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ABSTRACT

Large language model (LLM)-based agents are increasingly used to solve complex
tasks involving tool use, such as web browsing, code execution, and data analysis.
However, current evaluation benchmarks do not adequately assess their ability to
solve real-world tasks that require synthesizing information from multiple sources
and inferring insights beyond simple fact retrieval. To address this, we introduce
DEEPSYNTH, a novel benchmark designed to evaluate agents on realistic, time-
consuming problems that combine information gathering, synthesis, and structured
reasoning to produce insights. DEEPSYNTH contains 120 tasks collected across 7
domains and data sources covering 42 countries. DEEPSYNTH is constructed using
a multi-stage data collection pipeline that requires annotators to collect official
data sources, create hypotheses, perform manual analysis and design tasks with
verifiable answers. When evaluated on DEEPSYNTH, 9 state-of-the-art LLMs
and deep research agents achieve a maximum F1 score of 8.97. Our analysis
reveals that current agents struggle with hallucinations and reasoning over large
information spaces, highlighting DEEPSYNTH as a crucial benchmark for guiding
future research.

1 INTRODUCTION

Information synthesis involves collecting information from multiple sources and reasoning over it to
form coherent insights. While this capability has been central to human decision-making and has
driven advances in fields ranging from scientific discovery to policy development (Tricco et al., 2011;
Sambre & Brône, 2002), it has traditionally been laborious and cognitively demanding. For example,
a travel agency from Singapore might want to know “Which non-ASEAN countries experienced a
significant post-COVID recovery — reaching at least 95% of their 2019 visitor arrival levels to
Singapore by 2023, and what were the main reasons for travel (business or tourism)?” a question
that requires identifying ASEAN countries, extracting multiple arrival data from various sources, and
analysing them to determine the answer (see Figure 1). Recent Large Language Model (LLM)-based
agents with capabilities for reasoning, tool use, and interaction across diverse environments have
shown promise in complex tasks, such as for hard-to-find information (Wei et al., 2025), interacting
with websites (Lu et al., 2025), and planning to navigate the web (Abuelsaad et al., 2024). However,
these developments mostly improve the information-seeking capabilities of agents. It remains crucial
to evaluate whether such agents can solve real-world tasks that require synthesizing information from
multiple sources and inferring insights beyond simple fact retrieval.

Despite the substantial promise of LLM-based agents for addressing real-world tasks, most existing
benchmarks primarily emphasise shallow fact retrieval tasks (Wei et al., 2024), artificial information-
seeking questions (Wei et al., 2025; Mialon et al., 2023), or tasks that require information from a
single, particularly well-known source like Wikipedia (Wolfson et al., 2025). Furthermore, most
agentic benchmarks focus on English-language sources (Wei et al., 2025; Mialon et al., 2023) and
overlook the diversity of regional contexts, languages, and information ecosystems, limiting their
ability to evaluate agent performance in realistic, globally distributed settings.

To resolve this gap, we introduce DEEPSYNTH benchmark, a new benchmark comprising 120
challenging and diverse tasks, aimed to evaluate the ability of agents to browse the entire web,
combine information from unstructured and structured sources (paragraphs and tables) across 42
countries, and perform analysis to synthesize new information and insights. DEEPSYNTH tasks
are annotated with a gold standard, manually annotated reasoning chain, which includes all the
intermediate steps, answers and all required supporting evidence. Each task requires agents to
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Browsing "https://data.aseanstats.org/visitors"

Browsing "https://..."

Browsing "https://..."

...

..."destination: Singapore"

..."year: 2019"

..."year: 2023"

..."origin: any non-ASEAN country"

process data

format output

{
    "country1": "reason1",
    "country2": "reason2",
    ...
}

Answer

Which non-ASEAN countries experienced a significant post-COVID recovery — reaching at least 
95% of their 2019 visitor arrival levels to Singapore by 2023, and what were the main reasons for 
travel (business or tourism)?

Searching "Arrival visitors to Singapore"

Figure 1: A sample task from DEEPSYNTH, illustrating that synthesizing knowledge requires agents
to perform multiple steps, including web browsing, gathering information from multiple sources,
reasoning over them, and generating the final answer.

navigate an average of 4.2 web pages, and read between 1 to 15 documents and/or tables. These
tasks are designed to reflect real-world analysis and insight generation, with an emphasis on the
time-intensive nature of processing and integrating information (see Figure 1).

To construct DEEPSYNTH, we asked 16 experts to first curate relevant topics and data sources
targeting various countries (§2.2), and subsequently formulate possible hypotheses for each of these
data sources. Based on the hypotheses, the experts conducted analyses and derived insights. Finally,
drawing on their analyses, they formulated the corresponding questions, answers, and step-by-step
reasoning chains. In our experiments, we find that state-of-the-art LLMs — including recent AI
reasoning models GPT-5, DeepSeek-R1 (OpenAI, 2025b; Guo et al., 2025), struggle on DEEPSYNTH.
The best-performing model, Gemini-Pro-2.5, achieves only an F1 score of 6.25, with no task attaining
a perfect score under the stricter EM metric. We also analyse the performance of specialised
deep research agents, i.e. o3-deep-research(OpenAI, 2025a), smolagents(Roucher et al., 2025), and
OWL (Hu et al., 2025), and observe they successfully solve only three out of 120 tasks, further
underscoring the difficulty of our benchmark. Our analysis reveals that (i) these agents frequently
commit navigation and synthesis errors, and (ii) their performance drops sharply when tasks require
synthesising information from under-represented sources, e.g. data pertaining to the African region.

To summarize, our main contributions are:

1. We release DEEPSYNTH, a new benchmark for agents that contains 120 real-world and
time-consuming information synthesis tasks. 1

2. We show that DEEPSYNTH poses a significant challenge for state-of-the-art agents, revealing
key limitations in their capabilities. The best-performing agent achieves only an F1 score of
8.97 points, leaving substantial room for improvement.

3. We conduct an in-depth analysis to explain how DEEPSYNTH is challenging and demonstrate
why current agents cannot yet be considered reliable systems for information synthesis.

2 THE DEEPSYNTH BENCHMARK

DEEPSYNTH is a benchmark designed to evaluate agents on realistic, time-consuming tasks that
require planning, information gathering, and synthesis from the web. Specifically, DEEPSYNTH

1Our data will be released upon acceptance.
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evaluates agents on their ability to navigate multiple websites, extract information from both structured
and unstructured sources, and reason effectively to produce correct solutions. It consists of 120 tasks
that are carefully designed and annotated by experts. Each task (see Figure 1) is formulated to yield a
concise output in the form of a JSON object or dictionary, with key-value pairs organised in a tabular
style, thereby enabling straightforward and reliable verification. Solving these tasks requires agents
to formulate plans, decompose problems into sub-steps, select and use appropriate external tools (e.g.,
document processors, code interpreters), and integrate intermediate results into a final solution.

We now describe the process of constructing DEEPSYNTH. We first outline the criteria for our tasks,
then describe our data collection pipeline, and conclude with an analysis of the collected data.

2.1 CRITERIA FOR DEEPSYNTH TASKS

Motivated by prior benchmarks (Mialon et al., 2023; Yoran et al., 2024; Wei et al., 2025; Phan
et al., 2025), the design of DEEPSYNTH tasks is driven primarily by criteria that promote the
future development of Agents’ information seeking and synthesis capabilities towards practical and
grounded goals. Specifically, our criteria consist of:

a) Multi-source Information Synthesis: Tasks should require agents to identify connections
across multiple data sources or to combine information from them to produce a coherent
solution. More specifically, tasks are designed such that agents must not only fetch relevant
information but also perform subsequent operations on it (see Table 1).

b) Inspired by the Real World: Experts were instructed to draw inspiration from real-world
situations. The tasks are designed so that any resulting insights would conceivably be able
to shape the decisions and actions of an individual or a group of people, such as political
scientists, policy makers, travel agents, etc.

c) Verifiable Answers: A task that has a closed-form answer, which can be automatically
verified and is stable over time, making it suitable for reproducible evaluation. While
the answers to our tasks may be better suited to open-form answers, properly argued and
grounded in citations, we necessarily restrict them to maintain their verifiability.

d) Diversity: Our benchmark is designed to span a wide range of tasks, requiring agents to
gather and reason over information across 42 countries and 7 distinct domains. Beyond
geographic and topical diversity, the tasks also encompass temporal analyses, comparative
evaluations across groups or categories, and relational reasoning, ensuring that agents are
tested on a variety of reasoning modes.

e) Robustness Against Memorisation: Similar to Mialon et al. (2023), we ensured that
the tasks are explicitly constructed to mitigate data contamination and prevent superficial
memorisation. The gold-standard answers are intentionally built to be non-retrievable
through verbatim lookup in known pre-training corpora or direct web search, compelling
systems to plan and perform multi-step reasoning to derive the correct output.

2.2 DATA COLLECTION

A common practice in designing deep agentic benchmarks is to start with a fact and then craft a
question from it, making the answer difficult to locate (Wei et al., 2025). Since our goal was to ensure
answers are non-retrievable, we adopted a different approach. Building DEEPSYNTH involved four
key steps: (a) identifying data sources, (b) gathering hypotheses, (c) performing analyses, and (d)
formulating tasks (see Figure 2).

Data Source Identification. In this step (see Figure 2, left), we engaged 16 human experts2 to
propose a diverse set of data sources and topics, drawing on their expertise, demographic backgrounds,
and interests. Given the complexity of the annotation process and the need for efficient coordination,
participation was restricted to individuals with whom we maintained direct communication, along
with the paper’s core authors. We collected 223 data sources across 7 domains (socio-economic,
finance, environment, science, education, transportation, political/socio-political). We excluded data
sources that originated from untrustworthy or non-official websites, including those requiring user

2Details about the annotators are provided in Appendix A.3.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: An overview of our data collection process for building the DEEPSYNTH benchmark

authentication, as well as sources containing information that contradicted other verified references.
Our objective was to curate tasks that are useful to individuals or groups; therefore, we filtered data
sources to retain only those from which useful, verifiable insights could be drawn. For example, we
included official statistical reports on “the gender gap in labour force participation rates in Australia”,

“computer and digital literacy rates in Sri Lanka”, and “air quality and pneumonia-related deaths
across regions in the UK”, since such data enables clear downstream reasoning tasks (e.g., analyzing
temporal trends, comparing across regions, or correlating with policy interventions).

Hypothesis Generation. We then asked annotators to formulate one or two hypotheses—plausible
insights that could be inferred from the selected data sources (see Figure 2 bottom left). The objective
of this step was to elicit hypotheses that are both insightful and practically valuable, encouraging
reasoning beyond surface-level fact retrieval (see § 2.1(e)). For example, one such hypothesis was:

“Is there a linear relationship between air quality and pneumonia-related deaths across regions in the
UK?”. Data sources that did not meet the criteria of usefulness and insightfulness (see § 2.1(b)) were
subsequently filtered out.3 After this step, we retained a total of 155 data sources, each paired with
its corresponding set of hypotheses.

Hypothesis Validation. In this step, annotators were tasked with conducting a detailed analysis
of each data source to assess the validity of the proposed hypotheses (see Figure 2 top right). The
objective was twofold: (i) to verify whether the data supported the hypotheses, and (ii) to derive tasks
with verifiable answers (see § 2.1(c)). Hypotheses that failed to meet the verifiability criterion were
refined or discarded. Following this validation and filtering process, we retained 130 data sources,
each paired with its corresponding, verified hypothesis.

Task Formulation. Finally, annotators were asked to formulate task questions along with inter-
mediate steps, supporting evidence and corresponding answers. We note that the intermediate steps
indicate only one possible reasoning path or planning from question to answer, and that no model or
agent necessarily needs to imitate that path. Since DEEPSYNTH tasks often rely on multiple pieces
of supporting evidence and reference various documents or tables, annotators were instructed to
provide the URLs where the data sources can be accessed. Additionally, they were asked to include a
brief explanation of how the task can be solved, specifying any tools, code snippets, or mathematical
formulas used in the solution. We provide more examples and additional statistics in §A.4.

3Please note this step involves a degree of subjectivity, and we relied on the domain knowledge and judgment
of our annotators to ensure the quality of the retained data sources and hypotheses.
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Statistic Value

Total Tasks 120
Avg. Question tokens 78.49
Avg. Intermediate steps 7.54
Web pages per Task 4.2
Avg. Annotation Time 5.5 hours

Synthesis Operations %

Trend Detection 20.93%
Average 11.05%
Correlation 6.98%
Ranking 19.77%
Anomaly Detection 6.98%
Counting and Comparing 33.72%
Filtering 0.58%

Table 1: DEEPSYNTH statistics across tasks.

0 20 40 60 80 100

Percentage of Questions (%)

Multi­Modality

Code Execution / Sandbox

Diverse filetype reading

Web Search

Web browsing

20%

43%

45%

100%

100%

Figure 3: Percentage of tasks per capabilities re-
quired to solve DEEPSYNTH.

Data Validation. All questions went through a second annotation stage, where another annotator
independently answered the question. Only tasks where the answers from both annotators were
identical were retained in the dataset, leaving finally 120 challenging information synthesis tasks.

2.3 DATA STATISTICS

Table 1 summarises the key statistics of our benchmark. Tasks in DEEPSYNTH are highly detailed,
with an average length of 78.49 tokens, an average of 7.54 intermediate reasoning steps and requiring
navigation through an average of 4.2 web pages to reach a solution. Additionally, on average,
formulating each task (from data source identification to task formulation) took the annotators
approximately 5.5 hours. This number highlights the challenge in creating such tasks. Overall, all
these numbers underscore the inherent complexity and challenge of the benchmark. Moreover, the
tasks encompass a diverse range of analytical and reasoning skills, including correlation analysis,
anomaly detection, and identification of causal or linear relationships — as reflected in Table 1. Table 5
presents the regions covered by our benchmark, along with the percentage of tasks corresponding
to each region. Notably, the benchmark comprises a higher proportion of tasks from Europe and
Asia, with some tasks spanning multiple countries and regions. Figure 3 provides an overview of the
capabilities required by agents to solve the benchmark and their prevalence in tasks. In particular, we
observe that web search and browsing are the most critical skills for retrieving the correct information.

3 EVALUATION SETUP

Models. We use DEEPSYNTH to benchmark five state-of-the-art models: (a) o4-mini (OpenAI,
2025c), (b) GPT-4.1 (OpenAI, 2024), (c) GPT-5 (OpenAI, 2025b), (d) Gemini-2.5-Pro (Comanici
et al., 2025) and (e) DeepSeek-R1 (Guo et al., 2025). For Gemini-2.5-Pro, we use “dynamic thinking”,
where the model decides how much to think. GPT-5 was evaluated using “high reasoning effort”.

We also investigate the performance of three state-of-the-art (deep research) agentic frameworks: (a)
o3-deep-research (OpenAI, 2025a); (b) smolagents (Roucher et al., 2025), which is a minimalist
framework focused on simplicity and rapid prototyping. It uses a standard ReAct loop (Yao et al.,
2023) and its primary distinguishing feature is that it expresses all actions, such as tool use, as code,
which is parsed out of the response and executed Wang et al. (2024); (c) OWL (Hu et al., 2025),
which employs a role-playing strategy where a planner and an executor collaboratively solve tasks,
optionally augmented with smaller, more specialised ’workers’. Both OWL and smolagents have
been open-sourced. The details of their tool capabilities are listed in Table 10. All models were
prompted using the same instructions, provided in Appendix A.1.

Metrics. All tasks require models to generate outputs in a JSON format (or lists of JSON objects).
Our strictest metric is exact match, meaning that all keys and values must be correct. For partial
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Model F1 Score Precision Recall Exact Match LLM Judge Score

LLM Baselines
o4-mini (2025-08) � 3.05 2.33 4.39 0.0 0.0
GPT-4.1 (2025-08) � 3.46 2.86 4.39 0.0 0.0
o3 (2025-08) � 3.29 2.85 3.90 0.0 0.0
GPT-5 (2025-08) � 3.83 2.98 5.37 0.0 0.0
Gemini-Pro-2.5 (2025-08) � 6.25 4.71 9.27 0.0 5.0
DeepSeek-R1 (2025-08) � 3.23 2.75 3.90 1.67 2.5

Framework-based Agents
o3-deep-research (2025-08) � 8.97 7.73 10.69 2.50 17.5
Smolagent (GPT-4.1) � 3.75 3.27 4.39 2.50 7.5
Smolagent (GPT-5) � 6.42 6.34 6.50 1.67 2.5
OWL (GPT-4.1) � 5.41 4.62 6.52 1.67 12.5

Table 2: Performance comparison on the DEEPSYNTH benchmark (Pass@1). F1, Precision, Recall
and Exact Match measure the quality of model predictions. LLM Judge (%) reports the average
precision. Models with � are models or framework which are closed, while � are open-source.

evaluation, we check how many key-value pairs are correct (out of the total pairs) and report precision,
recall and F1-score. As an additional ’soft’ metric, we follow Wolfson et al. (2025) and leverage
the LLM-as-a-judge (with an identical prompt, see Fig. 6) reporting average precision. This serves
two purposes: 1) for small string differences (with semantic equivalence), this method will reward
answers beyond exact match and, 2) in case of numerical answers, a small margin (1% to 5.5%
difference) can still be considered correct hence providing more granular and permissible scores.

4 RESULTS

4.1 MAIN RESULTS

Table 2 shows the performance of SOTA models on DEEPSYNTH. We first evaluate the parametric
knowledge and reasoning capabilities of LLMs. The results show that Gemini-2.5-Pro achieves the
highest performance with an F1 score of 6.25, indicating substantial room for improvement. Interest-
ingly, the performance gap between reasoning models (e.g. Gemini-2.5-Pro, GPT-5, DeepSeek-R1)
and general-purpose LLMs (e.g., GPT-4.1) is relatively small. This finding suggests that the key
bottleneck lies not in reasoning ability alone, but in the availability of the necessary information
for reasoning. We investigate this observation in greater depth in Analysis; see §5. Further, under
the strict exact-match metric, we observe that almost all models obtain a score of zero, indicating
that none can solve even a single task perfectly. The poor performance of base LLMs indicates that
internal retrieval of parametric knowledge is insufficient, showing that these tasks are robust against
memorisation (see criteria §2.1(e)). This also highlights the need to augment these models with
external tools.

To investigate this further, we evaluated our benchmark using three agentic frameworks that integrate
external tools, including simulated web browsing, web search, and a code interpreter. We find that
o3–deep-research, which incorporates web search and an executable code interpreter, outperforms
the base o3 model by 5.68 F1 score and 2.50 EM. Furthermore, smolagents and OWL achieve some
gains, with improvements of 0.29 and 1.95 F1 points and 2.5 and 1.67 EM points respectively, over
the base GPT-4.1. Overall, we observe that all systems perform poorly. These findings emphasise that
effectively solving tasks in DEEPSYNTH requires enhanced tool-use capabilities. Interestingly, we
find that low precision indicates that all models frequently produce incorrect or extraneous answers.

Ablation Study. To assess the role of different capabilities on DEEPSYNTH, we perform an ablation
study. As shown in Table 3 (top), performance shows consistent declines across all metrics when
any capability is removed, with the largest drop (1.81 F1 points) observed when search is excluded.
While the overall changes are modest due to the low baseline performance, these trends indicate that
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Model Performance Metrics

F1 Precision Recall EM

OWL (Full) 5.41 4.62 6.52 1.67
Tool Ablation

− Web Browsing Toolkit 4.80 4.20 5.60 1.67
− Search Toolkit 3.60 2.96 4.61 0.0
− Document Processing Toolkit 4.90 4.50 5.4 1.67
− Code Execution Toolkit 4.82 4.30 5.50 0.0

Reasoning Chain Ablation
GPT-4.1 3.46 2.86 4.39 0.0

+ Intermediate Step 9.36 8.76 10.05 5.0
Smolagent (GPT-4.1) 3.75 3.27 4.39 2.50

+ Intermediate Step 10.50 8.96 12.70 10.0

Table 3: Ablation Study. Tool Ablation: Comparing the benefits of using different tools on DEEP-
SYNTH. Reasoning Chain Ablation: Studying the role of planning given the intermediate steps.

Figure 4: F1-scores across intermediate steps. Figure 5: F1-scores across synthesis operations.

document processing, code execution, and search each contribute to task success, highlighting the
multifaceted challenges posed by DEEPSYNTH.

5 ANALYSIS

In order to understand the challenges of solving DEEPSYNTH questions, we analyse performance
across different data collection strategies, followed by a qualitative analysis of model errors.

RQ1: How do models perform as the number of intermediate steps increases? We break
down the models’ performance based on the number of intermediate steps entailed by DEEPSYNTH
tasks. Figure 4 presents the performance breakdown, highlighting that all models struggle as the
number of intermediate steps increases, which can be considered an indicator of the task’s complexity.
Notably, the agentic frameworks (o3-deep research and smolagents + GPT-5) perform better for
11-15 intermediate steps, while they are on par with other LLMs for smaller numbers of intermediate
answers. Given that tasks in DEEPSYNTH require an average of 7.54 intermediate steps, these results
provide insights into why the benchmark is so challenging.

RQ2: Does providing agents with intermediate steps improve their performance? We evaluate
how agents perform when they are provided with the ground truth intermediate reasoning steps (i.e.
planning) without revealing the intermediate answers. As shown in Table 3, model performance
improves substantially under this setting, with GPT-4.1 and smolagents + GPT-4.1 showing large
gains. Both EM and F1 scores increase, indicating that models appear to lack planning capabilities.

RQ3: Which synthesis operations are more challenging? To further assess the models’ analytical
capabilities, we examine their performance on different synthesis operations when intermediate steps

7
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Region % of Tasks GPT-4.1 o3-deep-research Gemini-2.5-Pro smolagents
Africa 2.8% 0.0 0.0 0.0 0.0
North America 13.9 % 4.65 8.00 12.00 8.33
South America 4.17% 0.0 25.00 0.0 0.00
Asia 29.2 % 3.36 12.70 6.50 11.88
Europe 66.7% 3.45 10.83 4.91 5.28
Oceanic 9.7% 8.96 14.43 6.67 24.00
Others 12.5% 3.12 6.45 12.12 0.0

Table 5: Multi-Regional Analysis: Agent performance across region-specific tasks (F1 score).
NOTE: A question may span multiple regions. “Others” contains tasks without regional association.

are provided alongside the task questions (see Table1, 9). Figure 5 presents the results across various
operation types, revealing substantial variation in task-specific performance. More specifically, we
observe that o3 model achieves the highest F1 score in anomaly detection (26.51%), significantly
outperforming the other agents, while Gemini-2.5-Pro and smolagents + GPT-4.1 exhibit moderate
gains over GPT-4.1 across most task categories. Trend detection and ranking also demonstrate
relatively strong performance for Gemini-2.5-Pro and o3, indicating that these models can effectively
capture certain structured patterns. In contrast, none of the models exhibit measurable performance
on filtering tasks, which may partly reflect the limited number of filtering tasks in the benchmark
(see Table 1). Overall, these findings suggest that, although some agents can successfully identify
anomalous or structured patterns, significant improvements are required for tasks involving arithmetic,
comparative reasoning, or complex multi-step analysis.

Error Cause No. of instances
Navigation Error 15
No answer 4
Technical Issue 4
Synthesis Error 16

Table 4: Error analysis for OWL (GPT-4.1). Navigation and synthesis errors are the most prominent.

RQ4: What types of errors do models commonly make? To better understand the challenges
in solving DEEPSYNTH, we manually analysed a random subset of 32 tasks4 in which OWL +
GPT-4.1 made errors5. We focus on OWL because, as an open-source framework, it enables detailed
examination of execution traces and interactions between agents and tools. We categorize errors into
four types, with their frequencies summarized in Table 4: (1) Navigation errors – when the agent
fails to locate or access the correct source of information, such as navigating to the wrong web page,
document, or section; (2) No Answer – when the agent does not respond or fails to generate any
output; (3) Technical Issue – errors caused by system limitations, software bugs, or tool malfunctions
that prevent task completion, independent of reasoning or navigation; and (4) Synthesis Error – when
the agent reaches an incorrect conclusion despite accessing the correct information, due to flaws in
logical reasoning, interpretation, or multi-step analytical processes.

This analysis is multi-label, as a single instance may exhibit multiple error types. The majority of
errors—15/32 due to navigation and 16/32 due to reasoning—highlight that DEEPSYNTH presents
significant challenges even for state-of-the-art open-source models. Figure 10 illustrates a failure
case of OWL, in which the correct URL was found, but the agent fails to interact correctly with the
website and its database interface.

RQ5: How do agents perform on tasks from different regions? We observe that o3-deep research
exhibits the most consistent cross-regional capability, particularly in the high-volume areas such as
Europe and Asia. Notably, all models fail on Africa-related tasks, achieving an F1 score of 0.0. These

4Subset chosen due to the time and cost of manually analysing all outputs.
5Two annotators who were not involved in the original data annotation conducted this analysis.
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Dataset
Real

World
Multi

Regional
Information

Synthesis
Multi-Part
Answers

GAIA (Mialon et al., 2023) partial × partial ×
AssistantBench (Yoran et al., 2024) ✓ × × partial
BrowseComp (Wei et al., 2025) × × × ×
HLE (Phan et al., 2025) partial partial partial ×
DEEPSYNTH ✓ ✓ ✓ ✓

Table 6: Comparison of datasets on various reasoning and retrieval capabilities.

findings highlight the presence of strong geographical biases in current models and suggest that their
performance is not globally uniform, likely reflecting imbalances in the distribution and coverage
of their training data. Since DEEPSYNTH contains a diverse set of tasks from multiple regions, it
naturally increases the overall difficulty of the benchmark.

6 RELATED WORK

As LLM-based agents improve in reasoning, tool usage, and interaction across diverse environments,
researchers have sought to evaluate LLMs on questions that require multi-hop reasoning skills (Wu
et al., 2025; Wolfson et al., 2025), code generation (Jimenez et al., 2024; Chan et al., 2024; Ouyang
et al., 2025; Starace et al.), information seeking (Wei et al., 2025; Yoran et al., 2024) and even general
assistance capabilities (Mialon et al., 2023). Table 6 summarises the key differences among popular
agentic benchmarks; most of these correspond to the criteria we considered in § 2.1 for DEEPSYNTH
tasks’ design. A distinctive feature of DEEPSYNTH is its multi-part answers, where each response
comprises multiple components—e.g., a JSON object containing event causes (strings), percentages
(floats), dates or years (integers)—with explicit logical links (e.g., key-value pairs). This structure
makes the benchmark particularly challenging, as it requires agents to retrieve, reason, and integrate
heterogeneous information correctly.

Several existing benchmarks share partial overlap with DEEPSYNTH but lack a systematic evaluation
of information synthesis. For instance, GAIA (Mialon et al., 2023) requires planning and information
seeking but involves limited synthesis and less realistic tasks. BrowseComp (Wei et al., 2025) is
an information-seeking benchmark comprising challenging, invertedly constructed questions that
require persistent, multi-hop web navigation to uncover hard-to-find facts; in contrast, DEEPSYNTH
moves beyond retrieval to systematically evaluate information synthesis through multi-part, structured
answers. AssistantBench (Yoran et al., 2024) addresses real-world gaps and includes limited multi-
part answers, but omits other essential aspects. Humanity’s Last Exam (Phan et al., 2025) offers
precise, unambiguous, and non-searchable questions, yet these are often obscure and detached from
real-world contexts. In contrast, DEEPSYNTH is, to the best of our knowledge, the first benchmark to
systematically evaluate information synthesis across realistic, multi-step tasks.

7 CONCLUSION

We presented DEEPSYNTH bench, a new benchmark comprising 120 challenging and diverse tasks
across 42 countries. By combining planning, tool use, and multi-step reasoning, DEEPSYNTH
aims to evaluate the ability of agents to move beyond shallow retrieval and engage in goal-directed,
information-rich problem solving. DEEPSYNTH was inspired by real-world problems, and its tasks
were designed to be strictly verifiable, geopolitically diverse, and robust against memorisation. Our
experiments demonstrated the difficulty of our benchmark, with both state-of-the-art LLMs and
specialized deep research agents struggling to solve any significant number of tasks. The best of the
former (Gemini-Pro-2.5) achieved an F1 score of only 6.25 with no task reaching a perfect score,
while the best of the latter (o3-deep-research) reached 8.97. These results help establish that there is
substantial room for improvement on multi-source information synthesis, and we hope DEEPSYNTH
will inspire future work, starting with improving navigation and synthesis, and addressing the
significant geopolitical biases we observed.
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A APPENDIX

A.1 PROMPTS

In this section, we provide the instructions and prompts used across all models; see Figures 6 and 7.

A.2 MORE RESULTS AND ANALYSIS

This section collects some additional results and analysis. Specifically:

Table 7 shows how long was required for state-of-the-art LLMs and specialized deep research agents
to run DEEPSYNTH bench.

Table 8 summarises the cost and output token characteristics of the models evaluated in our experi-
ments. For models that produce structured multi-stage reasoning traces, we report both reasoning-
token ranges and final completion-token ranges. Costs correspond to the total API price per full run
of a DEEPSYNTH task.

Table 9 provides definitions and examples on the key information synthesis operations in DEEP-
SYNTH’s tasks.

Table 10 presents a brief comparison across the Agentic Framework tool capabilities of the specialized
deep research agents we apply to DEEPSYNTH bench (OpenAI, 2025a; Roucher et al., 2025; Hu
et al., 2025).

Table 11 collects F1-score, Precision, Recall and EM scores to highlight the role of planning
intermediate steps on LLM models.

Finally, Figure 10 shows an example run using the OWL framework, and illustrates errors when
trying to collect and reason about data.

Model Avg. Time (sec.)

o4-mini (2025-08) 20.8
GPT-4.1 (2025-08) 7.52
GPT-5 (2025-08) 83.41
Gemini-Pro-2.5 (2025-08) 34.10
DeepSeek-R1 (2025-08) 5.2
o3-deep-research (2025-08) 645.39
Smolagent (GPT-4.1) 35.84
OWL (GPT-4.1) 1025.5

Table 7: Average Time per instance to run our benchmark

Model Cost (USD) Output Tokens (Min / Max)
deepseek-R1 $0.041 687.4 (avg)
GPT-4 $0.432 188 (min) / 383 (max)
GPT-5 $5.52 1600–15872 (reasoning), 201–425 (completion)
o4-mini $1.39 448–5760 (reasoning), 40–392 (completion)
o3 deep-research $184.61 448–5760 (reasoning), 40–392 (completion)
Gemini-Pro-2.5 $11.78 12995 (avg)

Table 8: Model cost and output token ranges.
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Judge whether the following [response] to [question] is correct
or not based on the precise and unambiguous [correct_answer] below.

[question]: {question}
[response]: {response}

Your judgment must be in the format and criteria specified below:

extracted_final_answer: The final exact answer extracted from the
[response]. Put the extracted answer as ‘None’ if there is no exact
final answer to extract from the response.

[correct_answer]: {correct_answer}

final answer length: Provide the overall number of unique answers
that appear in [response], not just the correct ones. Be sure to
provide a number, not an estimate!

reasoning: Explain why the extracted_final_answer is correct or
incorrect based on [correct_answer], focusing only on if there
are meaningful differences between [correct_answer] and the
extracted_final_answer. Do not comment on any background to the
problem, do not attempt to solve the problem, do not argue for
any answer different than [correct_answer], focus only on whether
the answers match.

correct: Answer ‘yes’ if extracted_final_answer matches the
[correct_answer] given above, or is within a small margin of error
for numerical problems, a margin of 1 to 5.5 percentage points is
acceptable. Answer ‘no’ otherwise, i.e. if there is any inconsistency,
ambiguity, non-equivalency, or if the extracted answer is incorrect.

precision: Answer ‘1’ if extracted_final_answer matches the
[correct_answer] given above. Answer ‘0’ otherwise, i.e. if there is
any inconsistency, ambiguity, non-equivalency, or if the extracted
answer is incorrect. In the case where [correct_answer] is a number
or percentage, then answer with the following formula to compute
the normalized similarity score:
[1 - (abs([correct_answer] - extracted_final_answer) /
max(abs([correct_answer]), abs(extracted_final_answer)))]

final precision: Extract the precision score from above, just the
final score (number).

overlapping answers: List all of the answers in [response] that also
appear in [correct_answer]. You can consider an answer from [response]
to match with an answer in [correct_answer] if it is equivalent or is
within a small margin of error for numerical problems, a margin of 1
to 5.5 percentage points is acceptable. List all of the [response]
answer appearing in [correct_answer] with each answer delimited by
‘###’. If the number of overlapping answers is zero, output ‘NULL’.

Figure 6: The prompt for the LLM-as-a-judge from Wolfson et al. (2025).
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INSTRUCTIONS:
- You are a professional researcher preparing a structured,
data-driven answer.
- Your task is to analyze and answer.
- Answers are not report. Often time answers are numeric
and need JSON outputs.
- You will be given a research task by a user. Your task is
to generate an accurate answer.
- Focus on data-rich insights.

GUIDELINES:
1. **Answer Format**
- Be analytical, avoid generalities, and ensure that each
section supports data-backed.
- Prioritize reliable, up-to-date official sources such as
Wikipedia, government websites, etc.
- Every question will already contain the format of the output.
Please follow that.
- Exact match is the metric.
- To help extract the answer, before writing down the final
answer, please using a split token <Answer>:
- It is of utmost importance that you follow the answer format
mentioned in the question.
- If the question says that the model needs to output the
answer JSON. Please follow that.
- If the question says that the model needs to output a list of
JSON. Please follow that.

2. **Incomplete answers**
- Do NOT give incomplete answers.
- There is always an answer, and the answer often needs some
deep reasoning.

3. **Language**
- Please only answer in English

Figure 7: System prompt provided to the model, outlining instructions, answer formatting guidelines,
and language requirements to ensure structured, data-driven responses.

A.3 DATACARD AND ANNOTATION GUIDELINES

DEEPSYNTH currently spans 42 countries, including Belgium, Singapore, Myanmar, Cambodia,
Malaysia, Brazil, India, USA, UK, Japan, Germany, Norway, Sweden, Finland, Denmark, Iceland,
Tajikistan, Turkmenistan, Uzbekistan, Estonia, Latvia, Lithuania, Portugal, Peru, France, Indonesia,
the Philippines, Luxembourg, Switzerland, South Korea, Liechtenstein, Croatia, Malta, Cyprus, South
Africa, Austria, Sri Lanka, Lebanon, Taiwan, Vietnam, Australia, and New Zealand.

Annotator Demographics. We provide additional information that may be relevant for analysing
this dataset. Building DEEPSYNTH required the work of expert annotators, who devised the task
questions and their answers, and who independently annotated the questions to assess their non-
ambiguity. We have 81.25% of the annotator PhD holders. Both come from the following population:

1. Age:
(a) 18 - 25 : 12%
(b) 26 - 35 : 68%
(c) 36 - 45 : 18%

2. Gender: 25% Female, 75% Male
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Operation Description Example

Trend Detection Identifying patterns, directions, or
changes in data over time or across
contexts.

Climate events over the last decade
to detect a trend of increasing wild-
fires.

Average Determining a representative value
that summarises numerical data col-
lected from multiple sources.

Synthesising daily temperatures
from multiple weather stations to re-
port the average regional tempera-
ture.

Correlation Measuring relationships or associa-
tions between two or more variables.

Synthesising data from health stud-
ies to find correlations between ex-
ercise frequency and cholesterol lev-
els.

Ranking Ordering items or facts based on spe-
cific criteria or importance.

Compiling product reviews from dif-
ferent websites and ranking products
by overall rating.

Anomaly Detection Identifying data points or patterns
that significantly deviate from the
norm.

Synthesising sensor data from mul-
tiple factories to detect unusual ma-
chine behaviour.

Counting and Compar-
ing

Quantifying occurrences and com-
paring values across sources or cate-
gories.

Counting positive vs negative men-
tions of a policy in news articles and
comparing the proportions.

Filtering Selecting relevant information based
on criteria, quality, or thresholds.

Selecting only recent when synthe-
sising research on climate change.

Table 9: Key operations in information synthesis, their definitions, and examples of application.

Framework Code Interpreter Web Search API Calls Document Processing Browser Simulation
o3-deep-research (2025-08) ✓ ✓ × × ×
Smolagent (GPT-5) ✓ ✓ × × ×
OWL × ✓ ✓ ✓ ✓

Table 10: Agentic Framework Tool Capabilities Comparison. Note: ✓ indicates capability present;
× indicates capability not available. Web Browser functionality is included within Web Search
capabilities for applicable frameworks.

3. Nationality: India, Greece, Luxembourg, Slovakia, UK, China, Peru, Romania, Turkey,
Kosovo, Germany

4. Academic Background:

(a) Bachelor’s Degree: 6.25%

(b) Master’s Degree: 12.5 %

(c) PhD : 81.25%

The guidelines that were given to the annotators are presented in Figures 8 and 9. The goal of this
benchmark is to evaluate the capability of state-of-the-art LLM-based agents to perform information
synthesis and web-based navigation across diverse real-world sources. Accordingly, our design
focuses on capturing variation in web content across regions rather than enforcing a uniformly
balanced annotator demographic. While annotators were drawn from 11 countries across three
continents, the tasks themselves cover 42 countries, and the associated webpages span a broad
range of regional domains. As the benchmark evaluates an agent’s ability to search, retrieve, and
synthesise information from heterogeneous sources, the demographic composition of annotators does
not influence the underlying skill being measured.
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Figure 8: Annotation Guidelines

Figure 9: Annotation Guidelines

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model Performance Metrics

F1 Precision Recall EM
o3 3.29 2.85 3.90 0.0

+ Intermediate Step 12.87 11.38 14.81 7.50

Gemini-Pro-2.5 6.25 4.71 9.27 0.0
+ Intermediate Step 10.40 8.36 13.76 7.50

Table 11: Analysis. Studying the role of planning/intermediate steps.

According to Eurostat, among the Baltic countries, compare 
bi-annual data on natural gas prices for household consumers 
(excluding taxes and levies).
Determine, for each country, the initial bi-annual semester 
(e.g., '2020-S1' or '2020-S2') during which natural gas prices 
(in euro per kilowatt-hour) demonstrated a significant upward 
shift, specifically reaching or exceeding a 180% increase from 
their 2019, Semester 2, baseline (pre-Covid).

Browsing {url-1}

Searching "Eurostat natural gas pricess household 
consumers bi-annual data"

Finding the data table to download it

scroll_down()

scroll_up()

...

Data source not found !

Dowload from {url-2}

Error 404!

Figure 10: Example run using OWL, illustrating errors when trying to collect and reason about data.
The agent finds the right URL but fails to query the right data from the website’s database interface.
A second attempt tries to download a data file from an incorrect URL, resulting in a not found error.

A.4 EXAMPLES

In this section (see Table 12), we present some representative examples from DEEPSYNTH bench.
We omit some information, e.g. the reasoning trace and intermediate steps, to prevent task leakage.

A.5 MORE DETAILS ABOUT EVALUATION

F1 and LLM-Judge Metrics. F1 in our benchmark is computed using exact string and numeric
matching across all fields of the required JSON output. This makes it very strict: even minor deviations
(a missing key, a slightly different string form, or a small numerical mismatch) reduce the score
sharply. In contrast, the LLM-judge is a soft metric designed to capture partial semantic correctness.
It (a) rewards outputs that are semantically equivalent despite surface-level differences (e.g., “U.S.” vs.
“United States”), and (b) tolerates small numerical deviations (approximately 1%–5.5%), providing a
more graded signal of correctness than F1.

Why EM and LLM Scores? Exact Match (EM) is well-suited for our benchmark because over
95% of the answers are numeric and all keys correspond to unambiguous factual fields. In this
setting, strict matching provides a reliable signal of correctness: either the model produces the correct
value for each key or it does not. EM is also deterministic and stable, avoiding the variability or
hallucination-related errors that can arise with LLM-based judges.

To complement this strict measure, we additionally use an LLM-based judge that evaluates softer,
semantic aspects of the output. This score captures cases where the reasoning is sound and the
answers are approximately correct but differ slightly in phrasing or small numerical deviations.
Together, EM and the LLM score offer a balanced evaluation: one measures exact factual accuracy,
while the other captures approximate correctness and reasoning fidelity.
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Questions Metadata

In the 2021 Canadian federal elections, compare the last opinion
polling results by Abacus Data, EKOS Research, Mainstreet Research,
Forum Research, Research Co. and Nanos Research before the elec-
tions. How accurate is each of these polls as a predictor for the actual
number of votes for each party (rounded to two decimals), you should
include the 6 largest parties, and ’others’. Rank each polling company
by mean-squared error. Your answer should be a JSON object with
the keys being the polling company names. The values should be the
MSE (rounded to one decimal). The companies should be sorted in
increasing value of MSE.

Type: Compare, Rank
Region:North America
Domain: Sociopolitics

As a Swiss Federal Statistics Officer, I am studying goods transport
performance by railway. From 2008 to 2024, what is the average
annual change rate for domestic transport, import, export, and transit?
Provide the answer as a JSON object where each key is the transport
type and each value is the percentage change (rounded to one decimal).

Type: Change
Region: Europe
Domain: Transportation

According to ASEAN stats, between 2016-2023, which ASEAN
countries’ exports in telecommunication, computer and information
services had a negative correlation with the total nominal GDP of all
ASEAN countries combined? The final answer should be presented
as a JSON: keys should be these ASEAN countries, and values should
be the pearson correlation value(s) rounded to two decimals.

Type: Correlation
Region: Southeast Asian
Domain: Economics

I am analysing the relative importance of airports for Qatar Airways.
Using crowd-sourced data from the OpenSky Network for December
2020, can you identify which are the five most important airports
for Qatar Airways flights - as measured by their pagerank, using the
default damping factor suggested in the paper introducing the google
search engine. Your output should be a JSON object with the keys
being the IATA airport codes, and the values being the Pagerank value
rounded to three decimals.

Type: Rank
Region: Middle East,
Domain: Transportation

I am analyzing New Zealand migration data from 2001 to 2020 to
identify anomalies in migration patterns. For each year, count the
number of months in which the net migration was negative (< 0).
Please return the results in JSON format, where each key is a year and
the value is the number of months with negative net migration.

Type: Counting, Compare
Region: New Zealand
Domain: Socioeconomics

What are the tokenizer-level compression ratios (measured as
bytes per token) for the following sentence: ” Deep Insight
Benchmark is an open-source benchmark that evaluates agents’
ability to solve tasks requiring analysis of multi-regional and
real-world data. ”, when tokenized using the tokenizers of Llama
(meta-llama/Llama-2-7b-hf), Qwen (Qwen/Qwen3-4B-Base)
and Apple (apple/FastVLM-1.5B) models? Return the results
as a JSON object, where each key is the model name and the
value is the compression ratio (rounded to two decimal places).
{
”Llama”:float,
”Qwen”:float,
”Apple”:float
}

Type: Task Specific Quantity
Region: None
Domain: Computer Science

Table 12: Examples of questions.

Evaluation Example Below we illustrate how EM, F1, and the LLM score behave under different
model outputs.

• Ground truth: {“India”: 4.5, “China”: 7.8, “U.S.”: 10.5}

Model 1 output:
{“India”: 3.6, “China”: 8.7, “U.S.”: 10.5}
Scores: EM = 0.0; F1 = 33.3; LLM Score = 1.0
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Model 2 output:
{“India”: 3.6, “United States”: 10.5, “China”: 8.7}
Scores: EM = 0.0; F1 = 0.0; LLM Score = 1.0

Model 3 output:
{“India”: 4.5, “U.S.”: 10.5, “China”: 7.8}
Scores: EM = 1.0; F1 = 100; LLM Score = 1.0

Model 4 output:
{“India”: 100.7, “U.S.”: 100.6, “China”: 7.8}
Scores: EM = 0.0; F1 = 33.3; LLM Score = 0.0
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