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Abstract

At the core of the Transformer, the softmax normalizes the attention matrix to be
right stochastic. Previous research has shown that this often de-stabilizes training
and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn’s
algorithm) consistently improves performance across different tasks, domains and
Transformer flavors. However, Sinkhorn’s algorithm is iterative, approximative,
non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix
(DSM). Recently, it has been proven that DSMs can be obtained with a parametric
quantum circuit, yielding a novel quantum inductive bias for DSMs with no known
classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid
classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the
softmax in the self-attention layer with a variational quantum circuit. We study
the expressive power of the circuit and find that it yields more diverse DSMs that
better preserve information than classical operators. Across multiple small-scale
object recognition tasks, we find that our QDSFormer consistently surpasses both a
standard ViT and other doubly stochastic Transformers. Beyond the Sinkformer,
this comparison includes a novel quantum-inspired doubly stochastic Transformer
(based on QR decomposition) that can be of independent interest. Our QDSFormer
also shows improved training stability and lower performance variation suggesting
that it may mitigate the notoriously unstable training of ViTs on small-scale data.

1 Introduction

The Transformer [1] continues to be a dominant building block in natural language processing [2],
computer vision [3, 4] and biology [5]. Quantum computing (QC), instead, is a novel paradigm with
the potential to become practically useful in ML [6-10] and fuel applications across disciplines [11,
12]. Many attempts have been made to build Transformers with quantum gates, either entirely [13—15]
or only the attention blocks [16—18]. However, rather than merely migrating, recent work in quantum
ML identified constraints in specific flavors of neural networks (NN) and successfully mitigated those
through quantum — e.g., fourier NNs [19], graph NNs [20] or input-convex NNs [21]. Some known
limitations of Transformers are due to the softmax in the attention block, e.g., entropy collapse [22],
rank collapse [23], token uniformity [24], eureka moments [25] and more [26-30]. Applying softmax
enforces the attention matrices to be right-stochastic (i.e., rows sum to 1) while its temperature
controls the distribution entropy and is often adjusted to stabilize training [25, 23].
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Concurrently, it was discovered that Transformer attention naturally converge to doubly stochastic
matrices (DSMs) over training, i.e. their rows and columns sum to 1 [31]. Motivated by this, the
Sinkformer [31] enforces bistochasticity which boosts Transformer performance across different
modalities (text, images, point clouds). Intuitively, doubly stochastic attention has a similar effect
to increasing temperature (entropy) — attention becomes more "democratic”, less interactions are
missed and all tokens are being attended more equally. The Sinkformer [31] is a generalization of
Transformers that leverages Sinkhorn’s algorithm (SA) and has been widely adopted and extended [32—
34]. Among various techniques to obtain DSMs [35-38], SA is the most obvious choice, however it
has some disadvantages:

1. It is an iterative approximation procedure which reaches a DSM only in the limit. It is thus
empirical how many iterations a Sinkformer needs and poor initialization can drastically deteriorate
performance [39].

2. It can guarantee to find a DSMs only if the input matrix is non-negative, which is generally not
the case within a Transformer (in practice non-negativity is enforced via exponentiation but we
show that this hampers expressivity).

3. Backpropagating through SA often yields ill-conditioned and exploding/vanishing gradients when
¢ is small. In practice, under early stopping, SA is a sublinearly convergent mirror-descent
fixed-point solver rather than a simple, well-conditioned layer [40].

4. It is non-parametric. Thus, in contrast to e.g., a NN layer, it cannot be optimized regarding which
DSM should be returned.

Given the empirical superiority of the Sinkformer to vanilla Transformers, it is natural to study
different techniques to make attention doubly stochastic. Strikingly, it was recently proven (in a
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Figure 1: Doubly Stochastic Transformers. Standard scaled dot-product attention applies a Softmax activation
on the query-key matrix (fop). We study different techniques to make attention doubly stochastic attention by
replacing the softmax operation (bottom). Our proposed Quantum Doubly Stochastic Transformer (QDSFormer)
leverages QontOT, a variational quantum circuit with high expressivity.

different context) that DSMs can be obtained naturally with a variational (i.e., parametric) quantum
circuit, dubbed QontOT [21]. They emphasize that there exists no classical learning (i.e., parametric)
method that can produce a DSM, akin to QontOT. Here, we demonstrate that this opens the door for a
hybrid quantum-classical doubly-stochastic Transformer (QDSFormer) which offers more flexibility
than the Sinkformer. To that end, we extend QontOT to emit DSMs for an equally-sized matrix. The
resulting quantum layer may replace the softmax within any standard (i.e., non-local, non-sparse)
self-attention block. We focus on replacing the softmax inside the scaled dot-product self-attention of
a Vision Transformer (ViT) for three reasons:

1. ViTs [3] suffer from unstable training [22, 25]
2. Unlike in NLP, the attention matrix size is constant, which eases quantum circuit application
3. The attention matrix in a Transformer encoder is unconstrained (unlike in decoders)

We empirically analyse expressivity of the quantum circuit, finding that it yields more diverse DSMs
than Sinkhorn’s algorithm both on synthetic and real data. It also preserves information better and
induces higher entropy. We then train various flavors of doubly stochastic Transformers (see Figure 1)
on more than ten object recognition datasets. In comparison to the ViT [3] and Sinkformer [31], the
QDSFormer shows competitive performance, consistently surpassing both. In a compositional image



recognition task [25], we find that they stabilize Transformer training and accelerate learning as they
antedate the Eureka moment in compositional problem solving.

In concurrent work, Shahbazi et al. have proposed the EPSFormer [34] and the LOTFormer [41],
two doubly stochastic Transformers that, just like our QDSFormer, overcomes the dependence on
Sinkhorn’s algorithm to reach doubly stochastic attention. The ESPFormer [34] achieves this with
sliced OT which is faster than SA but still slower than standard attention. Their improvement, the
LOTFormer [41] marries doubly stochastic and linear attention via conditional OT, yielding better
performance and scaling than softmax attention. Due to their concurrent nature, a performance
comparison to ESPFormer and LOTFormer is not included in this work.

2 Methods

2.1 Doubly Stochastic Matrices (DSMs)

We denote the n-dimensional vector of ones by 1,, and the n X n identity matrix as I,,. The Birkhoff
polytope Q,, = N (1,,1,,) [42] defines the convex set of n x n doubly stochastic matrices (DSMs).
A DSM P € Q, is a non-negative matrix with row/column sum of 1, i.e.,

P1,=1, P'1,=1,, P;;>0. (1)

A right stochastic matrix R has row sums of 1, i.e., R1,, = 1,, R;; > 0, and a left stochastic

matrix L has column sums of 1, i.e., LTln = 1,, L;; > 0. Hence, a DSM is left and right
stochastic. Moreover, the Birkhoff-von Neumann theorem states that the n! vertices (i.e., extreme
points) of the Birkhoff polytope 2,, are permutation matrices, so their entries belong to {0, 1}.
Notably, every DSM P € (),, can be decomposed as a convex combination of permutation matrices:
P= Zf;l AJII;. Here A € A is some probability vector in the probability simplex (denoted as
An), {IL,} are the n x n permutation matrices and N < n? denotes the extreme points. While the
decomposition is not unique, each DSM can be represented by at most n? permutation matrices [43].
Due to the linear equality constraints, the Birkhoff polytope €2,, lies within a (n — 1)2-dimensional
affine subspace of the space of R”*" matrices.

2.2 Attention

We study extensions of dot product attention [1]
. QK"
Attention(Q, K, V) = AV = Softmax [ —— | V 2)
T

where Q = XWg, K := XWg and V := XWy, map the input X to query Q, key K and value
V through their respective weight matrix W s.t. Q, K,V € RT*¢, Moreover, 7 is called the "tem-
perature” and canonically set to v/d}, [1]. It controls the entropy of the output: low temperature yields
a peaky distribution emphasizing differences. High temperature attenuates differences thus increasing
entropy. Note that 77 1QK " € RT*T 5o the unnormalized attention matrix is quadratic. Applying

the softmax operator, denoted S(z); = %, over the rows makes A right-stochastic, i.e.,
j=1 J

each row ¢ contains a probability distribution denoting the amount of “attention” token ¢ pays to the
other tokens. The temperature 7,

2.3 Doubly-Stochastic Operators

Below we define a non-exhaustive set of operators that can transform M € R, 7*7 to a DSM
P € Q. The operators can be integrated into a Transformer by M = QK thus yielding a Doubly
Stochastic Transformer ("DSFormer").

2.3.1 Sinkhorn’s algorithm

The most natural approach to obtain a doubly stochastic Transformer was pursued in the Sink-
former [31] and leverages Sinkhorn’s algorithm [35]. Sinkhorn’s algorithm is based on Sinkhorn’s



theorem, stating that for any square strictly positive matrix M € R+TXT, there exist (strictly)
positive diagonal matrices P = D1, Dy s.t., D;MDy € Qp. Sinkhorn’s algorithm, also known as
iterative proportional fitting [44], is an approximation procedure that iteratively normalizes the mass
of the rows and the columns of M which has been proven to converge to a DSM by minimizing
Kullback-Leibler (KL) divergence [45]. The sole hyperparameter of this procedure is K, the number
of iterations, which we enforce to be odd, following [31], to ensure the resulting matrix is at least
numerically row-stochastic, like for the canonical Softmax operator. Moreover, we study and compare
two implementations of Sinkhorn’s algorithm (SA), Naive and OT. Naive alternates between column-

and row-normalization: at even iterations (t), each column is normalized as PZ(;H) = PZ(;) /> i PZ(;),
and at odd iterations, each row is normalized as Pg.ﬂ) = Pl(é) /> y PE?. Instead, the OT flavor is
the operator used in the Sinkformer [31] which relies on the more robust and generalized version
to compute optimal transport distances [37]. Note that, both flavors may not converge with few
iterations, especially if QK" contains large numeric values. Therefore, the Sinkformer is only an
approximately doubly stochastic Transformer.

2.3.2 Projection on the Birkhoff polytope

Previous work studied different approaches to project matrices onto the Birkhoff polytope [46, 47],
and the most established scheme leverages Frobenius distance [48]. Alternatively, one can project M

directly on Q7 via P = arg min||X — M||%, where the set for X and the objective are convex. We
XeQr
chose to minimize the Frobenius norm here but note that different distances could be explored. The

resulting problem is a positive-definite convex quadratic program and can be rewritten as

T

1] o 0
min %XTX —q'x, A=|: = . 3)
.t. T T T
xSiZO 0 0 o1,
Ax=1z, I, I, ... I,

where x = vec(X”), q = vec(M”) and A € R27%n”  The last (or any other) row of A can be
removed without losing information, since it is a linear combination of the other rows (A has rank
2n — 1) [42, Thm. 8.1.1]. We solved the quadratic program with 0SQP [49].

2.3.3 QontOT

QontOT is a parameterized (variational) quantum circuit that was conceived for conditional prediction
of optimal transport plans [21] but can be extended to many combinatorial problems [50]. The circuit
naturally emits DSMs and while [21] do not find signs of quantum advantage for their main task
of optimal transport plan prediction, they report accuracy surpassing their classical baselines for
the prediction of DSMs. This is likely a consequence of the choice of the ansatz which explores a
previously unreported link between unitary operators and DSMs. Indeed, they first proved that DSMs
can be obtained naturally with quantum computers thus constructing a quantum inductive bias for
DSMs. Notably, as the authors state, it is currently unknown whether a similarly natural classical
approach exists to produce DSMs parametrically.

Let ® be the Hadamard product and U = (U') " the complex conjugate. For any unitary matrix U:
U © U € Q,. Given the circuit parameters @ (typically in the hundreds) and p € R, QontOT obtains

a DSM via U(p; §) ® U(p; ). This matrix is block-decomposed before the classical rescaling. A
notable detriment of QontOT is the data injection which is limited to a scalar p. Therefore, we extend

the multiplicative data injection f(6,p) = p - 6 from scalars to tensors, such that f(6, M) = 6 ® ﬁ
If M has less items than 6 we repeat its values to obtain a vector of length identical to §. Furthermore,
QontOT requires the DSM dimension n to be a power of 2. While this may be prohibitive within
a Transformer (because sequence length 7" may differ), it can be mitigated by padding. Padding
to powers of two is a common technique to maximize hardware efficiency. Here, we focus our
experiments on ViTs because 7' is a function of patch size. In general, the circuit size scales favorably
in O(logy(T)). It needs at least 4(log, (1) + 1) qubits, i.e., 2(qq + g, + 1) where ¢q is the number
of data qubits (log, (7)) and g, is the number of auxilliary qubits (> log,(T) + 1).



2.3.4 QR Decomposition

As highlighted above, any unitary U can provide a DSM by taking U ® U. For any input matrix M,
we can obtain a unitary U by computing an orthonormal basis for its column space. While there are
many ways to obtain a basis, we choose a QR decomposition M = UR, in which case R is upper
triangular. When implemented with Gram-Schmidt, QR is differentiable if M is full-rank, but for

long-context applications that is rarely the case because query and key matrix have d = % TOWS

and typically M € RT*T has rank min{d, 7'}, implying that M only has full rank when d > T'. In
practice, if the rank is defective, we inject additive Gaussian noise A/ (0, le—7) to obtain full ranks.
In the ViTs studied in our experiments, M often has close to, or full-rank since the dimension d is
greater than the number of patches P, where P ~ T. Moreover, QR has time complexity O(n?) for
dense n x n matrices, thus to scale up, approximation techniques may be needed [51].

3 Expressivity of Doubly-Stochastic Operators

Given the empirical superiority of the Sinkformer to the vanilla (i.e., right-stochastic) Transformer,
a natural question is which operator to chose to obtain DSMs. Before training the DSFormers, we
compare the expressivity of the operators — especially QontOT and Sinkhorn’s algorithm — in isolation
on synthetic data. We focus on two aspects.

1. Soundness — does the operator always produce a DSM? Given that U © U € €2,,, QontOT always
yields a DSM. Similarly for the QR decomposition. Instead, Sinkhorn’s algorithm (SA) may fail to
produce a DSM if the input matrix is not positive. Within the Transformer where M = QK ', the
positivity requirement is generally not fulfilled which is mitigated by input exponentiation. Thus,
following Sinkhorn’s theorem, SA always converges given enough iterations k. But in practice the
iterative procedure is limiting. When passing 8 x 8 QK—r matrices from a trained Sinkformer,
we observe that SA does not converge for the common choices of &k (3 and 21). Indeed, the
Frobenius distance to the Birkhoff polytope is 0.84.¢ 3 for k = 3 and 0.23 5 for £ = 21. This
is in contrast to the QR, QontOT and the Birkhoff projection which all yield distances < 2e—4,
QontOT even < 5e—6. Instead, the vanilla Softmax operator yields a right-stochastic matrix with
distance 1.124 3. Hence Sinkformer attention is only approximately doubly stochastic.

2. Completeness — can the operator produce all possible DSMs? Sinkhorn’s algorithm reaches all
DSMs of the form P = D;MD,. However, due to the entry-wise exponentiation of M in the
Sinkformer, the input matrix never contains any zero, thus the boundaries of the polytope cannot
be reached. Regarding QontOT, the resulting DSM is a convex combination of unistochastic
matrices [21, Eq. 11b]. Unistochastic matrices are a non-convex proper subset, covering a
large amount of the Birkhoff polytope (albeit the exact amount is unknown [52]). In theory, if
all unistochastic matrices could be reached, then by their convex combinations QontOT could
cover the entire Birkhoff polyope. In practice, reaching all unistochastic matrices (especially
all permutation matrices) with the same circuit parametrization is unfeasible as it requires fault-
tolerant quantum hardware and high circuit depth (entanglement). But over the parameter space of
QontOT, the Birkhoff polytope can be approximated more closely.

3.1 Empirical analysis

To empirically assess the completeness of the operators w.r.t. the Birkhoff polytope, we performed
a brute-force analysis over a discretized grid of the unit hypercube. For a n x n matrix and a
discretiztion step d € N, we sample each column from a discretized n-dimensional hybercube with

d" points, yielding aw’ unique matrices. We refrain from analysing vectors above unit length because
all operators are scale-invariant, i.e., f(AA) = f(A). Forn = 4 and d = 3 we obtain 316 ~ 43M
matrices and computed the DSM for each input, before rounding to third decimal place. Across all
operators, QontOT yielded by far the most unique DSMs (see Figure 2A), behaving nearly injective
when 8 or more circuit layers are used. This is important, because, none of the other operators is
injective thus some information is lost when using it inside a neural network. A closer inspection
of the empirical cumulative distribution function of all DSMs reveals that QR often emits the same
DSMs and that with only 2 layers (i.e., 98 parameters), QontOT surpasses all other methods (see
Appendix Figure A3). Furthermore, whereas all the classical techniques are non-parametric, QontOT
yields a different set of DSMs for each parameter configuration. We repeated above experiment by



sampling from a discretized grid of the unit hypersphere (instead of the hypercube). In this case,
Sinkhorn also produces collisions, while QontOT remains injective (there is no proof that the map is
injective, but it appears to be experimentaly). With a discretization of d = 3, our sphere contains
625 matrices where all columns have unit lengths. Sinkhorn yields collisions by mapping all rank-1
matrices with constant rows to the center of the Birkhoff polytope, i.e., it fails to differentiate matrix
e31T and es17 (es and ey are the second and forth column of the identity) and thus produces only
621 unique DSMs whereas QontOT yields 625 DSMs (QR: 381). This is critical because it implies
that Sinkhorn confuses cases where attention matrices are row-wise constant but each row has a
unique value. In general, Sinkhorn’s algorithm and the direct Birkhoff projection are both permutation
and rotation equivariant. Instead, QR and QontOT do not possess this characteristic. Moreover,
SA and the QR are scale-invariant whereas, again, QontOT is not. Note that such invariances or
equivariances within a Transformer are not generally beneficial or detrimental.

Beyond approximate injectivity, a powerful operator needs to possess two further characteristics:
First, information has to be preserved. Obtaining unique DSMs is useless if they destroy information
from the input matrix. To assess this, we measured the Frobenius norm of the residuals between input

DSMs obtained from 8x8 QK matrices of Sinkformer
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Figure 2: Left: Number of unique DSMs obtained after exhaustively iterating over a discretized unit hypercube.
With only 8 layers, QontOT produces a unique DSM for every possible input, unlike all other methods. Right:
Entropy vs. distance-preservation tradeoff. Shannon entropy of different doubly stochastic attention against the
Frobenius norm of the difference between unnormalized attention QK and the obtained DSM P.

and output matrix>. Secondly, low entropy has to be avoided because it causes vanishing gradients
and destabilizes Transformer training [22, 28] for which various mitigation techniques have been
suggested [53, 25]. This so-called “entropy collapse” arises if attention is too spiky and is induced by
low temperature in the softmax. Our analysis in Figure 2B reveals that QontOT possesses comparable
information preservation to Sinkhorn while having higher entropy on realistic unnormalized attention
matrices. QR decomposition showed superior entropy, but its cubic scaling limits applicability beyond
small-scale Transformers.

Next, we assessed which combination of circuit layers and auxiliary qubits yields the best speed-
expressivity compromise. In general, a single circuit execution is in the three-digit millisecond
range but can be efficiently parallelized. Increasing the number of layers causes a sub-linear runtime
increase, whereas adding more qubits causes a exponential increase (Appendix Figure A2). Regarding
expressivity, adding more layers has a higher impact than adding more qubits (Appendix Figure A4).
In detail, we passed the same matrix 10, 000 times, sampled the circuit parameters § ~ /(—1, 1) and
then measured the average range of values covered within each cell of the DSM. This shows that
adding more auxiliary qubits is only useful if even more layers are added simultaneously.

4 Theoretical result on number of DSMs

The optimal way of studying the expressivity of a doubly-stochastic operator empirically would
enumerate all DSMs in a given Birkhoff polytope (2,, and assess for each DSM whether it can
be reached (or how closely). The exact volume of the Birkhoff polytope is an open problem in

?Other metrics like measuring preservation of ranks or pairwise ratios are possible but yielded similar results.



mathematics [54] which limits our ability to study expressivity theoretically. In practice, one can
assume a certain discretization p € Ny s.t., P;; € {0, p%l, .., 1}, e.g., if p=2then P;; € {0,1}.
In that case there are n! DSMs. In Appendix E we provide a partial derivation for the combinatorial
problem of identifying the function f(n,p) — N returning the number of DSMs. The basic idea is

that a n x n DSM has (n — 1)? degrees of freedom, thus there are p("’l)z candidate matrices. Not
all of these can be turned into DSMs because of two constaints, (1) the sum of any row or column
must not exceed 1 and (2) the sum of the n — 1 x n — 1 submatrix must not be below n — 2 [54]. This
allows to decompose f into f(n,p) = p("_l)2 — 1 — ¢+ ¢12 where ¢; and ¢y measure the constraint
violations and c;5 discounts cases where both constraints are violated. For details see Appendix E.

5 Quantum Doubly Stochastic Transformer

5.1 Experimental Setup

We evaluate different flavors of DSFormers obtained through replacing the Softmax function with
any of the DSM operators described above. When integrating our QontOT-derived operator into a
ViT we obtain our hybrid quantum-classical doubly stochastic Transformer (QDSFormer). In the
following, we refer to QontOT as the attention flavor which contains the quantum circuit whereas
QDSFormer denotes, more broadly, any Transformer with quantum doubly-stochastic attention. To
date, the only realization of a QDSFormer is through QontOT. Among all operators, the classical
ones are non-parametric whereas this quantum operator can be optimized during training. Therefore,
one could theoretically optimize circuit parameters concurrently with Transformer training. However,
the ViTs we study contains up to 4 attention layers, with a batch size of 512, yielding 2048 samples
to optimize in a single forward pass. We predict, unless mentioned otherwise, 8 x 8 DSMs, use 16
circuit layers and 4 auxiliary qubits (16 qubits in total). Running the circuit on quantum hardware
requires 2(n?/2) shots to obtain satisfactory sampling error [21]. Assuming a precision of € = 0.01,
this is in the order of 640k shots per sample. Since quantum hardware operates on kHz frequency,
execution and online optimization on hardware is unfortunately not (yet) feasible. Therefore, we
perform exact statevector simulation with Qiskit [55] and implement three circuit training strategies:

1. Differentiable: Joint optimization of circuit and Transformer parameters through backpropagation,
akin to integrating the circuit as a neural network layer. This is by far the slowest given the difficulty
of gradient propagation through quantum circuits [56].

2. Mixed: A mixed strategy where Transformer training is interleaved with 200 steps of gradient-free
circuit optimization with Nevergrad [57] on a per-epoch basis.

3. Static: The circuit is used in pure inference mode with parameters obtained from a 24-qubit DSM
prediction experiment on quantum hardware [21].

From the operators studied in Section 3.1, we discard the Birkhoff projection due to its non-
differentiability and low DSM-diversity (Figure 2A). For comparison, we further include the Norm-
Softmax [58], here denoted as Softmax,, that attenuates attention by taking the minimum of the

expected standard deviation 7 := +/dj and the empirical one: A = Softmax (nnn(;g(g(;;—r)'r))

This was found to stabilize ViT training [58, 25]. Moreover, replacing the standard deviation with the
empirical variance, denoted as Softmax,2, improved the performance and stabilized training even
more. Note that both Softmax, and Softmax,> yields a right-stochastic but not a doubly-stochastic
attention matrix. We did not perform hyperparameter optimization for any experiment (for details see
Appendix D.1). We adapted the Sinkformer’s ViT implementation of and simply reduced the number
of layers and attention heads [31].

5.2 Data sets

We evaluate all ViTs on MNIST [59], Fashion MNIST [60], seven datasts from the MedMNIST
benchmark [61] and a compositional task requiring multistep reasoning [25]. In that task, a 2 x 2 grid
contains two MNIST digits (upper left and lower right) and two FashionMNIST items (upper right
and lower left). If the digits have equal value, the label is the upper right fashion item, otherwise it is
the bottom left fashion item. Performance typically ramps up quickly to ~ 50% because the model
learns to attend one (and only one) of the FashionMNIST images. Upon continued training with a
long saturation phase, a ViT suddenly grasps the relationship of the MNIST digits to the classification



task and then climbs rapidly to a 90 — 95% accuracy. The moment of abrupt improvement is called
"Eureka moment" [25]. The dataset is split into 60K (10K) training (validation) examples. To
accommodate the 8 x 8 attention matrix, each image from MNIST, FashionMNIST and MedMNIST
is split into 7 horizontal stripes and a CLS token is pre-pended to the patch sequence. For the Eureka
dataset we use a patch size of 14 x 28 pixels and mean-pooling.

5.3 Empirical results

First, we compare the QDSFormer directly with a standard ViT. The ViT uses softmaxed attention
whereas the QDSFormer employs a ViT with a static (i.e., non-trainable) instantiation of QontOT to
make attention doubly stochastic. Figure 3 clearly indicates that on both datasets, the QDSFormer
exceeded the ViT by a significant margin. This confirms the finding that doubly stochastic attention
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(a) 1-ViT-Layer on MNIST. (b) 2-ViT-Layer on FashionMNIST.
Figure 3: Comparison of ViT and QDSFormer while varying the circuit depth. Mean/std from 5 trainings are
shown. Within (a) and (b) all models use the same number of trainable parameters.
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can improve ViTs [31]. Moreover, in both cases, adding more circuit layers increases performance
logarithmically and with 4 or 8 circuit layers the ViT performance is surpassed. Exact numerical
results are provided in Appendix Table A3. Next, we varied the number of ViT layers between 1 and 4,
comparing to softmaxed attention, Softmax,2 [25] and two classical doubly stochastic attention types:
Sinkhorn as used in the Sinkformer [31] and a QR decomposition, a quantum-inspired alternative
to QontOT. All flavors used the same number of parameters and training steps. On FashionMNIST
(Table 1 left) the QDSFormer exceeded all other models for 2, 3 and 4 ViT layers with a performance
delta larger than the standard deviation. The same result was obtained on MNIST and, this time,
QontOT outperformed softmaxed attention also for one ViT layer (see Table 1 right).

Table 1: Validation accuracy of L-layered ViT on FashionMNIST and MNIST for different attention methods.
QontOT uses 16 circuit layers. Mean/std computed from 5 trainings.

FashionMNIST MNIST
L | Softmax Softmax,> QR QontOT Sinkhorn | Softmax Softmax, > QR QontOT Sinkhorn
1[86.5,05 75.3+46 87.dro3 85.6x01 84.2+36 |89.11125 66.Tr225 96.6101 939101 94.3.,,
2889401 84.6121 8935, 900102 89.1i07 | 98.1r03  93.0xa6 98.3,,; 984101 982103
31894,55 863x27 894,,; 903101 8945 | 986,017 97.7x07 98.6,5; 98.7+01 98.6,,;
4189.7,05 871i12 895101 903101 89.1i11 | 988101  97.9i07 98.7,,, 988101 97916

In further experiments with more ViT layers performance assimilated and plateaued due to the
simplicity of the datasets. But we saw scant further improvement for more than 16 circuit layers. For
a barplot visualization of Table 1 see Appendix Figure A5/A6. Notably, QontOT offers great flexibility
in the type of ansatz for the quantum circuit [21]. We observed only minor differences between four
different ansatz types, with three of them outperforming the ViT, underlining the generality of the
finding (Appendix Table A1). A compelling aspect is that the static version of the QontOT-attention
did perform as good or even better than the optimized one (see Appendix Figure A8). We tested an
end-to-end optimizable QDSFormer where circuit and ViT parameters are jointly optimized. Such
end-to-end training is not only slower, but also had lower accuracy than the static configuration,
for both MNIST and FashionMNIST and 1 and 8 circuit layers (Figure A8). This may be caused



by Barren plateaus [62] (i.e., gradients are largely constant along most directions), a widespread
phenomenon in variational quantum circuits that slows down learning. We further experimented
with a "mixed" training strategy where the circuit is trained every n-th epoch. This did not reveal
a clear benefit for more frequent circuit optimization (see Appendix Figure A7), potentially due
to higher volatility of the circuit. We therefore use the static, faster configuration in all remaining
experiments. Next, we repeated the comparison to the four classical attention types on larger datasets

Table 2: Test accuracy for MedMNIST datasets across 5 attention types in a 2-layer ViT.

MedMNIST
dataset

OCT 644,15 436450 625,09 61.6006 55.1450
Pneumonia | 84.2198 84.7400 84.3407 861110 83.0415
Tissue 60.0:‘:0,2 49.4:t1_2 59.0:|:0,1 60.6:|:0,1 56.9:‘:2,0
OrganA 78.8i0,5 73.6i1,7 78~4i0.6 81.2i0_3 77-Oi2.5
OrganC 79.8:‘:()‘5 71.7:‘:7.3 79.6:|:0‘3 82.7:|:0‘5 79.7:‘:1‘0
OrganS 64-4i0.6 59-3i0.9 62.6i0_8 68.1i0_6 63.5i0,9
Breast 79.642.0 782405 81.34109 80.0411 80.140s

Mean 73.0 65.8 72.5 74.3 70.8

Softmax Softmax, QR QontOT Sinkhorn

(up to 240k images) from the MedMNIST benchmark [61]. In 5 out of 7 datasets, the QDSFormer
obtained significantly better results than all other methods (Table 2), with a mean accuracy increase
of 1.3% compared to a standard ViT. Notably, none of the other attention types can improve upon
the standard ViT. Another important advantage of the QDSFormer is its stabilizing effect. Among
repeated training runs, the performance variation (i.e., test accuracy variance) is consistently lower
than for all classical methods (e.g., Table 1 or Table 2). Notably, with 1 ViT-layer and softmax-based
attention some trainings on MNIST failed to converge.

Furthermore, to study training stability more systematically, we used a compositional object recog-
nition task with 10 classes, referred to as "Eureka" dataset. ViTs are very unstable to train on
this task [25]. The random seed may determine whether the model saturated at 50% accuracy or
experienced a Eureka moment (EM) after hundreds of epochs and would finally converge to 90%
accuracy. As a mitigation strategy, Hoffmann et al. [25] tame the attention by replacing the Softmax
with the NormSoftmax. In practice, temperature is often tuned manually to find a sweet spot between
too low temperature (causing vanishing gradients by low entropy) and too high temperature (causing
vanishing gradients by uniform attention). We speculated that doubly stochastic attention might, en
passant, antedate the Eureka moment (EM) because it increases attention entropy without making
it uniform [31], thus circumventing temperature tuning. Our experiments confirmed that the stan-
dard ViT implementation from [25] achieves its Eureka moment only after a few hundred epochs.
While the same holds true for their proposed mitigation strategies (Softmax, and Softmax,=), the
QDSFormer consistently learned within 100 epochs to solve this task, resulting in a 30% accuracy
improvement over a standard ViT (Figure 4b). This major improvement, achieved with an extremely
lightweight quantum circuit (1 layer) also consolidated across different learning rates (Figure 4a).

Next, to assess the potential of the QDSFormer beyond image data and simultaneously study the
scalability of the QDSFormer, we applied it on a novel dataset for time-series classification of
InfraRed (IR) spectra of molecules into 37 functional groups [63]. This dataset contains almost 1M
samples and we scale up the circuit to produce 4x larger attention matrices (16 x 16). On this dataset,
the performance differences are marginal and the QDSFormer performs on par with a standard ViT
(for details see Appendix Table A2). This shows that the QDSFormer can meaningfully generalize to
domains like scientific data and tasks like multi-label classification.

Since all above results were obtained through statevector simulation, we conducted a final experiment
to understand the detrimental effect of quantum noise induced by real quantum hardware via the
publicly available IBM Quantum Platform. We used the three machines 7orino (Heron R1, 133
qubits, error per layered gate: 1.3%), Brisbane (Eagle R3, 127 qubits, EPLG: 2.2%) and Cusco (Eagle
R3, 127 qubits, EPLG: 6.8%). This 14-qubit experiment tests the potential for a hybrid hardware
training. Despite various light error mitigation techniques, the obtained doubly stochastic attention
matrices consistently show high entropy (i.e., a tendency toward more uniform distributions), even for
larger shot counts. Experimental details and plots are given in Appendix A). As Appendix Figure A1B
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(a) Results on the Eureka dataset across different models and (b) Validation accuracy per epoch, highlight-
learning rates. EM @Ep denotes the average epoch of the EM; ing the Eureka Moment on the compositional
runs without EM are set to epoch 100. dataset. Confidence bounds from 5 runs.

Figure 4: (a) Eureka results across attention methods. (b) QDSFormer antedates the Eureka Moment (EM).

shows, when comparing to the noise-free ground truth attention matrix, the ordering of the values in
the attention matrix was preserved with high precision (spearman p > 0.9 even for moderate shot
count). Since the circuit runs within a ViT, successfully preserving the ordering will be key (to not
destroy signal). Instead, numerical exactness (cf. Appendix Figure A1A) may be compromised:
embedding a noisy quantum attention block (which preserves peak attention scores but also increases
entropy) into a Transformer could even be advantageous. The additional entropy may avoid vanishing
gradients and act as a form of regularization. This effect is particularly notable compared to its
noise-free analog, which remains classically intractable if sufficient qubits are used.

6 Conclusion

Here, we proposed the Quantum Doubly Stochastic Transformer. We conceived this method by
connecting the centerpiece of a novel variational quantum circuit [21] with the Transformer, fa-
cilitated through the empirical observation that doubly-stochastic attention improves performance
in Transformers [31]. By extending the QontOT circuit from scalars to matrices we enabled its
integration into a ViT, thus providing the first parametric, doubly-stochastic Transformer. Notably,
the QDSFormer presents a meta-class of Sinkformers because it estimates DSMs parametrically, i.e.,
it can be optimized to learn arbitrary transformations onto the Birkhoff polytope. Moreover, to our
knowledge, there is no classical, parametric approach to estimate DSMs, thus the QDSFormer is a
promising candidate for hybrid quantum-classical neural networks trained on quantum hardware.

Our empirical expressivity analysis revealed that the quantum circuit produces DSMs that are more
diverse, preserve information better and have higher entropy than DSMs from Sinkhorn’s algorithm.
On multiple simple object recognition tasks, the QDSFormer exhibited significantly higher accuracy,
outperforming a ViT and a Sinkformer in most cases. Our usage of quantum attention substantially
stabilizes the notoriously unstable ViT training on small-scale data, as evidenced by the performance
on a compositional object recognition task (Figure 4b), previously used to study ViT training
dynamics [25]. Albeit these results are promising, all experiments were performed on comparably
small-scale, due to the currently poor scaling of quantum computers in general (which is expected to
improve). Notably, by leveraging QR decomposition, we also proposed a novel, quantum-inspired
attention flavor. Broadly speaking, outsourcing the activation function to a parametric quantum
circuit might be seen a computational overhead, however, we envision that this may reveal potential
benefits (typically in small-data, small-model and short-training settings [10]) that are out of reach
for classical hardware. To that end, future work could explore concurrent optimization of ViT and
circuit parameters via the parameter-shift rule on real quantum hardware.
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A Quantum hardware experiment

We measured the extent and the effect of quantum hardware noise on a DSM produced by our
quantum circuit. To that end, we picked a shallow circuit (1 layer) with 14 qubits and computed
the ground-truth 8 x 8 DSM for a random input matrix through statevector simulation. We then
transpiled the circuit on three different quantum computers (Cusco, Brisbane and Torino) available
to the public via the IBM Quantum Platform. After using transpilation optimization level 1, we
obtained a circuit with a 2-qubit-depth of 15 and and a total of 52 two-qubit gates. As error mitigation
techniques, we used dynamical decoupling [64], Pauli twirling [65] and a projection to the Birkhoff
polytope of the approximate-DSM obtained from the quantum circuit (see Section 2.3.2). The results,
shown in Figure A1, indicate that, consistently, Cusco was the noisiest machine and Torino yielded
the best results. Moreover, in general, beyond a shot count of 10, 000 little performance improvement
can be observed. This is a positive finding because it is substantially below the theoretical minimum
given by the shot noise limit (640, 000). However, the deviation from the exact DSM, measured in
Frobenius Distance, was substantial (Figure A1A). We analyzed the root cause of this and found
that the deviation can be largely attributed to an increase in entropy. DSMs obtained from noisy
quantum hardware converge toward the center of the Birkhoff polytope (1/n in every cell). The
relative ordering of the absolute values instead is largely preserved (Figure A1C).
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Figure A1: Hardware experiment on different quantum computers available via IBM Quantum Platform.
A The Frobenius distance between the hardware-obtained DSM to its noise-free equivalent. B: The spearman
rank correlation between the 64 values in the noise-free and hardware-obtained DSMs show that the ordering of
values is largely preserved. Statevectorsampler here denotes finite sampling from an ideal, noise-free statevector.
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B Circuit execution times

In Figure A2 we report detailed runtimes for the QontOT algorithm for different combinations of
circuit layers and auxiliary qubits.

A Execution time for 4x4 DSMs C
-10 Circuit for 8x8 DSMs

0.003 0.007 0.027 1 35| Auxilliary Qubits
4

g

0.071 1

&

8

0.217

Total Qubits
18
Runtime (sec)

G

Factor of time increase compared to 1 Layer

I

K

K

=

-
T——

i 1 2 4 8 16 32
Number of Layers

4
Number of Layers

Execution time for 8x8 DSMs D
F Circuit for 8x8 DSMs

0.097 [ 250

0.309

bl

Number of Layers

Total Qubits
20
Runtime (sec)
Factor of time increase compared to 4 auxilliary qubits

7 8

6
Auxilliary Qubits

4 8
Number of Layers

Figure A2: QontOT circuit execution times for DSM of size 4 (A) and 8 (B) for different combinations of qubits
and circuit layers. C and D show the relative increase in execution time as a function of increasing the number
of layers (C), and qubits (D). Adding more layers has a sublinear effect on runtime, adding qubits requires
exponential more runtime. The minimal number of auxiliary qubits is log, (n) + 1 and the total number of qubits
is 2(qa + qa) Where gq and ¢, are data and auxilliary qubits respectively.
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C Empirical circuit expressivity
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Figure A3: DSM counts were ranked descendingly and plotted against their cumulative count. QontOT generally
produces more diverse DSMs than Sinkhorn’s algorithm.

Range of values within DSMs

Total Qubits

1 2 4
Number of Layers

00 -|

16

Figure A4: Mean range of observed values in the DSM obtained from a single, random input matrix, when
randomly sampling 1000 circuit parametrizations.
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D QDSFormer results

D.1 Hyperparameters

For experiments on MNIST, FashionMNIST and the seven MedMNIST datasets, the ViT was
configured with a hidden dimension of 128 and an MLP dimension expansion factor of 1. The
model was tested with 1 to 4 Transformer layers, each containing a single attention head. No
dropout was applied, and the batch size was set to 100. For the optimizer, Adam [66] was used,
and the learning rate schedule followed the setup in Sander et al. [31], with an initial learning rate
of 5e-4, decreasing by a factor of 10 at epochs 31 and 45. For the more complex Eureka dataset,
comprised of 56x56 RGB images, the hidden dimension was increased to 256, and a larger batch
size of 512 was used. The MLP expansion factor was also doubled to 2. A cosine learning rate
schedule was used with the optimizer AdamW [67]. The scheduler uses 5 warmup epochs with a
warm-up learning rate of 1e-6, the decay rate is set to 0.1 and the minimum learning rate is le-5,
the other parameters follows the default TIMM settings [68]. For the optimizer the weight decay
is 0.05 and betas (0.9,0.999). All studied imaging datasets (MNIST, FashionMNIST and seven
types of MedMNIST datasets) come with predefined train/validation/test splits. On the infrared
spectral data of molecules from Alberts et al. [63] we performed a 5-fold cross validation with
80%/20% train/test split. Hyperparameters were kept identical to previous experiments. For the
Eureka dataset, no Exponential Moving Average (EMA) is used. Experiments were conducted
on POWERS infrastructure in Python 3.9 with PyTorch [69] 1.13.1 on machines with 16 cores
of 32GiB RDIMM DDR4 2.7 GHz. Due to the small size of the ViTs, training took between few
hours and a day (for the slowest, i.e., end-to-end-differentiable configuration of the QDSFormer).
The Sinkformer [31] and the standard ViT implementation are taken from the original author’s
repository: https://github.com/michaelsdr/sinkformers. The results on the compositional
Eureka dataset [25] were generated with the ViT implementation of the original authors: https:
//github.com/boschresearch/eurekaMoments. The implementation of the QontOT circuit was
implemented as described in Mariella et al. [21] and, as described in the main text, adapted to digest
matrix (or vector) inputs rather than scalars only.

D.2 QontOT ansatz types

Table Al: Ablation study for a 2-layer QDSFormer with different circuit ansatz types and varying number of
layers on FashionMNIST. Mean/std of 5 runs.

Circuit L. Simple  Parted Centrosymmetric Trotter

1 88.010.10 87.7+0.22 86.44+0.23 87.7+0.08
8 89.910.15 89.8+0.15 89.440.17 88.440.20

Simple: This ansatz is the most generic and resembles a checkerboard structure formed by 4-
parameter unit-blocks acting on two qubits each [70, 71]. If all parameters are zero, it falls back to
the identity. This ansatz is convenient because it is shallow in simulation but whose depth may vary
depending on qubit layout of the quantum hardware.

Parted: This ansatz partitions the Simple ansatz into two parts: U = U; ® Us, where U, operates
normally, and Uj; is transposed and placed around the initial Bell state. This design reduces the
original Simple ansatz circuit depth nearly by half, which may be more efficient on certain quantum
hardware. However depending on the qubit layout of the quantum hardware, it carries the potential
of increased transpiled circuit depth, as the two-qubit gates may act on distant qubits necessitating
additional swap gates upon transpilation, which we observed on IBM Eagle and Heron quantum
processing units. Unless mentioned otherwise, we used this ansatz in all our experiments as it yields
shallower circuits in simulation and the increased depth compared to the Simple ansatz was negligible
at tested system sizes.

Centrosymmetric: This was the predominantly used ansatz by Mariella et al. [21]. It is less generic,
biasing toward properties of centrosymmetric matrices.

Trotter: This ansatz implements a second-order Trotter decomposition [72]. Each circuit layer
corresponds to a Trotter step.

D.3 Time series classification
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Table A2: Micro-F1 on IR spectra dataset across 5-fold cross-validation with a 1-layer ViT. QDSFormer uses 16
circuit layers for both DSM sizes.

DSM  Softmax Softmax, QR QDSFormer Sinkhorn

8x8 |81.601054 8141003 81.68.,,5 8L70i005 81.381090
16 x 16 | 81.55.40.07 80.941013 81.48,,,, 81.061027 80.9840.30

D.4 Ablation studies

Table A3: QDSFormer ablation varying the circuit layers. Exact numbers corresponding to Figure 3.

Validation Accuracy (%)
MNIST  FashionMNIST

QDSFormer— 1L 83.4:|:0_73 87.7:|:0422
QDSFormer—ZL 85.7:&0.60 88.5;&),27
QDSFOI‘I]’ICI‘—4L 87.7:|:0_73 89.3;‘;0.18
QDSFormer—SL 91.8:|:0,57 89.8:|:0.15
QDSFOI‘HICI‘—16L 93.8:|:0_10 90.0:|:0_15
QDSFOI‘mCI‘-?)ZL 94-2i0.30 90-0i0.13

Configuration
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ViT 92.943.76 88.940.12
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Figure AS: FashionMNIST results of different ViT layers for different attention types.
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Figure A6: MNIST results of different ViT layers for different attention types.
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Figure A7: Ablation on different number of QontOT trainings on MNIST in the mixed circuit optimization
strategy.
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E Counting DSMs

In Section E.1 we provide a full analytical solution to count the number of 3 x 3 DSMs for a given
discretization p € N. In Section E.2 we strive to extend the analytic solution to an arbitrary n € N but
only provide a partial solution. Finally, in Section D.3 we provide numerical results from brute-force
calculation of the number of DSMs that verified the explicit analytical solution in Section E.1.

E.1 Analytical solution for n = 3

Intuition. By systematically testing all combinations from the discretized range of values, starting with
an initial 2 X 2 zero matrix, each element is incrementally increased in the order xo o, 1,0, Z0,1, Z1,1
with the next highest value in the discretized range. Once an element reaches its maximum value, the
next element is increased, and the preceding elements are reset to 0. This cycle repeats, starting again
with the first element.

Explanation. Assume that n = 3 and a specific discretization p € N are given. In this scenario, the
corresponding 3 X 3 matrix possesses 4 degrees of freedom, implying that the associated submatrix
has dimensions 2 x 2. The first constraint requires that the sum of the elements in each row and each
column of the matrix must not exceed 1.

If a specific element e;; with ¢, j € {0, 1} is chosen and assigned a value ;, the possible values for
the remaining elements in the same row and column can be determined.

Given that each element can assume exactly p distinct values, the total number of combinations is
computed as a sum over all p values:

fBp) =Y e “

=1

The possible values for the elements in the same row and column are restricted to the subset
{z1,...,2p—iy1}. As aresult, the amount of submatrices that satisfy the first constraint can be
expressed as:

p |p—it+l [p—i+l
FEp) =YY [ > Cijk] (5)
k=1

i=1 | j=1

To determine the possible values for the last element, it is necessary to consider the elements e .. The
minimum number of possible values derived from these elements defines the number of candldates
for the last element:

p—i+1p—i+1min(p—j+1,p—k+1)

fBp) =YY ; > 1(i, j, k,1,p) 6)

i=1 j=1 =1

Up to this point, only the first constraint has been considered. To fully satisfy the problem require-
ments, matrices that violate the second constraint must be excluded. The second constraint is satisfied
when the sum of the indices of all elements does not exceed p. Instead of subtracting 1 —1(%, j, k, 1, p),
the condition is captured using an indicator function I(4, j, k, [, p), defined as:

1 ifi+j+k+1-32>p,
0 otherwise.

1(i,j,k,1,p) = { )

By incorporating 1(4, j, k, [, p), the expression extends to:
p p—i+1p—i+lmin(p—j+1,p—k+1)
fBp)=> > > 1(i, j, k,1,p) ®)

i=1 j=1 k=1 =1
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This can be summarized as follows:
f@p)= > 1(i,5k1p) )
(i,5,k,1)€D(p)
where D(p) = {(i,5,k,1) |1 <i <pl <j<p—-i+1,1 <k<p—-i+11<1<
min(p —j + 1,p — k +1)}.

This equation has been validated computationally for values up to p = 43, demonstrating alignment
with our empirical results.

E.2 General approximation

To determine the number of unique DSMs for a given n,p € N we try to solve

f(n,p) = p(n_l)z —c1—C2+ 12 (10)

where the first term calculates the number of DSM-candidate matrices, ¢; and ¢y measure how often
the constraints are violated and ¢y is a small correction term counting cases where both constraints
are violated.

Generally, c2 is very small, yet difficult to compute, thus a tight lower bound can be given with the
remaining three terms. Below, we provide a derivation for co. We leave the derivation of ¢; to future
work.

E.2.1 Constraint 2
Constraint 2. The sum of the n — 1 x n — 1 inner matrix must not be below n — 2 [54].

We aim to find a function ¢y (n, p) that computes the number of violations to Constraint 2 for a given

n, p € N when exhaustively looping over all p(”*l)2 candidate matrices that uniquely determine a
n x n DSM.

Ann — 1 x n — 1 matrix where each cell x;; can take p values has
Jul = (n = 1)*(p—1) +1 (11
unique possible sums. These sums are regularly spaced from 0 to (n— 1)? with a step size of p—1, i.e.,

U; = {pil |ie{0,1,..., |u|}} This allows conversion to an integer problem (by multiplication of

p — 1) and apply Stars & Bars Theorem 2.
Theorem D.1. For any s,k € N, the number of k-tuples (x, ..., xy) where xy, € Ng with sum s is
equal to the number of multisets of cardinality s taken from a set of size k:

s+k—1
( b1 > (12)

Specifically, we set k& := (n — 1) and then define the set of sums that violate the constraint as
S:={seNy|0<s<(n—2)(p—1)}. Thus |S| = (n—2)(p—1) We then compute the violations
via:

¢a(n,p) = (13)

(n—2)(p—1) s+ (n o 1)2 -1
- (Lt

s=0

Unfortunately, this is only approximately correct because Theorem D.1 assumes x; € Ny, instead we
require z; € {0,1,...,p — 1}. Therefore, we exclude solutions where any x; > p — 1 through the
inclusion exclusion principle as follows.

Assume that some xz; > p — 1. Weset&; = x; — (p — 1 + 1). Since &; > 0, we can rewrite the

original sum
s=Y ai=) (E+p)+y (14)

icl il
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where [ is the set of indices where z; > p — 1.

Now let m := |I| be the number of violating variables, then
s—mpszi—i—in (15)
iel igl

To find the number of non-negative integer solutions to Equation 15, we can again leverage Theo-
rem D.1, but now in a corrected form:

s—mp+(n—1)2—1

d(n,p,m,s) = {(() (n-1)2-1

) ifs—mp>0,

(16)
otherwise.

This gives a solution for a specific sum s € S and number of violations m. However, since
0 < m < (n—1)2, we have to sum over all options of m and apply the inclusion-exclusion principle
to avoid over-/undercounting.

Total number of DSMs
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Points per Dimension

Figure A9: Number of DSMs of fixed size n with a given number of discretization steps p; up to values of
n =4 and p = 30.

(n—1)

amps= Y [0 (" dmpm.s) 1)
2\1% Py P m s Uy 110y
where ((”;1)2) accounts for the number of ways to choose m out of (n — 1)? variables that exceed
p—1.

Plugging Equation 17 back into the initial summation over all values s € S violating the constraint
(see Equation 13), we obtain the final formula:

(n—2)(p—1)
02(n7p) = Z CQ(n,pv S)
s=0
2
_gl:(nzl)( 1ym (n—1)%\ |0 if s —mp <0,
o por it m (5_7';”;:21_2”) else.

where |S| = (n — 2)(p — 1).

D.3 Empirical results

To empirically determine the solutions to f(n, p) we implemented a brute-force algorithm by iterating

over all p("~1’ candidate matrices of size (n—1) x (n—1) and verifying whether the two constraints
are not violated (see section 4).

The results are given in Figure A10 and Figure A9. Interestingly, f(n,2) = n!, but in general f(n,p)
scales super-factorially in n, for a given p.
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Figure A10: Number of DSMs of fixed size n with a given number of discretization steps p; up to values of

n = 10 and p = 10. Empty cells require > 5 days of compute time on a machine with 128 cores and 128GB
RAM.

E Checklist information

Dataset Reference License Size
MNIST [59] GNU 70,000
Fashion-MNIST [60] MIT 70,000
OCTMNIST [61] CCBY 4.0 109,000
PneumoniaMNIST [61] CCBY 4.0 5,856
TissueMNIST [61] CCBY 4.0 236,386
OrganAMNIST [61] CCBY 4.0 58,830
OrganCMNIST [61] CCBY 4.0 23,583
OrganSMNIST [61] CCBY 4.0 25211
BreastMNIST [61] CCBY 4.0 780
Compositional [25] GNU/MIT 70,000
IR Spectra [63] CDLA 790,000

Table A4: Summary of datasets used, with references, licenses, and sizes.
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NeurlIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We report empirical evidence for all claims in the abstract and introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion discusses limitations of our approach imposed by the noisy nature of
current quantum hardware as well as the limited scaling to large-scale datasets.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: In the appendix, we provide a full analytical solution to count the number of 3 x 3
DSMs for a given discretization. We then we strive to extend the analytic solution to an arbitrary
n € N but only find a partial solution.
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
» All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are described in detail in the Hyperparameter subsection and
the main body of the paper. Our ViT implementations relied on previous, publicly available
implementations (Sinkformer [31] and Eureka [25]).
Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

L]

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer:
Justification: While the entire development codebase for this project unfortunately cannot be made
public at this point, specific parts of the code are available upon justified request.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

 Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: There is a dedicated section about hyperparameter choices in the appendix.
Guidelines:
* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All empirical experiments on the QDSFormer were repeatedly performed. Error bars
are shown in all plots and standard deviations are given in all tables.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
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Justification: Quantum circuit execution times are explicitly studied. Moreover we provide
compute resource details in the hyperparameter section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Code is respected.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

 If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This is a piece of foundational research in quantum machine learning that is currently
only applicable to relatively small-scale data (i.e., small images). Beyond the general societal
implications of advances in quantum computing hardware, which will be vast and potentially
disruptive, certainly for cryptography but potentially also for machine learning, we do not feel
that there is anything specific about this paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

29


https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: A table with all datasets, citations, size and license terms are explicitly given in
appendix. No data is re-distributed, license terms are respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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