A BENCHMARK FOR DEEP INFORMATION SYNTHESIS

Anonymous authors

000

001 002 003

004

006

008 009

010

011

012

013

014

016

018

019

021

024

026027028

029

031

033

034

037

038

040

041

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Large language model (LLM)-based agents are increasingly used to solve complex tasks involving tool use, such as web browsing, code execution, and data analysis. However, current evaluation benchmarks do not adequately assess their ability to solve real-world tasks that require synthesizing information from multiple sources and inferring insights beyond simple fact retrieval. To address this, we introduce DEEPSYNTH, a novel benchmark designed to evaluate agents on realistic, timeconsuming problems that combine information gathering, synthesis, and structured reasoning to produce insights. DEEPSYNTH contains 120 tasks collected across 7 domains and data sources covering 42 countries. DEEPSYNTH is constructed using a multi-stage data collection pipeline that requires annotators to collect official data sources, create hypotheses, perform manual analysis and design tasks with verifiable answers. When evaluated on DEEPSYNTH, 9 state-of-the-art LLMs and deep research agents achieve a maximum F1 score of 8.97. Our analysis reveals that current agents struggle with hallucinations and reasoning over large information spaces, highlighting DEEPSYNTH as a crucial benchmark for guiding future research.

1 Introduction

Information synthesis involves collecting information from multiple sources and reasoning over it to form coherent insights. While this capability has been central to human decision-making and has driven advances in fields ranging from scientific discovery to policy development (Tricco et al., 2011; Sambre & Brône, 2002), it has traditionally been laborious and cognitively demanding. For example, a travel agency from Singapore might want to know "Which non-ASEAN countries experienced a significant post-COVID recovery — reaching at least 95% of their 2019 visitor arrival levels to Singapore by 2023, and what were the main reasons for travel (business or tourism)?" a question that requires identifying ASEAN countries, extracting multiple arrival data from various sources, and analysing them to determine the answer (see Figure 1). Recent Large Language Model (LLM)-based agents with capabilities for reasoning, tool use, and interaction across diverse environments have shown promise in complex tasks, such as for hard-to-find information (Wei et al., 2025), interacting with websites (Lu et al., 2025), and planning to navigate the web (Abuelsaad et al., 2024). However, these developments mostly improve the information-seeking capabilities of agents. It remains crucial to evaluate whether such agents can solve real-world tasks that require synthesizing information from multiple sources and inferring insights beyond simple fact retrieval.

Despite the substantial promise of LLM-based agents for addressing real-world tasks, most existing benchmarks primarily emphasise shallow fact retrieval tasks (Wei et al., 2024), artificial information-seeking questions (Wei et al., 2025; Mialon et al., 2023), or tasks that require information from a single, particularly well-known source like Wikipedia (Wolfson et al., 2025). Furthermore, most agentic benchmarks focus on English-language sources (Wei et al., 2025; Mialon et al., 2023) and overlook the diversity of regional contexts, languages, and information ecosystems, limiting their ability to evaluate agent performance in realistic, globally distributed settings.

To resolve this gap, we introduce DEEPSYNTH benchmark, a new benchmark comprising 120 challenging and diverse tasks, aimed to evaluate the ability of agents to browse the entire web, combine information from unstructured and structured sources (paragraphs and tables) across 42 countries, and perform analysis to synthesize new information and insights. DEEPSYNTH tasks are annotated with a gold standard, manually annotated reasoning chain, which includes all the intermediate steps, answers and all required supporting evidence. Each task requires agents to

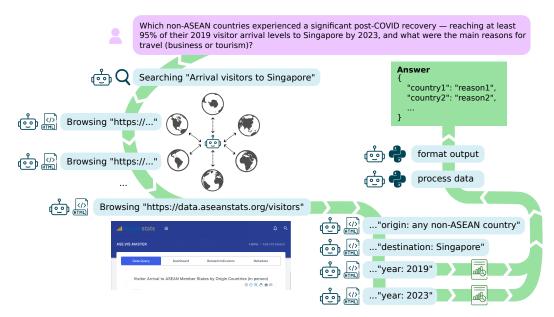


Figure 1: A sample task from DEEPSYNTH, illustrating that synthesizing knowledge requires agents to perform multiple steps, including web browsing, gathering information from multiple sources, reasoning over them, and generating the final answer.

navigate an average of 4.2 web pages, and read between 1 to 15 documents and/or tables. These tasks are designed to reflect real-world analysis and insight generation, with an emphasis on the time-intensive nature of processing and integrating information (see Figure 1).

To construct DEEPSYNTH, we asked 16 experts to first curate relevant topics and data sources targeting various countries (§2.2), and subsequently formulate possible hypotheses for each of these data sources. Based on the hypotheses, the experts conducted analyses and derived insights. Finally, drawing on their analyses, they formulated the corresponding questions, answers, and step-by-step reasoning chains. In our experiments, we find that state-of-the-art LLMs — including recent AI reasoning models GPT-5, DeepSeek-R1 (OpenAI, 2025b; Guo et al., 2025), struggle on DEEPSYNTH. The best-performing model, Gemini-Pro-2.5, achieves only an F1 score of 6.25, with no task attaining a perfect score under the stricter EM metric. We also analyse the performance of specialised deep research agents, i.e. o3-deep-research(OpenAI, 2025a), smolagents(Roucher et al., 2025), and OWL (Hu et al., 2025), and observe they successfully solve only three out of 120 tasks, further underscoring the difficulty of our benchmark. Our analysis reveals that (i) these agents frequently commit navigation and synthesis errors, and (ii) their performance drops sharply when tasks require synthesising information from under-represented sources, e.g. data pertaining to the African region.

To summarize, our main contributions are:

- 1. We release DEEPSYNTH, a new benchmark for agents that contains 120 real-world and time-consuming information synthesis tasks. ¹
- 2. We show that DEEPSYNTH poses a significant challenge for state-of-the-art agents, revealing key limitations in their capabilities. The best-performing agent achieves only an F1 score of 8.97 points, leaving substantial room for improvement.
- 3. We conduct an in-depth analysis to explain how DEEPSYNTH is challenging and demonstrate why current agents cannot yet be considered reliable systems for information synthesis.

2 THE DEEPSYNTH BENCHMARK

DEEPSYNTH is a benchmark designed to evaluate agents on realistic, time-consuming tasks that require planning, information gathering, and synthesis from the web. Specifically, DEEPSYNTH

¹Our data will be released upon acceptance.

evaluates agents on their ability to navigate multiple websites, extract information from both structured and unstructured sources, and reason effectively to produce correct solutions. It consists of 120 tasks that are carefully designed and annotated by experts. Each task (see Figure 1) is formulated to yield a concise output in the form of a JSON object or dictionary, with key-value pairs organised in a tabular style, thereby enabling straightforward and reliable verification. Solving these tasks requires agents to formulate plans, decompose problems into sub-steps, select and use appropriate external tools (e.g., document processors, code interpreters), and integrate intermediate results into a final solution.

We now describe the process of constructing DEEPSYNTH. We first outline the criteria for our tasks, then describe our data collection pipeline, and conclude with an analysis of the collected data.

2.1 Criteria for DeepSynth Tasks

Motivated by prior benchmarks (Mialon et al., 2023; Yoran et al., 2024; Wei et al., 2025; Phan et al., 2025), the design of DEEPSYNTH tasks is driven primarily by criteria that promote the future development of Agents' information seeking and synthesis capabilities towards practical and grounded goals. Specifically, our criteria consist of:

- a) **Multi-source Information Synthesis**: Tasks should require agents to identify connections across multiple data sources or to combine information from them to produce a coherent solution. More specifically, tasks are designed such that agents must not only fetch relevant information but also perform subsequent operations on it (see Table 1).
- b) **Inspired by the Real World**: Experts were instructed to draw inspiration from real-world situations. The tasks are designed so that any resulting insights would conceivably be able to shape the decisions and actions of an individual or a group of people, such as *political scientists*, *policy makers*, *travel agents*, *etc*.
- c) Verifiable Answers: A task that has a closed-form answer, which can be automatically verified and is stable over time, making it suitable for reproducible evaluation. While the answers to our tasks may be better suited to open-form answers, properly argued and grounded in citations, we necessarily restrict them to maintain their verifiability.
- d) **Diversity**: Our benchmark is designed to span a wide range of tasks, requiring agents to gather and reason over information across 42 countries and 7 distinct domains. Beyond geographic and topical diversity, the tasks also encompass temporal analyses, comparative evaluations across groups or categories, and relational reasoning, ensuring that agents are tested on a variety of reasoning modes.
- e) **Robustness Against Memorisation**: Similar to Mialon et al. (2023), we ensured that the tasks are explicitly constructed to mitigate data contamination and prevent superficial memorisation. The gold-standard answers are intentionally built to be non-retrievable through verbatim lookup in known pre-training corpora or direct web search, compelling systems to plan and perform multi-step reasoning to derive the correct output.

2.2 Data Collection

A common practice in designing deep agentic benchmarks is to start with a fact and then craft a question from it, making the answer difficult to locate (Wei et al., 2025). Since our goal was to ensure answers are non-retrievable, we adopted a different approach. Building DEEPSYNTH involved four key steps: (a) identifying data sources, (b) gathering hypotheses, (c) performing analyses, and (d) formulating tasks (see Figure 2).

Data Source Identification. In this step (see Figure 2, left), we engaged 16 human experts² to propose a diverse set of data sources and topics, drawing on their expertise, demographic backgrounds, and interests. Given the complexity of the annotation process and the need for efficient coordination, participation was restricted to individuals with whom we maintained direct communication, along with the paper's core authors. We collected 223 data sources across 7 domains (*socio-economic, finance, environment, science, education, transportation, political/socio-political*). We excluded data sources that originated from untrustworthy or non-official websites, including those requiring user

²Details about the annotators are provided in Appendix A.3.

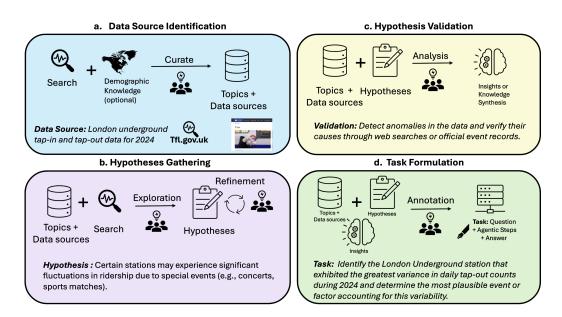


Figure 2: An overview of our data collection process for building the DEEPSYNTH benchmark

authentication, as well as sources containing information that contradicted other verified references. Our objective was to curate tasks that are useful to individuals or groups; therefore, we filtered data sources to retain only those from which useful, verifiable insights could be drawn. For example, we included official statistical reports on "the gender gap in labour force participation rates in Australia", "computer and digital literacy rates in Sri Lanka", and "air quality and pneumonia-related deaths across regions in the UK", since such data enables clear downstream reasoning tasks (e.g., analyzing temporal trends, comparing across regions, or correlating with policy interventions).

Hypothesis Generation. We then asked annotators to formulate one or two hypotheses—plausible insights that could be inferred from the selected data sources (see Figure 2 bottom left). The objective of this step was to elicit hypotheses that are both insightful and practically valuable, encouraging reasoning beyond surface-level fact retrieval (see § 2.1(e)). For example, one such hypothesis was: "Is there a linear relationship between air quality and pneumonia-related deaths across regions in the UK?". Data sources that did not meet the criteria of usefulness and insightfulness (see § 2.1(b)) were subsequently filtered out.³ After this step, we retained a total of 155 data sources, each paired with its corresponding set of hypotheses.

Hypothesis Validation. In this step, annotators were tasked with conducting a detailed analysis of each data source to assess the validity of the proposed hypotheses (see Figure 2 top right). The objective was twofold: (i) to verify whether the data supported the hypotheses, and (ii) to derive tasks with *verifiable* answers (see § 2.1(c)). Hypotheses that failed to meet the verifiability criterion were refined or discarded. Following this validation and filtering process, we retained 130 data sources, each paired with its corresponding, verified hypothesis.

Task Formulation. Finally, annotators were asked to formulate task questions along with intermediate steps, supporting evidence and corresponding answers. We note that the intermediate steps indicate only one possible reasoning path or planning from question to answer, and that no model or agent necessarily needs to imitate that path. Since DEEPSYNTH tasks often rely on multiple pieces of supporting evidence and reference various documents or tables, annotators were instructed to provide the URLs where the data sources can be accessed. Additionally, they were asked to include a brief explanation of how the task can be solved, specifying any tools, code snippets, or mathematical formulas used in the solution. We provide more examples and additional statistics in §A.4.

³Please note this step involves a degree of subjectivity, and we relied on the domain knowledge and judgment of our annotators to ensure the quality of the retained data sources and hypotheses.

Value

_ 10	
217	Statistic
218	T-4-1 T-
219	Total Tas Avg. Que
220	Avg. Que
221	Web page
222	Avg. An
223	Cynthod

120
78.49
7.54
4.2
5.5 hours
%
20.93%
11.05%
6.98%
19.77%
6.98%
33.72%
0.58%

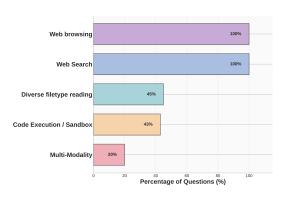


Table 1: DEEPSYNTH statistics across tasks.

Figure 3: Percentage of tasks per capabilities required to solve DEEPSYNTH.

Data Validation. All questions went through a second annotation stage, where another annotator independently answered the question. Only tasks where the answers from both annotators were identical were retained in the dataset, leaving finally 120 challenging information synthesis tasks.

2.3 Data Statistics

Table 1 summarises the key statistics of our benchmark. Tasks in DEEPSYNTH are highly detailed, with an average length of 78.49 tokens, an average of 7.54 intermediate reasoning steps and requiring navigation through an average of 4.2 web pages to reach a solution. Additionally, on average, formulating each task (from data source identification to task formulation) took the annotators approximately 5.5 hours. This number highlights the challenge in creating such tasks. Overall, all these numbers underscore the inherent complexity and challenge of the benchmark. Moreover, the tasks encompass a diverse range of analytical and reasoning skills, including correlation analysis, anomaly detection, and identification of causal or linear relationships — as reflected in Table 1. Table 5 presents the regions covered by our benchmark, along with the percentage of tasks corresponding to each region. Notably, the benchmark comprises a higher proportion of tasks from Europe and Asia, with some tasks spanning multiple countries and regions. Figure 3 provides an overview of the capabilities required by agents to solve the benchmark and their prevalence in tasks. In particular, we observe that web search and browsing are the most critical skills for retrieving the correct information.

3 EVALUATION SETUP

Models. We use DEEPSYNTH to benchmark five state-of-the-art models: (a) o4-mini (OpenAI, 2025c), (b) GPT-4.1 (OpenAI, 2024), (c) GPT-5 (OpenAI, 2025b), (d) Gemini-2.5-Pro (Comanici et al., 2025) and (e) DeepSeek-R1 (Guo et al., 2025). For Gemini-2.5-Pro, we use "dynamic thinking", where the model decides how much to think. GPT-5 was evaluated using "high reasoning effort".

We also investigate the performance of three state-of-the-art (deep research) agentic frameworks: (a) o3-deep-research (OpenAI, 2025a); (b) smolagents (Roucher et al., 2025), which is a minimalist framework focused on simplicity and rapid prototyping. It uses a standard ReAct loop (Yao et al., 2023) and its primary distinguishing feature is that it expresses all actions, such as tool use, as code, which is parsed out of the response and executed Wang et al. (2024); (c) OWL (Hu et al., 2025), which employs a role-playing strategy where a planner and an executor collaboratively solve tasks, optionally augmented with smaller, more specialised 'workers'. Both OWL and smolagents have been open-sourced. The details of their tool capabilities are listed in Table 9. All models were prompted using the same instructions, provided in Appendix A.1.

Metrics. All tasks require models to generate outputs in a JSON format (or lists of JSON objects). Our strictest metric is *exact match*, meaning that all keys and values must be correct. For partial

Model	F1 Score	Precision	Recall	Exact Match	LLM Judge Score
LLM Baselines					
o4-mini (2025-08) △	3.05	2.33	4.39	0.0	0.0
GPT-4.1 (2025-08)	3.46	2.86	4.39	0.0	0.0
o3 (2025-08)	3.29	2.85	3.90	0.0	0.0
GPT-5 (2025-08)	3.83	2.98	5.37	0.0	0.0
Gemini-Pro-2.5 (2025-08)	6.25	4.71	9.27	0.0	5.0
DeepSeek-R1 (2025-08) ♣	3.23	2.75	3.90	1.67	2.5
Framework-based Agents					
o3-deep-research (2025-08)	8.97	7.73	10.69	2.50	17.5
Smolagent (GPT-4.1) ♣	3.75	3.27	4.39	2.50	7.5
Smolagent (GPT-5)	6.42	6.34	6.50	1.67	2.5
OWL (GPT-4.1) △	5.41	4.62	6.52	1.67	12.5

Table 2: Performance comparison on the DEEPSYNTH benchmark (Pass@1). **F1**, **Precision**, **Recall and Exact Match** measure the quality of model predictions. **LLM Judge** (%) reports the average precision. Models with are models or framework which are closed, while are open-source.

evaluation, we check how many *key-value pairs* are correct (out of the total pairs) and report precision, recall and F1-score. As an additional 'soft' metric, we follow Wolfson et al. (2025) and leverage the LLM-as-a-judge (with an identical prompt, see Fig. 6) reporting average precision. This serves two purposes: 1) for small string differences (with semantic equivalence), this method will reward answers beyond exact match and, 2) in case of numerical answers, a small margin (1% to 5.5% difference) can still be considered correct hence providing more granular and permissible scores.

4 RESULTS

4.1 Main Results

Table 2 shows the performance of SOTA models on DEEPSYNTH. We first evaluate the parametric knowledge and reasoning capabilities of LLMs. The results show that Gemini-2.5-Pro achieves the highest performance with an F1 score of 6.25, indicating substantial room for improvement. Interestingly, the performance gap between reasoning models (e.g. Gemini-2.5-Pro, GPT-5, DeepSeek-R1) and general-purpose LLMs (e.g., GPT-4.1) is relatively small. This finding suggests that the key bottleneck lies not in reasoning ability alone, but in the availability of the necessary information for reasoning. We investigate this observation in greater depth in Analysis; see §5. Further, under the strict exact-match metric, we observe that almost all models obtain a score of zero, indicating that none can solve even a single task perfectly. The poor performance of base LLMs indicates that internal retrieval of parametric knowledge is insufficient, showing that these tasks are robust against memorisation (see criteria §2.1(e)). This also highlights the need to augment these models with external tools.

To investigate this further, we evaluated our benchmark using three agentic frameworks that integrate external tools, including simulated web browsing, web search, and a code interpreter. We find that o3–deep-research, which incorporates web search and an executable code interpreter, outperforms the base o3 model by 5.68 F1 score and 2.50 EM. Furthermore, smolagents and OWL achieve some gains, with improvements of 0.29 and 1.95 F1 points and 2.5 and 1.67 EM points respectively, over the base GPT-4.1. Overall, we observe that all systems perform poorly. These findings emphasise that effectively solving tasks in DEEPSYNTH requires enhanced tool-use capabilities. Interestingly, we find that low precision indicates that all models frequently produce incorrect or extraneous answers.

Ablation Study. To assess the role of different capabilities on DEEPSYNTH, we perform an ablation study. As shown in Table 3 (top), performance shows consistent declines across all metrics when any capability is removed, with the largest drop (1.81 F1 points) observed when search is excluded. While the overall changes are modest due to the low baseline performance, these trends indicate that

Model	Performance Metrics				
Wiouci	F1	Precision	Recall	EM	
OWL (Full)	5.41	4.62	6.52	1.67	
Tool Ablation					
 Web Browsing Toolkit 	4.80	4.20	5.60	1.67	
 Search Toolkit 	3.60	2.96	4.61	0.0	
 Document Processing Toolkit 	4.90	4.50	5.4	1.67	
 Code Execution Toolkit 	4.82	4.30	5.50	0.0	
Reasoning Chain Ablation					
GPT-4.1	3.46	2.86	4.39	0.0	
+ Intermediate Step	9.36	8.76	10.05	5.0	
Smolagent (GPT-4.1)	3.75	3.27	4.39	2.50	
+ Intermediate Step	10.50	8.96	12.70	10.0	

Table 3: Ablation Study. **Tool Ablation:** Comparing the benefits of using different tools on DEEP-SYNTH. **Reasoning Chain Ablation:** Studying the role of planning given the intermediate steps.

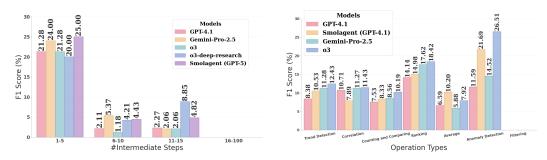


Figure 4: F1-scores across intermediate steps.

Figure 5: F1-scores across synthesis operations.

document processing, code execution, and search each contribute to task success, highlighting the multifaceted challenges posed by DEEPSYNTH.

5 ANALYSIS

In order to understand the challenges of solving DEEPSYNTH questions, we analyse performance across different data collection strategies, followed by a qualitative analysis of model errors.

RQ₁: How do models perform as the number of intermediate steps increases? We break down the models' performance based on the number of intermediate steps entailed by DEEPSYNTH tasks. Figure 4 presents the performance breakdown, highlighting that all models struggle as the number of intermediate steps increases, which can be considered an indicator of the task's complexity. Notably, the agentic frameworks (o3-deep research and smolagents + GPT-5) perform better for 11-15 intermediate steps, while they are on par with other LLMs for smaller numbers of intermediate answers. Given that tasks in DEEPSYNTH require an average of 7.54 intermediate steps, these results provide insights into why the benchmark is so challenging.

 \mathbf{RQ}_2 : Does providing agents with intermediate steps improve their performance? We evaluate how agents perform when they are provided with the ground truth intermediate reasoning steps (i.e. planning) without revealing the intermediate answers. As shown in Table 3, model performance improves substantially under this setting, with GPT-4.1 and smolagents + GPT-4.1 showing large gains. Both EM and F1 scores increase, indicating that models appear to lack planning capabilities.

 \mathbf{RQ}_3 : Which synthesis operations are more challenging? To further assess the models' analytical capabilities, we examine their performance on different synthesis operations when intermediate steps

Region	% of Tasks	GPT-4.1	o3-deep-research	Gemini-2.5-Pro	smolagents
Africa	2.8%	0.0	0.0	0.0	0.0
North America	13.9 %	4.65	8.00	12.00	8.33
South America	4.17%	0.0	25.00	0.0	0.00
Asia	29.2 %	3.36	12.70	6.50	11.88
Europe	66.7%	3.45	10.83	4.91	5.28
Oceanic	9.7%	8.96	14.43	6.67	24.00
Others	12.5%	3.12	6.45	12.12	0.0

Table 5: **Multi-Regional Analysis**: Agent performance across region-specific tasks (**F1 score**). NOTE: A question may span multiple regions. "Others" contains tasks without regional association.

are provided alongside the task questions (see Table 1, 8). Figure 5 presents the results across various operation types, revealing substantial variation in task-specific performance. More specifically, we observe that o3 model achieves the highest F1 score in anomaly detection (26.51%), significantly outperforming the other agents, while Gemini-2.5-Pro and smolagents + GPT-4.1 exhibit moderate gains over GPT-4.1 across most task categories. Trend detection and ranking also demonstrate relatively strong performance for Gemini-2.5-Pro and o3, indicating that these models can effectively capture certain structured patterns. In contrast, none of the models exhibit measurable performance on filtering tasks, which may partly reflect the limited number of filtering tasks in the benchmark (see Table 1). Overall, these findings suggest that, although some agents can successfully identify anomalous or structured patterns, significant improvements are required for tasks involving arithmetic, comparative reasoning, or complex multi-step analysis.

Error Cause	No. of instances
Navigation Error	15
No answer	4
Technical Issue	4
Synthesis Error	16

Table 4: Error analysis for OWL (GPT-4.1). Navigation and synthesis errors are the most prominent.

RQ₄: What types of errors do models commonly make? To better understand the challenges in solving DEEPSYNTH, we manually analysed a random subset of 32 tasks⁴ in which OWL + GPT-4.1 made errors⁵. We focus on OWL because, as an open-source framework, it enables detailed examination of execution traces and interactions between agents and tools. We categorize errors into four types, with their frequencies summarized in Table 4: (1) *Navigation errors* – when the agent fails to locate or access the correct source of information, such as navigating to the wrong web page, document, or section; (2) *No Answer* – when the agent does not respond or fails to generate any output; (3) *Technical Issue* – errors caused by system limitations, software bugs, or tool malfunctions that prevent task completion, independent of reasoning or navigation; and (4) *Synthesis Error* – when the agent reaches an incorrect conclusion despite accessing the correct information, due to flaws in logical reasoning, interpretation, or multi-step analytical processes.

This analysis is multi-label, as a single instance may exhibit multiple error types. The majority of errors—15/32 due to navigation and 16/32 due to reasoning—highlight that DEEPSYNTH presents significant challenges even for state-of-the-art open-source models. Figure 10 illustrates a failure case of OWL, in which the correct URL was found, but the agent fails to interact correctly with the website and its database interface.

RQ₅: **How do agents perform on tasks from different regions?** We observe that o3-deep research exhibits the most consistent cross-regional capability, particularly in the high-volume areas such as Europe and Asia. Notably, all models fail on Africa-related tasks, achieving an F1 score of 0.0. These

⁴Subset chosen due to the time and cost of manually analysing all outputs.

⁵Two annotators who were not involved in the original data annotation conducted this analysis.

Dataset	Real World	Multi Regional	Information Synthesis	Multi-Part Answers
GAIA (Mialon et al., 2023)	partial	×	partial	×
AssistantBench (Yoran et al., 2024)	\checkmark	×	×	partial
BrowseComp (Wei et al., 2025)	×	×	×	×
HLE (Phan et al., 2025)	partial	partial	partial	×
DEEPSYNTH	√	√	√	\checkmark

Table 6: Comparison of datasets on various reasoning and retrieval capabilities.

findings highlight the presence of strong geographical biases in current models and suggest that their performance is not globally uniform, likely reflecting imbalances in the distribution and coverage of their training data. Since DEEPSYNTH contains a diverse set of tasks from multiple regions, it naturally increases the overall difficulty of the benchmark.

6 RELATED WORK

As LLM-based agents improve in reasoning, tool usage, and interaction across diverse environments, researchers have sought to evaluate LLMs on questions that require multi-hop reasoning skills (Wu et al., 2025; Wolfson et al., 2025), code generation (Jimenez et al., 2024; Chan et al., 2024; Ouyang et al., 2025; Starace et al.), information seeking (Wei et al., 2025; Yoran et al., 2024) and even general assistance capabilities (Mialon et al., 2023). Table 6 summarises the key differences among popular agentic benchmarks; most of these correspond to the criteria we considered in § 2.1 for DEEPSYNTH tasks' design. A distinctive feature of DEEPSYNTH is its multi-part answers, where each response comprises multiple components—e.g., a JSON object containing event causes (strings), percentages (floats), dates or years (integers)—with explicit logical links (e.g., key-value pairs). This structure makes the benchmark particularly challenging, as it requires agents to retrieve, reason, and integrate heterogeneous information correctly.

Several existing benchmarks share partial overlap with DEEPSYNTH but lack a systematic evaluation of information synthesis. For instance, GAIA (Mialon et al., 2023) requires planning and information seeking but involves limited synthesis and less realistic tasks. BrowseComp (Wei et al., 2025) is an information-seeking benchmark comprising challenging, invertedly constructed questions that require persistent, multi-hop web navigation to uncover hard-to-find facts; in contrast, DEEPSYNTH moves beyond retrieval to systematically evaluate information synthesis through multi-part, structured answers. AssistantBench (Yoran et al., 2024) addresses real-world gaps and includes limited multi-part answers, but omits other essential aspects. Humanity's Last Exam (Phan et al., 2025) offers precise, unambiguous, and non-searchable questions, yet these are often obscure and detached from real-world contexts. In contrast, DEEPSYNTH is, to the best of our knowledge, the first benchmark to systematically evaluate information synthesis across realistic, multi-step tasks.

7 Conclusion

We presented DEEPSYNTH bench, a new benchmark comprising 120 challenging and diverse tasks across 42 countries. By combining planning, tool use, and multi-step reasoning, DEEPSYNTH aims to evaluate the ability of agents to move beyond shallow retrieval and engage in goal-directed, information-rich problem solving. DEEPSYNTH was inspired by real-world problems, and its tasks were designed to be strictly verifiable, geopolitically diverse, and robust against memorisation. Our experiments demonstrated the difficulty of our benchmark, with both state-of-the-art LLMs and specialized deep research agents struggling to solve any significant number of tasks. The best of the former (Gemini-Pro-2.5) achieved an F1 score of only 6.25 with no task reaching a perfect score, while the best of the latter (o3-deep-research) reached 8.97. These results help establish that there is substantial room for improvement on multi-source information synthesis, and we hope DEEPSYNTH will inspire future work, starting with improving navigation and synthesis, and addressing the significant geopolitical biases we observed.

REFERENCES

- Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi Kokku. Agent-e: From autonomous web navigation to foundational design principles in agentic systems. arXiv preprint arXiv:2407.13032, 2024.
- Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning agents on machine learning engineering. *arXiv preprint arXiv:2410.07095*, 2024.
- Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv* preprint arXiv:2507.06261, 2025.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning. *Nature*, 645(8081):633–638, 2025.
- Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping Luo, and Guohao Li. OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation, 2025. URL https://arxiv.org/abs/2505.23885.
- Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=VTF8yNQM66.
- Zimu Lu, Yunqiao Yang, Houxing Ren, Haotian Hou, Han Xiao, Ke Wang, Weikang Shi, Aojun Zhou, Mingjie Zhan, and Hongsheng Li. WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch. *arXiv preprint arXiv:2505.03733*, 2025.
- Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: A benchmark for General AI Assistants. In *The Twelfth International Conference on Learning Representations*, 2023.
- OpenAI. GPT-4o System Card, 2024. URL https://cdn.openai.com/gpt-4o-system-card.pdf.
- OpenAI. Deep Research System Card, 2025a. URL https://cdn.openai.com/deep-research-system-card.pdf.
- OpenAI. GPT-5 System Card, 2025b. URL https://cdn.openai.com/gpt-5-system-card.pdf.
- OpenAI. OpenAI o3 and o4-mini System Card, 2025c. URL https://openai.com/index/o3-o4-mini-system-card/.
- Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Ré, and Azalia Mirhoseini. Kernelbench: Can Ilms write efficient gpu kernels? *arXiv preprint arXiv:2502.10517*, 2025.
- Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. *arXiv preprint arXiv:2501.14249*, 2025.
- Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunismäki. 'smolagents': a smol library to build great agentic systems. https://github.com/huggingface/smolagents, 2025.
- Paul Sambre and Geert Brône. Gilles fauconnier & mark turner, "the way we think: conceptual blending and the mind's hidden complexities". 2002. URL https://api.semanticscholar.org/CorpusID:152136175.

- Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. PaperBench: Evaluating AI's Ability to Replicate AI Research. In *Forty-second International Conference on Machine Learning*.
- Andrea C Tricco, Jennifer Tetzlaff, and David Moher. The art and science of knowledge synthesis. *Journal of clinical epidemiology*, 64(1):11–20, 2011.
- Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Executable code actions elicit better llm agents. In *Forty-first International Conference on Machine Learning*, 2024.
- Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese, John Schulman, and William Fedus. Measuring short-form factuality in large language models. *arXiv* preprint arXiv:2411.04368, 2024.
- Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.
- Tomer Wolfson, Harsh Trivedi, Mor Geva, Yoav Goldberg, Dan Roth, Tushar Khot, Ashish Sabharwal, and Reut Tsarfaty. MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents. *Transactions of the Association for Computational Linguistics*, 2025.
- Jian Wu, Linyi Yang, Dongyuan Li, Yuliang Ji, Manabu Okumura, and Yue Zhang. MMQA: Evaluating LLMs with multi-table multi-hop complex questions. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=GGlpykXDCa.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023.
- Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan Berant. AssistantBench: Can web agents solve realistic and time-consuming tasks? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8938–8968, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.505. URL https://aclanthology.org/2024.emnlp-main.505/.

A APPENDIX

A.1 PROMPTS

In this section, we provide the instructions and prompts used across all models; see Figures 6 and 7.

A.2 More Results and Analysis

This section collects some additional results and analysis. Specifically:

Table 7 shows how long was required for state-of-the-art LLMs and specialized deep research agents to run DEEPSYNTH bench.

Table 8 provides definitions and examples on the key information synthesis operations in DEEP-SYNTH's tasks.

Table 9 presents a brief comparison across the Agentic Framework tool capabilities of the specialized deep research agents we apply to DEEPSYNTH bench (OpenAI, 2025a; Roucher et al., 2025; Hu et al., 2025).

Table 10 collects F1-score, Precision, Recall and EM scores to highlight the role of planning intermediate steps on LLM models.

Finally, Figure 10 shows an example run using the OWL framework, and illustrates errors when trying to collect and reason about data.

Model	Avg. Time (sec.)
o4-mini (2025-08)	20.8
GPT-4.1 (2025-08)	7.52
GPT-5 (2025-08)	83.41
Gemini-Pro-2.5 (2025-08)	34.10
DeepSeek-R1 (2025-08)	5.2
o3-deep-research (2025-08)	645.39
Smolagent (GPT-4.1)	35.84
OWL (GPT-4.1)	1025.5

Table 7: Average Time per instance to run our benchmark

```
648
      Judge whether the following [response] to [question] is correct
649
      or not based on the precise and unambiguous [correct_answer] below.
651
      [question]: {question}
652
      [response]: {response}
653
      Your judgment must be in the format and criteria specified below:
654
655
      extracted_final_answer: The final exact answer extracted from the
656
      [response]. Put the extracted answer as 'None' if there is no exact
657
      final answer to extract from the response.
658
659
      [correct answer]: {correct answer}
660
661
      final answer length: Provide the overall number of unique answers
662
      that appear in [response], not just the correct ones. Be sure to
663
      provide a number, not an estimate!
664
665
      reasoning: Explain why the extracted final answer is correct or
      incorrect based on [correct_answer], focusing only on if there
666
      are meaningful differences between [correct_answer] and the
667
      extracted_final_answer. Do not comment on any background to the
668
     problem, do not attempt to solve the problem, do not argue for
669
      any answer different than [correct_answer], focus only on whether
670
      the answers match.
671
672
      correct: Answer 'yes' if extracted_final_answer matches the
673
      [correct_answer] given above, or is within a small margin of error
674
      for numerical problems, a margin of 1 to 5.5 percentage points is
675
      acceptable. Answer 'no' otherwise, i.e. if there is any inconsistency,
676
      ambiguity, non-equivalency, or if the extracted answer is incorrect.
677
     precision: Answer '1' if extracted_final_answer matches the
678
      [correct_answer] given above. Answer '0' otherwise, i.e. if there is
679
      any inconsistency, ambiguity, non-equivalency, or if the extracted
680
      answer is incorrect. In the case where [correct_answer] is a number
681
      or percentage, then answer with the following formula to compute
682
      the normalized similarity score:
683
      [1 - (abs([correct_answer] - extracted_final_answer) /
684
      max(abs([correct_answer]), abs(extracted_final_answer)))]
685
686
      final precision: Extract the precision score from above, just the
687
      final score (number).
688
      overlapping answers: List all of the answers in [response] that also
689
      appear in [correct_answer]. You can consider an answer from [response]
690
      to match with an answer in [correct_answer] if it is equivalent or is
691
      within a small margin of error for numerical problems, a margin of 1
692
      to 5.5 percentage points is acceptable. List all of the [response]
693
      answer appearing in [correct_answer] with each answer delimited by
694
      `###'. If the number of overlapping answers is zero, output `NULL'.
695
```

Figure 6: The prompt for the LLM-as-a-judge from Wolfson et al. (2025).

735

736

737 738 739

740

741

742

743

744

745 746

747

748

749

750 751

752

753

754

INSTRUCTIONS:

```
- You are a professional researcher preparing a structured,
703
      data-driven answer.
      - Your task is to analyze and answer.
705
      - Answers are not report. Often time answers are numeric
706
      and need JSON outputs.
707
      - You will be given a research task by a user. Your task is
708
      to generate an accurate answer.
      - Focus on data-rich insights.
710
711
      GUIDELINES:
712
      1. **Answer Format**
713
      - Be analytical, avoid generalities, and ensure that each
      section supports data-backed.
714
      - Prioritize reliable, up-to-date official sources such as
715
      Wikipedia, government websites, etc.
716
      - Every question will already contain the format of the output.
717
      Please follow that.
718
      - Exact match is the metric.
719
      - To help extract the answer, before writing down the final
720
      answer, please using a split token <Answer>:
721
      - It is of utmost importance that you follow the answer format
722
      mentioned in the question.
723
      - If the question says that the model needs to output the
724
      answer JSON. Please follow that.
725
      - If the question says that the model needs to output a list of
      JSON. Please follow that.
726
727
      2. **Incomplete answers**
728
      - Do NOT give incomplete answers.
729
      - There is always an answer, and the answer often needs some
730
      deep reasoning.
731
732
      3. **Language**
733
      - Please only answer in English
734
```

Figure 7: System prompt provided to the model, outlining instructions, answer formatting guidelines, and language requirements to ensure structured, data-driven responses.

A.3 DATACARD AND ANNOTATION GUIDELINES

DEEPSYNTH currently spans 42 countries, including Belgium, Singapore, Myanmar, Cambodia, Malaysia, Brazil, India, USA, UK, Japan, Germany, Norway, Sweden, Finland, Denmark, Iceland, Tajikistan, Turkmenistan, Uzbekistan, Estonia, Latvia, Lithuania, Portugal, Peru, France, Indonesia, the Philippines, Luxembourg, Switzerland, South Korea, Liechtenstein, Croatia, Malta, Cyprus, South Africa, Austria, Sri Lanka, Lebanon, Taiwan, Vietnam, Australia, and New Zealand.

Annotator Demographics. We provide additional information that may be relevant for analysing this dataset. Building DEEPSYNTH required the work of expert annotators, who devised the task questions and their answers, and who independently annotated the questions to assess their non-ambiguity. We have 81.25% of the annotator PhD holders. Both come from the following population:

1. **Age**:

(a) 18 - 25 : 12%(b) 26 - 35 : 68%(c) 36 - 45 : 18%

2. Gender: 25% Female, 75% Male

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803 804

Operation	Description	Example
Trend Detection	Identifying patterns, directions, or changes in data over time or across contexts.	Climate events over the last decade to detect a trend of increasing wild-fires.
Average	Determining a representative value that summarises numerical data collected from multiple sources.	Synthesising daily temperatures from multiple weather stations to report the average regional temperature.
Correlation	Measuring relationships or associations between two or more variables.	Synthesising data from health studies to find correlations between exercise frequency and cholesterol levels.
Ranking	Ordering items or facts based on specific criteria or importance.	Compiling product reviews from dif- ferent websites and ranking products by overall rating.
Anomaly Detection	Identifying data points or patterns that significantly deviate from the norm.	Synthesising sensor data from multiple factories to detect unusual machine behaviour.
Counting and Comparing	Quantifying occurrences and comparing values across sources or categories.	Counting positive vs negative mentions of a policy in news articles and comparing the proportions.
Filtering	Selecting relevant information based on criteria, quality, or thresholds.	Selecting only recent when synthesising research on climate change.

Table 8: Key operations in information synthesis, their definitions, and examples of application.

Framework	Code Interpreter	Web Search	API Calls	Document Processing	Browser Simulation
o3-deep-research (2025-08)	✓	✓	×	×	×
Smolagent (GPT-5)	✓	✓	×	×	×
OWL	×	✓	✓	✓	✓

Table 9: Agentic Framework Tool Capabilities Comparison. **Note:** ✓ indicates capability present; × indicates capability not available. Web Browser functionality is included within Web Search capabilities for applicable frameworks.

3. **Nationality**: India, Greece, Luxembourg, Slovakia, UK, China, Peru, Romania, Turkey, Kosovo, Germany

4. Academic Background:

(a) Bachelor's Degree: 6.25%(b) Master's Degree: 12.5 %

(c) PhD: 81.25%

The guidelines that were given to the annotators are presented in Figures 8 and 9.

A.4 EXAMPLES

In this section (see Table 11), we present some representative examples from DEEPSYNTH bench. We omit some information, e.g. the reasoning trace and intermediate steps, to prevent task leakage.

Deep Information Synthesis

812 813

814

815

816

817 818

819 820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835 836

837

838

839

840

841

843

844

845

Deep Information Synthesis Bench

Overview

Welcome! In this task, you will help us create/generate deep research (benchmark) questions that require multi-step reasoning, tool use, or non-obvious connections—things large language models (LLMs) struggle with today. These questions help us study how well LLMs can research, plan, and reason like human experts.

What is Information Sythesis?

· Information synthesis involves collecting information from multiple sources and reasoning over it to form coherent insights

What is Novel Insight / Researchy?

- · Non-obvious connection between two sets of data. (e.g. correlation between two things)
- Quantifying some connection which might be intuitively ~clear~, but has not been quantified (yet).
- Quantifying / Comparing causes/effects of events/patterns in data.

Primary Checklist for Deep Research Questions

- · Requires planning and multi-step reasoning.
- Involves multiple tools/actions, such as:
 - Search
 - Calculator
 - Web navigation
 - Code executor
 - Image/video understanding, etc.
- · Answer not directly found on the internet.
 - Individual facts may exist online, but the connection or insight is not explicitly stated.
- Ideally, the answer provides a novel insight into the topic.
- The answer is clear, unambiguous, verifiable, and unique (specific variable or set).
 - Ensure no conflicting official data sources exist that could lead to different valid answers.

Your Annotation

Instructions for Providing Answers:

Use either a JSON object or an Excel sheet. Each entry must include a unique ID and full provenance (data and code).

"unique_id": "item-001", "question": "Compare the gender ratio in two video games and how it changed from 2010 to 2024?",

"reasoning_path": "1) Search Query: " characters in game X"
2) Code used: Calculate the growth rate .. """ def growth(): ... """,

- · Format:
- Provide answers either as a JSON object or as an Excel sheet (XLSX or CSV)
- · Columns / Keys / Fields Required:
- Unique ID
- Question
- . Reasoning Path (include any code used)
- Answer
- Data file
- Data Usage
- · State which data sources were used, download the data locally, and name the downloaded file using the corresponding Unique ID.

3) Notes: used official statistics site (Please DONOT forget to report the exact website)",

Figure 8: Annotation Guidelines

- · Code Inclusion:
- . If code was used, include it verbatim inside the Reasoning Path field so the exact commands and scripts are preserved

846 847 848

849

Sample JSON (single item)

```
850
851
852
853
854
```

855

856 857

858

859 860 861

862 863

Sample CSV / Excel template (columns)

"answer": "X game: 9%, Y game: 15%", "data_file": "item-001.csv"

unique_id	question	reasoning_path	answer	url
item-001	Compare the gender ratio in two video games and how it changed from 2010 to 2024?	see JSON above (includes code)	"X game: 9%, Y game: 15%"	["https://gameX.com", "https://gameY.com"]

Figure 9: Annotation Guidelines

Model	Performance Metrics			
	F1	Precision	Recall	EM
о3	3.29	2.85	3.90	0.0
+ Intermediate Step	12.87	11.38	14.81	7.50
Gemini-Pro-2.5	6.25	4.71	9.27	0.0
+ Intermediate Step	10.40	8.36	13.76	7.50

Table 10: Analysis. Studying the role of planning/intermediate steps.

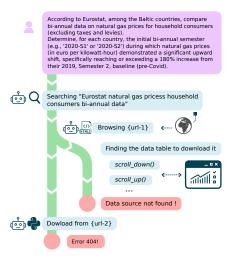


Figure 10: Example run using OWL, illustrating errors when trying to collect and reason about data. The agent finds the right URL but fails to query the right data from the website's database interface. A second attempt tries to download a data file from an incorrect URL, resulting in a *not found error*.

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964 965 966

```
Questions
                                                                    Metadata
In the 2021 Canadian federal elections, compare the last opinion
                                                                    Type: Compare, Rank
polling results by Abacus Data, EKOS Research, Mainstreet Research,
                                                                   Region: North America
Forum Research, Research Co. and Nanos Research before the elec-
                                                                   Domain: Sociopolitics
tions. How accurate is each of these polls as a predictor for the actual
number of votes for each party (rounded to two decimals), you should
include the 6 largest parties, and 'others'. Rank each polling company
by mean-squared error. Your answer should be a JSON object with
the keys being the polling company names. The values should be the
MSE (rounded to one decimal). The companies should be sorted in
increasing value of MSE.
As a Swiss Federal Statistics Officer, I am studying goods transport
                                                                    Type: Change
                                                                   Region: Europe
performance by railway. From 2008 to 2024, what is the average
annual change rate for domestic transport, import, export, and transit?
                                                                   Domain: Transportation
Provide the answer as a JSON object where each key is the transport
type and each value is the percentage change (rounded to one decimal).
According to ASEAN stats, between 2016-2023, which ASEAN
                                                                    Type: Correlation
                                                                    Region: Southeast Asian
countries' exports in telecommunication, computer and information
services had a negative correlation with the total nominal GDP of all
                                                                    Domain: Economics
ASEAN countries combined? The final answer should be presented
as a JSON: keys should be these ASEAN countries, and values should
be the pearson correlation value(s) rounded to two decimals.
I am analysing the relative importance of airports for Qatar Airways.
                                                                    Type: Rank
Using crowd-sourced data from the OpenSky Network for December
                                                                    Region: Middle East,
2020, can you identify which are the five most important airports
                                                                   Domain: Transportation
for Qatar Airways flights - as measured by their pagerank, using the
default damping factor suggested in the paper introducing the google
search engine. Your output should be a JSON object with the keys
being the IATA airport codes, and the values being the Pagerank value
rounded to three decimals.
I am analyzing New Zealand migration data from 2001 to 2020 to
                                                                    Type: Counting, Compare
identify anomalies in migration patterns. For each year, count the
                                                                    Region: New Zealand
number of months in which the net migration was negative (< 0).
                                                                   Domain: Socioeconomics
Please return the results in JSON format, where each key is a year and
the value is the number of months with negative net migration.
What are the tokenizer-level compression ratios (measured as
                                                                    Type: Task Specific Quantity
                                                " Deep Insight
bytes per token) for the following sentence:
                                                                   Region: None
Benchmark is an open-source benchmark that evaluates agents'
                                                                   Domain: Computer Science
ability to solve tasks requiring analysis of multi-regional and
real-world data. ", when tokenized using the tokenizers of Llama
(meta-llama/Llama-2-7b-hf),
                               Qwen
                                       (Qwen/Qwen3-4B-Base)
and Apple (apple/FastVLM-1.5B) models? Return the results
as a JSON object, where each key is the model name and the
value is the compression ratio (rounded to two decimal places).
"Llama":float.
"Owen":float,
"Apple":float
```

Table 11: Examples of questions.