢ > 0, we show that each age) can be bounded as a function of d

and e. Our main tool is perturbation and sensitivity analysis, following the framework of Boyd et
al. [16]l. (See Appendix [B]for details of perturbation and sensitivity analysis.)

Lemma 4.6. Let 29, (9, 3() be the optimal solution to the convex program in Figure for some
€ > 0. Then, for all i € [d], it holds that age) < g -In (g) )

Proof. We need the following claim:

Claim 4.7. For an n dimensional vector x € [0,1]" such that > ,x; = 1 we have

Sor_yxklnz, > —Inn.

Proof. By Jensen’s inequality, we have

@ (Zpi y) > " pi-@(yi), wherep; >0, p; =1, and ¢ is concave.

The desired bound now follows by setting ¢(x) = In(z), p; = x; and y; = 1/x;. O

We define a perturbed convex program based on Figure [I] where u; corresponds to the constraint ;.
For each ¢ € [d], setting u; = —e - L* and u; = 0 for ¢’ # 4 ensures that constraint 7 in the perturbed
problem matches the original constraint, thereby guaranteeing a feasible solution. By Lemma[B.1]
p*(0,0) > p*(u,v) + ' - e - L*, which implies
af e L7 <p*(0,0) — p(wv) < Y mu(v) K (1),
te[T)
where the last inequality follows from Claim[4.7]

th(v):th(v)mekSZZmIkaitk:ZZZvitk~kaSZL*ZCLL*,
t ¢ k t ok i itk i

where the first equality holds because z* is a feasible solution, the first inequality follows since there
must be at least one nonzero coordinate and by definition of m, (v), and the second inequality follows
from the linear program constraint for dimension 4.

By our assumption on the instance, we have

2 2
In|K(t)] <d-In (109;1+6 <d2)) <d-In (d) _ Therefore, o\ < T <d> . O
€ € € €



Discretizing the Learned Parameters and Noise Resilience. In order to prove Lemma 4.4} we
need to ensure that the learned parameters o(¢) belong to the discrete set NET (d—: -In (%) , f—j)
This may not be true of the Lagrangian multipliers derived above. We show that in discretizing the

learned parameters, the competitive ratio only worsens by (1 + O(¢)). In particular, if we replace the

. . - 3 - 3 .
Lagrangian vector a(®) with a perturbed vector &, where —2—3 < @ — ozz(.e) < 2—3 for all i € [d], then
the assignment fractions change by at most 1 & 4e. Note that this lemma is also important from a
noise resilience perspective: if the learned parameters have small error, this lemma shows that the
resulting allocation is still approximately optimal.

Lemma 4.8. Let o* € R? be a vector, and let & € RY be a perturbed vector such that |&; — af\ <
< forallie [d). Then, the fractional assignment x.,(&) satisfies

d3
(1 —de) xpp(a®) < (@) < (1 +de) xe(@®) forallk € K(t),t € [T).

Proof. We need the following claim:
Claim 4.9. For any ¢ > 0, if we are given two sets of K weights a,a’ € Rf suchthat 1 —e < %¢ <
k

1 + ¢ then for x, 2’ € [0,1]¥ such that Zszl xR = Zle x) = 1 and x), x ai, and ), x aj, we
have 1 —4e < 7r <1+ 4e.
k

Proof. Consider the assignment fractions x. By definition, we have the following:

-1 -1 -1
B X a, < Ka;, 1—e <1+e Ka’r < (144 ,
we (L) =[5 a) =i (i) serea

r=1 ak r=1 g
K -1 K -1 K ,\ !
ar a, 1l4e€ 1—e€ a, ,
b ( ak> _< ay, 1—6) T 1+4e€ aj, = €)- i
r=1 r=1 r=1

Define ay, (o) = exp (— Do rgz—’(’;)) Then, we have

ag () . a — G . itk
an@) p( > (i — ) mt(v)>.

%

By the assumption that the instance is balanced, we have n;’;‘(’; 3 < 5—2, which implies

atk(aj)

1 —2e <exp(—e) <
< exp(—e) an(@)

<exp(e) <1+ 2e
Thus, by Claim the assignment fractions using & differ from those using o by at most (1+4e). O

Finally, we now put all the pieces together to establish Lemma[4.4}

Proof of Lemma[.4} Fix a balanced instance (v, K) and € > 0. By Lemma there exists a
parameter vector o) such that ol e {O, % -In (g)} for all ¢ € [d]. Therefore, there exists a

g

vector @ € NET (d—: In(2), f—j) such that |6; — o] < < foralli € [d]. By Lemma the
exponential assignment rule with & achieves a (1 + O(€))-approximation.

S Applications
Our framework applies broadly to a variety of online allocation problems. We briefly highlight two
representative applications: online routing and Nash Social Welfare maximization.

Online Routing. In online routing (e.g., [3]]), requests arrive over time and must be assigned
to paths in a network to minimize congestion or delay. Each option (path) contributes load to



network edges, and the goal is to minimize the maximum edge utilization, which corresponds to
the MinMax objective. Our approach uses a vector of learned edge-weight parameters to guide
allocation decisions, combining strong worst-case guarantees with improved performance when input
patterns are predictable.

Formally, we are given as input a directed graph G = (V, E). At each time step ¢t € [T], a
flow request of amount r; between two vertices s; and t,, along with a set of candidate paths
Py =A{Pi1, P 2,...} isrevealed. Here, each P, i, is a path from s, to t, in the graph. The algorithm
must assign values ¢, j to each path such that > . @tk = r¢. The load on an edge e € E'is given
by le(q) = 321 Xop, ,jeep, , 9t.k» and the objective is to minimize the maximum congestion on any

edge, i.e., minmaxcer {le(q) | X_p gt = 7 forall t € [T]}.
We note that online routing is a special case of the online allocation problem, where A, C
{zt . f| fe {0,1}4, 2z € R+}, and the objective is to minimize f(v) = max;c[q) ;.

Our main result for online routing follows as a corollary of Theorem .1}

Corollary 5.1. Given an instance of online routing and any € > 0, there exists a set of parameters
o € NET (% -In (g) , g—;) such that the fractional solution x4, o< exp (— Y, o; - fir), fort €
[T), approximates the optimal objective within a factor of (1 + O(e)).

Online Nash Social Welfare. As mentioned, our scheme also applies to maximation problems where,
at each step, a divisible resource has to be distributed among a set of d agents. The objective is
to design an online algorithm that balances fairness and efficiency. At the start of each step ¢, the
algorithm observes the value v; ; of each agent ¢ for that resource, and then irrevocably determines
the allocation without knowledge of future values. If agent ¢ is allocated a fraction z; ;, their utility
increases by x; ;v; ;. The total utility of agent ¢ is then given by w;(x) = >, v; 1; s.

The Nash Social Welfare (NSW) objective is known to provide a natural balance between fairness

and efficiency. It is defined as the geometric mean of the agents’ utilities: NSW(x) = (][, ui(x))l/ ¢
By applying our method for maximizing well-behaved objectives, we obtain the following corollary:

Corollary 5.2. Given an instance of online NSW maximization and any € > 0, there ex-

; d? d
ists a set of parameters o« € NET (? -In (f

3
6) , %) such that the fractional solution xj o

exp (>, a; - v i), fort € [T), approximates the optimal objective within a factor of (1 — O(e)).

Note that using our results, we may further generalize this to options with vector utilities, i.e., where
an option can add (possibly different amounts of) value to multiple agents simultaneously.

6 Closing Remarks

In this paper, we gave a general technique for designing online algorithms with predictions that applies
to the entire spectrum of problems that can be modeled via the online covering framework. This has
value in two respects. First, it gave the first learning-augmented results for important problems like
online routing and scheduling that goes beyond simple assignment, and were beyond the scope of
previous techniques. Second, and perhaps more importantly, it opens the door to the design of even
more general-purpose methods for the design of online algorithms with predictions. For instance, can
we give a technique for learning-augmented algorithms that applies to any covering LP where each
online step reveals a new constraint in the LP? Techniques such as the online primal dual method that
apply to this class of LPs have been hugely influential in the classical online algorithms literature
(without predictions), which makes it a tempting proposition to explore similarly powerful tools in
the learning-augmented setting.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper develops a learning-augmented scheme for online allocation and
thoroughly proves its guarantees and applicability.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the paper discusses the limitations by outlining the modeling choices and
assumptions under which the results hold. It clarifies the settings where the approach is
applicable, such as the well-behaved objective functions and distributional assumptions for
learnability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes. The paper clearly states all necessary assumptions for each theoretical
result and provides complete and correct proofs throughout.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preprocessing for the MinMax Objective

We begin by introducing a preprocessing step for the MinMax objective. Given an instance I (v, K),
let MinMax(v, K) denote the optimal value of the corresponding MinMax objective. Specifically,

we construct an instance (7, K) that e-approximates a given instance (v, K) as follows:

Definition A.1. An instance I (7, K) is said to e-approximate an instance I (v, K) if:
« K(j) C K(j) forallj € N,
« MinMax(%, K) < MinMax(v, K) - (1 + ),

* For any feasible allocation & for I(0, K), if the load in any dimension is at most L with
respect to 0, then the corresponding load with respect to v is at most L - (1 + ¢).

(Note that & remains a feasible allocation for I(v, K) since K (5) C K (j).)

Using this definition, we prove that in order to achieve a (1 + O(e)) to the instance I (v, K) it is
sufficent to acheive (1 + €) approximation to I(7, K).

Corollary A.2. Let I(v, K) be a given instance. Suppose the instance is transformed into an e-
approximate instance I1(0, K). If a (1 + €)-approximate allocation is computed for the transformed
instance 1 (0, K), then this allocation guarantees a (1+O(¢€))-approximation for the original instance

Proof. Let z be a feasible solution for I(#, K) such that
Z Z Typ, - Ve < MinMax (9, K) - (1 + €).
t keK(t)

Using Definition [A.T] we obtain:

Z Z T - Vi < MinMax(0, K) - (14 €)?
t keK(t)

< MinMax (v, K) - (1 + €)3.
O

‘We now show that each of the three steps defined in the transformation produces an e-approximate
instance with respect to the original instance.

Claim A.3 (Step (1) of the preprocessing). Given an instance I(v, K) let ¥ such that

; Vitk €
Vit = 0 lf max;, V;ryp, < d’
Vitk  Otherwise.

the the instance 1(0, K) e-approximate the instance I (v, K).
Proof. By definition, MinMax (9, K) < MinMax (v, K). Next, given a solution z such that for
all i € [d],

thk Uitk < L,

th

we prove that

Z Z .Tftk"UitkSL*'(l—FG).

bt kEK(t)

For a fixed coordinate ¢ € [d], define

Ri(t) ={k € K(t) : vitk > Vitx },
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which represents the set of options for item ¢ where the load on coordinate ¢ is modified by the
transformation. For an item ¢ and an option k € K (t), let

-max

iip . € arg max Uy
i/ €[d]

denote the coordinate that experiences the maximum load for option & of item ¢.
Observe that if k € R;(t), then

Uity < - Ugmax ¢ k.

&\m

Thus, we have:

E Ttk = Vitk
= E Tk Vigh + g E Tik - Vitk

t kER(t)

§L+Z Z Tk * Vitk

t keR;(t)

:L+ZZ Z Ttk - Vitk

ied t keR;(t)|i =iy

§L+ZZ Z l‘tk'g'ffi'tk

iVed t keR;(t)|i!=imx

:L+ZZ Z 2'$tk'5i'tk

i'ed t KER;(t)|i=im>

<L+* sztk Vgt

i'ed tk
<L+ > L-
i’ €[d]
=L- (1 =+ E)v
where the first and final inequalities follow from the definition of x, and the second inequality follows
from the transformation definition. O
The

Claim A.4 (Step (2) of the Preprocessing). Given an instance I1(v, K), let (0, K') be the instance
obtained by removing option k' from item t whenever there exists another option k € K (t) such that

max max
> —

Vg k! Utk s

max __
where v = max;e(q) Vit k-

Then I(v, K') is an e-approximation of the instance I (v, K).

Proof. Clearly, an assignment with a load of at most L for all ¢ € [d] in I(?, K') results in a load of at
most L in I (v, K), since the retained options have identical loads. We now show that if an allocation
a achieves a makespan of L in I (v, K'), then there exists a transformed allocation  that achieves a
makespan of at most L - (1 + ¢€) in I (v, K).

We explicitly construct such an assignment & and show that it satisfies the required bound. Define

k min max

€ arg mln v
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as the option with the smallest maximum load for item ¢, breaking ties by selecting the smallest index.
Let

-max
ly, = arg miaxvi’t,k

denote the coordinate where option k of item ¢ imposes the maximum load.
Next, define the set
d
R(t) = {k € K(t) | vi}™ > — - v/ },
which identifies options with disproportionately high 10ads relative to the smallest maximum load.
We then construct the transformed allocation & for each item ¢ € [n] as follows:
Tk + Dpere T k= ki,
=140 if k € R(t),
Ttk otherwise.

This transformation ensures that options in R(¢) are reallocated to the option with the smallest
maximum load, maintaining feasibility while ensuring that the makespan increases by at most a factor
of (1 + ¢). Specifically, we have:

E Tt - Vitk
= Z Ttk * Vitk + Z Z Tt - Vg pomin

t k'eR(t)

§L+Z Z T - ; Vgmax ¢
:L+§'Z Z Z Tk - Uil t k!

;! ’—
i\t kK'eER(t) 4 z“;:x

<L+* sztk Vil tk

<L+ > L-
i €[d]
=L -(1+¢),

where the first and final inequalities follow from the definition of z, and the second inequality follows
from the fact that for ¥’ € R(¢),

&\m

€
vi,t,kf’i" S Uzl]?g:m < = d ,Uinka/x = g . Ui’f,‘ﬁ",t,k"
O
Claim A.5 (Step (3) of the Preprocessing). Given an instance I(v, K)
if vitg, = 0, then set V1, = 0; otherwise, set
Vitk
i = my(v) - (14 ) Lo (withy)]
Then I(0, K) is an e-approximation of the instance I (v, K).
Proof. By definition,
itk < Vit < (14 €) - Vigk-
Therefore, I(v, K) is an e-approximation of the instance I (v, K).
O

By applying Claim[A.3]Claim [A.4]Claim [A’3] and Corollary [A.2| we proved the Lemma[4.3]
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B Perturbation and Sensitivity Analysis

One of our main tools for bounding learned parameters is perturbation and sensitivity analysis,
following the framework of Boyd et al. [[16].

B.1 Perturbed Convex Programs

Consider a convex program represented by a tuple (f, k), where f; : R — R for i € [0,77] and
h; : R® — R for i € [1, 7], formulated as:

minimize fo(z)
subject to f;(z) <0, €]l

We define the perturbed version of this problem as follows. Let u € R™ and v € R”™. Define
perturbed constraints:
fi@) = fi(x) —ui,  hi(x) = hi(z) —vi.

The perturbed problem becomes:

minimize fo(z)

subject to f;(x) <w;, @€ [1,m]

hi(x):vi, xS [1,’[3].

This coincides with the original problem when v = 0 and v = 0. Positive u; relaxes the ith inequality;
negative u; tightens it. The vector v perturbs the right-hand sides of the equality constraints.

Let p*(u, v) denote the optimal value of the perturbed problem. If the problem is infeasible, we
define p*(u, v) = co. When the original problem is convex, p*(u, v) is convex in both « and v.

B.2 A Global Inequality via Duality

Assume strong duality holds and that the dual optimum is attained (which is the case under Slater’s
condition). Let (A*, v*) denote an optimal dual solution to the original problem. Then the following
global bound holds.

Lemma B.1 (Perturbation Inequality, [16]). For all u € R™ and v € R",

p*(0,0) > p*(u,v) — X u— v 0.

B.3 Proof Sketch

To derive this inequality, consider any feasible solution x to the perturbed problem, i.e.,
fz(l‘) <w;, Vi€ [l,ﬁl}, hz(l‘) =v;, Vi€ [l,fl].
By strong duality:
p"(0,0) = g(A",v")
< fol@)+ DA filw)+ D> vihi(@)
i=1 i=1
< fol@) + X Tu+v*To,

where the last inequality follows from f;(z) < u;, h;(z) = v;, and A* > 0.

Rearranging, we conclude:
fo(z) = p*(0,0) = X*Tu — 7o,

This inequality quantifies how much the objective value may change in response to perturbations of
the constraints, depending linearly on the dual multipliers.
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C Learnability of the Prediction Vectors

We consider the learning model introduced by [24]], and show that under this model, the dual vector
« can be learned efficiently from sampled instances. Specifically, we consider the following model:
the ¢th step (i.e., the values of v, = (v; % : @ € [d],k € K(t)) is independently sampled from a
(discrete) distribution D;.

We set up the online allocation problem for the MinMax objective; the setup for the MaxMin
objective is very similar and is omitted for brevity. Let L = Ep.p[MinMax(P)] be the expected
value of the MinMax objective in the optimal solution for an instance P drawn from D.

Morally, we would like to say that we can obtain the vector « that gives a nearly optimal solution
(in expectation) using vector allocation (i.e., a MinMax objective of (1 + €) - L in expectation for
some error parameter €) using a bounded (as a function of €) number of samples. Similar to [24], we
need the following assumption:

Small Items Assumption: Conceptually, this assumption states that each individual item has a small

utility compared to the overall utility of any agent in an optimal solution. Precisely, we need v;:1, < %

for every i € [d],t € [T], and k € K (t) for some value { = © (1%@1).

We show the following PAC learning theorem for the MinMax objective:
Theorem C.1. Fix an € > 0 for which the small items assumption holds. Then, there is an

(learning) algorithm that samples O(@ - log g) independent instances from D and outputs (with

high probability) a prediction vector « such that using o in the allocation scheme gives a MinMax
objective of at least (1 + O(€)) - L in expectation over instances P ~ D.

Proof Sketch. Recall that in PAC theory, the number of samples needed to learn a function from a
family of N functions is about O(log N). Indeed, restricting « to be in the class NET (K, S) serves
this role of limiting the hypothesis class to a finite, bounded set since [NET(K, S)| = (K - S)¢ where
S = K = O(poly(d, €)). Using standard PAC theory, this implies that using about O(dlog K) =

O(d - log 4) samples, we can learn the “best” vector in NET(X, S). Our main technical work is to
show that this “best” vector produces an approximately optimal solution when used.

O

C.1 Details of PAC Learning

Given an instance P, Let £;(P, «) the value of the ith dimension of v{ot after applying our scheme on
. . 2 3

the instance P with the parameters a. Let K = d? and S = ‘Z—S.

Let us consider a combination of all instances in the support of the distribution D. For L processing

matrices P(), P?) .. P(L), We define P! = @, P(") to be the instance defined by the n - L
items. For every £ € [L] and t € [T, we have a step t(*) with values vt(e).
The following observation is immediate (subadditivity):

Observation C.2. MinMax(P*) < " MinMax(P()).

Using this observation, we can prove the following lemma, by considering the combination of all
instances in D, scaled by their respective probabilities.

Lemma C.3. There exists o € NET(K, S), such that for every i € [d], we have
Epplli(a)] < (1+¢)- L.

Proof. Consider the instance P = @) Prp[P] - P where Prp[P] is the probability mass of P in D,
and Prp[P] - P is the matrix P multiplied by Prp[P]. By Observation|C.2] we have

MinMax(P) < )~ Prp[P|MinMax(P)
P

= Ep~p[MinMax(P)] = L.
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We can apply Lemmato the combined instance to show there exists «* € NET(K, S) such that
for every ¢ € [d], we have,

Z k(P ") - pur < (1+¢)MinMax(P) < (1+¢) - L*
th

where ¢ indexes over all steps in P. Notice that x; 4 (IP, o*) depends on the utility vector for step ¢,
which is part of the instance P € D that ¢ belongs to. Therefore, the left side of the above inequality
is exactly

YD wur(P.a’) - ProlP] - pigk
Ptk

=Ep.p Z Tt (P, )i i
tk

= EPNp Z éi(P,Oé*),

te[T)

as required.
O

For any real numbers A, B, ¢, C, we use A ~. ¢ B to denote |A — B| < ¢ - max(B, C). The next
lemma appears in [26]:

Lemma C.4 (Lemma D.6 in in [26]). For any o € NET(K, S), with high probability over P ~ D,
we have
Vi € [d] : El(P, Oz) R, L~ EP/ND&(P/,O&).

The learning algorithm. We sample H = O (ﬁ

log g) instances Py, Ps, ..., Py independently
and randomly form D. We output & € NET(K, S) that maximizes min;e 4 7 Zthl li(Pr, &).
The next lemma also appears in [[26]:
Lemma C.5 (Lemma D.7 in [26]). With probability at least 1 — W, for every o € NET(K, S)
and for every i € [d], we have

H

1
T Z&(Ph, a) e+ Epupli(P, ).
h—1

Now assume the event in Lemma happens. Then by Lemma there exists some o €
NET (K, S) such that

H

1
in — Y 4(P,,a)<(1+¢€? L.
gé%H;z(ha)_( )

In particular, since & maximizes min, e[, Zle l;(Py, &) for & € NET(m, €), we can conclude
that

H

1
min — > 4i(P,, &) < (1+¢€)%- L*.
”th:jl (Ph,@) < (1+¢)

Applying Lemma|[C.5]again, we get

m[in] Eppli(P,&) < (1+¢€)*- L*.
1€m

We now apply Lemma to &. We have that with high probability over P ~ D, for every i € [m]
the following holds:

EP/ND&(P/, d) +e€- max{L*, EPIND&'(P/, d)} S
(1+e)* L*

Therefore, MinMax(P, &) < (1 + Q(e)) - L*. This completes the proof of Theorem|C.1
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D Robustness—Consistency Tradeoff

In this section, we show that our learning-augmented scheme can be modified to balance consistency
and robustness, achieving near-optimal performance when predictions are accurate while retaining
strong worst-case guarantees when they are not.

Recall that an algorithm is said to be y-consistent and d-robust if it achieves a y-approximation under
accurate predictions (consistency), and a J-approximation in the worst case when predictions are
unreliable (robustness).

For allocation problems with minimization objectives, the worst-case approximation ratio without
any predictions is O(log d), and for maximization objectives it is O(d), where d is the number of
agents.

We show that our learning-augmented scheme can be modified to satisfy this robustness—consistency
tradeoff.

Modified Algorithm for Minimization Objectives. Let o € R? be the predicted parameter vector.
The algorithm operates in two phases:

1. Prediction Phase: At each time step, use the exponential assignment scheme with parame-
ters «.

2. Fallback Phase: Monitor the cumulative objective value. If it exceeds the optimal value
by a factor larger than O(logd), the algorithm switches to a standard worst-case online
algorithm.

Let n be the approximation factor achieved using «. Then, the final approximation ratio is
min(n, O(log d)), ensuring both consistency and robustness.

Modified Algorithm for Maximization Objectives. Let o € R? be the predicted parameter vector,
and let A € [0, 1] be a confidence parameter reflecting trust in the prediction. The algorithm allocates
each item as follows:

1. Allocate a fraction 1—\ of the item using the exponential assignment scheme with parameters
o.

2. Allocate the remaining \ fraction using a worst-case robust algorithm (e.g., uniform alloca-
tion or greedy).

This strategy guarantees:

* Consistency: The portion allocated by the learned parameters achieves an approximation
ratio of (1 — A)(1 — €), assuming the predicted parameters yield a (1 — ¢)-approximation.

* Robustness: The worst-case portion contributes at most A - d, matching the lower bound of
known worst-case algorithms.

Hence, the algorithm achieves a (1 — A)(1 — €)-consistent and A - d-robust guarantee.

E Learning-Augmented Online Allocation for the MaxMin Objective

In this section, we prove our main result for the MaxMin objective.

Theorem E.1. Given an instance of the online allocation problem with a MaxMin objective and any
€ > 0, there exists a set of learned parameters

2 3
a € NET (d -log <d> , d3>
€ € €

and an online algorithm that uses the exponential assignment scheme with —«, such that the resulting
fractional solution is a (1 — O(€))-approximation.

To prove this theorem, we proceed similarly to the MinMax case: we begin with a preprocessing step
that transforms the instance into a balanced form. However, the details of the preprocessing differ in
the MaxMin setting.
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E.1 Preprocessing for the MaxMin Objective

We begin by describing a transformation that modifies the input instance into a balanced form suitable
for our learning-augmented algorithm. The transformation has two steps:

Step 1: Remove agents with large monopolist values. For each step t € [T, define

v, = max Uik, ki = arg max V.
keK(t) kEK (1)

Define the monopolist value of agent ¢ as a; = Ztem v}y, and let ayin = min;e(q) a;. For each
agent ¢ such that

d

a; > —

* Qmin

we allocate an ¢/d fraction of the resource at each step to their preferred option k.

Step 2: Zero out negligible values. For the remaining instance (with the reduced set of agents),
define a new instance ¥ by zeroing out small entries:

1 Vitk €
ﬁitk — {0 if max,, V;/yp, < d’

Vit otherwise.

Let J;(t) C K (t) be the set of options that were modified for agent 7 at step ¢, and define

Vit = Max Ujk.
keJi(t)

Step 3: Quantize values to form a balanced instance. Define the final preprocessed values v as:

_ 0 if ﬁitk = 07
Uitk = ° Vith .
my(v) - (1+¢€) [z (ithy) otherwise.

This rounding ensures that all nonzero values are restricted to a logarithmic grid defined by the base
1 + €, thereby yielding a balanced instance.

Lemma E.2. Let I(v, K) be an instance of the allocation problem with the MaxMin objective, and
let € > 0. Then, the transformed instance I(0, K), obtained via the three-step preprocessing, satisfies
the following: any (1 — €)-approximate solution for 1(0, K), when combined with the allocations
reserved in Step 1, yields a (1 — O(¢))-approximate solution for the original instance I (v, K).

Proof. We begin by analyzing the impact of Step 1. The utility of any agent ¢ removed during this
step is guaranteed to be at least

€ .

g ai > min > MaxMin(v, K),

so these agents are fully satisfied by the reserved allocation. Moreover, the total amount of resource
allocated to these agents is at most an e-fraction of the total, ensuring that the remaining instance is
affected by at most a (1 — ¢€) loss in the objective value.

Now consider the remaining agents in the modified instance I (¢, K). In Step 2, we zero out negligible
values to reduce the dynamic range. Let 0;; = maxye 7, (1) Vitk» Where J;(t) is the set of coordinates
zeroed out for agent ¢ at step ¢. For each ¢ € [d], we bound the total value removed as:

Z'ﬁit < Zt ma;(i//,ek/ Vit tk! < Zdl//;lz/ <e- G/r;in <e- MaxMin(v, K),
t

where the last inequality uses the fact that MaxMin(v, K) > amin/d, as each agent can receive a
1/d share of their monopolist option.

Hence, the approximation loss from zeroing out small values is bounded by € - MlaxMin(v, K), and
the resulting instance I(9, K) differs from the original by at most an O(¢) factor.

Finally, Step 3 introduces a geometric rounding of values to the nearest power of (1 + €). As shown
in the MinMax case, this quantization step results in an additional loss of at most a (1 — ¢) factor.

Combining the effects of the three steps, the overall degradation in objective value is at most a
(1 — O(e)) factor. Thus, a (1 — €)-approximate solution to the preprocessed instance yields a
(1 — O(e))-approximate solution for the original instance. O
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E.2 Ecxistence of Discretized Parameters for Balanced Instances for MaxMin
In light of Lemma|[E.2] to prove Theorem [E.T] it suffices to consider balanced instances, as stated in
the following lemma:

Lemma E.3. Given a balanced instance of the online allocation problem with a MaxMin objective
and € > 0, there exists a set of parameters

2 3
aeNET(d-ln(d),dg)
€ €) €

such that the fractional solution defined by the exponential assignment scheme with parameters —«
is a (1 — O(¢))-approximation to the optimal objective.

As in the MinMax objective, we define a slightly perturbed convex program (see Figure[2). We use
L* to denote the optimal MinMax value, and define the following convex program for ¢ > 0:

min th(v) Z T4 In (%)

te[T] kEK(t)
s.t. Z Z Uitk - T > L (1 —€), Vi € [d],
te[T) keK(t)
Z Top = 1, vt € [T7,
keK (t)
x> 0, Vk e K(t),t € [T]

Figure 2: Convex Programming Formulation for the MaxMin Objective

Lemma E.4. Given an instance of the online allocation problem with the MaxMin objective and any
€ > 0, there exists a vector o9 € Ri such that the fractional solution defined by the exponential

assignment scheme with parameters —a'©) is (1 — O(€))-approximately optimal.

Proof. Given such instance and for fixed e consider the convex program of Figure By our
assumption, L* is the optimal MaxMin objective therefore there exists a feasible solution for the
convex program for any € > 0. Accordingly, define the Lagrangian L(z, o, 3) as

Z m; (v) Z Ty In (mtk)JrZ a;(L*(1—e) Z Z Vitk Tk +Z Be(1— Z Tif).
te[T] kEK(t) i€[d] te[T] ke K (t) te[T] kEK(t)

From the KKT conditions for the optimal solution to the convex program as a function of ¢
(9, a9, B(4) the solution that allocates according to () is a (1 + €)-approximation to the optimal

objective L*, and 04(6) > 0 for all ¢ € [d]. Furthermore,

dL
T 0 forall k € K(t), which gives m;(v) - ln(xﬁC Zoz Uik = ﬂt(e).

For any two options k,r € K (t), we obtain:
my(v) - In( sct Z a; v, = my(v) :ctr Z a(6 Vg

(e)

a7 (e), Vit _ (6) Vitr
Therefore, In <x(€)> = Zi:ai my(v) zi:ai my (v)

tr

kEK (L)
a:tk X exp (Z 04(6) M) . L]

Bounding the Learned Parameters. As in the MinMax objective, we bound the learned parameters
using perturbation and sensitivity analysis techniques.
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Lemma E.5. Let (9, a9 () be the optimal solution to the convex program in Figure for some
€ > 0. Then, for all i € [d), it holds that age) < g -log (g) .

Proof. We define a perturbed convex program based on Figure 2] where u; corresponds to the
constraint «;.

For each ¢ € [d], setting u; = —e - L* and u; = 0 for ¢’ # 4 ensures that constraint 7 in the perturbed
problem matches the original constraint, thereby guaranteeing a feasible solution. By Lemma[B.1]

p*(0,0) > p*(u,v) + a'” - e - L*, which implies

age) <e- L* <p*(0,0) — p*(u,v) < Z m;(v)In|K ()] <d-L*-log (d> ,
€

te[T)
where the second inequality follows from Claim and the third inequality by >, m,(v) < d- L*
and log |K ()] < log (). O

Finally, we now put all the pieces together to establish Lemma[E.3}

Proof of Lemma[E23] Fix a balanced instance (v, K) and € > 0. By Lemma there exists a

parameter vector a(®) such that o' € [0, d; -log (%)} for all ¢ € [d]. Therefore, there exists a
vector @ € NET (d; ‘log (4), f—j) such that |&; — | < < foralli € [d]. By Lemma the

exponential assignment rule with & achieves a (1 + O(¢))-approximation.

F Generalization to Well-Behaved function

We now complete the proof of Theorem 4.1

Proof of Theorem[.1} Fix an objective function f and an instance I(v, K). Let Elf denote the load
in the 7th dimension in an optimal solution for objective function f. Also, let x; ;+ denote the fraction
at step ¢ assigned to option £ in this optimal solution.

Now, consider the instance I (7, K), where ¥ = ”z'}’“ . By the monotonicity property of f, the

optimal objective value for I is 1. Therefore, by Lemma there exists & such that using an
allocation, we get £*(I, ) > 1 — e for maximization and £*(I, &) < 1 + € for minimization.

By the definition of the allocation, x} ; is proportional to

N . oy
exp < E itk ai) = exp ( E Vi t,k g;> .

— &

Thus, if we define « such that o; = %4, then the corresponding allocation gives a (1 — €)-approximate

&~

solution for maximization and a (1 + €)-approximate solution for minimization. O
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