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Abstract

With multimodal tasks increasingly getting pop-
ular in recent years, datasets with large scale
and reliable authenticity are in urgent demand.
Therefore, we present an e-commercial multi-
modal advertising dataset, E-MMAD, which
contains 120 thousand valid data elaborately
picked out from 1.3 million real product exam-
ples in both Chinese and English. Noticeably, it
is one of the largest video captioning datasets in
this field, in which each example has its product
video (around 30 seconds), title, caption and
structured information table that is observed to
play a vital role in practice. We also introduce
a novel task for vision-language research based
on E-MMAD: e-commercial multimodal ad-
vertising caption generation, which requires to
use aforementioned product multimodal infor-
mation to generate textual advertisement. Ac-
cordingly, we propose a baseline method on the
strength of structured information reasoning to
solve the demand in reality on this dataset.

1 Introduction

Vision-and-Language has been drawing increasing
attention from both computer vision and natural
language processing communities, for there exists
various multimodal information in real human life.
As one of the most important tasks of vision-and-
language (Uppal et al., 2021), multimodal text gen-
eration (Lin et al., 2021) aims to generate high-level
text by fusing different modal effective information,
such as video captioning (Lei et al., 2020a; Yang
et al., 2019; Krishna et al., 2017).

However, there are few studies of multimodal
text generation based on realistic multimodal data.
One of the reasons is the lack of corresponding pub-
licly available datasets, which can provide real-life
multimodal information to help generate. Exist-
ing video-text generation datasets are mostly single
modal input and are collected by manual batch-
written templated descriptions such as MSR-VTT
(Xu et al., 2016), Vatex (Wang et al., 2019). While

in practice, information can also be divided into
structured information and unstructured informa-
tion. Humans tend to use richer structured informa-
tion to generate appropriate text. This information
can make the description rigorous and reliable. In
this case, a large-scale and reliable dataset with
structured information is in urgent demand.
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Figure 1: An illustration of our E-MMAD. The four
different parts of our dataset, from top to bottom are
product information(commodity displaying video, title,
structured information) and commodity advertising de-
scription. The task of our model is to use the product
information to generate corresponding advertising de-
scription. We add structured information to the original
Video Caption to assist in generating a semantically
richer caption

In this paper, we elaborately collect a large-scale
e-commercial multimodal advertising dataset for
multimodal text generation research, E-MMAD. To
support in-depth research, we collect a rich set of
product annotations. The E-MMAD dataset con-
sists of 120,984 product instances in both Chinese
and English, in which each instance has a product
video, a title, structured information and a cap-
tion. Figure 1 illustrates a sample of our EEMMAD
dataset. As is shown in Figure 1, E-commercial
multimodal advertising generation task is typically
more challenging than existing multimodal text



generation, as the advertising description is vivid
and information sources are abundant. More impor-
tantly, the caption needs to cover the information
mentioned in the structured information table but
missed in the video.

In response to the realistic demand for advertis-
ing generation, we propose the e-commercial mul-
timodal advertising generation task and approach,
which is qualified for better performance in gener-
ating approriate text. We propose the multimodal
information fusion module and generation decoder
module which make full use of the rich informa-
tion. In addition, considering that various infor-
mation words are often encountered in the process
of model training and generalization, it will be
difficult for the model to train. In the generaliza-
tion process, since a considerable part of the nouns
do not appear in the training, the caption quality
generated by the model is not good enough. For
example, when faced with unknown information
including new brand names appearing in structured
information, the model is not able to effectively
identify and judge. So we propose Conceptual-
ization Operations 4.1 to conceptualize complex
and diverse information in real life as ontology.
An ontology models generalized data, that is, we
take into consideration general objects that have
common properties and not specified individuals.
Dataset and code will be available at our Website.

In summary, our contributions concentrate on
the following three aspects:

(1) We collect a large-scale high-quality and reli-
able e-commercial multimodal advertising dataset.
It is one of the largest video captioning datasets
in this field. E-MMAD is collected from human
real life scenes and carefully selected so that it is
qualified to meet the needs of real life.

(2) We introduce a fresh task for vison-language
research based on E-MMAD: e-commercial mul-
timodal advertising generation, which requires to
use the product multimodal information to generate
textual advertisement.

(3) We propose a simple yet effective baseline
method on the strength of structured information
reasoning to solve the demand in reality on E-
MMAD dataset.

2 Related Work

2.1 Multimodal video-text generation datasets

There are various datasets for multimodal video-
text generation that cover a wide range of domains,

such as movies (Rohrbach et al., 2015), cooking
(Das et al., 2013; Zhou et al., 2018a), and Activities
(Xu et al., 2016). MSR-VTT (Xu et al., 2016) is
a widely-used dataset for video captioning, which
has 10,000 videos from 257 activities and was col-
lected in 2016. MSVD (Chen and Dolan, 2011)
was collected in 2011, containing 1970 videos. Ac-
tivityNet (Caba Heilbron et al., 2015) has 20,000
videos but is used for Dense Video Captioning (Kr-
ishna et al., 2017), which means to describe mul-
tiple events in a video. TVR (Lei et al., 2020b) is
collected from movie clips whose text is mainly
character dialogue. Vatex (Wang et al., 2019) is a
famous dataset released in 2019, whose caption is
written by batch manpower. Compared with some
mainstream datasets in Table 1, our dataset also
provide an additional product structured informa-
tion. We find that the advertising caption includes
a lot of structured information in fact.

2.2 Video Captioning Approaches

Video caption/description is one of the impor-
tant tasks in multimodal text generation. Early
video caption methods are all based on templates
(Mitchell et al., 2012; Krishnamoorthy et al., 2013).
However, sentences made in this way tend to be
rigid and stiff. The sequence-to-sequence model
(Venugopalan et al., 2015) is a classic work, which
includes an encoding phase and a decoding phase.
After CNN extracts the image features of the video
frames, an image feature is sent to the LSTM for en-
coding at each time step and text will be generated
in the decoding stage. Some of the popular prac-
tices recently are based on data-driven (Zhang et al.,
2021b) and transformer-based mechanisms (Yang
et al., 2019; Zhou et al., 2018b; Lei et al., 2020a).
MART (Lei et al., 2020a) can produce more coher-
ent, non-repetitive, and relevant text to enhance the
transformer architecture by using memory storage
units. Vx2text (Lin et al., 2021) uses multimodal
inputs for text generation. They use a backbone
(Tran et al., 2018; Ghadiyaram et al., 2019) model
to transform different modalities information to nat-
ural language and then the problem turns to natural
language generation. Although good progress has
been made by them, the original information of the
modal is not fully utilized and integrated.

3 Datasets

In this section, we will introduce our dataset in
detail, including the statistic analysis, collecting



process, and comparison.

3.1 Data Collection
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Figure 2: The process of creating a dataset, including
cleaning, machine filtering, manual post-filtering, etc.
and data specification of the dataset.

1) Dataset sources. Our dataset sources are
the Chinese largest e-commerce website shopping
platform (www.taobao.com), from which we
have collected nearly 1.3 million commodity ex-
amples with structured information. It comprised
more than 4,000 merchandise categories to guaran-
tee the diversity of the dataset, such as clothes,
furniture, office supplies, etc. The information
of each commodity data sample includes struc-
tured information, commodity displaying video,
title of product and commodity advertising descrip-
tion. Different from previous works (Wang et al.,
2019; Xu et al., 2016; Chen and Dolan, 2011),
the sources of datasets are derived from what mer-
chants themselves numerously design and select,
which comply with the standard rules of the au-
thenticity of product advertisements and are super-
vised by false product advertising rules of Taobao.
Specifically, videos visually display the commodity
performance and application.

In addition, we fully consider ethical privacy is-
sues to ensure that the dataset has no potential neg-
ative effects and legal issues (Gebru et al., 2018).
All data is collected in Taobao shopping platform,
which is a public platform for the general public.
All information, even the characters in the video, is

ensured to comply with Taobao laws including per-
sonal privacy, legal prohibitions, false information,
protection of minors and women, and so on.

In consideration of data and ethics, we perform
programmatic screening and manual cleaning again
in accordance with the established data cleaning
rules. Figure 2 shows our data collection process.

2) Data filtering. The intention for data filtering

is to determine whether the product advertising de-
scription is closely related to the product displaying
video, and whether the structured information of
the product is in accordance with the composition
of the product advertising description and ethical
considerations. The product attributes structured
information and product displaying video will be
valid only if human being can write similar prod-
uct advertising descriptions with them. We use
programs to screen and judge at first, traversing
the values of structured information. Our screen-
ing basis is the proportion of structured informa-
tion words in the product advertising description.
When the proportion is up to n words or more, the
data will be reserved as valid data. After copy-
writers’ continuous attempt to generate advertising
descriptions with structured information words that
account for different proportions, we finally deter-
mine the structured information with more than
five words in the product advertising description
as valid data and form 207,852 machine-screened
data.
By virtue of this, we respectively test different
groups of random data to formulate screening and
judgment rules. Multiple copywriters tested and
discussed to make the manual evaluation criterion
several times. Finally, different testers sample
100 examples randomly according to the judgment
rules of Figure 2, and the pass rate is mostly about
60%. In this case, we validate the manual screening
rules and draw the conclusion that random subjec-
tive factors hardly have any influence. So far, the
manual data screening and judging rules have been
formed, as is shown in Figure 2.

3) Data annotation. We invited 25 professional
advertising copywriters as data screening and an-
notation staff to conduct manual screening under
the rules of Figure 2 and The Toronto Declaration .
Manual screening of all data also ensures that each
piece of data complies with the Toronto Declara-
tion and Taobao laws to protect gender equality,
racial equality, etc. In order to ensure the reliabil-
ity of the data, we use the following two methods


www.taobao.com
https://rule.taobao.com/index.htm?spm=a2177.7231193.1998145763.5.1b6517ea6Ebl7K
https://www.torontodeclaration.org/

Table 1: Comparison with other datasets. Videos, Average Time, Caption Length, Classes respectively represent the
total number of videos in the dataset, the average video time in the dataset, the average length of the captions in the
dataset and the number of instance types in the dataset. Input Modality indicates the input of the dataset, e.g. from
Video to Text, Multimodal to Text. Structure info. means whether the dataset contains structured information. There
are 3,876 keys of the structure information in E-MMAD dataset. en means English version dataset and zh means

Chinese version dataset.

Datasets #Videos A;eiz';lfe ?;l:;:l:l #Classes Input Modality Stli:‘;(t:re
MSR-VTT (Xu et al., 2016) 10,000 14.8s 9 257 Video X
MSVD (Chen and Dolan, 2011) 1,970 9.0s 8 - Video X
TVR (Lei et al., 2020b) 21,800 9.0s 13 - Video-query X
VaTEX (en/zh) (Wang et al., 2019) | 41,269 10.0s 15/13 600 Video X
FFVD (zh) (Zhang et al., 2020) 32,763 27.7s 62 - Video - Attribute X
BFVD (zh) (Zhang et al., 2020) 43,166 11.7s 93 - Video - Attribute X
E-MMAD (en/zh) 120,984 30.4s 97/67 4,863 Video - Title - Structure info. v

to sample and verify: (1). Add verification steps.
We will send back samples that have been anno-
tated right answers to annotators from time to time
to check their work quality. (2). Multiple peo-
ple Choices. The data is sent to different people
randomly. Only if the answers of all people are
consistently passable, can this data be qualified.
Finally, 120,984 valid data has been generated. Si-
multaneously, we also translate the filtered valid
data into English so that both Chinese and English
versions can be provided in the dataset. To en-
sure the quality of the English version, we use the
WMT2019 Chinese-English translation champion,
Baidu machine translation. We also monitor the
translation quality in the manual screening section,
such as random checking in batch translation, using
text error correction to monitor retranslation, and
back translation comparison.

After 25 people’s diligent work of manual data
labeling and cleaning, there are 120,984 valid data
selected finally.

3.2 Dataset Analysis

Among the 207,852 data we send for annotation,
there are 120,984 eligible samples passing the
screening. We make an elaborate analysis on these
valid data and the result is shown in Figure3. In
addition to this, Figure 3 reveals the distribution
of the product videos’ duration and advertising de-
scriptions.

By Table 1 comparison, we can find that our
product advertising descriptions are not only at
least twice longer than others, but also root in
more vivid and realistic ones used in practice. The
whole statistics about the structured information
in our dataset is displayed in Figure 3 (d). What’s
more, there exist average 21 structured information
words in each sample and 6.2 words of them are

finally displayed in its product advertising descrip-
tion. The (e) shows the abundance of our datasets
source classes.

3.3 Dataset Comparison

In Table 1, we make a comparison between our
dataset and others from the following several
perspectives: dataset scale, dataset diversity and
dataset reliability.

1)Dataset scale: As shown in Table 1, the size
of our E-MMAD is the largest multimodal dataset
among those we have already known so far, with
the longest video duration and text length, and the
richest structured information in the dataset.

2)Dataset Diversity: In terms of types, our
dataset consists of 4,863 categories. Our dataset
is also available in Chinese and English two ver-
sions, to support multi-language research, which
cannot be satisfied by a single language dataset.
At the same time, our Chinese and English corpus
is richer in vocabulary, which can generate more
natural and diversified video descriptions.

3)Dataset Reliability: Compared with other
manual batch-written descriptions(Wang et al.,
2019) and mechanically generated data, our data
annotation is derived from the real society. Each of
them is an exclusive description genuinely written
by corresponding store. Besides, the videos in our
dataset are from the real product shooting scene,
other than clips from Youtube or movies. We firmly
believe that only resorting to reliable dataset, can
we train models better. Therefore, we invest con-
siderable amount of manpower and time in order
to promote our dataset quality.

3.4 Dataset Significance

To the extent of our knowledge, the dataset we pro-
pose is the largest multi-modal dataset so far, and
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Figure 3: Statistics about the five different forms of data
in our dataset. The data statistics are presented in terms
of video, structured information, caption, and the main
classes of the dataset contained, respectively.

the information involved is also the most diverse,
which can better optimize and improve the perfor-
mance of multi-modality models and promote their
generalization ability to adapt to different scenarios
in real world. For subsequent work, with the abun-
dant and diverse information involved, our dataset
can be dedicated to several multi-modality domain
tasks, such as Video Retrieval (Lei et al., 2020b),
Product Search (Chang et al., 2021) and so on. In
our future work, we will build more versatile e-
commerce datasets which can cover most tasks in
this field based on this dataset.

4 Method

In this work, we present a novel approach called
the Multi-modal Fusion and Generation algorithm
as shown in Figure 4, which extracts feature rep-
resentations from three sources: the product title,
structured information(structured words) and the

displaying video’s frames and fuse them to gener-
ate captions. Faced with various information words,
our model uses ontology, a method of conceptualiz-
ing information. That is to pre-process the various
data, conceptualize and extract information from
the complex information words to Key as highly
conceptual network features. For the restoration of
complex information in the generation phase, we
only need to perform the inverse conceptualization
operation at the end.

4.1 Conceptualization

During the training process, we pre-conceptualize
the true product descriptions. The formula is as
follows:

Valuesg, = SW.values ﬂ GR.tokens; (1)

kg, € SW.keys; 2)
tokeng, — kyp,
V tokeng, € Valuesg,. 3

In the generation process, the raw caption with
conceptualized information generated by the model
is de-conceptualized to obtain the final caption.
The de-conceptualization is as follows:

Values,. = SW.keys ﬂ RC.tokens;  (4)

vgr € SW.values; 5
rc_token — vy,
V rc_token € Values,.. (6)

Among them, Equation 3/6, A — B means re-
placing token A with token B. A € C means
token A is an element of set C. GR.tokens and
RCtokens are the sets of corresponding n-gram
phrases in ground truth and raw caption, respec-
tively. SW.values and SW.keys respectively cor-
respond to the sets of keys and values in the struc-
tured information. In terms of the model input,
the ontology of the structured information part is
conceptual value words. An ontology models gen-
eralized data, that is, we take into consideration
general objects that have common properties and
not specified individuals. By this, the 3,876 types
of Keys represent the various information words as
the highly conceptual network feature input. We
also reference the title as the basis to determine the
priority position of each key according to the order
in which the structured information appears in the
title.
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Figure 4: The overall architecture of our model, which contains three main parts: the representation for multimodal
information, the multimodal fusion module based on self-attention and the generation decoder module on the basis
of (Radford et al., 2019). According to the Key-Value, the used Structure information words are conceptualized as
ontology to face the various words such as assorted brands in real life.

4.2 Representation

Textual Information. Given a product title as a
list of K words, conceptualized product attributes
as a list of N keys, we embed these words and keys
into the corresponding sequence of d-dimensional
feature vectors using trainable embeddings (Zhang
et al., 2021a; Devlin et al., 2018). In addition, since
the keys of structured information are prioritized,
we use position embedding to represent the priority
position of the keys.

Visual Information. Given a sequence of video
frames/clips of length S, we feed it into pre-trained
3D CNNs(Ji et al., 2012) to obtain visual fea-
tures V. = {vy,v9,...,0x} € R5*% _ which
are further encoded to compact representations
R € R5*?_ which have the same dimension as the
representation of textual information via a Visual
Embedding Layer. The Visual Embedding Layer
can be formalized as following:

fver(v) =BN(gov+ (1 —g)od); (7)
=W, (8)

0 = tanh (W) ; )

g =0 (W30) (10)

BN denotes batch normalization, o is the element-
wise product, o means sigmoid function, W; &
R>dv and {Wy, W3} € R4 are learnable
weights.

4.3 Multimodal Fusion

After embedding all information from each modal-
ity as vectors in the d-dimensional joint embedding
space, we use a stack of L transformer layers with
a hidden dimension of d to fuse the multi-modal
information consisting of a list of all K + N + S
modalities from {vfames 1 {owordst and {U];\(;ys}.
Through the self-attention mechanism in trans-
former, we can model inter- and intra- modality
context. The output from our Multimodal Informa-
tion Fusion and Reinforcement module is a list of
d-dimensional feature vectors for entities in each
modality, which can be seen as their interrelated
embedding in multimodal context. In this work,
the parameters chosen for our the module are con-
sistent with the parameters of BERT-base (L=12,
H=768, A=12), where L, H, A represents the num-
ber of layers, the hidden size, and the number of
self-attention heads respectively.

4.4 Generation Decoder

Our model’s decoder is a left-to-right Transformer
decoder, which is similar to the model architec-
ture of (Chen et al., 2019; Radford et al., 2018).
The decoder accesses multimodal fusion outputs
at each layer with a multi-head attention (Vaswani
et al., 2017). Specifically, the decoder applies a
multi-headed self-attention over the caption textual
feature. After that, the position-wise feed forward
layer was used to produce a distribution probability
of each generation tokens for the final generated



Table 2: Performance (%) comparison with our proposed model and others. The NACF + multi-input means that we
concat the structured information and title with video feature directly as input. On the premise of fair comparison,
the following methods are relatively classic and available, which are applicable on E-MMAD by our objective

attempts.

Version Input Method Bleul | Bleu2 | Bleu3 | Bleu4 | Rouge_L | CIDEr

Text NLG (Chen et al., 2019) 13.6 6.8 3.1 1.9 13.0 10.1

Video NACF (Yang et al., 2019) 18.9 7.9 3.9 2.2 15.3 14.8

en NACF + multi-input 20.0 8.5 43 2.4 17.8 18.5

Multimodal | TVC (Lei et al., 2020b) 21.3 12.4 6.2 3.7 19.3 22.5

Ours (en) 25.0 16.6 9.6 7.2 25.3 29.1

/h-CN Text CPM (zh) (Zhang et al., 2021a) 7.9 4.6 1.1 0.5 7.2 8.3

Multimodal | ours (zh) 11.6 6.5 4.4 2.2 12.5 15.3

caption. There is a description of part of the for-
mula for the decoder module:

ho = VE® . W, + PE - W,; (11)
h; = Trans_Block (h;_1); (12)
P(w) = Softmax (hnWeT) ; (13)
P (s iy = sin (pos 100002/ ) - (14)

P E(pos2i41) = c0s (pos/10000%/ st ) ;- (15)

where VP = {v1,v9,...,v,} is the textual vec-
tor of caption, n is the number of layers, VI € [1,n],
and W3, W, is the learnabale weight for caption em-
bedding feature and position encoding respectively.
Trans_Block represents a block of the decoder
in the Transformer (Vaswani et al., 2017). We re-
fer to (Radford et al., 2019) as the model decoder
architecture.

S Experiments

In this section, we will show a series of experi-
ments of our proposed model on E-MMAD, includ-
ing ablation studies, comparison experiments and
state-of-the-art video caption methods and human
evaluation.

5.1 Implementation Details

All the experiments are conducted on Nvidia Ti-
tanX GPU. The proposed model is implemented
with PyTorch. For the representations of videos, we
follow (Yang et al., 2019) for fairness and opt for
the same type, first extract 3D features with 2048
dimensions, 2048-D image features from ResNet-
101 (Hara et al., 2017) pre-trained on ImageNet
dataset. For generation decoder, we use <sep> to
separate the input from the ground truth of caption.
We adopt diverse automatic evaluation metrics to
compare with other model: BLEU (Papineni et al.,

2002), Rouge-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015). It is worth noticing that the focus of
the CIDEr evaluation metric is on whether the gen-
erated caption captures the major information or
not. Since the major information captured by each
model is different, the key information component
of the generated caption will not be the same, but
it is cognitive at the semantic level, so the CIDEr
evaluation metric will have a relatively large fluctu-
ation. Our model introduces structured information
so that the generated caption can include most of
the major information. Therefore, the caption gen-
erated by our model can achieve significant results
in the evaluation index of CIDEr.

5.2 Comparison with Other Approaches

During the comparison experiments, we uniformly
divided the Chinese and English versions of our
dataset into training set, validation set and test set
in the ratio of 6:2:2 for training and testing. Since
the current mainstream models do not use multi-
modal data for captioning, we use unimodal data
for captioning on some classic and available meth-
ods, such as video caption, nlg, etc. For the sake of
fairness of comparison, we simply modify the input
part of the above experimental model to accommo-
date multimodal data. As we can see from Table 2,
the comparison of the results before and after the
model modification shows that multimodal data
can substantially improve text generation tasks. It
indicates that multimodal information indeed helps
captioning by modal information between the mu-
tual enhancement. As shown in Table 2 our al-
gorithm achieves a better performance than other
methods because our model makes better use of
multimodal data in the means of fusing different
modalities and structured information to reason.



5.3 Ablation studies

Multimodal Input. We perform ablation studies
based on changing the input components of our
proposed model as a way to validate the impor-
tance of our proposed dataset containing structured
information. As shown in Table 3, we analyze the
gap between the generated caption of the model
and the real commodity advertising description in
the absence of partial information. As we can see,
the absence of any of the three input components
significantly degrades the final generated caption
result. From our analysis of the generated caption,
we can conclude that: 1) the lack of structured
information will make the generated caption less
informative, rigorous and reliable.

Table 3: Performance comparison with our proposed
model by masking different parts of input and only using
the remainder as input. Here "Title", "SI" and "Video"
indicates commodity title, structured information and
commodity displaying video respectively.

Input Bleul | Bleu2 | Bleu3 | Bleu4 | Rouge_L | CIDEr
SI & Video 22.8 14.8 6.9 55 222 253
Title & Video | 19.5 9.4 4.5 3.1 16.4 15.7
Video 15.9 6.4 34 2.1 15 13.2
Title & SI 220 | 138 5.8 4.9 20.6 23.7

2) The lack of a commodity title or displaying
video will impair the foundation of generated text.
In addition, the structured information is like a
knowledge base, which can promote inference and
judgment to generate appropriate caption.

Conceptual Operation. Considering that writ-
ing product descriptions in real life often involves
a great number of unfamiliar words, which makes
it hard for the model to identify and remember
its feature when facing a new word, such as new
brand name. The predecessor’s approach tend to
use as much corpus and large model parameters as
possible, which brings huge difficulties to natural
language generation. In this case, we proposed the
Conceptualization operation. As shown in Table 4 ,
we conduct ablation experiments about Conceptual-
ization on the Chinese and English datasets. As for
models without conceptual operations, we use un-
conceptualized captions as the ground truth to train.
We directly input unordered structured words for
the input of the model. Experiments have proved
that the Conceptualization operation can indeed
bring a significant effect improvement, because
this method can conceptualize and extract informa-
tion from complex information in the dataset, and
thus highly conceptualize network features. We

expect this discovery to inspire the community.

Table 4: Performance comparison of whether our pro-
posed model has conceptual operations (CO).

Operation Bleul | Bleu2 | Bleu3 | Bleu4 | Rouge_L | CIDEr
ours w/o CO (en) | 23.8 | 154 8.1 6.4 242 27.3
ours w/o CO (zh) | 9.9 5.5 2.8 1.5 10.1 12.4
ours w/ CO (en) 25.0 | 16.6 9.6 7.2 253 29.1
ours w/ CO (zh) 11.6 6.5 44 2.2 12.5 15.3

5.4 Human Assessment

It is well-known that the human evaluation met-
rics for video captioning are required due to the
inaccurate evaluation by automatic metrics. We es-
pecially focus on advertising generation, which de-
pend on human aesthetics. So we invite the people
involved in the data annotation and new advertising
slogan designers to conduct the human evaluation.
We select 200 samples from the test dataset and
each evaluator evaluate each of these 200 samples
to reflect the performance of our model by rating
whether the caption generated by our model can
be used as a description of the product. As the re-
sult shows in Table 5, the caption generated by our
model has a certain degree of pass rating, whose
results can be approbated by people. Therefore,
this is also acceptable that our experiments on Ta-
ble 2 did not achieve high scores for mechanical
evaluation indicators.

Table 5: The results of the human evaluation, reflecting
the proportion of the 200 examples where the model
generated caption could be used as a product descrip-
tion that describes the reasonableness of the generated
caption. Annotators are from the dataset annotation and
persons are from the frequent online shopping masses.

‘ Annotator 1 ‘ Annotator 2 ‘ Annotator 3 ‘ Person 1 ‘ Person 2 ‘ Person 3
Pass | 42% | 4% | 4% | 48% | 56% | 53%

6 Conclusion and Future Work

This research sets out to provide an e-commercial
multimodal advertising dataset, E-FMMAD, which
is one of the largest video captioning datasets in
this field. Based on E-MMAD, we also present
a novel task: e-commercial multimodal advertis-
ing generation, and propose a baseline method on
the strength of structured information reasoning to
solve the realistic demand. We hope the release of
our E-MMAD would facilitate the development of
multimodal generation problems. However, there
still exist limitations about our dataset and method
that should be acknowledged. Moving forward, we
are planning to extend E-MMAD to better perfor-
mance and more diversified tasks by exploring new
model structures, fine-grained and so on.
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