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ABSTRACT

Transfer learning is one of the most important techniques in modern deep learn-
ing. The knowledge gained from transferring weights helps networks to learn fast
achieving high accuracy. Recent work has shown that transferring the polarity of
the weights plays a fundamental role in transfer learning. In this work, we con-
centrate on the polarity distribution and study its effects on the learning accuracy.
Our results on benchmark datasets show that only the knowledge of the polarity
distribution (percentage of weights having polarity positive, negative or zero) is
sufficient to achieve comparable accuracy within a short training period.

1 INTRODUCTION

Recent research in neural networks has shown that transferring the polarity of weights in a network
can be sufficient, without needing to transfer their magnitudes (Wang et al., 2023). Wang et al.
introduced their method called Freeze IN-Polarity, where they set the polarities of an AlexNet in-
stantiation to be equal to those learnt from an ImageNet pre-training, and then trained the network,
without letting the polarities change (Algorithm 2). Expanding upon this, we look at the distribution
of the polarities, proposing a new method called Freeze SPIN-Polarity, which sets the proportion
of polarities rather than the pattern. First, we show that the polarities of the individual weights are
irrelevant, and that the knowledge needed for model improvement is carried in the distribution of
the polarities instead – specifically in what percentage of the weights are positive, negative, or equal
to zero. Secondly, we vary the proportion of the polarities in several different experiments, to see
under what conditions the model can converge, and under what conditions fixing the polarity has a
positive impact on the model. Polarity is denoted p = sign(w), where w are the model weights.

2 METHODOLOGY

The new proposed method, Freeze Set-Probability-ImageNet-Polarity (Freeze SPIN-polarity) uses
the proportion of negative, positive, and zero valued weights in the transferred ImageNet weights
(Algorithm 1). Weight magnitudes are initialised using GlorotNormal (Appendix B.1), The weight
polarity is set to have the same proportion as the ImageNet weight polarity, but with a random
pattern. During training the polarity pattern is kept constant, with the magnitudes being allowed to
change. A relaxed version of this method, Fluid SPIN-Polarity is also tested (Algorithm 3). For this
method the weights are initialised as in Freeze SPIN-Polarity, and the training is the same. 50% of
the positive or negative weights switch polarity at each epoch, effectively keeping the proportion
constant but varying the polarity pattern. As a benchmark, Fluid IN is used as a classic transfer
learning example (Algorithm 4). For this method the weight magnitudes and polarities are initialised
to be the same as the ImageNet weights, while both polarity and magnitude are allowed to change
during training. This methodology was applied to two network architectures, AlexNet (Krizhevsky
et al., 2012) and ZFNet (Zeiler & Fergus, 2014), using the CIFAR-10 dataset (Krizhevsky, 2009)
and the Fashion MNIST dataset (Xiao et al., 2017). AlexNet with CIFAR-10 has also been used in
the work of Wang et al. on polarity.
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3 RESULTS

3.1 FREEZE SPIN-POLARITY

For each of the network architectures, AlexNet and ZFNet, each of the three different setups meth-
ods tested. Only the convolutional layers were affected by the methods, the fully connected layers
were allowed to vary. This was to make the transfer more effective for generalised tasks, focusing
on feature representation and allowing for fine tuning through the fully connected layers. The ex-
periment was run five times to allow for variation in the initialisation and during training. Figure
3.1 shows the mean and the standard deviation of accuracy for both the training and the validation
datasets for CIFAR-10. The results for Fashion MNIST dataset are shown in the Appendix (Fig.
B.2).

Figure 1: The training and validation accuracy for CIFAR-10. The mean and the standard deviation
are shown, with the dashed line marking where the mean reached 40% accuracy.

For both networks and datasets Freeze and Fluid SPIN-Polarity performs equivalently well to Fluid
IN, with Freeze SPIN-Polarity taking less epochs. Fluid SPIN-Polarity has more variation between
runs, and has more dips while training, due to the sign of the weights being changed.

3.2 SPECIFIC CASES

The proportion of polarities were varied to explore the limiting cases, and how this affects the rep-
resentation ability of the network. A subset of these conditions is presented in Table 1 in Appendix
B.2. The proportion for zero, negative, and positive polarities are denoted as p0, p−, and p+, respec-
tively.

Notably, the model fails to converge when all weights are positive (Exp. 1) or all weights are
negative (Exp. 2). The proportion of zero weights is varied in Experiments 3 - 7, while keeping the
relative number of positive and negative weights constant, and it is shown that the model requires a
proportion of zero weights between 0.1 and 0.7. This highlights the existence of multiple pathways
to a solution, including paths that diverge from the transferred knowledge. However, the network’s
ability to represent a correct solution remains contingent on the proportion of polarities.

4 DISCUSSION

A major advancement lies in significantly reducing the data needed for transfer learning. Instead of
storing polarity information for each weight (60 million parameters for AlexNet and ZFNet), only
10 numbers (equivalent to 2n, where n is the number of convolutional layers) are needed. This
considerable compression results in comparable accuracy with significantly less memory usage,
representing a notable advancement in efficient knowledge transfer. The reduction in the size of the
weights file, often substantial, not only minimizes storage requirements during training but will also
benefit the hardware implementation of networks.
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A ALGORITHMS

Algorithm 1: Freeze SPIN-polarity

Data: Polarity distribution P ∈ RL×3

Result: Output data
for l = 1, 2, . . . , L do

Initialise W (l) using GlorotNormal;
Set polarity pattern based on P , T (l) = rand([0,−1,+1], P (l));
Match signs of W (l) to T (l);

for epoch = 1, 2, . . . , do
for batch = 1, 2, . . . , do

Update W using Stochastic Gradient Descent;
for l = 1, 2, . . . , L do

Compare signs of W (l) to T (l);
if sign(W (l)

i ) != T (l) then
W

(l)
i = T

(l)
i ∗ rand([0, ϵ]) where ϵ > 0;

B EXPERIMENTS

The IN-Polarity weights were obtained from here, trained on the ImageNet dataset (Deng et al.,
2009). Due to computational constraints, each experiment was run for 20 epochs, with a batch size
of 1,000 and a training data size of 10,000 using the CIFAR-10 and Fashion MNIST datasets. The
validation data was of size 10,000.
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Algorithm 2: Freeze IN-polarity

Data: Transfer Polarity T ∈ RL×N

Result: Output data
for l = 1, 2, . . . , L do

Initialise W (l) using GlorotNormal;
Match signs of W (l) to T (l);

for epoch = 1, 2, . . . , do
for batch = 1, 2, . . . , do

Update W using Stochastic Gradient Descent;
for l = 1, 2, . . . , L do

Compare signs of W (l) to T (l);
if sign(W (l)

i ) != T (l) then
W

(l)
i = T

(l)
i ∗ rand([0, ϵ]) where ϵ > 0;

Algorithm 3: Fluid SPIN-polarity

Data: Polarity distribution P ∈ RL×3

Result: Output data
for l = 1, 2, . . . , L do

Initialise W (l) using GlorotNormal;
Set polarity pattern based on P , T (l) = rand([0,−1,+1], P (l));
Match signs of W (l) to T (l);

for epoch = 1, 2, . . . , do
for batch = 1, 2, . . . , do

Update W using Stochastic Gradient Descent;
for l = 1, 2, . . . , L do

Compare signs of W (l) to T (l);
if sign(W (l)

i ) != T (l) then
W

(l)
i = T

(l)
i ∗ rand([0, ϵ]) where ϵ > 0;

Choose 50% of the weights at random and swap their sign, W (l)
chosen = −W

(l)
chosen;

Algorithm 4: Fluid IN

Data: Transfer Weights WT ∈ RL×N

Result: Output data
for l = 1, 2, . . . , L do

Initialise W (l) to be the same as the transfer weights W (l)
T ;

for epoch = 1, 2, . . . , do
for batch = 1, 2, . . . , do

Update W using Stochastic Gradient Descent
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The results for the CIFAR-10 dataset are shown in Figure 3.1, and the Fashion MNIST results are
shown in Figure B.2.

B.1 GLOROT NORMAL

The weight initialisation method used. Weights are set based on a truncated normal distribution with
zero mean and a standard deviation of 2

fan inl+fan outl
, where fan inl is the number of input neurons at

layer l, fan outl is the number of output neurons at layer l (Glorot & Bengio, 2010).

B.2 RESULTS

Table 1 shows the results for variations of the polarity proportions using the Freeze SPIN-Polarity
method. The layers which were being set, the polarity proportions, whether the experiment con-
verged, and the final validation accuracy after 20 epochs are shown. The model is considered to
have converged once the accuracy increases above 10% (the accuracy from a random selection),
which shows that the model is learning.

Experiments 1 and 2 show that the model can not represent the solution when all of the weights are
positive or negative. Experiments 3 to 7 vary the proportion of zero values weights, showing the
limit of non-zero and the limit of zero weights needed for the model.

Figure 2: The training and validation accuracy for Fashion MNIST. The mean and the standard
deviation are shown, with the dashed line marking where the mean reached 40% accuracy.
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Table 1: Testing Freeze SPIN-Polarity using ZFNet with CIFAR-10

Layers (p0, p−, p+) Converged Accuracy (%)
conv1 [0, 0.5, 0.5]

Yes 57
Freeze conv2 [0.5, 0.27, 0.23]
SPIN- conv3 [0, 0.54, 0.46]
Polarity conv4 [0.5, 0.28, 0.22]

conv5 [0.5, 0.30, 0.20]

Exp. 1 All [0, 0, 1] No 10

Exp. 2 All [0, 1, 0] No 10

Exp. 3
conv2

[0.1, 0.45, 0.45] Yes 55conv4
conv5

Exp. 4
conv2

[0.01, 0.45, 0.45] No 10conv4
conv5

Exp. 5
conv2 [0.6, 0.22, 0.18]

Yes 49conv4 [0.6, 0.23, 0.17]
conv5 [0.6, 0.24, 0.16]

Exp. 6
conv2 [0.7, 0.16, 0.14]

Yes 50conv4 [0.7, 0.17, 0.13]
conv5 [0.7, 0.18, 0.12]

Exp. 7
conv2 [0.8, 0.11, 0.09]

No 10conv4 [0.8, 0.11, 0.09]
conv5 [0.8, 0.12, 0.08]
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