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ABSTRACT

Although deep neural networks are effective on supervised learning tasks, they
have been shown to be brittle. They are prone to overfitting on their training dis-
tribution and are easily fooled by small adversarial perturbations. In this paper,
we leverage generative models to identify and characterize instances where clas-
sifiers fail to generalize. We propose a generative model of the features extracted
by a classifier, and show using rigorous hypothesis testing that errors tend to occur
when features are assigned low-probability by our model. From this observation,
we develop a detection criteria for samples on which a classifier is likely to fail
at test time. In particular, we test against three different sources of classification
failures: mistakes made on the test set due to poor model generalization, adver-
sarial samples and out-of-distribution samples. Our approach is agnostic to class
labels from the training set which makes it applicable to models trained in a semi-
supervised way.

1 INTRODUCTION

Machine learning algorithms have shown remarkable success in challenging supervised learning
tasks such as object classification (He et al., [2016) and speech recognition (Graves et al., [2013).
Deep neural networks in particular, have gained traction because of their ability to learn a hierarchi-
cal feature representation of their inputs. Neural networks, however, are also known to be brittle. As
they require a large number of parameters compared to available data, deep neural networks have
a tendency to latch onto spurious statistical dependencies to make their predictions. As a result,
they are prone to overfitting and can be fooled by imperceptible adversarial perturbations of their
inputs (Szegedy et al.l 2013} [Kurakin et al., 2016; [Madry et al.||2017). Additionally, modern neural
networks are poorly calibrated and do not capture model uncertainty well (Gal & Ghahramani, 2016;
Kuleshov & Ermon, [2017;|Guo et al.,|2017). They produce confidence scores that do not represent
true probabilities and consequently, often output predictions that are over-confident even when fed
with out-of-distribution inputs (Liang et al.,|2017). These limitations of neural networks are prob-
lematic as they become ubiquitous in applications where safety and reliability is a priority (Levinson
et al.L 2011 Sun et al.,[2015).

Fully probabilistic, generative models could mitigate these issues by improving uncertainty quan-
tification and incorporating prior knowledge (e.g, physical properties (Wu et al., 2015)) into the
classification process. While great progress has been made towards designing generative models
that can capture high-dimensional objects such as images (Oord et al.,[2016a; |Salimans et al.,|2017),
accurate probabilistic modeling of complex, high-dimensional data remains challenging.

Our work aims at providing an understanding of these failure modes under the lens of probabilistic
modelling. Instead of directly modeling the inputs, we rely on the ability of neural networks to
extract features from high-dimensional data and build a generative model of these low-dimensional
features. Because deep neural networks are trained to extract features from which they output clas-
sification predictions, we make the assumption that it is possible to detect failure cases from the
learned representations.

Given a neural network trained for image classification, we capture the distribution of the learned
feature space with a Gaussian Mixture Model (GMM) and use the predicted likelihoods to detect
inputs on which the model cannot produce reliable classification results. We show that we are able to
not only detect adversarial and out-of-distribution samples, but surprisingly also identify inputs from
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the test set on which a model is likely to make a mistake. We experiment on state-of-the-art neural
networks trained on CIFAR-10 and CIFAR-100 (Krizhevskyl [2009) and show, through statistical
hypothesis testing, that samples leading to classification failures tend to correspond to features that
lie in a low probability region of the feature space.

Contributions Our contributions are as follows:

e We provide a probabilistic explanation to the brittleness of deep neural networks and show
that classifiers tend to make mistakes on inputs with low-probability features.

e We demonstrate that a simple modeling by a GMM of the feature space learned by a deep
neural network is enough to model the probability space. Other state-of-the-art methods
for probabilistic modelling such as VAEs (Kingma & Welling} |2013) and auto-regressive
flow models (Papamakarios et al.,|2017)) fail in that regard.

e We show that generative models trained on the feature space can be used as a single tool
to reliably detect different sources of classification failures: test set errors due to poor
generalization, adversarial samples and out-of-distribution samples.

2 RELATED WORK

An extensive body of work has been focused on understanding the behaviours of deep neural net-
works when they are faced with inputs on which they fail. We provide a brief overview below:

Uncertainty quantification Uncertainty quantification for neural networks is crucial in order to
detect when a model’s prediction cannot be trusted. Bayesian approaches (MacKay| 1992 |[Neal,
2012; Blundell et al., 2015), for example, seek to capture the uncertainty of a network by consid-
ering a prior distribution over the model’s weights. Training these networks is challenging because
the exact posterior is intractable and usually approximated using a variety of methods for poste-
rior inference. Closely related, Deep Ensembles (Lakshminarayanan et al.,|2017) and Monte-Carlo
Dropout (Gal & Ghahramani| 2016) consider the outputs of multiple models as an alternative way
to approximate the distribution. Model calibration (Platt, |1999; \Guo et al.l 2017)) aims at producing
confidence score that are representative of the likelihood of correctness. Uncertainty quantification
may also be obtained by training the network to provide uncertainty measures. Prior Networks (Ma-
linin & Gales| 2018)) model the implicit posterior distribution in the Bayesian approach, [DeVries
& Taylor| (2018); Lee et al.|(2017) have the network output an additional confidence output. These
methods require a proxy dataset representing the out-of-distribution samples to train their confidence
scores.

Our method differs from the above as it seeks to give an uncertainty estimation based on a model
trained with the usual cross-entropy loss. It does not require additional modelling assumptions,
nor modifications to the model’s architecture or training procedure. As such, it relates closely to
threshold-based methods. For example, |Hendrycks & Gimpel| (2016) use the logits outputs as a
measure of the network’s confidence and can be improved using Temperature Scaling (Guo et al.,
2017} [Liang et al., 2017), a post-processing method that calibrates the model. Our work derives
a confidence score by learning the probability distribution of the feature space and generalizes to
adversarial samples (Szegedy et al|2013)), another source of neural networks’ brittleness.

Adversarial samples Methods to defend against adversarial examples include explicitly training
networks to be more robust to adversarial attacks (Tramer et al., 2017; Madry et al., 2017} Papernot;
et al., [2015). Another line of defense comes from the ability to detect adversarial samples at test
time. Song et al|(2017) for example, use a generative model trained on the input images to detect
and purify adversarial examples at test time using the observation that adversarial samples have
lower predicted likelihood under the trained model. Closer to our work, Zheng & Hong|(2018)) and
Lee et al.| (2018) train a conditional generative model on the feature space learned by the classifier
and derive a confidence score based on the Mahalanobis distance between a test sample and its
predicted class representation. Our method makes the GMM class-agnostic, making it applicable
to settings where labels are not available at inference time. We further show that the unsupervised
GMM improves on the Mahalanobis score on the OOD detection task.
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3 DETECTING MISTAKES

Figure 1: Predicting whether an image will be correctly classified is challenging. Left: Images from
the train set. Middle: Adversarial images computed on the same images with FGSM-0.1 are indis-
tinguishable from the clean images, yet, they fool our classifier into making incorrect predictions.
Right: Images from the test set. The images look similar to images from the training set, yet, they
are incorrectly classified by our DenseNet model. Each row represents a different class.

Detecting samples on which a trained classifier is likely to make a mistake is crucial when consid-
ering the range of applications in which these models are deployed. However, predicting in advance
whether a sample will fail seems challenging, especially when the sample is drawn from the same
distribution as the train set. To illustrate this, we show in Fig.[I] samples from the CIFAR-100 train-
ing dataset and compare them to test samples and adversarial examples that our DenseNet model
fails to classify properly. In both cases, it is not obvious to the human eye what fundamentally dif-
fers between correct and incorrect samples. Our main intuition is that a generative model trained on
the feature space could capture these subtle differences.

3.1 BACKGROUND

We consider the problem of classification where we have access to a (possibly partially) labeled
dataset D = {(X;,y;)}Y, where (X;,y;) € X x ). Samples are assumed to be independently
sampled from a distribution pg,¢. (X, y) and we denote the marginal over X as pgqtq(X). We will
denote fy : X — F = RP the feature extractor part of our neural network, where @ represents
the parameters of the network and F is the feature space of dimension D. Given an input X, the
predictions probabilities on the label space ) are then typically obtained using multivariate logistic
regression on the extracted features.

p(y|X, 0, W,b) = softmaz(W fp(X) + b) )]
where (W, b) represent the weights and bias of the last fully-connected layer of the neu-
ral network.  The model prediction is the class with the highest predicted probability:
9(X) = argmaxycy p(y|X, 8, W, b). The parameters (§, W, b) are trained to minimize a cross-
entropy loss on the training set and performance is evaluated on the test set.

Learning the data structure with Generative Models Understanding the data structure can
greatly improve the ability of neural models to generalize. Recently, great progress has been made
in designing powerful generative models that can capture high-dimensional complex data such as
images. PixelCNN (Salimans et al.l 2017} [Oord et all 2016bla) in particular, is a state-of-the-art
deep generative model with tractable likelihood that represents the probability density of an image
as a fully factorized product of conditionals over individual pixels of an image.

n
penvn(X) = [ [ po(XilX1:-1) )
i=1

Flow models such as the Masked Autogressive Flow (MAF) (Papamakarios et al.,|2017) model pro-
vide similar tractability by parameterizing distributions with reversible functions which make that
likelihood easily tractable through the change of variable formula. Another widely used class of
generative models assumes the existence of unobserved latent variables. Gaussian Mixture Models,
for example, assume discrete latents (corresponding to the mixture component). Variational autoen-
coders (Kingma & Welling|[2013) use continuous latent variables and parameterize the (conditional)
distributions using neural networks.
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3.2 MODELING THE FEATURE SPACE

We identify two main reasons why characterizing examples over which a classifier is likely to make
a mistake is difficult. First, modeling the input data distribution pgq:,(X), as done in [Song et al.
(2017) to detect adversarial examples, is challenging because of the high-dimensional, complex
nature of the image space X’. This approach also fails at detecting out-of-distribution samples, with
state-of-the art models assigning higher likelihoods to samples that completely differ from their train
set (Nalisnick et al.,[2018)). Second, a model of p4q:,(X) doesn’t capture any information about the
classifier itself.

To overcome these difficulties, we propose to model the underlying distribution of the learned fea-
tures F = fp(X), where X ~ pgqta(X). Extracted features have lower dimension which makes
them easier to model and they give access to some information on the classifier. Specifically, we
are interested in comparing features F'. of samples that are correctly classified with features F,, of
samples that are incorrectly classified by a trained neural network. F. and F,, can be described as
elements of the following sets:

Fc eC= {f@(X)
Fw eWw= {f@(X)

Q(X):y,(X,y)EXX))} 3)
9(X) #y, (X,y) € X x YV} )

The distribution of the extracted features is modeled by:

K
p(F) =Y N (F; e, i) )
k=1
where K is the number of Gaussians in the mixture, 7, px, 2 are the model parameters. We
choose X, to be diagonal in all our experiments. After training a neural network to convergence, we
learn the parameters of the GMM using the EM algorithm. Our training set is built from the features
extracted from the training image set by the trained classifier.

3.3 DETECTING CLASSIFICATION MISTAKES

We posit that classification mistakes are linked to extracted features that are unusual under the train-
ing distribution. By modeling the feature space learned by the classifier, our generative model will
be able to detect an input that will lead to a potential classification mistake. We found that a simple
generative model is surprisingly good at capturing the distribution of the feature space and can detect
when an input will lead to a classification mistake based on its predicted feature log-likelihood.

Statistical Hypothesis Testing We consider p¢(F.) the distribution of features F. = fy(X)
where (X, y) ~ pdata(X,y) and §(X) = y, and pyy (F,,) the distribution of features F,, = fy(X)
where (X, y) ~ Paata(X,y) and §(X) # y. These correspond to features extracted on correctly
classified vs. incorrectly classified examples. Note that these distributions not only depend on the
underlying data distribution but also on the classifier’s parameters (6, W, b).

Assuming we have access to samples F.1,...,F.,, ~ pcand Fy,1,...Fy ,m ~ pw our null
hypothesis Hj and alternative hypothesis H; are:
Ho:pc=pw Hi:pc#pw (6)

We use the Mann-Whitney U-test, which assumes that samples can be ranked. The test statistic is
defined by ranking all samples of the two groups together and using the sum of their ranks.
n(n+1 m(m +1

GRS TP TURRY .
where R¢ and Ryy are the sum of ranks of samples F. and F,, respectively. The statistic for the
statistical test is U = min(U¢, Uyy), which has a distribution that can be approximated by a normal
distribution under the null hypothesis. In our approach, samples are ranked based on their predicted
probability.

Uc = Re -

Since our test statistic directly uses the predicted likelihood of a feature, we deduce from it a simple
per-sample test to determine if an input is likely to be misclassified. Given a threshold T, a test
sample X is rejected as being misclassified if p(fp(X)) < T'. The value of the threshold is chosen
by cross-validation on the validation set to obtain a good trade-off between precision and recall.
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Figure 2: Comparing the predicted log likelihood distribution of correct (blue) and incorrect (orange)
samples from the test set for models trained on CIFAR-100. Top row: Log likelihoods obtained from
training PixelCNN on images from the train set. Bottom row: Log likelihoods obtained from training
GMM-100 on features extracted from the train set.

4 EXPERIMENTS

We run experiments on the CIFAR-100 dataset, containing 32 x 32 color images used for image
classification with 100 classes. All reported results give the mean and standard deviation over 5
independent runs. Additional experiments on a model trained on the smaller CIFAR-10 dataset are
also available in the appendix. We examine two state-of-the-art deep neural networks, DenseNet-
100 (Huang et al., [2016) and Wide ResNet-28 (Zagoruyko & Komodakis, [2016)) trained with the
usual cross-entropy loss. In the setting where only a small number of labels is available, we train
a WRN-28 model with 100 labeled samples per class using Temporal ensembling (Laine & Aila,
2016). This self-ensembling training method takes advantage of the stochasticity provided by the
use of dropout and random augmentation techniques (e.g. random flipping and cropping).

Mistake Detection Using statistical testing, we verify that the trained model learns a distribution
that differentiates correct and incorrect samples. We sum up the performance of our method by
reporting the AUC-ROC and AUC-PR obtained on the test set.

To motivate the use of high-level features, we adapt the detection method used by |Song et al.|(2017)
to the mistake detection problem and compare the performance with our proposed method. We train
a PixelCNN on the image dataset and use the predicted likelihood values to detect classification
mistakes. We evaluate mistake detection on the test set and first compare the distribution predicted by
PixelCNN on the images with the distribution predicted by a GMM-100 model on extracted features
(Figure [2). Using the Mann-Whitney U-test, we verify that the distribution learned by GMM-100
differentiates correct and incorrect samples (p = 1.9e~13). On the other hand, because Pixel CNN
is trained without knowledge of the classifier’s internal representations, the distributions of correct
and incorrect samples predicted under PixelCNN are almost indistinguishable (p = 8.58¢~°).

Additionally, we experimented with more flexible likelihood models to model the feature space such
as the Variational Auto Encoder (Kingma & Welling, |2013)) and Masked Autoregressive Flow (Pa-
pamakarios et al., [2017). Surprisingly, we found that a simple Gaussian Mixture Model is better
at detecting classification mistakes than these more flexible models. Finally, we also compare with
other threshold-based methods: using the predicted logits and calibrated scores obtained after Tem-
perature Scaling. Detection performance is summed up in Figure 3] for DenseNet and WideResNet
models trained on CIFAR-100. GMM models trained on the features outperform all other generative
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Figure 3: Comparison of ROC and PR curves for detecting classification mistakes using different
generative models. Using a PixelCNN to model the image space fails at reliably detecting classifica-
tion mistakes. GMMs trained on the feature space achieve better detection than other more flexible
models like VAE and MAF and are comparable to temperature scaling on the WRN model.

models trained either on images or on the feature space. We find that using a GMM has similar per-
formance than calibrated scores on the Wide ResNet but not on the DenseNet. This is explained by
the fact that our DenseNet model has much lower accuracy than Wide ResNet (72.76% v. 80.22%)
and therefore does not produce overly confident predictions. Additional results are available in the
appendix.

In the next experiments, we show that although using predicted logits provides reliable detection of
test set mistakes, this metric doesn’t generalize to adversarial or out-of-detection samples. On the
other hand, our approach to train a generative model on the feature space can be applied to these
other sources of classification errors.

Adversarial samples We craft adversarial samples from test samples using the Fast-Gradient Sign
Method (FGSM) proposed by |Goodfellow et al.|(2014)) and the Basic Iteration Method (BIM)
2016). Both methods move the input image in the direction of the gradient of the loss
while restraining the adversarial sample to be in a #; ball of ray €,¢+4cx around the original input.
This ensures that the generated adversarial sample is visually indistinguishable from the original.

Figure[dshows that the GMM is sensitive to features extracted from adversarial samples, as they are
assigned higher BPDs than clean samples. We also plot the ROC curves and corresponding AUC
metrics that are obtained by using the predicted BPD to detect adversarial samples.

We compare our approach with other possible detection metrics. In particular, the method proposed
by |Zheng & Hong|(2018) and the Mahalanobis score from|Lee et al| also leverage the feature
space to detect adversarial inputs. These approaches use one different model per class and therefore
require labels to train while we only train one GMM in an unsupervised manner. ROC curves are
shown in Figure[5]and a full comparison table with higher €441 values for both attacks is shown in
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Figure 4: Top: Distribution of log-likelihood predicted on clean (blue) and adversarial samples
(green and orange) by a GMM-1000. The log-likelihood of features extracted from adversarial
samples is lower. The histograms are separated, which means it is possible to detect adversarial
samples using the log-likelihood of their features. Bottom: ROC curve for detecting adversarial
samples using predicted log-likelihood. Our method achieves a good trade-off between true positive
and false positive rate, significantly improves over chance and achieves between 76% and 100%
AUC depending on attack methods and models.

the appendix. Our method, using a GMM-1000 provides better detection performance of adversarial
samples than calibrated and non-calibrated logit scores. Most notably, in a semi-supervised setting
(Figure , our method surpasses all others on attacks with low €414 Values.
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Figure 5: Comparison of ROC curves for adversarial sample detection using different metrics. Logit-
based scores (Logits and Calibrated) can not reliably detect adversarial samples properly while meth-
ods that model the probability space of the feature space can (GMM1000, Mahalanobis, Zheng).
Our method achieves comparable detection results as the Mahalanobis and the Zheng metric and
surpasses both of them in a semi-supervised setting (Figure .

Out-of-Distribution Detection We also test the use of feature log-likelihood values on the task
of detection out-of-distribution samples. As Out-of-Distribution samples we use Random Gaus-
sian Noise, SVHN [201T), Tiny ImageNet (Russakovsky et al. [2015), and Fashion
MNIST 2017). OOD detection results are reported in Table [2|for each model we trained.
Our experiments show that it is not possible to rely on calibrated probability scores for OOD detec-
tion, and that our method yields better detection results than using the Mahalanobis score in some
cases. We also highlight that a PixeICNN trained on CIFAR has very poor detection results on image
datasets that visually look very different from its original training set (FashionMNIST and SVHN).
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This is a result of the generative model assigning higher likelihood to these OOD samples. Table 3]
in the annex also shows that only calibrated scores fail to detect random gaussian noise as an OOD
sample.

Table 1: OOD Detection results. Calibrated scores do not detect OOD samples well, especially
samples from SVHN. On the other hand, our detection method using a GMM on the feature space
is able to reliably detect out-of-distribution samples and performs better than the class-dependent
Mahalanobis score even on fully-supervised models. PixelCNN assigns higher likelihoods to OOD
samples that diverge clearly from the original training set and fails to detect them.

(a) Out-distribution: SVHN

MODEL | DETECTION METHOD | AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 95.70 £0.36 83.60+1.04 99.23+0.07
DenseNet-100 Mahalanobis 94.38 + 0.39 80.06 + 0.87 98.83 +0.09
Calibrated Scores 80.58 4 2.00 56.60 = 4.74 95.70 +0.44
GMM-1000 81.40+3.74 53.64+6.02 96.45+0.87
WRN-28 Ma}_lalanobis 75.86 £2.72 47.404+6.42 93.96 + 0.61
Calibrated Scores 78.64£1.70 56.23+3.00 95.05+0.52
GMM-1000 72.45+7.41 40.62+7.64 93.47+2.03
Mabhalanobis 49.46 + 5.52 17.32 £ 5.19 86.54 £+ 1.36
TE-WRN-28 | Calibrated Scores 62.10+3.97 3546+-482 89.82+1.10
Model-Agnostic | PixeIlCNN [ 20.18£0.41 7.33 £0.10 75.97 £0.10
(b) Out-distribution: Tiny ImageNet
MODEL | DETECTION METHOD | AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 96.75+£0.45 96.78 +0.42 96.67 +0.51
DenseNet-100 Mahalanobis 95.26 + 0.61 95.68 + 0.55 94.57 +0.70
Calibrated Scores 74.00 £2.01 73.49 +4.37 71.454+1.09
GMM-1000 84.98+1.86 86.32+1.95 82.45+1.92
WRN-28 Mahalanobis 80.35 + 2.92 82.72 + 2.62 76.01 +3.91
Calibrated Scores 82.64+1.65 87.46+1.43 79.40+1.56
GMM-1000 67.94 +2.11 67.82 1+ 1.44 68.59 & 2.84
TE-WRN/C100 | Mahalanobis 70.631+2.46 70.661+1.83 70.084+3.10
Calibrated Scores 56.41 + 0.96 59.22 +1.43 54.01 +0.49
Model-Agnostic | PixelCNN | 8205+£0.14 78.63+£0.16 81.87+0.19
(c) Out-distribution: Fashion-MNIST
MODEL ‘ DETECTION METHOD ‘ AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 93.23+1.31 89.29+275 98.30+0.36
DenseNet-100 Mahalanobis 94.48 £0.41 88.95+1.04 98.12+0.15
Calibrated Scores 85.92 +1.72 65.72 + 3.05 96.60 + 0.5
GMM-1000 87.32+2.12 69.72+3.45 96.82+0.67
WRN-28 Mahalanobis 79.33 £1.90 57.26 +2.33 93.7 +0.80
Calibrated Scores 86.01+£0.99 70.37+1.49 96.24+0.39
GMM-1000 66.95 + 3.85 36.79+£4.06 91.29+1.34
TE-WRN-28 Mahalanobis 63.96 + 1.73 32.71 + 2.00 89.88 + 0.75
Calibrated Scores 70.11 +2.27 43.56 +-3.38 91.72 +0.87
Model-Agnostic | PixelCNN [ 0.71£0.09 7.51 £ 0.00 67.70 + 0.02

5 CONCLUSION

Using statistical hypothesis testing we provided a general characterization of inputs that lead to clas-
sification mistakes by deep neural networks. With a simple Gaussian Mixture Model, we model the
distribution of the feature space learned by a classifier and verified that features extracted from in-
puts consistently lie outside of the training distribution and can be detected by their low predicted log
probability. Compared to other score-based methods, our characterization holds for a variety of clas-
sification failure modes in deep neural networks: adversarial sample detection, out-of-distribution
detection and test time classification mistakes.
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A ADDITIONAL DETECTION RESULTS
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Figure 6: Additional results for model trained on CIFAR-10. Left: comparison of log-likelihood
distributions. Pixel CNN is not able to distinguish correct samples from incorrect ones while a GMM
trained on the feature space can. Middle: a GMM trained on the feature space can detect adversarial

samples reliably.
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Figure 7: Comparison of ROC curves for FGSM and BIM adversarial sample detection for CIFAR-

10 model.

True Positive Rate
o o o o =
5 2 o ® o

e
)

True Positive Rate
o o o o &
N 2 o ® o

o
o

True Positive Rate
o o o o
N 2 o ® o

ol
o

.2 0.4 0.6
False Positive Rate

12

BIM 0.05 FGSM 0.05
1.0
Los
©
. o -
e o6 L
—— GMM1000: 97.76 + 0.44 =] GMM1000: 97.26 + 0.32
@
—— Logits: 76.78 £5.95 Loa ~—— Logits: 78.49 +1.58
—— Calibrated: 77.63 £5.25 9 —— Calibrated: 81.21 +1.05
—— Mahalanobis: 97.63+0.70 02 —— Mabhalanobis: 95.74 +0.78
/— Zheng: 96.85 +0.76 0o b Zheng: 96.25 + 0.37
.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
BIM 0.1 FGSM 0.1
1.0
-
Los ( s
© e
-4 e
- Los e
—— GMM1000: 99.99 + 0.00 =] —— GMM1000: 99.96 + 0.01
[
—— Logits: 73.62 £7.99 Loa —— Logits: 89.53 +4.15
—— Calibrated: 75.44 +7.37 g —— Calibrated: 89.33 +3.44
—— Mahalanobis: 99.98 +0.01 =02 —— Mahalanobis: 99.87 + 0.01
/— Zheng: 99.98 £ 0.01 0o b Zheng: 99.90 £ 0.03
0.2 0.4 0.6 0.8 1.0 " 00 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
BIM 0.2 FGSM 0.2
1.0 —
e Pid
< Los l et
—— GMM1000: 100.00 +0.00 = —— GMM1000: 100.00 +0.00
—— Logits: 62.95 +10.21 Qoe — Logits: 83.74+5.24
—— Calibrated: 75.16 + 12.66 ‘% —— Calibrated: 87.22 + 6.49
—— Mahalanobis: 100.00 + 0.00 £ 04 —— Mahalanobis: 100.00 + 0.00
—— Zheng: 100.00 +0.00 e —— Zheng: 100.00 * 0.00
0.0
0.0 0. 0.8 1.0 0.0 0 0.6 0.8 1.0

.2 0.4
False Positive Rate



Under review as a conference paper at ICLR 2021

ROC

o ot o =
IS o @ o

True Positive Rate

o
N

0.0
00 02 04 06 08
False Positive Rate

PR (correct)

Precision

00 02 04 06 08
Recall

PR (incorrect)

Precision
o o o o
= 0 o S

o
w

00 02 04 06 08
Recall

1.0

1.0

?

1.0

PixelCNN: 53.55 + 0.24
VAE: 42.94 £ 0.35

MADE: 56.79 £0.75
Logits: 84.34 +0.17
Temp. Scal.: 84.21+0.17
GMM-100: 62.91 +0.82
GMM-1000: 65.06 +0.43

PixelCNN: 67.49 + 0.13
VAE: 61.22 = 0.40

MADE: 71.84 +£0.74
Logits: 91.21 +0.12
Temp. Scal.: 91.11+0.12
GMM-100: 77.65 = 0.60
GMM-1000: 78.83 + 0.39

PixelCNN: 32.84 + 0.13
VAE: 30.66 +0.18

MADE: 39.42 + 0.60
Logits: 71.43 +£0.22
Temp. Scal.: 71.25+0.24
GMM-100: 42.90 + 0.65
GMM-1000: 45.37 +0.48

(a) ROC curves

Precision True Positive Rate

Precision

| g
E}

o
®

ot
o

o
=

o
N

o
o

o
©

g
o

o
IS

ROC

0.2

False Positive Rate

0.4

0.6

0.8

PR (correct)

0.25

0.50

Recall

0.75

PR (incorrect)

0.2

0.4

0.6

Recall

0.8

1.0

PixelCNN: 51.73 £ 0.79
VAE: 63.82 +0.47

MADE: 71.39 +1.15
Logits: 93.87 = 0.35
Temp. Scal.: 93.85 + 0.34
GMM-100: 79.48 +£0.95
GMM-1000: 80.93 + 0.69

PixelCNN: 94.84 + 0.18
VAE: 96.73 +0.13

MADE: 97.71 +0.12
Logits: 99.59 +0.03
Temp. Scal.: 99.60 + 0.02
GMM-100: 98.46 = 0.06
GMM-1000: 98.59 + 0.07

PixelCNN: 5.36 = 0.17
VAE: 8.61+0.18

MADE: 10.56 +0.79
Logits: 44.69 +1.35
Temp. Scal.: 45.99 +1.30
GMM-100: 15.56 +1.21
GMM-1000: 17.21 +0.90

(b) PR curves (correct)

Figure 8: Additional comparison of ROC and PR curves for detecting classification mistakes using
different generative models. Using a PixelCNN to model the image space fails at reliably detecting
classification mistakes. GMMs trained on the feature space achieve better detection than other more
flexible models like VAE and MAF and are comparable to temperature scaling on the WRN model.
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Table 2: OOD Detection results for CIFAR-10 model. Calibrated scores do not detect OOD samples
well, especially gaussian noise samples. Pixel CNN assigns higher likelihoods to OOD samples that
diverge clearly from the original training set and fails to detect them.

(a) Out-distribution: SVHN

MODEL | DETECTION METHOD | AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 99.35+0.21 96.46 +0.90 99.91 +0.03
DenseNet-100 Mahalanobis 98.82 +0.44 93.06 + 2.37 99.83 + 0.06
Calibrated Scores 92.00 £ 3.02 82.48 +4.90 98.29 +0.70
Model-Agnostic | PixeICNN [ 19.73£0.72 7.29 £0.08 76.06 +0.21
(b) Out-distribution: Tiny ImageNet
MODEL \ DETECTION METHOD \ AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 98.88 £0.28 9890+0.25 98.89+0.29
DenseNet-100 Mahalanobis 98.03 +0.39 98.07 + 0.37 98.03 +0.42
Calibrated Scores 94.66 + 0.50 95.66 + 0.36 93.49 + 0.78
Model-Agnostic | PixelCNN [ 85.01£0.16 80.11 £ 0.25 86.22 +0.19
(c) Out-distribution: Gaussian Noise
MODEL | DETECTION METHOD | AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 100 100 100
DenseNet-100 Mahalanobis 100 100 100
Calibrated Scores 77.85+18.34 86.57 +11.61 68.28 £ 16.81
Model-Agnostic | PixelCNN [ 100 100 100
(d) Out-distribution: Fashion-MNIST
MODEL | DETECTION METHOD | AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 97.47+£1.10 91.28+3.91 99.52+4+0.20
DenseNet-100 Mahalanobis 98.38 £ 0.87 95.07+2.71 99.67+0.18
Calibrated Scores 93.71 +1.83 85.72 + 3.97 98.53 + 0.48
Model-Agnostic | PixelCNN | 0.61£0.16 7.51 +£0.00 67.68 +0.03

Table 3: Out-distribution detection results for CIFAR-100 models on Gaussian Noise. Calibrated
scores is the only method failing at detecting gaussian noise inputs.

MODEL DETECTION METHOD AU-ROC AU-PR (in) AU-PR (out)
GMM-1000 100 100 100
DenseNet-100 Mahalanobis 100 100 100
Calibrated Scores 70.04 +£20.28 80.36 +£13.99 61.56 + 15.92
GMM-1000 99.96 + 0.03 99.96 +-0.03 99.94 + 0.05
WRN-28 Mahalanobis 99.99 + 0.01 100 99.98 + 0.02
Calibrated Scores 88.27 +6.07 92.61 4+ 3.67 78.46 +9.80
GMM-1000 100 100 100
TE-WRN-28 Mahalanobis 100 100 100
Calibrated Scores 38.28+16.31 59.02+11.95 41.07£5.55
Model-Agnostic \ Pixel CNN \ 100 100 100
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B PURIFICATION

B.1 METHOD

The purification process aims at moving the feature F' extracted by the classifier to a low BPD
region. This can be formulated as a joint optimization problem where we want to find features F
with minimal BPD, while being close to the initial extracted features F ...

F* = arg min BPD(F) +v||F — F.ef|3 ®)

v is a hyperparameter that defines how close the new feature should be to the initial one. As the
objective is not convex and there is no close form solution for stationary points, we use gradient
descent with regards to F' to minimize the objective function.

F:=F — ¢(VgBPD(F) 4 2v(F — Fy.f)) 9)

B.2 PURIFICATION RESULTS

Purification of features is performed with 100 iterations of gradient descent steps to optimize the ob-
jective function. We test the performance of purification for both classification and semi-supervised
classification tasks on CIFAR-100.

We report the accuracy on validation and test set obtained after purification with different GMMs and
for different values of learning rates e and regularization strength v in Table[d For classification, our
networks are DenseNet (DN-100) and Wide ResNet (WRN-28). For semi-supervised classification,
we apply temporal ensembling to wide ResNet (TE-WRN-28). Our results show that this purification
procedure is able to correct classification mistakes on previously unseen samples and results in an
accuracy gain for the model without the need to retrain. However the purification method also leads
to new classification mistakes, which means that the net improvement on the accuracy reaches 0.6%
on the DenseNet model at most.

Table 4: Validation and test classification accuracy obtained after purification for DenseNet-100,
Wide Resnet-28 and TE-Wide Resnet-28. Purification increases the test accuracy by up to 0.6% on
the DenseNet model.

GMM € v DN-100 WRN-28 TE-WRN-28
Val Test Val Test Val Test

Original - - 73.12  72.74 | 80.34 80.10 | 65.13 64.51
0 7378 7339 | 80.01 79.73 | 65.21 64.61

0.1 0.01 | 73.78 73.39 | 80.03 79.75 | 6524 64.60

1000 0.1 | 73.74 73.28 | 80.28 79.87 | 65.27 64.60
1.0 | 73.24 72.89 | 80.40 80.11 | 65.16 64.51

0 7333 7295 | 80.40 80.10 | 65.18 64.51

001 0.01 | 73.33 7295 | 8040 80.10 | 65.18 64.51

) 0.1 | 73.30 7295 | 80.38 80.10 | 65.17 64.51

1.0 | 73.22 72.86 | 80.40 80.11 | 65.16 64.51

C EXPERIMENTAL SETUP

Dataset and preprocessing We trained on CIFAR-10 and CIFAR-100 [Krizhevsky| (2009) with
5,000 images held-out validation images. Inputs were preprocessed with per-channel standardization
before training.

DenseNet We use bottleneck layers and compression rate = 0.5, growth rate k¥ = 12 and depth
L = 100. The model is trained with batch size 64 for 300 epochs with a learning rate 0.1, dropout
rate 0.2 and L, regularization weight 1e=*. We use ReLU non-linearities except for the last layer
where we use a tanh non-linearity to ensure the extracted features are bounded. For optimization,
we use Stochastic Gradient Descent with a Nestrov momentum of 0.9. The learning rate is divided
by 10 at epoch 150 and 175.
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Wide ResNet Wide ResNet [Zagoruyko & Komodakis| (2016) is trained with growth rate k£ = 10
and depth L = 28 and batch size 100 for 200 epochs, with a learning rate 0.1, dropout rate 0.3 and Lo
regularization weight 5e~*. Data augmentation is applied during training with random translation
by up to 2 pixels and random horizontal flips.

Temporal Ensembling For the semi-supervised setting, we only keep 100 samples per label in
the train set. We train a Wide ResNet using Temporal Ensembling with a maximum weight decay
of 100.

PixelCNN The PixelCNN model is trained with the PixelCNN++ ameliorations from [Salimans
et al.|(2017) for our experiments. The model is trained for 5000 epochs with dropout rate 0.5 and
learning rate le 4.

VAE The VAE is trainer for 1000 epochs with a learning rate of 0.001 and decay rate of 0.9995.
The encoder and decoder architecture are fully connected layers with ReL.U non-linearities, one
hidden layer of size 512 and latent dimension of 128. The model was trained with Adam.

MAF The Masked Autoregressive Flow model is trained for 1000 epochs with a learning rate of
0.01 and batch size 32 using Adam Optimizer. We used a 5-layer MADE model with hidden layer
size of 128.

Temperature Scaling The temperature for Temperature Scaling is optimized using the L-BFGS-
B optimization algorithm with a maximum of 100 iterations. We use ECE with B = 10 bins to
evaluate the success of the calibration.
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