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Abstract

Implicit feedback recommendation is challenged
by the missing negative feedback essential for
effective model training. Existing methods of-
ten resort to negative sampling, a technique that
assumes unlabeled interactions as negative sam-
ples. This assumption risks misclassifying poten-
tial positive samples within the unlabeled data,
thereby undermining model performance. To
address this issue, we introduce WeaklyRec, a
model-agnostic framework that reframes implicit
feedback recommendation as a weakly supervised
learning task, eliminating the need for negative
samples. However, its unbiasedness hinges on
the accurate estimation of the class prior. To ad-
dress this challenge, we propose Progressive Prox-
imal Transport (PPT), which estimates the class
prior by minimizing the proximal transport cost
between positive and unlabeled samples. Experi-
ments on three real-world datasets validate the ef-
ficacy of WeaklyRec in terms of improved recom-
mendation quality. Code is available at https:
//github.com/HowardzJU/weakrec.

1. Introduction

Recommendation systems aim to capture user preferences
through their feedback, subsequently offering personalized
content or product suggestions. They find extensive applica-
tions across various domains, including e-commerce (Smith
and Linden, 2017; Wang et al., 2022), advertising (Zhou
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et al., 2018), and entertainment (Gomez-Uribe and Hunt,
2016). By accurately predicting user preferences, recom-
mendation systems play a pivotal role in enhancing user
experience and increasing business revenues (Gao et al.,
2022a;b; Zhang et al., 2025; Zheng et al., 2025).

The core of recommendation system is the handling of user
feedback, which can be broadly categorized into explicit and
implicit types. Explicit feedback, such as ratings, comments,
or like/dislike tags, reflects user preferences faithfully but
is challenging to collect, as it requires active user participa-
tion, potentially diminishing user experience. Conversely,
implicit feedback, such as page views or click logs, is read-
ily available and does not require active user participation.
Therefore, recommendation with implicit feedback, termed
as ImplicitRec, has gained significant attention in industrial
applications (Togashi et al., 2021; Lee et al., 2022).

A unique challenge in ImplicitRec is missing negative feed-
back (MNF) (Lim et al., 2015; Yang et al., 2018). Specif-
ically, the available data only consists of positive and un-
labeled samples. This absence of negative feedback com-
plicates the task of differentiating between items that are
either disliked or simply unexposed to the user across the
unlabeled interactions (Zhou et al., 2021; Ren et al., 2023;
Wang et al., 2021). For instance, a user’s failure to click on a
video might not necessarily indicate disinterest; it could sim-
ply mean the user was not exposed to that particular video.
Treating unlabeled interactions as negative instances (Zhou
et al.,, 2022; Kang and McAuley, 2018) ignores the exis-
tence of positive samples within the unlabeled data, thereby
introducing bias and compromising recommendation perfor-
mance (Wang et al., 2021).

To counteract the MNF issue, one line of works advocate
downweighting unobserved samples (Hu et al., 2008; Liang
et al., 2016), employing pairwise ranking loss (Rendle et al.,
2009). While promising, these methods are largely heuristic
and lack a solid theoretical foundation for unbiasedness.
Recent works have shifted focus towards the construction of
theoretically unbiased estimators of the ideal risk, using only
positive and unlabeled samples. Representative methods
such as RMF (Saito et al., 2020), UBPR (Saito, 2020) and
CIMF (Zhu et al., 2020) primarily leverage propensity re-
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weighting, a methodology rooted in causal inference (Li
et al., 2023b), which offers unbiased estimates provided
accurate propensity score estimation (Li et al., 2023c;a).
However, identifying accurate propensity scores remains an
elusive goal in ImplicitRec'. Furthermore, the derived risk
estimators do not necessarily maintain non-negativity (Zhu
et al., 2020; Saito, 2020; Saito et al., 2020), posing the risk
of non-convergence. Consequently, the MNF issue remains
an open challenge in ImplicitRec that warrants investigation.

This work introduces Weakly Supervised Recommendation
(WeaklyRec), a model-agnostic framework based on learn-
ing from weak supervision paradigm (Sugiyama et al.,
2022), to develop rigorous formulations and practical so-
lutions for handling MNF without reliance on vulnerable
propensity scores. Specifically, we first reformulate the
ideal risk and construct an empirical estimator that obviates
the need for negative feedback. We show that this estimator
is unbiased, consistent with the ideal risk, and amenable to
optimization via stochastic gradient descent, with unique at-
tainable optimum for representative recommender families.
However, the estimator’s performance is contingent upon
a predefined class prior, which requires expert knowledge
for empirical selection. To address this, we develop a Pro-
gressive Proximal Transport (PPT) method which achieves
automatic class prior estimation by minimizing the proximal
transport cost between the positive and unlabeled samples.
Extensive evaluations on three publicly available real-world
datasets substantiate the efficacy of the proposed method.

The main contributions of this paper are summarized below:

* We propose WeaklyRec, a model-agnostic framework that
addresses the ImplicitRec problem using weakly super-
vised learning. Its core component is a risk estimator that
eliminates the need for negative samples and is theoreti-
cally unbiased with respect to the ideal risk, provided that
accurate class prior estimation is available.

* We introduce PPT, an optimal transport-based strategy
for accurate class prior estimation, which is a necessary
factor to ensure the unbiasedness of WeaklyRec.

* We validate the efficacy of WeaklyRec on three real-world
datasets, where the recommendation performance is im-
proved and the class prior is accurately estimated.

2. Preliminary

In this section, we establish technical preliminaries essential
for comprehending the proposed methods. Initially, we de-
lineate the fundamental symbols and formalize the problem

'The term propensity means the likelihood that the sample
would be observed. It is quite difficult to be estimated in the realm
of ImplicitRec due to MNF, since the samples that are observed
but disliked is unknown.

definition of ImplicitRec. Subsequently, we offer a concise
overview of optimal transport, a mathematical framework
that is intrinsically linked to the proposed PPT method for
class prior estimation.

2.1. Implicit Feedback Recommendation

Let U and Z denote the sets of users and items, respectively,
and X = U x T represent the set of all possible user-item
interactions, where each sample is denoted by = = (u, ).
We introduce Y as the binary indicator variable for positive
feedback and designate pqat, as the underlying distribution
governing all interactions. The objective is to construct a
recommendation model, symbolized as g, that is proficient
in discriminating between samples associated with positive
and negative feedback. To quantify the performance of the
model, we employ an error measure £(¢, y), where y signi-
fies the ground truth feedback and ¢ represents the model’s
estimated feedback. In line with existing literature (Saito
et al., 2020; Luo et al., 2021), the ideal risk function is
formulated as:

Ridea1(9) = Eppin (o) [L(9(2), )] - )]

The samples with negative feedback, i.e., pgata(z]y = —1),
is unavailable in ImplicitRec due to the MNF issue, render-
ing the ideal risk in (1) incalculable. Current approaches
typically assume that unobserved samples are all negative,
resorting to negative sampling on these samples to gener-
ate negative feedback. However, this assumption does not
hold in real-world practice as the negatively sampled data
inevitably contain a proportion of positive feedback. Assign-
ing negative labels to them can lead to an unstable training
process and compromise overall performance (Rendle et al.,
2009; Saito, 2020).

2.2. Optimal Transport

Optimal transport (OT) is a mathematical framework de-
signed to measure the discrepancy between two distribu-
tions by calculating the minimum transport cost, which has
been used in many fundamental fields due to its empirical
flexibility and theoretical rigor: computer vision (Courty
et al.,, 2017; Xu et al., 2021; Shen et al., 2018). Initially,
Monge (1781) first formulated it as finding an optimal map-
ping between two continuous distributions. However, this
formulation had limitations in terms of the existence and
uniqueness of solutions. A more practical formulation was
later proposed by Kantorovich (2006), with an entropic
regularizer for enabling fast computation via Sinkhorn algo-
rithm (Altschuler et al., 2017). We provide its specification
for comparing two empirical distributions in Definition 1.

Definition 1. For empirical distributions oq., and (1.,
with n and m samples, respectively, the Kantorovich problem
aims to find an optimal plan 7 € R,*™ that minimizes the
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transport cost W(a, 8) € R between o and B. Formally,

the problem is defined as:
W(a,B) ;= min (C,m),
(0.8):= _min_(C.m) o

(e, B) :={m e RY™ : w1y, = am 1, = b},

where C € RY*™ denotes the sample-wise distance be-
tween o and . 1, and 1., are column vectors filled with
ones. The set 11 defines feasible transport plans. a and b
specify the mass of units in « and .

Recent research in OT primarily follows two trajectories.
The first aims to reduce the computational complexity of
solving OT problems. While exact solutions can be obtained
through linear programming algorithms, these come with
cubic complexity in relation to the number of samples (Bon-
neel et al., 2011). To address this, various approximate al-
gorithms for acceleration have been developed, such as the
Sinkhorn and sliced OT algorithm (Altschuler et al., 2017)
with quadratic and linear complexity, respectively. The sec-
ond line of research focuses on modifying the transport
problem to suit specific applications (Wang et al., 2025a;b).
Examples include the Schrodinger bridge problem in gen-
erative modeling (Marino and Gerolin, 2020), the Gromov
problem in graph matching (Xu et al., 2019), and the weak
transport problem in causal inference (Wang et al., 2023).

3. Methodology

This section presents our proposed WeaklyRec framework.
We first construct a surrogate estimator of the ideal risk
(1) utilizing only positive and unlabeled samples. A thor-
ough theoretical analysis is provided to expound upon its
advantageous attributes. We then formulate the Progres-
sive Proximal Transport (PPT) method to achieve automatic
estimation of the class prior. The overall workflow of Weak-
IyRec is finally encapsulated for implementation.

3.1. Weakly Supervised Recommendation

Assuming that positive and negative samples arise from

marginal distributions p,(z) = pdata(zly = 1) and
Pn(2) = paata(z|ly = —1), respectively, the data distri-
bution can be expressed as:

pdata(x> = KpPp (1‘) + ann(x)a 3)

where £, = p(y = +1) and k,, = p(y = —1) are the class
priors, satisfying &, 4+ xk, = 1. Decomposing the ideal risk
in (1) yields:
Rideal(g) = ﬁpEpp [€(g(z), +1)] + knEp, [(g(z), —1)]
t= rpLp(g) + Knfin(9),

where Ry, (g) and R, (g) denote the expected error on pos-
itive and negative samples, respectively. Since negative

samples are inaccessible due to MNF, a workaround in-
volves leveraging the unlabeled data distribution, which is a
mixture of positive and negative data distributions:

Pu(2) = kppp(2) + Fnpa(2).

On the basis of this, the negative risk R,(g) can be ex-
pressed in terms of the unlabeled and positive samples:

"Ean(g) = HnEpn [g(g(x)a 71)]
= n / ((g(x), —1)pa(r)dz
/ g(x), —1)pu()da )

~ i [ Ug(e),~Dpy(a)do
— By, [((g(x), ~1)] -,y (g ), ~1)].

Introducing #(g(z)) = (g(z), +1) — £(g(x), —1), we can
eliminate the expectation over the negative samples in (1)
to derive a surrogate of the ideal risk:

Rucar(9) = oy, [ (9(@))] + By, [£(9(2), D], (5)

where subtracting the risk of misclassifying positive sam-
ples as negative compensates for the bias introduced by
treating all unlabeled samples as negative. Consequently,
the WeaklyRec risk excludes unavailable negative feedback,
enabling empirical estimation using positive and unobserved
samples:

. K e
chak(g) = nl Zg(g
P =1

Nu

+n—uZ£ . (6)

i=1

Theoretical Justification. We demonstrate that the Weak-
lyRec estimator is unbiased relative to the ideal risk en-
abling training and evaluation without reliance on negative
samples (Theorem 1). Moreover, adding more unlabeled
samples consistently reduces estimation error (Theorem 3),
suggesting an opportunity to improve ImplicitRec perfor-
mance. Thanks to the convexity of ﬁweak (g), the conver-
gence of WeaklyRec is guaranteed with bounded errors in
mild conditions (Lemma 3). Detailed proofs are provided in
Appendix B.

3.2. Progressive Proximal Transport

The estimator in (6) necessitates a predefined positive class
prior Ky, a.k.a., the proportion of positive samples con-
cealed within unlabeled data. Although canonical positive-
unlabeled learning scenarios often assume «, to be known,
such an assumption is untenable in ImplicitRec where the
class prior is costly and difficult to obtain, thereby necessi-
tating class prior estimation. However, the task is difficult
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in ImplicitRec due to MNF. Existing methods are mainly
based on partial alignment (du Plessis et al., 2015a; 2017)
which minimizes the f-divergence between labeled and unla-
beled distributions. However, these approaches suffer from
an inherent positive bias (Sugiyama et al., 2022) and are ill
suited for data based on sparse ids.

Definition 2 (Proximal Transport, PT). Suppose ay., and
B1.m are empirical distributions corresponding to samples
with positive and unlabeled feedback, respectively. Given
a mass weight w € R, we aim to find a transport plan
7 € R"™™ minimizing the transport cost between o and
B. Formally, the problem is defined as:

(o, B;w) := arg MiN g er1(a,8:w) (C,n),
H(a, B;w) :={w € RY™ : 7wy, = a,nm' 1, <wxb,
171, =1},

(7)
where (C, ) represents the transport cost; C € R*™
denotes the sample-wise distance’ between o and f3. 1, and
1,, are column vectors filled with ones. The set 11 defines the
feasible transport plans. a and b specify the mass of units
in o and B, respectively, and are implemented as 1,,/n and
1,,/m under the assumption of a uniform mass distribution.

To address this gap, we introduce the Progressive Proxi-
mal Transport (PPT) method, specifically designed for class
prior estimation in the context of our WeaklyRec frame-
work. The core concept of PPT is the proximal transport
(PT) problem, as outlined in Definition 2. Unlike the tradi-
tional Kantorovich problem, our approach adjusts the mass
of 3 by a weight factor w > 1 and modifies the mass preser-
vation equality to allow for non-matched samples in 3. Fig-
ure | illustrates how the PT transport strategy evolves with
different values of w. When w = 1, PT matches all sam-
ples in 3, effectively reducing to the standard Kantorovich
problem. As w increases, PT allows each sample in S to
be matched with multiple samples in «. As a result, the
positively labeled samples a will be matched towards the
nearest sub-distribution within 3, driven by minimizing the
transport cost in (7).

The proposed PPT approach leverages this property of PT
to estimate the class prior x,, by progressively adjusting
the weight w. Starting with a large initial value of w, the
matched samples in 3 are primarily positive, as they are ex-
pected to be closely aligned with a. As w decreases, more
samples in S are considered for matching, without signif-
icantly increasing the transport cost due to the substantial
overlap between the positive samples labeled and unlabeled.
Upon reaching a threshold w*, the inclusion of negative
samples becomes unavoidable, leading to a sharp increase
in the transport cost, since the distributions of positive and

Here, we calculate the sample-wise distance with the squared
Euclidean metric in line with Altschuler et al. (2017).

9 <"—AB:

b) w=2 (c) w=10

Figure 1: Overview of the PT transport plan under varying
mass weight parameters w. The dark fields in S demarcate
the domain containing samples that are transported. Lines
connecting « and § signify the transport plans 7 (v, 8; w).

Algorithm 1 The computation workflow of WeaklyRec.
Input: a mini-batch of samples x, recommender model g
with user and item embedding look-up table U and V.
Parameter: 7): learning rate; wi.x: mass weights.
Output: updated embedding look-up tables Ut and V.
I 2, , 21, < split(x).
2: ul, vl « look-up(U, V,zP), 2P «
concat(ul, vP),i=1:n,.
3: u}, v}« look-up(U, V,z}}),z} <
concat(u}, v}), j =1:ny.

.
z‘f:npvzi]:nu?wk)<c’ ), k=1:K.
Wy, « (C, ;) + KL(mw "1, ,1,,), k=1:K.

k* < arg I}lian:l;K, R 1/ wps.

Freak 52 Y07, £ (g (ul VD)), +

Ly g (v ). A

9 U+ U- 1 - VuRweak, Ve V- 7 - Vv Ryeak-

Cij < HZ? — Z;H; C « [Cij]
T} 4 arg mingcyy

A A

negative samples are heterogeneous. The class prior is then
estimated as &, = 1/w*, justified by the fact that only ap-
proximately 1/w* of the samples in 8 are matched by PT
as illustrated in Figure 1.

The PT developed in Definition 2 is inherently a linear
programming problem and thus can be solved with well-
established convex optimizers. Interestingly, PT can be
viewed as an augmented Kantorovich problem (Xu et al.,
2020), which enables the utilization of specialized optimal
transport solvers, known for superior convergence rates and
computational efficiency. A comprehensive analysis of this
reformulation is provided in Appendix B.2.

3.3. Model Implementation

In this section, we delineate the implementation of Weak-
IyRec, employing matrix factorization as an exemplar rec-
ommender model. The computational workflow for a round
of parameter updating is outlined in Algorithm 1.

Initially, we sample a mini-batch of samples, denoted as
x. This batch is subsequently partitioned into two sub-
sets: positively-labeled samples xﬁ’:np and unlabeled sam-
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Table 1: Recommendation performances in terms of NDCG @k on Yahoo! R3, Coat and KuaiRec.

Dataset Yahoo! R3 Coat KuaiRec

Metrics NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5
RMF 0.632+0.003 0.666+0.003 0.706+0.003 0.374+0.026 0.403+0.020 0.44210.021 0.211+0.007 0.209+0.005 0.212+0.003
CRMF 0.63340.004 0.667+0.003 0.706+0.003 0.377+0.022 0.4014+0.018 0.445+0.023 0.21240.005 0.218+0.004 0.22240.002
WMF 0.707+0.003 0.737+0.003 0.772+0.002  0.389+0.025 0.425+0.023 0.466+0.027 0.226+0.009 0.2441+0.008 0.261+0.008
UBPR 0.755+0.003 0.794+0.001 0.826+0.001 0.476+0.024 0.509+0.014 0.541+0.007 0.24810.000 0.265+0.006 0.281+0.006
CUBPR  0.755+0.003 0.794+0.002 0.82610.002 0.478+0.026 0.509+0.013 0.542+0.007 0.25410.007 0.268+0.007 0.284+0.007
UPL 0.759+0.003 0.798+0.002 0.829+40.003 0.51240.019 0.508+0.013 0.539+0.012 0.250+0.006 0.265+0.006 0.281+0.005
RecVAE  0.650+0.002 0.683+0.004 0.719+0.005 0.465+0.021 0.49940.017 0.545+0.000 0.422+0.006 0.434+0.005 0.448+0.007
DCF 0.762+0.003 0.796+0.003 0.826+0.002 0.544+0.0025 0.538+0.019 0.566+0.007 0.448+0.007 0.457+0.008 0.466+0.004
ORACLE 0.652+0.004 0.69240.003 0.73240.003 0.443+0.019 0.47040.012 0.507+0.011 0.204+0.004 0.22510.005 0.24640.005
CDR 0.66940.005 0.695+0.003 0.727+0.004 0.39840.015 0.420+0.014 0.457+0.014 0.49140.012 0.425+0.005 0.412+40.004
SDR 0.666+0.001 0.688+0.001 0.719+0.001  0.452+0.030 0.467+0.022 0.502+0.018 0.49310.006 0.419+0.010 0.400+0.010
UIDR 0.679+0.030 0.705+0.032 0.737+0.033 0.382+0.015 0.400+0.011 0.436+0.014 0.49310.085 0.446+0.060 0.435+0.050
WeaklyRec 0.784%0.003 0.814%0.003 0.843%0.002 0.552%0.031 0.555%0.019 0.589%0.015 0.498+0.008 0.486+0.007 0.488%L0.004

Note: The results are reported in meant¢q With 5 runs. The best and second best metrics are bolded and underlined, respectively. ”*”
marks the metrics that WeaklyRec surpasses the best baseline with p-value < 0.05 over paired samples t-test.

ples Y., (step 1). Following this partitioning, we look up
the embedding tables to generate user and item embeddings
(steps 2-3). The sample-wise distances between these em-
beddings are then computed (step 4). For each candidate
mass weight wg, we calculate the transport strategy by solv-
ing the PT problem in (7) and calculate the associated trans-
port cost (steps 5-6). Notably, the cost is augmented with a
KL divergence term to facilitate comprehensive matching
of the positive samples within the unlabeled set.

Upon identifying the optimal mass weight wy that min-
imizes the transport cost, we estimate the class prior as
R = 1/wgs (step 7). Subsequently, we employ & to cal-
culate the surrogate unbiased risk (5). Notably, while the
surrogate risk (5) is inherently non-negative, its empirical
approximation in (6) does not preserve this non-negativity.
If £ is not upper-bounded, the empirical risk (6) may lack a
lower bound, thereby risking model overfitting (Kiryo et al.,
2017; Chaudhari and Shevade, 2012). This challenge is not
exclusive to our framework; it has also been observed but
not adequately addressed in prior methodologies within the
ImplicitRec field (Saito et al., 2020; Saito, 2020). Therefore,
we nullify the negative values of ! by setting them to zero, so
that negative terms are excluded from gradient calculation
(step 8). Finally, the embedding tables are updated using
stochastic gradient descent (step 9).

4. Experiments
4.1. Experimental Setup

Dataset. We utilize three real-world datasets: Yahoo! R3,
Coat, and KuaiRec. These datasets are selected since they
uniquely provide negative feedback for evaluating model
performance and include unbiased test sets that simulate
production environments, aligning with established Implic-

itRec studies (Saito et al., 2020; Saito, 2020; Ren et al.,
2023). In Yahoo! R3 and Coat, user-item pairs with ratings
above 4 are labeled as positive, and the rest as negative.
In KuaiRec, records with counts below two are considered
negative, while the others are positive. Each dataset is
chronologically split into training, validation, and testing
sets in a ratio of 0.8:0.1:0.1.

Baselines. In line with Ren et al. (2023), the collection of
baselines encompasses models as follows.

* RecVAE (Shenbin et al., 2020) and DCF (He et al.,
2024) are representative heuristic ImplicitRec models.
WMF (Hu et al., 2008), RMF (Saito et al., 2020) and the
clipped CRMF (Saito et al., 2020) are unbiased Implic-
itRec methods with point-wise error measures.

« UBPR (Saito, 2020), CUBPR (Saito, 2020) and
UPL (Ren et al., 2023) are unbiased ImplicitRec methods
with pair-wise error measures. UPL (Ren et al., 2023)
integrates the point-wise and pair-wise error measures,
which to our knowledge is currently the state-of-the-art
method tailored for ImplicitRec.

* Oracle is the recommender model that is trained using
the ideal loss, but suffers from data sparsity of available
explicit feedback (Wang et al., 2022) and selection bias.
SDR (Li et al., 2023c), CDR (Song et al., 2023) and
UIDR (Li et al., 2024) correct this bias via propensity
weighting, where propensities are heuristically estimated
following Saito et al. (2020).

Training Protocol. We use matrix factorization as the
primary recommendation model, following existing stud-
ies (Ren et al., 2023; Saito et al., 2020; Saito, 2020; Li
et al., 2023c). Experiments are conducted with two Intel
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Table 2: Recommendation performances in terms of Recall@k on Yahoo! R3, Coat and KuaiRec.

Dataset Yahoo! R3 Coat KuaiRec

Metrics Recall@1 Recall@3  Recall@5 Recall@1 Recall@3  Recall@5 Recall@]1 Recall@3  Recall@5
RMF 0.0424+0.002 0.132+0.005 0.226+0.003 0.0541+0.017 0.170+0.018 0.285+0.022 0.008+0.001 0.02210.002 0.037+0.001
CRMF 0.04240.002 0.13240.004 0.22640.004 0.055+0.014 0.168+0.018 0.289+0.030 0.009+0.002 0.02940.003 0.047+0.001
WMF 0.0944+0.002 0.203+0.003 0.288+0.002 0.06140.011 0.19240.025 0.31140.035 0.01510.003 0.058+0.007 0.10410.008
UBPR 0.12540.002 0.265+0.000 0.344+0.001 0.11310.008 0.27040.000 0.375+0.013 0.023+0.004 0.069+0.005 0.115+0.005
CUBPR  0.12610.003 0.265+0.002 0.344+0.002 0.1131+0.000 0.270+0.000 0.378+0.010 0.0241+0.002 0.071+0.008 0.119+0.009
UPL 0.12940.002 0.268+0.002 0.346+0.003 0.11810.009 0.25610.011 0.369+0.010 0.02210.003 0.070+0.004 0.117+0.006
RecVAE  0.054+0.002 0.14940.001 0.234+40.002 0.096+0.012 0.267+0.021 0.389+0.031 0.110+0.001 0.183+0.002 0.214+0.002
DCF 0.131+0.003 0.262+0.003 0.339+0.004 0.13410.014 0.27240.024 0.386+0.027 0.119+0.001 0.231+0.005 0.288+0.004
ORACLE  0.055+0.003 0.16210.004 0.258+0.004 0.085+0.000 0.23310.000 0.350+0.015 0.011+0.001 0.052+0.005 0.101+0.006
CDR 0.066+0.002 0.157+0.003 0.235+0.006 0.06410.012 0.1851+0.018 0.29710.017 0.14040.004 0.19110.002 0.207+0.003
SDR 0.061+0.001 0.149+0.003 0.22310.002 0.085+0.017 0.224+0.014 0.337+0.013 0.138+0.002 0.184+0.007 0.191+0.010
UIDR 0.075+0.021 0.168+0.035 0.245+0.037 0.060+0.009 0.1631+0.011 0.26810.013 0.13310.037 0.206+0.038 0.235+0.033
WeaklyRec 0.146%0.002 0.280%0.003 0.354%0.002 0.13140.016 0.302%0.010 0.425%0.019 0.137+0.002 0.245%0.005 0.296%0.004

Note: The results are reported in mean+siq With 5 runs. The best and second best metrics are bolded and underlined, respectively. *”

marks the metrics that WeaklyRec surpasses the best baseline with p-value < 0.05 over paired samples t-test.

Xeon Platinum 8383C CPUs (2.70 GHz) and eight NVIDIA
GeForce RTX 4090 GPU. We tune the learning rate in
{0.005, 0.01, 0.05}, batch size in {256, 512, 1024, 2048},
and embedding size in {8, 16, 32}. All experiments are im-
plemented in PyTorch using the Adam optimizer (Kingma
and Ba, 2015) with early stopping (patience = 5). The candi-
date mass weights (wy,) are set to [5, 10, 20, 50, 100] which
balances searching spectrum and efficiency.

Evaluation Protocol. In the evaluation phase, the nega-
tive feedback is employed for performance evaluation. Two
commonly used metrics are adopted for evaluation: Top-k
recall (Recall@k) and Top-k normalized discounted cumu-
lative gain NDCG@¥k). We report results on Recall@{1, 3,
5} and NDCG@({1, 3, 5}. To perform a significance test,
all experiments are repeated for 5 times.

4.2. Overall Performance

The evaluation of our proposed methods and the baselines is
summarized using the NDCG in Table 2 and Recall metrics
in Table 5. We outline the key findings as follows:

» Conventional point-wise baselines exhibit practical per-
formance but have inherent limitations: the sensitivity
to small propensity scores leads to large estimation vari-
ances. Techniques like CRMF address this by capping
propensities below a certain threshold, which introduces
a bias and compromises performance.

* The pair-wise baselines such as UBPR and CUBPR also
rely on propensity scores and hence share the limitations
of point-wise baselines but generally outperform them.
This improvement may come from the pair-wise loss,
which penalize lower ratings for unlabeled samples rather
than fixing them as negatives. Among the baselines, the
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Figure 2: Varying risk estimator results on KuaiRec.
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Figure 3: Varying error measure (¢) results on KuaiRec.

UPL (Ren et al., 2023) approach, which combines point-
wise and pair-wise strategies, is notably effective.

* Our WeaklyRec approach outperforms baselines across
most datasets and metrics. This superiority may come
from its unbiasedness and consistency without theoretical
guarantees. Crucially, WeaklyRec operates independently
of propensity score identification, avoiding issues related
to small propensities and inaccurate propensity estimation
in baselines (Saito, 2020; Saito et al., 2020).

4.3. Discussion on the WeaklyRec estimator

In this section, we investigate the performance of various
error measures and weakly supervised learning estimators
in the WeaklyRec framework.
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Figure 4: PT transport plan (a-c) and cost (d) with different w. Circular (rectangular) markers indicate positive (negative)
samples. Blue (red) markers indicate labeled (unlabeled) samples.

Table 3: Varying fixed class prior results.

Rp W AW [NDCG@3 ANDCG@3 | NDCG@5 ANDCG@S5 | Recall@3 ARecall@3 | Recall@5 ARecall@5
0.2 6.1143 - 0.4022 - 0.4232 - 0.2102 - 0.2732 -
0.005 | 5.5727 8.85%/ | 0.4696 16.75%1 0.4717 11.46%1 0.2293 9.08%1 0.2857 4.57%1
0.01 | 55727 8.85%| | 0.4731 17.62%1 0.4781 12.97%1 0.2326 10/65%7T 0.2930 7.24%1

0.02 | 55716 8.87%| | 0.4847 20.51%1 0.4867
0.05 |5.5620 9.03%) | 0.4847 20.51%71 0.4871
0.1 5.5951 8.49%| | 0.4427 10.06%1 0.4564

15.00%1 0.2419 15.08%1 0.2954 8.12%1
15.09%1 0.2455 16.79%1 0.2979 9.04%1
7.84%71 0.2296 9.22%1 0.2886 5.63%71

Note: A denotes the relative deviation from the results with &, = 0.2.

* Varying risk estimator results. We incorporate three
widely-used weakly supervised learning estimators into
the WeaklyRec framework: uPU (du Plessis et al., 2014),
nnPU (Kiryo et al., 2017), and distPU (Zhao et al., 2022).
Our empirical results in Figure 2 indicate that all three es-
timators deliver commendable performance. Specifically,
uPU, a seminal work in this area, offers theoretically unbi-
ased risk estimates. However, it suffers from consequent
overfitting due to the absence of a lower bound on the
loss function. Subsequent nnPU and distPU address this
issue by introducing non-negativity constraints, result-
ing in improved performance. However, they impose
non-negativity constraints in an expectation sense, over-
looking the role of individual non-negative terms within
the expectation and thereby compromising sample ef-
ficiency. In contrast, our implementation advocates to
adding non-negative constraint for each term individu-
ally, which enhances sample efficiency and marginally
improves performance across six out of eight metrics.

* Varying error measure results. According to Theorem 4,
the surrogate risk function (5) with a logistic error mea-
sure is convex, making it amenable to optimization via
stochastic gradient methods. This property also extends
to the squared loss error measure, which explains its com-
parable performance relative to the logistic measure in
Figure 3. On the other hand, the sigmoid error measure
renders the surrogate risk non-convex, which complicates
optimization and causes suboptimal performance.

4.4. Discussion on the PPT Approach

Owing to missing negative feedback, the actual class prior
 in unavailable. To showcase the efficacy of PPT in class
prior estimation, we make two efforts as follows.

4.4.1. NUMERICAL VERIFICATION

We conduct a case study using a simulated dataset with a pre-
defined class prior x,,. Figure 4 (a-c) illustrates the dataset
and transport strategies for different class prior estimates w.
The key observations are summarized as follows:

* Different values of w result in distinct matching strategies
m. Atw = 1, PT reduces to the standard Kantorovich
problem, matching all unlabeled samples. With w = 1.5,
PT matches positively labeled samples with concealed
positives but also matches some negatives due to mass
preservation, leading to high transport costs. Increasing
w to 2 allows partial matching of only concealed posi-
tive samples, rectifying the transport plan and minimizing
transport cost. Further increases in w, as shown in Fig-
ure 4 (d), do not rectify the transport plan and instead
increase transport costs.

» The behavior of w proves suitable for estimating class
priors. Figure 4 (d) shows that for a true class prior
kp = 0.3, transport cost decreases sharply towards about
0.2 at w = 0.4, then gradually increases. According to
Section 4.4, PPT estimates the class prior to be between
0.25 and 0.33, closely matching the predefined «;, = 0.3.
For other class priors of 0.05, 0.1, and 0.5, the minimum
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Figure 5: Results with varying ratios of unlabeled data for model training. The colored lines and shadowed areas represent

mean values and 90% confidence intervals, respectively.

transport costs correspond to w values of 20, 10, and 2
respectively, supporting the relationship x, = 1/w.

4.4.2. IN-LOOP VERIFICATION

A reasonable hypothesis is that the class prior yielding the
optimal performance likely corresponds to the ground truth,
aligning well with both theoretical properties and practical
requirements. Therefore, we firstly modify WeaklyRec to
use fixed class prior estimates, &, and evaluate the resulting
performance. Afterwards, we examine whether PPT’s esti-
mated class prior approximates the fixed prior that achieves
the best performance. This analysis is conducted using the
large-scale KuaiRec dataset, with key results summarized
in Table 3 and analyzed below.

* Accurate class prior estimation is critical for WeaklyRec’s
performance. In Table 3, setting &, = 0.2 results in an
NDCG@5 of approximately 0.423. Performance consis-
tently improves as ik}, decreases, reaching the peak of
around 0.487 at k, = 0.05. Further increasing &, to 0.1
causes an immediate drop. Thus, the optimal class prior
estimate is approximately <, = 0.05.

» PPT effectively identifies the ground-truth class prior.
Specifically, the PT cost is minimized at &, = 0.05 at
5.5620, which corresponds to the best overall performance
in Table 3. Therefore, the PPT approach successfully iden-
tifies the class prior that optimizes performance.

4.5. Scalability Analysis

According to Theorem 3, involving more unlabeled sam-
ples reduces the variance to approximate the ideal risk and
improves performance. In this section, we investigate the
performance of WeaklyRec given varying proportions of
unlabeled samples for training, to substantiate the utility of
unlabeled samples.

The results in Figure 5 show a consistent improvement
in performance with increasing proportions of unlabeled

samples. For instance, using just 5% of unlabeled sam-
ples achieves an NDCG @1 of approximately 0.34 on the
KuaiRec dataset, with performance peaking at around 0.5
when all unlabeled samples are included. These trends,
which hold across other metrics and datasets, validate Weak-
IyRec’s theoretical consistency. Additionally, the rate of
performance improvement tends to plateau beyond a cer-
tain threshold, indicating that while it is possible to use
all unlabeled data, a subset may be sufficient to balance
performance and training cost.

5. Related Works

5.1. Learning from Weak Supervision

Weakly supervised learning refers to a type of machine learn-
ing paradigm where the training data is partially labeled or
noisily labeled (Sugiyama et al., 2022). Unlike supervised
learning wherein each data point has a corresponding accu-
rate label, weak supervised learning operates on data where
the labels may be imprecise, incomplete, or altogether miss-
ing for some instances. This approach is particularly useful
when obtaining fully labeled data is expensive or difficult.

Positive-Unlabeled (PU) learning an important instance of
weakly supervised learning, focusing on problems where
the training set consists of labeled positive examples and
unlabeled examples that could either be positive or negative,
with applications in fundamental fields such as computer
vision (Loghmani et al., 2020; Chapel et al., 2020) and
text processing (Le et al., 2020; S. et al., 2022). The core
challenge arises from the absence of negative labels, which
impedes the application of traditional supervised learning
models. There are two primary paradigms to tackle this chal-
lenge: re-weighting and pseudo-labeling. The re-weighting
paradigm adjusts sample weights to achieve unbiased es-
timation of the ideal risk, exemplified by uPU (du Plessis
et al., 2014). Subsequent modifications make uPU con-
vex (du Plessis et al., 2015b) and non-negative (Kiryo et al.,
2017; Chaudhari and Shevade, 2012; Zhang and Zuo, 2009),
to accommodate with stochastic gradient optimizers. Re-
cently, further refinements have been proposed to adapt
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handle data imbalance (Su et al., 2021) and sample selection
bias (Hammoudeh and Lowd, 2020). On the other hand, the
pseudo-labeling paradigm identifies reliable negative and
positive samples from the unlabeled data and then turns the
problem into a supervised learning task. Methods differ in
the techniques of pseudo labels assignment, such as graph
neural network (Chaudhari and Shevade, 2012; Zhang and
Zu0,2009), generative models (Hou et al., 2018), confidence
score (Northcutt et al., 2017), reinforcement learning (LLuo
et al., 2021) and clustering analysis (Gong et al., 2019).

5.2. Recommendation with Implicit Feedback

ImplicitRec aims to infer user preferences from user behav-
iors such as clicks or views rather than explicit comments.

Compared with explicit feedback, implicit feedback is char-
acterised by missing negative feedback (MNF). Specifically,
the data involves some positive feedback and unlabeled data.
The absence of negative feedback makes it difficult to dif-
ferentiate between items that are disliked and those simply
unexposed to the user. Current approaches treating unla-
beled data as negative can lead to biased and inaccurate
recommendations (Zhou et al., 2022; Kang and McAuley,
2018; Wang et al., 2022; Li et al., 2023¢). An exemplar
approach to handle this issue is the weighted matrix factor-
ization (Hu et al., 2008), which heuristically downweights
the unobserved user-item samples versus the observed ones.
ExpoMF (Liang et al., 2016) further extends it to a genera-
tive formulation. However, these methods are often heuristic
and lack rigorous theoretical underpinning, indicating a need
for further exploration of this line of works.

Recent advancement further considers sample selection bias
in the positively labeled data. Specifically, the observed
positive feedback is not a random sample of a user’s true
preferences; rather, it is influenced by various factors such
as item popularity and visibility (Lim et al., 2015; Yang
et al., 2018). This non-random sampling can distort the
true underlying preference structure, resulting in inaccurate
recommendations (Zhou et al., 2021; Gupta et al., 2023;
Togashi et al., 2021). Current efforts mainly employ in-
verse propensity weighting (IPW) to correct such selection
bias. It re-weights each observed sample using a propensity
score, which theoretically ensures an unbiased modeling of
user-item preferences (Wang et al., 2022; Li et al., 2023c;a).
In practice, methods mainly differ in terms of the ways
to estimate propensity, represented by employing the item
popularity (Saito et al., 2020; Saito, 2020) and constructing
a propensity estimator (Zhu et al., 2020; Lee et al., 2022;
Xiao et al., 2024). Despite its theoretical merits, IPW faces
several practical challenges: (i) the propensity estimation
is often inaccurate (Li et al., 2023c), exacerbated by the ab-
sence of negative feedback; (ii) the estimators are sensitive
to small propensity scores (Li et al., 2023a), complicating

the training process; and (iii) the non-negativity constraint,
essential for model convergence, is often violated for the
sake of theoretical unbiasedness (Saito et al., 2020; Saito,
2020). These limitations are not only theoretically complex
but also empirically restrict the application of IPW-based
approaches in ImplicitRec.

Recently, PU learning has also been incorporated for en-
hancing ImplicitRec (Togashi et al., 2021; Zhou et al., 2021).
For example, Zhou et al. (2021) develop an adversarial ap-
proach using PU loss for discriminator training, Togashi
et al. (2021) introduce a density-ratio-based method that
leverages PU learning for density-ratio estimation. Our con-
tributions are distinct from them: we are the first to integrate
PU learning to enhance the binary classification objective
for ImplicitRec and propose a class prior estimation method
based on optimal transport, a significant contribution given
the complexity of this issue in PU learning.

6. Conclusions

In conclusion, the challenge of missing negative samples
has long been a significant obstacle in ImplicitRec. To
handle this issue, we develop WeaklyRec, a model-agnostic
framework that adapts principles from weakly supervised
learning to the domain of ImplicitRec. A cornerstone of our
approach is the PPT approach designed to estimate the class
prior by minimizing the proximal transport cost between
positive and unlabeled samples. Extensive evaluations on
real-world datasets confirm the efficacy of our approach and
support the theoretical analysis empirically.

Limitation & Future works This study adheres to the set-
ting of ID-based recommendation research and does not con-
sider user profiles. Future work could extend this framework
to more content-rich scenarios. Additionally, the scalabil-
ity of WeaklyRec highlights the potential of using implicit
feedback to enhance recommenders. Therefore, how to har-
monize explicit and implicit feedback presents a promising
direction for further research.

Acknowledgements

This work is supported by National Key R&D Program
of China (2022ZD0160300) and the NSF China (No.
62276004, 623B2002).

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.



Unbiased Recommender Learning from Implicit Feedback via Weakly Supervised Learning

References

Jason M. Altschuler, Jonathan Weed, and Philippe Rigol-
let. 2017. Near-linear time approximation algorithms
for optimal transport via Sinkhorn iteration. In NeurIPS.
1964-1974.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi,
Luca Nenna, and Gabriel Peyré. 2015. Iterative Bregman
projections for regularized transportation problems. SIAM
J. SCI. COMPUT. 37,2 (2015), A1111-A1138.

Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and
Wolfgang Heidrich. 2011. Displacement interpolation
using Lagrangian mass transport. ACM Trans. Graph. 30,
6 (2011), 158.

Laetitia Chapel, Mokhtar Z. Alaya, and Gilles Gasso. 2020.
Partial Optimal Tranport with applications on Positive-
Unlabeled Learning. In NeurIPS.

Sneha Chaudhari and Shirish K. Shevade. 2012. Learning
from Positive and Unlabelled Examples Using Maximum
Margin Clustering. In NeurIPS, Vol. 7665. 465-473.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rako-
tomamonjy. 2017. Optimal Transport for Domain Adap-
tation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 9
(2017), 1853-1865.

Marthinus Christoffel du Plessis, Gang Niu, and Masashi
Sugiyama. 2014. Analysis of Learning from Positive and
Unlabeled Data. In NeurIPS. 703-711.

Marthinus Christoffel du Plessis, Gang Niu, and Masashi
Sugiyama. 2015a. Class-prior Estimation for Learning
from Positive and Unlabeled Data. In ACML, Vol. 45.
221-236.

Marthinus Christoffel du Plessis, Gang Niu, and Masashi
Sugiyama. 2015b. Convex Formulation for Learning
from Positive and Unlabeled Data. In ICML, Vol. 37.
1386-1394.

Marthinus Christoffel du Plessis, Gang Niu, and Masashi
Sugiyama. 2017. Class-prior estimation for learning from
positive and unlabeled data. Machine Learning 106, 4
(2017), 463-492.

Pavel E. Dvurechensky, Alexander V. Gasnikov, and Alexey
Kroshnin. 2018. Computational Optimal Transport: Com-
plexity by Accelerated Gradient Descent Is Better Than
by Sinkhorn’s Algorithm. In ICML, Vol. 80. 1366-1375.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort,
Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras,
Nemo Fournier, Léo Gautheron, Nathalie T. H. Gayraud,

10

Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J.
Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. 2021. POT: Python Optimal Transport. J.
Mach. Learn. Res. 22 (2021), 78:1-78:8.

Chongming Gao, Shijun Li, Wengiang Lei, Jiawei Chen,
Biao Li, Peng Jiang, Xiangnan He, Jiaxin Mao, and Tat-
Seng Chua. 2022a. KuaiRec: A Fully-observed Dataset
and Insights for Evaluating Recommender Systems. In
CIKM. ACM, 540-550.

Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao
Li, Wengiang Lei, Peng Jiang, and Xiangnan He. 2022b.
KuaiRand: An Unbiased Sequential Recommendation
Dataset with Randomly Exposed Videos. In CIKM. ACM,
3953-3957.

Carlos A. Gomez-Uribe and Neil Hunt. 2016. The Netflix
Recommender System: Algorithms, Business Value, and
Innovation. ACM Trans. Manage. Inf. Syst. 6, 4 (2016),
19 pages.

Chen Gong, Hong Shi, Tongliang Liu, Chuang Zhang, Jian
Yang, and Dacheng Tao. 2019. Loss decomposition and
centroid estimation for positive and unlabeled learning.
IEEE Trans. Pattern Anal. Mach. Intell 43, 3 (2019), 918-
932.

Shashank Gupta, Harrie Oosterhuis, and Maarten de Rijke.
2023. A Deep Generative Recommendation Method for
Unbiased Learning from Implicit Feedback. In ICTIR.
ACM, 87-93.

LLC Gurobi Optimization. 2020. Gurobi optimizer refer-
ence manual (2020).

Zayd Hammoudeh and Daniel Lowd. 2020. Learning from
Positive and Unlabeled Data with Arbitrary Positive Shift.
In NeurIPS.

William E Hart, Jean-Paul Watson, and David L Woodruff.
2011. Pyomo: modeling and solving mathematical pro-
grams in Python. Mathematical Programming Computa-
tion 3 (2011), 219-260.

Zhuangzhuang He, Yifan Wang, Yonghui Yang, Peijie Sun,
Le Wu, Haoyue Bai, Jingi Gong, Richang Hong, and Min
Zhang. 2024. Double Correction Framework for Denois-
ing Recommendation. In KDD. ACM, 1062-1072.

Ming Hou, Brahim Chaib-Draa, Chao Li, and Qibin Zhao.
2018. Generative adversarial positive-unlabeled learning.
In IJCAI 2255-2261.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Col-
laborative Filtering for Implicit Feedback Datasets. In
ICDM. IEEE Computer Society.



Unbiased Recommender Learning from Implicit Feedback via Weakly Supervised Learning

Wang-Cheng Kang and Julian J. McAuley. 2018. Self-
Attentive Sequential Recommendation. In /ICDM. 197—
206.

Leonid V Kantorovich. 2006. On the translocation of
masses. J. Math. Sci. 133, 4 (2006), 1381-1382.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method
for Stochastic Optimization. In ICLR.

Ryuichi Kiryo, Gang Niu, Marthinus Christoffel du Plessis,
and Masashi Sugiyama. 2017. Positive-Unlabeled Learn-
ing with Non-Negative Risk Estimator. In NeurIPS. 1675—
1685.

Triet Huynh Minh Le, David Hin, Roland Croft, and
Muhammad Ali Babar. 2020. PUMiner: Mining Security
Posts from Developer Question and Answer Websites
with PU Learning. In MSR. ACM, 350-361.

Jae-woong Lee, Seongmin Park, Joonseok Lee, and Jong-
wuk Lee. 2022. Bilateral Self-unbiased Learning from
Biased Implicit Feedback. In SIGIR. ACM, 29-39.

Haoxuan Li, Yan Lyu, Chunyuan Zheng, and Peng Wu.
2023a. TDR-CL: Targeted Doubly Robust Collaborative
Learning for Debiased Recommendations. In /CLR.

Haoxuan Li, Yanghao Xiao, Chunyuan Zheng, Peng Wu,
and Peng Cui. 2023b. Propensity Matters: Measuring
and Enhancing Balancing for Recommendation. In ICML,
Vol. 202. PMLR, 20182-20194.

Haoxuan Li, Chunyuan Zheng, Shuyi Wang, Kunhan Wu,
Hao Wang, Peng Wu, Zhi Geng, Xu Chen, and Xiao-Hua
Zhou. 2024. Relaxing the Accurate Imputation Assump-
tion in Doubly Robust Learning for Debiased Collabora-
tive Filtering. In ICML.

Haoxuan Li, Chunyuan Zheng, and Peng Wu. 2023c. Sta-
bleDR: Stabilized Doubly Robust Learning for Recom-
mendation on Data Missing Not at Random. In ICLR.

Dawen Liang, Laurent Charlin, James Mclnerney, and
David M. Blei. 2016. Modeling User Exposure in Rec-
ommendation. In WWW. ACM, 951-961.

Daryl Lim, Julian J. McAuley, and Gert R. G. Lanckriet.
2015. Top-N Recommendation with Missing Implicit
Feedback. In RecSys. ACM, 309-312.

Haibin Ling and Kazunori Okada. 2007. An Efficient Earth
Mover’s Distance Algorithm for Robust Histogram Com-
parison. IEEE Trans. Pattern Anal. Mach. Intell. 29, 5
(2007), 840-853.

Mohammad Reza Loghmani, Markus Vincze, and Tatiana
Tommasi. 2020. Positive-unlabeled learning for open set
domain adaptation. Pattern Recognit. Lett. 136 (2020),
198-204.

11

Chuan Luo, Pu Zhao, Chen Chen, Bo Qiao, Chao Du,
Hongyu Zhang, Wei Wu, Shaowei Cai, Bing He, Sar-
avanakumar Rajmohan, and Qingwei Lin. 2021. PULNS:
Positive-Unlabeled Learning with Effective Negative
Sample Selector. In AAAI. 8784-8792.

Simone Di Marino and Augusto Gerolin. 2020. An Optimal
Transport Approach for the Schrodinger Bridge Problem
and Convergence of Sinkhorn Algorithm. J. Sci. Comput.
85,2 (2020), 27.

Gaspard Monge. 1781. Mémoire sur la théorie des déblais
et des remblais. Mem. Math. Phys. Acad. Royale Sci.
(1781), 666-704.

Gang Niu, Marthinus Christoffel Du Plessis, Tomoya Sakai,
Yao Ma, and Masashi Sugiyama. 2016. Theoretical com-
parisons of positive-unlabeled learning against positive-
negative learning. NeurlPS 29 (2016).

Curtis G. Northcutt, Tailin Wu, and Isaac L. Chuang. 2017.
Learning with Confident Examples: Rank Pruning for Ro-
bust Classification with Noisy Labels. In UAI. 10 pages.

Ofir Pele and Michael Werman. 2009. Fast and robust Earth
Mover’s Distances. In ICCV. 460-467.

Yi Ren, Hongyan Tang, Jiangpeng Rong, and Siwen Zhu.
2023. Unbiased Pairwise Learning from Implicit Feed-
back for Recommender Systems without Biased Variance
Control. In SIGIR. ACM, 2461-2465.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and
Lars Schmidt-Thieme. 2009. BPR: Bayesian Person-
alized Ranking from Implicit Feedback. In UAI. AUAI
Press, 452-461.

Vinay M. S., Shuhan Yuan, and Xintao Wu. 2022. Fraud
Detection via Contrastive Positive Unlabeled Learning.
In IEEE Big Data. IEEE, 1475-1484.

Yuta Saito. 2020. Unbiased Pairwise Learning from Biased
Implicit Feedback. In ICTIR. ACM, 5-12.

Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata,
and Kazuhide Nakata. 2020. Unbiased Recommender
Learning from Missing-Not-At-Random Implicit Feed-
back. In WSDM. ACM, 501-509.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018.
Wasserstein Distance Guided Representation Learning
for Domain Adaptation. In AAAI. 4058—4065.

Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin
Malykh, and Sergey I. Nikolenko. 2020. RecVAE: A New
Variational Autoencoder for Top-N Recommendations
with Implicit Feedback. In WSDM. ACM, 528-536.



Unbiased Recommender Learning from Implicit Feedback via Weakly Supervised Learning

Brent Smith and Greg Linden. 2017. Two Decades of Rec-
ommender Systems at Amazon.com. [EEE Internet Com-
puting 21, 3 (2017), 12—18.

Zijie Song, Jiawei Chen, Sheng Zhou, Qihao Shi, Yan Feng,
Chun Chen, and Can Wang. 2023. CDR: Conservative
doubly robust learning for debiased recommendation. In
CIKM. 2321-2330.

Guangxin Su, Weitong Chen, and Miao Xu. 2021. Positive-
Unlabeled Learning from Imbalanced Data. In IJCAL
2995-3001.

Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, and
Tomoya Sakai. 2022. Machine learning from weak super-
vision: An empirical risk minimization approach. MIT
Press.

Riku Togashi, Masahiro Kato, Mayu Otani, and Shin’ichi
Satoh. 2021. Density-Ratio Based Personalised Ranking
from Implicit Feedback. In WWW. ACM, 3221-3233.

Hao Wang, Tai-Wei Chang, Tiangiao Liu, Jianmin Huang,
Zhichao Chen, Chao Yu, Ruopeng Li, and Wei Chu. 2022.
ESCM2: Entire Space Counterfactual Multi-Task Model
for Post-Click Conversion Rate Estimation. In SIGIR.
363-372.

Hao Wang, Zhichao Chen, Zhaoran Liu, Xu Chen, Haoxuan
Li, and Zhouchen Lin. 2025a. Proximity Matters: Lo-
cal Proximity Enhanced Balancing for Treatment Effect
Estimation. In SIGKDD.

Hao Wang, Zhichao Chen, Honglei Zhang, Zhengnan Li,
Licheng Pan, Haoxuan Li, and Mingming Gong. 2025b.
Debiased Recommendation via Wasserstein Causal Bal-
ancing. ACM Trans. Inf. Syst. (2025).

Hao Wang, Jiajun Fan, Zhichao Chen, Haoxuan Li, Weim-
ing Liu, Tiangiao Liu, Quanyu Dai, Yichao Wang, Zhen-
hua Dong, and Ruiming Tang. 2023. Optimal transport
for treatment effect estimation. NeurIPS 36 (2023), 5404—
5418.

Wenjie Wang, Fuli Feng, Xiangnan He, Ligiang Nie, and
Tat-Seng Chua. 2021. Denoising implicit feedback for
recommendation. In WSDM. 373-381.

Yanghao Xiao, Haoxuan Li, Yongqiang Tang, and Wen-
sheng Zhang. 2024. Addressing Hidden Confounding
with Heterogeneous Observational Datasets for Recom-
mendation. In NeurIPS.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence
Carin. 2019. Gromov-Wasserstein Learning for Graph
Matching and Node Embedding. In ICML, Vol. 97.
PMLR, 6932-6941.

12

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng, and Lei
Li. 2021. Vocabulary Learning via Optimal Transport for
Neural Machine Translation. In ACL/IJCNLP (1). ACL,
7361-7373.

Renjun Xu, Pelen Liu, Yin Zhang, Fang Cai, Jindong Wang,
Shuoying Liang, Heting Ying, and Jianwei Yin. 2020.
Joint Partial Optimal Transport for Open Set Domain
Adaptation. In IJCAI. 2540-2546.

Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge J.
Belongie, and Deborah Estrin. 2018. Unbiased offline rec-
ommender evaluation for missing-not-at-random implicit
feedback. In RecSys. ACM, 279-287.

Bangzuo Zhang and Wanli Zuo. 2009. Reliable Negative
Extracting Based on kNN for Learning from Positive and
Unlabeled Examples. Journal of Computers 4, 1 (2009),
94-101.

Shuqgiang Zhang, Yuchao Zhang, Jinkun Chen, and Haochen
Sui. 2025. Addressing Correlated Latent Exogenous Vari-
ables in Debiased Recommender Systems. In SIGKDD.

Yunrui Zhao, Qiangian Xu, Yangbangyan Jiang, Peisong
Wen, and Qingming Huang. 2022. Dist-PU: Positive-
Unlabeled Learning from a Label Distribution Perspec-
tive. In CVPR. IEEE, 14441-14450.

Chunyuan Zheng, Hang Pan, Yang Zhang, and Haoxuan Li.
2025. Adaptive Structure Learning with Partial Parameter
Sharing for Post-Click Conversion Rate Prediction. In
SIGIR.

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, Han
Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun
Gai. 2018. Deep interest network for click-through rate
prediction. In SIGKDD. 1059-1068.

Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen.
2022. Filter-enhanced MLP is All You Need for Sequen-
tial Recommendation. In WWW. 2388-2399.

Yao Zhou, Jianpeng Xu, Jun Wu, Zeinab Taghavi Nasrabadi,
Evren Korpeoglu, Kannan Achan, and Jingrui He. 2021.
PURE: Positive-Unlabeled Recommendation with Gen-
erative Adversarial Network. In SIGKDD. ACM, 2409—
2419.

Ziwei Zhu, Yun He, Yin Zhang, and James Caverlee. 2020.
Unbiased Implicit Recommendation and Propensity Es-
timation via Combinational Joint Learning. In RecSys.
ACM, 551-556.



Unbiased Recommender Learning from Implicit Feedback via Weakly Supervised Learning

10 10" -
_g ‘.p“‘ 0]
— Ed — “‘
e -2 @ -’g" < I =
€10 = 2107] ¥ T
= E- ,-E‘ w = " ¢ p
- 1 5 G C 64 - 256
2 -*= 20 128
R T T T T 10 T T T T
128 256 512 1024 2048 128 256 512 1024 2048
Ny Ny

Figure 6: Running time of solving the PT problem. By default we set n, = 128 and w = 10.

A. Additional Experimental Results
A.1. Dataset Description

In this section, we present a brief introduction to the datasets involved in this study.

Yahoo! R3 contains 311,704 biased ratings for training, which involve 15, 400 users and 1, 000 items. Additionally, 5400
users rate 10 randomly selected items, yielding 54, 000 unbiased ratings for evaluation. The user-item pairs with rating
greater than 4 are seen as positive, and others are viewed as negative.

Coat is a public dataset which consists of 290 users and 300 items; each user subjectively selects 24 items to rate based on
their preference, yielding 6,960 biased ratings in the training set. Additionally, each user rates 16 items that are randomly
selected, yielding 4,640 unbiased ratings for model evaluation. The user-item pairs with rating greater than 4 are seen as
positive, and others are viewed as negative.

KuaiRec is a public large-scale industrial dataset, which consists of 4,676,570 video watching ratio records from 1,411
users for 3,327 videos. The user-item pairs with ratings less than two are viewed as negative, and otherwise are viewed as
positive. The records less than two are viewed as negative feedback, and otherwise are viewed as negative feedback.

A.2. Discussion on Complexity

Concerns may arise regarding the computational overhead introduced by WeaklyRec, given that it incorporates a linear
programming procedure—the solving of the PT problem—in each iteration of model training. These concerns are particularly
pertinent in the context of large batch sizes commonly employed in training recommender models, as this could render the
PT problem large-scale and computationally intensive. To address these concerns, we empirically evaluate the time required
for solving the PT problem under various settings, as depicted in Figure 6. We summarize two key observations as follows.

The computational complexity of solving the PT problem is not prohibitive in our specific application. For instance,
even when matching as many as 4096 unlabeled samples, the problem can be solved within 0.1 seconds. This relatively
low computational burden is primarily due to the scarcity of positively labeled samples. In contrast to standard optimal
transport (OT) scenarios where two distributions have a similar number of samples, the PT problem in our case involves
matching n,, unlabeled samples with a significantly smaller number of n, positive samples. Given that n, << ny, the
computational cost is substantially lower than in traditional OT applications.

The computational complexity is also influenced by the value of the mass weight w. Specifically, as w decreases, more
unlabeled samples are compelled to engage in matching due to the mass-preserving constraint, thereby increasing the
computational cost. When w = 1, the PT problem reduces to the canonical Kantorovich problem. However, given that
the class prior is generally small in ImplicitRec applications, candidate values for w can be set to relatively large values,
which further reduces the complexity of solving PT in WeaklyRec.

A.3. Hyperparameter Sensitivity

We perform a comprehensive sensitivity analysis to examine the influence of four critical hyperparameters, namely batch
size, learning rate, and embedding dimension, on the performance of the WeaklyRec model using the coat and Kuairec
datasets. The results of these experiments are illustrated in Figure 8 and 7, respectively.
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Figure 7: Parameter sensitivity studies of the WeaklyRec framework on Coat. Different colors indicate ranking metrics
given different numbers of top candidates (K).
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Figure 8: Parameter sensitivity studies of the WeaklyRec framework on Kuairec. Different colors indicate ranking metrics
given different numbers of top candidates (K).

Initially, we examine the effects of varying batch sizes on two distinct datasets. Interestingly, as the batch size increases,
metrics such as NDCG@K and Recall@K generally show a decreasing trend. However, the KuaiRec dataset exhibits
an initial increase followed by a decrease in these performance measures. This fluctuation can potentially be attributed
to the interplay between the inherent characteristics of the PPT algorithm, which is integral to our model architecture,
and the properties of the datasets in question, as well as their batch sizes. Specifically, smaller batch sizes may lead the
PPT algorithm to experience generalization issues, adversely impacting the model’s overall performance. Conversely,
larger batch sizes could introduce an over-smoothing problem, thereby reducing performance. These observations are
further corroborated by data from the Coat and KuaiRec datasets in the batch size intervals of [256,4096] and [2048, 4096]
respectively. As for the interval [256, 2048] in the KuaiRec dataset, this behavior can be explained by the dataset’s size and
inherent properties. Given the large size of the KuaiRec dataset, which primarily focuses on video clips, there is likely a
significant level of noise. Furthermore, the dataset’s user base, representing a variety of socio-economic strata, tends to
rapidly dismiss recommended items. Consequently, smaller batch sizes may make the model more susceptible to noise.

Subsequently, we tuned the learning rate and observe divergent trends in performance across the Coat and KuaiRec datasets.
Specifically, an increase in the learning rate leads to an improvement in performance metrics on the Coat dataset, while
causing a decline on the KuaiRec dataset. This differential behavior can largely be attributed to the contrasting sizes of
the two datasets. The KuaiRec dataset is considerably larger than the Coat dataset, and this disparity likely influences the
performance outcomes. In larger datasets like KuaiRec, the presence of noise becomes more prevalent, which may adversely
affect model performance when higher learning rates are employed.

Additionally, we investigate the influence of varying the embedding dimension, which ranges from 2 to 64. We observe
that the model performance initially improves, only to subsequently decline. This fluctuating pattern can be linked to the
inherent properties of the PPT algorithm integrated into our model. PPT computations are executed in the embedding space,
and an overly restricted dimensionality may lack the capacity to accurately capture the data’s complex manifold, leading
to a degradation in model performance. On the other hand, an excessively large embedding dimension risks introducing
redundancy and noise, thereby undermining the effectiveness of the optimal transport problem solution, which in turn may
not reflect the true data manifold. For the KuaiRec dataset, a monotonically decreasing performance trend is evident. This
observation lends further credence to our assertion that the KuaiRec dataset likely contains significant noise. Such noise
interferes with the accurate representation of the true data manifold within the PPT algorithm, thereby adversely affecting
the model performance.

In a broad range of hyperparameter settings, the WeaklyRec model consistently outperforms a majority of baseline models,
further substantiating its superior performance characteristics. Specifically, even under varying conditions such as different
learning rates, batch sizes, and embedding dimensions, the WeaklyRec model still excels or at least matches other commonly-
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Table 4: Recommendation performances in terms of NDCG @k on Yahoo! R3, Coat and KuaiRec.

Dataset Yahoo! R3 Coat KuaiRec
Metrics NDGC@1 NDGC@3 NDGC@5 NDGC@1 NDGC@3 NDGC@5 NDGC@1 NDGC@3 NDGC@5
RMF 0.63240.002 0.667+0.003 0.707+0.002 0.370+0.022 0.39440.021 0.433+0.021 0.209+0.006 0.211+0.006 0.215+0.005

CRMF 0.633+0.003 0.667+0.002 0.706+0.003 0.377+0.019 0.400+0.016 0.439+0.019 0.21110.007 0.217+0.006 0.22210.005
WMF 0.67940.030 0.710+0.020 0.745+0.028 0.40210.025 0.42740.018 0.465+0.020 0.246+0.049 0.256+0.042 0.27040.043
UBPR 0.757+0.003 0.795+0.001 0.826+0.002 0.459+0.028 0.4931+0.021 0.530+0.014 0.255+0.010 0.27210.010 0.290+0.011
CUBPR 0.75640.003 0.795+0.002 0.826+0.002 0.460+0.030 0.49340.020 0.531+0.015 0.257+0.007 0.27310.000 0.29240.010
UPL 0.760+0.004 0.798+0.002 0.829+0.002 0.508+0.028 0.5111+0.012 0.540+0.010 0.281+0.034 0.29710.034 0.315+0.036
ORACLE  0.654+0.003 0.69310.003 0.73410.003 0.425+0.026 0.457+0.019 0.496+0.017 0.21240.011 0.23140.008 0.251+0.008
WeaklyRec 0.787io_004 0.817i04003 0.845i0A003 0.579i0A035 0.567i0A019 0.597i0,015 0.489i0,013 0.480i()‘009 0.483i0A007

Note: The results are reported in means;q With 5 runs. The best and second best metrics are bolded and underlined, respectively. ”*”
marks the metrics that WeaklyRec surpasses the best baseline with p-value < 0.05 over paired samples t-test.

used recommendation algorithms in multiple evaluation metrics. This further confirms the robustness and versatility of
the WeaklyRec model in practical recommendation system applications. Moreover, by conducting more fine-grained
hyperparameter tuning, the WeaklyRec model has the potential to achieve even better performance than reported in the main
text. This implies that, after more precise hyperparameter search and validation, the WeaklyRec model can not only maintain
its advantage over baseline models but also possibly reach higher performance levels in specific application scenarios
or datasets. This further highlights the superior and adaptive nature of the WeaklyRec model, making it worth further
exploration in real-world applications.

A.4. Supplementary Numerical Examples

To validate the efficacy of PPT in class prior estimation, we include a case study using a numerically simulated dataset
with predefined (and known) class priors. In the main text, we only present the matching strategy on the simulated case
wherein x, = 0.5. Nevertheless, it is essential to consider other simulation conditions to back up the utility of the proposed
approach.

To achieve this, we extend our numerical verification by considering a range of class priors x, = 0.05,0.1,0.3,0.5. We
visualize the resulting transport strategies for different mass weights w. The key insights are consistent with those presented
in the main text. The transport strategies are optimized when w = 1/k,, , at which point the transport cost reaches its
minimum, as illustrated in Figure 4. These additional numerical scenarios further corroborate the effectiveness of the
Progressive Proximal Transport (PPT) method in accurately estimating the class prior, thereby reinforcing the validity of our
WeaklyRec framework.

A.5. Performance with different backbone

In the main text, we implement the recommendation model g as MF, since it is a widely used model to evaluate the efficacy
of learning objectives in recommendation system (Li et al., 2023c;a), especially in recent ImplicitRec researches (Ren et al.,
2023; Lee et al., 2022; Zhu et al., 2020; Saito et al., 2020). Nevertheless, we agree that it is interesting to investigate the
performance of different ImplicitRec estimators in different backbones to test their generality. Therefore, we select NCF as
our new backbone and summarize the experimental results in Table 4 and Table 5, which showcase trends similar to the
results on MF.

B. Theoretical Justification
B.1. Formal Analysis on the Surrogate Risk

Theorem 1. Given that the ideal risk of the recommender g defined over all samples is Rideal(g), the surrogate risk

Ryeax(g) as defined in (6) is an unbiased estimator of Rigea1(9):
]EX |:Rweak (g):| = Rideal (g)
Proof. Let X be the empirical distribution of samples for training, with positive samples &}, and unlabeled samples X,.
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Figure 9: Overview of the PT transport plan given different weights of mass w and ground truth positive priors . The
ground-truth positive and negative feedbacks are denoted by circular and rectangular markers, respectively. The labeled and
unlabeled intersections are indicated in red and blue, respectively. The best transport strategies, which minimize transport
costs for different values of k, are illustrated in subfigures (c, g, k, 0), characterized by 1 Jw = Kp-
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Table 5: Recommendation performances in terms of Recall@k on Yahoo! R3, Coat and KuaiRec.

Dataset Yahoo! R3 Coat KuaiRec
Metrics Recall@1  Recall@3  Recall@5 Recall@l  Recall@3 Recall@5 Recall@]1 Recall@3  Recall@5
RMF 0.042+0.002 0.133+0.004 0.226+0.003 0.05410.013 0.158+0.022 0.270+0.026 0.009+0.001 0.025+0.005 0.042+0.006

CRMF 0.042+0.002 0.132+0.003 0.226+0.004 0.0561+0.011 0.1671+0.016 0.2771+0.024 0.009+0.002 0.030+0.004 0.049+0.005
WMF 0.07440.021 0.175+0.030 0.260+0.020 0.066+0.013 0.19240.019 0.306+0.025 0.023+9.020 0.066+0.033 0.108+0.044
UBPR 0.126+0.002 0.265+0.001 0.344+0.002 0.100+0.017 0.25410.020 0.3731+0.013 0.02610.004 0.07810.011 0.12810.015
CUBPR 0.12640.002 0.265+0.002 0.343+0.003 0.100+0.018 0.25440.020 0.374+0.012 0.026+0.003 0.078+0.010 0.130+0.014
UPL 0.12940.004 0.267+0.003 0.345+0.002 0.11740.012 0.26110.011 0.367+0.010 0.03310.012 0.096+0.028 0.153+0.039
ORACLE  0.056+0.002 0.163+0.003 0.260+0.003 0.078+0.011 0.22140.019 0.34140.021 0.014+0.004 0.054+0.006 0.102+0.008
WeaklyRec 0.148.10.003 0.28210.004 0.35610.003 0.149+0.023 0.308+0.015 0.42310.016 0.13310.007 0.24510.005 0.296--0.003

Note: The results are reported in mean+stq With 5 runs. The best and second best metrics are bolded and underlined, respectively. ”*”
marks the metrics that WeaklyRec surpasses the best baseline with p-value < 0.05 over paired samples t-test.

According to the formulation of WeaklyRec in (6), the expectations regarding different training dataset can be formulated as
follow:

EX [chak(g)} - EXp % g(g(l’?))‘|
P =1
®)
1
+ Ex, lnu ;4(9(1‘?), —1)]
For the first term, we have , /
Ex, [-2 Y lg@D)| = =2 3" Ex, [Ug(a?))]
" i " i
Kp s ~
e 2 Eay |flate?)) o
Ky o ~
=£;%MWW
= kpBy, [Ug(a")]
For the second term, similarly we have
1 &
Ex, l” S tgla), ~1) | =By, [€g(e), ~1)). (10)
v i=1
Combining (8)-(10), we have
Ex [Ruea(9)] = #oBy, [ (9(2))] +Ep, [€(9(x), ~1)
= kipEp, [((g(2), +1)] (11)
+ (1 - ’{p)Epn [¢(g(x), —1)]
= Rideal(g)'
O

Lemma 1. Let G be a family of recommender models. For any 6 > 0, with probability at least 1 — §, Niu et al. (2016)
demonstrate:

SUPyeg | Ryear (9) — R(g)| < 4kp LR, + 2LR, + QKP\/IHQ(Z‘S) + \/lnz(i{]‘s).
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where R, and R, are the Rademacher complexities of G given n, positive samples and n,, unlabeled samples, respectively.
Ly is the Lipschitz constant of £ with respect to g.

Theorem 2 (Variance reduction). The variance of Ryecax is smaller than that of the ideal loss Rigeal given rp < 0.5.

Proof. The variance of the ideal loss can be expressed as

Var(Ruen (9)) = (’%Varw(g(ﬂ), +1>>> n (’“Varw(g(x“), —1)))

Np Tin
2 2
R
—— oty g2
Np n

where o2 = Var({(g(z?),+1)), 02 = Var(¢(g(2"), —1)). The variance of Ruyear(9) is:

Var(Ryeak(9)) = <2Var(€~(g(mp)))> + (nluVar(f(g(xu)’_l)))
2 2
= (TLEVar(E(g(ff)a +1)) + nfzvar(ﬁ(g(x), —1)))>
+ (;Var(f(g(ﬂcu%—l)))

1
D 2 2
= —(0, +o0,)+ —0O
(op b od) 4 o,
where the covariance between the two terms is zero, which immediately holds if positive and unlabeled samples are
independently drawn.

To show that Var(Ryeak(9)) < Var(Ridea1(g)), it is equivalent to show that

2 2
1% 2 2 2 P __2 2
7(O-p +an) + — 0y < —0p + = n
P u p Tin
That is: )
Fp 1 ke
24 —<
Np My 0

Since ny >> np, Ny, 1/ny — 0. Moreover, since 1y, /Ny = Kp /Ky, the above inequality holds if:
Kp < Kn,

which holds if x;, < 0.5, a condition naturally holds in most recommendation scenarios where the positive samples are
sparse and much smaller than positive samples.

O
Theorem 3. Let G be a family of recommender models; g* = argmingeg Rideal(g) be the ground-truth optimal rec-

ommender acquired by minimizing the ideal risk (1), g = arg mingeg Rweak(g) be the recommender acquired by
minimizing (6). For any § > 0, with probability at least 1 — §, we have

}H¢>_R@wggﬁiﬂ%+4hmu+%vkmuwy+Vzm@wx

np Ny

where Ry, and R, are the Rademacher complexities of G given ny, positive samples and n,, unlabeled samples, respectively.
Ly is the Lipschitz constant of { with respect to g.
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Proof. Based on Lemma |, we have

R(¢") - R(¢g*) = (éweak( cak(g”) )
+ (R(gT Ruyeak(g ) + ( weak(97) — (9*))
<0+ (R(g") - Ruearls") + ( wea(9%) — R(g"))

<042 SUPgeg |Rweak(g) ( )|
81n( 4/6) 21n(4/5
< 8rp LRy +4LR, + Kp +

Ny

O
Lemma 2. For any 0(§,y) that is convex in g, £(g,y) — (g, —y) is convex in §j if and only £(g,y) — (g, —y) is linear in .
Proof. The lemma comes from the Theorem 4.1 by Sugiyama et al. (2022). We provide a straight-forward proof here. Since

£(§,y) is convex, we have:
é(yAl + ZJ27 y) < g(gh y) + E(QQ? y)

To make ¢(¢,y) — £(g, —y) convex, the term —£(y, —y) should be convex. Therefore, we have:

L1 + Y2, y) = L(G1,y) + (Y2, y)

Combining the two inequalities, we conclude that to make £(4, y) — £(J, —y) convex, the sufficient and necessary condition
is: L(y1 + Y2,y) = L(D1,y) + £(J2,y), which indicates that £(g, y) — £(y, —y) is linear in §. O

Theorem 4. Consider a recommender g where the output score s is transformed by a sigmoid function such that: g(x) =

sigmoid(s(z)). Consider the logistic error measure, the surrogate risk Ryeax(g) is convex with respect to the score s.

Proof. The surrogate risk Ryeax(g) consists of two terms: £(g(z)) and £(g(x), +1). Under the logistic error measure, we

have:
U(g(x), +1) = —In(g(x)),
l(g(z),—1) = —In(1 — g(x)).

Since g(z) = sigmoid(s), the error measure can be rewritten as:

1

(s, y) = —1H(m

)

First, we examine the convexity of the term (s, 1). The second derivative is:

d?¢ 1 s
(S’; )__¢© 5 >0 (12)
dS (63 + 1)
which means that ¢(s, +1) is convex with respect to s.
Next, we analyze the term 0 (s), which can be expressed as:
14 1) —4(s,—1) = -1 1
(5,41) = £ls, ~1) = ~In(——) + ()
e’ (13)
=—1 1
n(1+6*3) + n(1+e*5)
= —S.

Since / (s) is linear with respect to s, it is also convex according to Lemma 2. Finally, as the sum of two convex functions
remains convex, Ryeak(g) is convex with respect to s.
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Then, consider a matrix factorization model with U, and V, being the user embeddings and item embeddings indexed by
x, respectively. The model is expressed as:

s(z) = U] V,, g(zx) = sigmoid(s(x)). (14)
The score function s is convex in model parameters (U, and V), which immediately follows from
d2
oz =
) (15)
d“s 0
av? e

Therefore, Ryeak is convex in U, and V,, which immediately follows from the composition of convex functions is convex,
Ryeak 1s convex in s, and s is convex in model parameters.

O

Lemma 3. Suppose g is a recommender model based on matrix factorization, with the output score s transformed by a
sigmoid function, and the surrogate risk Rycax(g) is convex with respect to the score s. The surrogate risk Ryeax(g) is
minimized by the recommender g. Then, the minimization of the surrogate risk Ryeax(g) converges within a finite number of
iterations.

Proof. According to Theorem 4, the surrogate risk Ryeak(g) is convex with respect to the score s. Given the recommender
¢ as matrix factorization, Ryeak(g) is convex in the model parameters, which immediately follows from the composition of
convex functions. Therefore, the minimization for the convex Ryeax(g) converges within a finite number of iterations. [J

B.2. Solution to Proximal Transport Problem

The PT problem in (7) is a linear programming problem and can be solved with traditional linear programming
solvers (Gurobi Optimization, 2020; Hart et al., 2011). Nevertheless, such solutions often overlook the unique structure of
optimal transport problems, thereby suffering from relatively large cost. In this section, we demonstrate a reformulation that
aligns PT with the well-established Kantorovich problem, which permits solution to PT problem using specialized solvers
for the Kantorovich problem, such as iterative Bregman projections (Benamou et al., 2015), Sinkhorn iterations (Altschuler
et al., 2017; Dvurechensky et al., 2018), and the network-simplex method (Flamary et al., 2021), with superior convergence
rate and efficiency (Bonneel et al., 2011; Ling and Okada, 2007; Pele and Werman, 2009).

To reformulate the PT problem (7) as a Kantorovich problem, we introduce a slack variable s € RY, and rephrase the
inequality constraint 71, < w * b in (7) as an equality constraint:

7rT1n§w>kb:>7rT1n—|—s:w*b, (16)
which yields the equality constraints of b as follow:

{ 1wl +8 1y = (wxb) 1, an

1+s"1, =wx|b|

Combining (17) and (7), we reformulate the PT problem (7) as:

(o, B;w) := arg MiN 110, B100) (C, ),

™ ERixm:rlmza, llrlmz 1,
(e, By w) = T T .
seR:m' 1l,+s=wxb,s' 1, =wx|bl; —1

To substantiate the structural identity between the constraint set II(«, 3;w) in PT and that in the Kantorovich problem (Xu
et al., 2020), we introduce augmented matrices and vectors as follows:

- | ™ Onxa < a - | wxb
I ER T I RPN B S el
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On the basis, we can reformulate II(«, 8; w) as
(&, f;w) = {ﬁ' ERVM . 1y = a7 15 = B} (18)

which precisely mirrors the constraint set in the Kantorovich problem. Furthermore, we extend the transport cost matrix C
to C to align with this formulation:

= C 1

C= { o } . (19)

lm 26+ A
which incorporates a bounded scalar £ and a constant A > max(C;;). Xu et al. (2020) shows that the transport cost in the

Kantorovich problem can be rewritten as <é, 7~r>. Therefore, the PT problem can be formulated as

~ %

T (&,B; w) = arg minﬁeﬁ(&ﬁ;w) <C, 7~r> . (20)

In summary, through these augmentations and reformulations, encapsulated in (20), we seamlessly recast the PT problem
as a Kantorovich problem. This equivalence enables us to leverage existing optimal transport solvers for solving the PT
problem, thereby offering computational advantages and methodological coherence.
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