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Abstract

Expert finding could help route questions to po-
tential suitable users to answer in Community
Question Answering (CQA) platforms. Hence
it is essential to learn accurate representations
of experts and questions according to the ques-
tion text articles. Recently the pre-training and
fine-tuning paradigms are powerful for natu-
ral language understanding, which has the po-
tential for better question modeling and ex-
pert finding. Inspired by this, we propose a
CQA-domain Contrastive Pre-training frame-
work for Expert Finding, named CPEF, which
could learn more comprehensive question repre-
sentations. Specifically, considering that there
is semantic complementation between ques-
tion titles and bodies, during the domain pre-
training phase, we propose a title-body con-
trastive learning task to enhance question rep-
resentations, which directly treats the question
title and the corresponding body as positive
samples of each other, instead of designing ex-
tra data-augmentation strategies. Furthermore,
a personalized tuning network is proposed to
inject the personalized preferences of different
experts during the fine-tuning phase. Extensive
experimental results on six real-world datasets
demonstrate that our method could achieve su-
perior performance for expert finding.

1 INTRODUCTION

Nowadays, Community Question Answering
(CQA) platforms such as StackExchange 1,
BaiduZhidao 2 have been popular and extremely
attracted millions of users (Fu et al., 2020), which
can raise their questions or post answers for ques-
tions they are interested in or good at. Due to the
large participation, there are too many questions
to wait for answers (Zhao et al., 2017; Yuan et al.,
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1https://stackexchange.com
2https://zhidao.baidu.com

2020). In order to alleviate that, it needs to rec-
ommend suitable experts to provide satisfactory
answers (Chang and Pal, 2013; Zhao et al., 2014)
for these questions. Expert finding aims to effec-
tively route questions to a suitable expert based on
her/his historically answered questions, which has
attracted considerable attention recently.

Based on the powerful neural network (LeCun
et al., 2015), many approaches (Li et al., 2019; Fu
et al., 2020; Peng et al., 2022a) have been shown
effective to improve the performance of expert find-
ing. The core idea is to first model the question
semantically, and then learn the expert preference
based on his/her historically answered questions.
For example, Peng et al. (Peng et al., 2022a) pro-
posed PMEF equipped with a multi-view ques-
tion modeling paradigm aiming to model questions
more comprehensively and then capture expert fea-
tures. Hence, the capacity of the designed question
modeling paradigm directly affects the expert find-
ing performance.

Recently, Pre-trained Language Models (PLMs)
have achieved great success in Natural Language
Processing (NLP) due to their strong ability in text
modeling (Devlin et al., 2018). Different from tra-
ditional models that are usually directly trained
with labeled data in specific tasks, PLMs are usu-
ally pre-trained on a large unlabeled corpus via
self-supervision to encode universal semantic in-
formation. However, existing PLMs are usually
pre-trained on general corpus such as BookCor-
pus and Wikipedia, which have some gaps with
the CQA domain and the expert finding task. Di-
rectly fine-tuning the existing PLMs with the expert
finding task may be sub-optimal for CQA ques-
tion understanding. Besides, such an architecture
does not take into consideration the expert’s person-
alized characteristics, which could impact expert
modeling and question-expert matching (i.e., ex-
pert finding). At present, the exploration of the
pre-training paradigm in expert finding is pre-
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liminary.
In this paper, we aim to design a novel ex-

pert finding framework, which could learn more
comprehensive question and expert representations
with domain pre-training and personalized fine-
tuning paradigm. For pre-training question rep-
resentations, in addition to the domain pre-training
Masked Language Model (MLM) task, we design
a contrastive task to capture the inherent seman-
tic information from the unlabeled CQA question
corpus. Different from the vanilla contrastive learn-
ing paradigm with data augmentation progress, we
directly consider the question title and the ques-
tion body as mutually augmented perspectives. In
this way, the model could omit the tedious process
of data augmentation while incorporating the two
relevant types of information (i.e., question title
and body) for question semantic modeling. For
fine-tuning phase, we transfer the pre-trained ques-
tion representations to model expert representations
and the downstream expert finding task. Consid-
ering different experts would have different tastes
in the same question, hence we design a personal-
ized tuning network, which could effectively inject
personalized preference (i.e., expert ID) to learn
more personalized expert representations for better
question-expert matching.

In summary, the contributions of our method are:

• We propose a domain pre-training and fine-
tuning framework for expert finding on CQA
platforms, which could learn comprehensive
representations of questions and experts.

• We design a novel question title-body con-
trastive pre-training task, which could im-
prove question modeling effectively. Further,
we adopt a personalized tuning network to
learn personalized representations of experts.

• We conduct extensive experiments on six real-
world CQA datasets. Experimental results
show that our method can achieve better per-
formance than existing baselines and validate
the effectiveness of our approach.

2 RELATED WORK

In this section, we briefly review the related work
in two aspects, namely Expert Finding and Pre-
training for Recommendation.

Expert finding has received much attention from
both research and industry community (Liu et al.,

2015; Yuan et al., 2020; Liu et al., 2022; Peng and
Liu, 2022; Peng et al., 2022b) and it could help find
capable experts for providing answers to questions.
Early studies employed feature-engineering (Cao
et al., 2012; Pal et al., 2012) or topic-modeling
technology (Guo et al., 2008; Riahi et al., 2012) to
model questions and experts, then measured simi-
larities between them for routing questions to suit-
able experts. Subsequently, with the development
of deep learning (LeCun et al., 2015), recent meth-
ods employed neural networks to learn expert and
question representations, then matched them (Li
et al., 2019; Fu et al., 2020; Ghasemi et al., 2021).
For example, Peng et al. (Peng et al., 2022a) de-
signed a multi-view learning paradigm to learning
question features, which could improve expert find-
ing.

Different from most existing methods learning
question representations that rely on supervised
data, we design a question title-body contrastive
pre-training paradigm for modeling question. In
this way, the model could capture more comprehen-
sive question semantic representations, which are
the basis of expert modeling and question-expert
matching.

Furthermore, expert finding aims to recom-
mend suitable experts for answering target ques-
tions, which is similar to recommender system.
Hence, we will introduce some recommendation
researches with pre-training (Zhou et al., 2020; Wu
et al., 2020; Cheng et al., 2021; Hou et al., 2022)
in this part. For example, Cheng et al. (Cheng
et al., 2021) proposed CLUE, which designed con-
trastive pre-training tasks to optimize transferable
sequence-level user representations for recommen-
dation. Compared with existing recommendation
works under the pre-training paradigm, the expert
finding has different characteristics, e.g., the tar-
get question is usually cold-started and ID-based
recommendation may not be feasible.

It is noted that the very recent method Ex-
pertBert (Liu et al., 2022) designs a preliminary
expert-specific pre-training framework, which has
achieved the best performance. Different from
that, our approach focuses on more comprehen-
sive question semantic representations via integrat-
ing the title-body contrastive learning task during
pre-training. In addition, we design a personalized
tuning network to tune the model and model expert
according to different expert preferences.



3 Problem definition

Expert finding in CQA websites is to predict the
most suitable expert to answer questions. Suppose
that there is a target question qt and a candidate
expert set E = {e1, · · · , eM} respectively, where
M is the number of experts. Given a candidate
expert ei ∈ E, she/he is associated with a set of
her/his historical answered questions, which can be
denoted as Qi = {q1, · · · , qn} where n is the num-
ber of historical questions. In addition to the title,
each question contains the body information, which
is a detailed description of the question; however,
most existing methods ignore the question bodies.
In fact, the question body could be a complemen-
tation of the question title. Hence, in this paper
we would explore how to utilize the title and body
together effectively.

4 Proposed Method

In this section, we will introduce the training pro-
cedure of our method CPEF, which is composed
of the following stages.

• In pre-training phase (question modelling),
based on the CQA domain unlabeled text cor-
pus, we propose a contrastive learning task
between the question title and body and inte-
grate it into the pre-training Masked Language
Model (MLM) task jointly, to fully learn ques-
tion semantic representations.

• In fine-tuning phase (expert finding), we ini-
tialize the parameters of the question represen-
tation model with the pre-trained parameters
and then utilize a personalized tuning network
to fine-tune the model with traditional expert
finding supervised signals.

4.1 Pre-training Framework

In this part, we will present the question represen-
tation pre-training framework, including the well-
designed input layer and a brief backbone architec-
ture introduction.

(1) Input Layer For the model input, we concate-
nate the words of the question title and the question
body into a whole sequence as shown in Figure 1.
We propose to design special tokens ([TITLE] and
[BODY]) at the beginning of the title sequence and
the body sequence respectively, to indicate the ti-
tle text and the body text. Moreover, the special

token [SEP] is added at the end of the input word
sequence for recognizing the end of the sequence.
Hence, the question information is denoted as:

Q = [[TITLE], [tk1], [tk2], · · ·︸ ︷︷ ︸
title

, [BODY],

[tk1], [tk2], [tk3], · · ·︸ ︷︷ ︸
body

, [SEP]]
(1)

Then, the input representation matrix R is con-
structed by summing its corresponding token, seg-
ment, and position embedding:

R = Rtoken +Rseg +Rpos , (2)

where Rtoken is the embedding matrix of tokens
derived from tokenizing Q (with BERT Tokenizer),
and Rseg and Rpos are corresponding segment em-
bedding and position embedding respectively fol-
lowing the settings in BERT (Devlin et al., 2018).
It is noted that the question title segment ID is 0
and the question body segment id is 1, which could
help distinguish between these two types of infor-
mation.

(2) Model Architecture In our method, we adopt
the widely used BERT as our base backbone en-
coder to further pre-train question representations
in the CQA domain corpus. BERT architecture
consists of multi-layer Transformer encoder layers.
Each Transformer encoder layer has the following
two major sub-layers, i.e., multi-head self-attention
and position-wise feed-forward layer.

Multi-Head Self-Attention. This sub-layer aims
to capture the contextual representations for each
word. The self-attention function is defined as:

Att(Q,K,V) = Softmax(QKT /
√
d)V , (3)

where Q, K and V represent the query, key and
value matrix correspondingly. Multi-head self-
attention layer MH(·) will project the input to mul-
tiple sub-spaces and capture the interaction infor-
mation, which is denoted as:

MH(R) = [head1; · · · ;headh]W , (4)

headi = Att(XWq
i ,XWk

i ,RW
v
i ) , (5)

where Wq
i ,W

k
i ,W

v
i ∈ Rd× d

h and W ∈ Rd×d

are parameters. Via the multi-head self-attention,
the representation matrix R is transformed to H ∈
Rn×d, where n is the token number.
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Figure 1: CPEF Question Modelling: Contrastive Pre-training Framework. We employ the title-body contrastive
task and masked language model task to jointly learn more comprehensive question representations. tk denotes the
token and q represents the question.
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Figure 2: CPEF Expert Modelling: Personalized Fine-
tuning Network.

Position-wise feed-forward. For the input H, the
calculation is defined as:

FFN(H) = RELU(HWf
1 + bf1)W

f
2 + bf2 , (6)

where Wf
1 , Wf

2 and bf1 , bf2 are learnable parame-
ters. More details please refer to the BERT (Devlin
et al., 2018).

Then, we will next introduce our well-design
pre-training tasks, which could help capture more
comprehensive question representations.

4.2 Pre-training task
Having established the input information, during
the pre-training stage, we propose to employ two
self-supervised tasks (including the contrastive task
and mask language model task) for question pre-
training.

Contrastive Task. This task is to discriminate
the representation of a particular question from
other questions. Considering the question title and

the question body could describe the question from
two different perspectives, we directly consider the
question title and the question body as positive
samples mutually. In this way, the model could
omit the tedious process of data augmentation and
combine two types of information (i.e., question
title and question body) by contrastive learning.

As shown in Figure 1, given the i-th question, its
title representation qt

i and its body representation
qb
i are positive samples of each other, while other

in-batch questions are considered as negatives.
The contrastive task can be denoted as:

Lq = −
B∑
i=1

log
exp(sim(qt

i · qb
i)/τ)∑B

i′=1 exp(sim(qt
i · qb

i′)/τ)
,

(7)
where qt

i is i-th question title representation and
qb
i′ is the question body representation of the neg-

ative instance. τ is the temperature. Through this
contrastive learning module, our model could learn
more precise and distinguished representations of
questions.

Furthermore, for helping capture the CQA lan-
guage knowledge, inspired by BERT (Devlin et al.,
2018), we simply mask some percentage of the in-
put tokens randomly and then predict those masked
tokens. The formal definition is:

Lm = −
N∑
i=1

logp(tk = tki|θ), tki ∈ [1, 2, · · · ,V]

(8)
where N is the masked token set, V is the vocabu-
lary set.



Model Pre-training. At the pre-training stage,
we leverage a multi-task training strategy to jointly
pre-train the model via the contrastive learning task
and the MLM task, denoted as:

Lpt = Lq + Lm . (9)

4.3 Personalized fine-tuning

We have obtained the pre-trained question represen-
tation model based on the unlabeled CQA corpus.
In this section, we will tune the pre-trained model
for evaluating the expert finding task. For realizing
the task, we need to model experts based on their
historical answered questions.

Despite modeling questions more comprehen-
sively during the pre-training stage, such an archi-
tecture is less capable in modeling personalized
preferences for experts. Intuitively, an expert is
likely to show personalized tastes when answer-
ing questions. Hence, our solution is to design
an expert-level personalized tuning mechanism for
injecting personalized preference while modeling
experts.

Specifically, as illustrated in Figure 2, given
the i-th expert historical answered questions (i.e.,
Qi = {q1, · · · , qn}), we first employ the pre-
trained question modeling weight to obtain each
historical question representations (q1, · · · ,qn).
Then, we design a personalized tuning mechanism
to compute the attention weight αj of j-th histor-
ical answered question with respect to the expert,
which is denoted as follows:

αj =
exp(lj)∑n
k=1 exp(lk)

, lj = (oi)
T ⊙ qj , (10)

where oi and qj are representations of the i-th ex-
pert ID embedding and the j-th historical answered
question respectively. In this way, the model could
capture the expert’s personalized interests on dif-
ferent questions.

Finally, for obtaining the expert representation,
we aggregate historical question features according
to their weights:

ei =

n∑
j=1

αjqj , (11)

where ei is the expert i final representation.
For fine-tuning the model, we use the negative

sampling technology (Huang et al., 2013) to sample
K negatives and the cross-entropy loss, which is

Datasets # questions # answerers # answers

Es 68,104 9,539 94,393
Tex 129,202 6,999 189,368

Unix 96,258 15,581 163,553
English 51,498 10,655 120,414
Physics 85,776 10,117 143,570

Electronics 78,954 7,402 143,522

Table 1: Statistical details of the datasets.

denoted as:

s =
exp(s)∑K+1

j=1 exp(sj)
,Lft = −

K+1∑
c=1

ŝlog(s) ,

(12)
where ŝ is the ground truth label and s is the nor-
malized probability predicted by the model.

5 Experiments

In this section, we first introduce the experiment
settings and then present the results and analysis.

5.1 Datasets and Experimental Settings

For pre-training question representations, we con-
struct a dataset containing 525,519 unlabeled ques-
tion data (including question title and question
body), which is from StackExchange3. For fine-
tuning and verifying the effect of the pre-trained
model in specific domains, we select six different
domains, i.e., Es, Tex, Unix, Physics, English and
Electronics. Each dataset includes a question set,
in which, each question is associated with its ti-
tle, body, and an “accepted answer” among several
answers provided by different answerers. The de-
tailed statistical characteristics of the datasets are
shown in Table 1.

We split each dataset into a training set, a valida-
tion set and a testing set, with the ratios 80%, 10%,
10% respectively in chronological order. Specifi-
cally, we filter out experts who did not answer twice
for mitigating the cold start problem. We pad or
truncate the length of the question title and body as
10 and 30 respectively. For pre-training, we set the
ratio of masking tokens is 0.2 and the temperature
τ is 0.1. For fine-tuning, following the previous
works, we set the number of negative samples K is
19. For testing methods, we randomly assigned 80
experts to each question (including those who had
answered the question) and the baseline methods
were reproduced as such.

3https://archive.org/details/stackexchange



Dateset Physics Tex English

Method
Metric

MRR P@3 NDCG@10 MRR P@3 NDCG@10 MRR P@3 NDCG@10

CNTN 0.3088 0.3837 0.4036 0.3825 0.4513 0.4612 0.3015 0.3001 0.3653
NeRank 0.4801 0.5734 0.5608 0.5891 0.6734 0.6632 0.4086 0.4633 0.5089
TCQR 0.4025 0.4937 0.5087 0.4733 0.5553 0.5634 0.3525 0.3621 0.4053
RMRN 0.4720 0.5676 0.5522 0.5890 0.6786 0.6655 0.4023 0.4611 0.5099

UserEmb 0.3773 0.4656 0.4536 0.4256 0.5223 0.5333 0.3277 0.3362 0.3915
PMEF 0.4835 0.5723 0.5615 0.5966 0.7018 0.6711 0.4099 0.4732 0.5120

ExpertBert 0.4908 0.5803 0.5635 0.6042 0.7033 0.6735 0.4126 0.4812 0.5155

CPEF 0.5051 0.5909 0.5753 0.6209 0.7204 0.6896 0.4276 0.4936 0.5211

Dateset Electronics Unix Es

Method
Metric

MRR P@3 NDCG@10 MRR P@3 NDCG@10 MRR P@3 NDCG@10

CNTN 0.3188 0.3537 0.3936 0.3529 0.4313 0.4416 0.2998 0.3121 0.3358
NeRank 0.5111 0.6012 0.6008 0.5628 0.6116 0.6423 0.4813 0.5386 0.5369
TCQR 0.4075 0.5037 0.5127 0.4836 0.5353 0.5734 0.3825 0.4621 0.4453
RMRN 0.5232 0.6111 0.6172 0.5723 0.6232 0.6521 0.4912 0.5393 0.5399

UserEmb 0.3623 0.4758 0.4699 0.4156 0.4823 0.5133 0.3077 0.3662 0.3715
PMEF 0.5423 0.6302 0.6282 0.5888 0.6412 0.6687 0.5093 0.5588 0.5501

ExpertBert 0.5433 0.6301 0.6199 0.5988 0.6521 0.6725 0.5052 0.5601 0.5575

CPEF 0.5579 0.6426 0.6305 0.6064 0.6711 0.6799 0.5192 0.5726 0.5735

Table 2: Expert finding results of different methods. The best performance of the baselines is underlined. We
perform t-test and the results show that CPEF outperforms other baselines at significance level p-value<0.05.

We adopt the pre-trained weight bert-base-
uncased as the base model including 110M pa-
rameters. To alleviate the over-fitting problem,
we utilize dropout technology (Srivastava et al.,
2014) and set the dropout ratio as 0.2. We adopt
Adam (Kingma and Ba, 2015) optimization strat-
egy to optimize our model and set the learning
rate to 5e-5 in further pre-training and 5e-2 in fine-
tuning. The batch of pre-training and fine-tuning
is 8. We employ pytorch, transformers, sklearn,
numpy, accelerator, etc to implement our code. We
independently repeat each experiment 5 times and
report the average results. All experiments use
two 24GB-memory RTX 3090 GPU servers with
Intel(R) Xeon(R)@2.20GHz CPU.

5.2 Baselines and Evaluation metrics

We compare our method CPEF with recent com-
petitive methods including:

• CNTN (Qiu and Huang, 2015) employs a
CNN to model questions and computes rel-
evance scores between questions and experts.

• NeRank (Li et al., 2019) learns question,
raiser and expert representations via a HIN
embedding algorithm and utilizes the CNN to
match them.

• TCQR (Zhang et al., 2020) utilizes a tempo-
ral context-aware model in multiple temporal
granularities to learn the temporal-aware ex-
pert representations.

• RMRN (Fu et al., 2020) employs a recurrent
memory reasoning network to explore implicit
relevance between expert and question.

• UserEmb (Ghasemi et al., 2021) utilizes a
node2vec to capture social features and uses
a word2vec to capture semantic features, then
integrates them to improve expert finding.

• PMEF (Peng et al., 2022a) designs a person-
alized expert finding method under a multi-
view paradigm, which could comprehensively
model expert and question.

• ExpertBert (Liu et al., 2022) designs a expert-
specific pre-training framework, towards pre-
cisely modelling experts based on the histori-
cal answered questions.

The evaluation metrics include Mean Recip-
rocal Rank (MRR) (Craswell, 2009), P@3 (i.e.,
Precision@3) and Normalized Discounted Cumu-
lative Gain (NDCG@10) (Järvelin and Kekäläinen,
2002) to verify the expert ranking quality.



Dateset Electronics Unix Es

Method
Metric

MRR P@3 NDCG@10 MRR P@3 NDCG@10 MRR P@3 NDCG@10

w/o CT 0.5351 0.6111 0.6127 0.5722 0.6333 0.6339 0.4795 0.5423 0.5476
w/o Per 0.5401 0.6358 0.6266 0.5823 0.6576 0.6518 0.5005 0.5611 0.5628

Original BERT 0.5228 0.6016 0.5922 0.5619 0.6233 0.6176 0.4636 0.5328 0.5389

CPEF 0.5579 0.6426 0.6305 0.6064 0.6711 0.6799 0.5192 0.5726 0.5735

Table 3: The variants of CPEF experiment results.

5.3 Performance Comparison

We compare the proposed CPEF with the baselines
on the six datasets. The experimental results of
CPEF and other comparative methods are in Ta-
ble 2. There are some observations from these
results.

Some earlier methods (e.g., CNTN) obtain
poorer results on almost datasets, the reason may
be that they usually employ max or mean operation
on histories to model expert, which omits different
history importance. PMEF utilizes a multi-view
question encoder to construct multi-view question
features, which could help learn more comprehen-
sive question representations, which is superior to
other baseline methods.

Furthermore, the PLMs-based methods (Expert-
Bert, CPEF) achieve better performance. The rea-
son is that the PLMs encoder could learn more
precise semantic features of questions and ex-
perts compared with the traditional methods. Fi-
nally, compared with all baselines, our approach
CPEF performs consistently better than them on
six datasets. Different from the ExpertBert which
only conducts MLM pre-training, we make full use
of question titles and question bodies and design
an extra title-body contrastive pre-training task,
which allows the model to learn question represen-
tations more comprehensively in a self-supervised
way. Furthermore, we utilize the personalized tun-
ing mechanism to transfer and tune the pre-trained
model according to different experts’ personalized
preferences. This result shows that our approach is
effective to improve the performance of the expert
finding.

5.4 Ablation Study

To highlight the effectiveness of our designing ex-
pert finding architecture, we design three model
variants: (a) w/o CT, only adopt the corpus-level
MLM to pre-train over CQA corpus and remove
the title-body contrastive learning, and then per-
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Figure 3: Impacts of Train Data Ratio.

sonalized fine-tune the model; (b) w/o Per, adopt
the title-body contrastive learning and the MLM
for pre-training but remove the personalized tuning
mechanism during modeling experts; (c) Original
BERT, directly adopt the original BERT weight
for expert finding via a fine-tuning way, without
pre-training and personalized tuning.

As shown in Table 3, we can have the follow-
ing observations: (1) Regardless of removing the
comparative learning in the pre-training (i.e., w/o
CT) or the personalized tuning network in the fine-
tuning (i.e., w/o Per), the model performance will
decline. (2) w/o Per outperforms w/o CT. The rea-
son is that the pre-trained question representations
are the basis for subsequent expert modeling and
question-expert matching. And the results show
that the importance of the contrastive learning task
in pre-training is greater than that of the person-
alized tuning. (3) It is not surprised that BERT
obtains the worst performance. This is because the
BERT is pre-trained on the general corpus, which
causes the semantic gap with the CQA. Further-
more, directly fine-tuning BERT could not take
the personalized characteristics into account. (4)
Our complete model CPEF obtains the best results.
The reason is it can pre-train more comprehensive
question representations. Further, the personalized
tuning network could capture expert personalized
preference, which could yield better performance.

In all, the results of ablation studies meet our
motivation and validate the effectiveness of our
proposed method.
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5.5 Further Analysis

In this section, we further analyze the ability of the
model to mitigate the impact of data sparsity and
the impact of two hyper-parameters on the model
performance.

Effect of Train Data Ratio in Fine-tuning. In
NLP, the PLMs could alleviate data sparsity prob-
lems in the downstream task. In this part, we
conduct experiments to analyze whether this phe-
nomenon still exists in expert finding, we adjust
the training data ratio in the fine-tuning stage. We
employ [20%, 40%, 60%, 80%, 100%] all data in
Physics and Tex dataset as training data to fine-
tune our model, meanwhile, the ratios of validation
data and testing remain the same (i.e., 10%) with
the main experiments. And we use the recent com-
petitive method PMEF as the baseline method.

The results are shown in Figure 3. As we can
see, the two model performance substantially drops
when less training data is used. Nevertheless, we
can find that there are growing gaps between the
results of CPEF and PMEF with the reduction of
training data, which indicates the advantage of the
pre-trained question representation model is larger
when the training data is more scarce. This obser-
vation implies that the CPEF shows the potential
to alleviate the data sparsity issue via fully mining
the knowledge from limited question information.

Effect of Masking Token Ratio. In our pre-
training, we employ the masked language model to
capture the CQA knowledge, and hence the mask
ratio is an important hyperparameter of CPEF. We
have varied the ratio in [0.1, 0.15, 0.2, 0.25, 0.3]
for exploring the model performance w.r.t different
mask ratios.

The experimental results are shown in Figure 4.
We can find that all metric results increase at first
as the masking ratio increases, reach the maximum
value (i.e., the best model performance), and then
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Figure 5: Model performance w.r.t. τ .

degrades. When the ratio is small, the BERT model
could not capture adequate CQA language knowl-
edge, which could reduce the performance of down-
stream tasks. On the contrary, when the ratio is
large, the [M] symbol appears in pre-training stage
more frequently, which could intensify the mis-
match between pre-training and fine-tuning. Hence,
we set up the ratio of masking tokens to 0.2 during
the pre-training stage.

Effect of Temperature τ . In our method, we
employ the contrastive task to pre-train question
representations, and hence, the temperature τ plays
a critical role during pre-training, which could help
mine hard negative samples. Figure 5 shows the
curves of model performance w.r.t. τ . We can
observe that: (1) Increasing the value of τ (e.g.,
≥0.2) would lead to poorer performance. This is
because increasing the τ would cause the model
could not distinguish hard negatives from easy neg-
atives. (2) In contrast, fixing τ to a too small value
(e.g., ≤0.05) would hurt the model performance.
The reason may be the gradients of a few negatives
dominate the optimization, which would lose bal-
ance during model optimization. In a nutshell, we
suggest setting the temperature τ is 0.1.

6 Conclusion

In this paper, we propose a domain contrastive pre-
training expert finding model to learn more effec-
tive representations of questions and experts. The
core of our method is that we design a contrastive
framework between question bodies and titles to in-
tegrate into the pre-training phrase with the domain
CQA corpus. In this way, our method could obtain
precise features of questions as well as experts. In
addition, the personalized tuning network could
further enhance expert representations. Extensive
experiments on several CQA datasets validate the
effectiveness of our approach, which could outper-
form many competitive baseline methods.



7 Limitations

Our contrastive pre-training method has achieved
better performance in expert findings, there are the
following limitations that we would like to explore
in the future yet. Firstly, although PLMs have been
widely used in various fields, the large computation
and resource costs are still issues for PLM-based
models. Hence, we would consider using further
distillation operations for inference efficiency. Sec-
ondly, the experiments are conducted in different
domains of StackExchange.com, and it would be
more convincing if the datasets contains other CQA
platforms such as Quora.com or Zhihu.com.
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