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Abstract

Retrieval-Augmented Generation (RAG) is001
widely used to enhance Large Language Mod-002
els (LLMs) by grounding responses in external003
knowledge. However, in real-world applica-004
tions, retrievers often return lengthy documents005
with redundant or irrelevant content, confusing006
downstream readers. While evidence retrieval007
aims to address this by extracting key informa-008
tion, it faces critical challenges: (1) inability009
to model synergistic inter-dependencies among010
evidence sentences, (2) lack of supervision for011
evaluating multi-sentence evidence quality, and012
(3) computational inefficiency in navigating013
exponentially growing search spaces of candi-014
date evidence sets. To tackle these challenges,015
we propose ETS (Evidence Tree Search), a016
novel framework that reformulates evidence017
retrieval as a dynamic tree expansion process.018
Our approach first constructs an evidence tree019
where each path represents a candidate evi-020
dence set, explicitly modeling inter-sentence021
dependencies through context-aware node se-022
lection. We then leverage Monte Carlo Tree023
Search (MCTS) to efficiently assess evidence024
quality and introduce an Early-Terminating025
Beam Search strategy to efficiently accelerate026
the model inference. Extensive experiments on027
five datasets demonstrate that ETS significantly028
outperforms existing methods across different029
readers. Our code and datasets will be released030
to facilitate future research.031

1 Introduction032

Large Language Models (LLMs) (Taylor et al.,033

2022; Chowdhery et al., 2022; Zhao et al., 2023a)034

have demonstrated remarkable performance across035

a wide range of downstream tasks (Xia et al.,036

2024; Yamauchi et al., 2023; Imani et al., 2023;037

Lewkowycz et al., 2022). Despite these advance-038

ments, LLMs are still prone to generating responses039

that include hallucinated facts or inaccurate infor-040

mation (Ji et al., 2023; Shuster et al., 2021; Zhang041

et al., 2023a), which undermines their reliability.042
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Figure 1: Illustration of Evidence Retrieval for RAG.
Given an input query, a long article is retrieved using a
search engine and segmented into sentences. The evi-
dence finder then performs a reward-guided tree search
to identify the optimal set of evidence, which is subse-
quently passed to the reader LLM for answer generation.

To mitigate this issue, Retrieval-Augmented Gen- 043

eration (RAG) has been introduced, which inte- 044

grates external knowledge into the generation pro- 045

cess (Ram et al., 2023; Shi et al., 2023; Rashkin 046

et al., 2021; Gao et al., 2022; Bohnet et al., 2022; 047

Menick et al., 2022). 048

In typical RAG systems, a user’s query is uti- 049

lized to retrieve relevant documents from external 050

sources, which are then fed into the reader LLM 051

to produce more accurate responses. However, in 052

real-world applications, imperfect retrievers often 053

return long documents, such as web pages, that may 054

contain substantial irrelevant content. Only specific 055

portions of these documents are relevant for answer- 056

ing the query. Directly using these lengthy docu- 057

ments in RAG systems poses several challenges: 058

readers may struggle with processing long texts, 059

and irrelevant content could distract the reader from 060

generating the correct response. Therefore, evi- 061

dence retrieval plays a critical role in addressing 062

these issues by identifying and extracting the most 063
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relevant evidence sentences from the retrieved doc-064

uments before passing it to the reader.065

However, evidence retrieval is a non-trivial task066

due to several inherent challenges. First, rele-067

vant evidence often comprises multiple interrelated068

pieces of information. Traditional retrieval meth-069

ods focus on modeling the relationship between070

the query and each individual sentence, inherently071

failing to capture the complex inter-dependencies072

among evidence sentences. Second, assessing the073

quality of evidence sets presents significant difficul-074

ties due to the lack of explicit supervision signals.075

Most RAG corpora only provide binary document-076

level relevance labels, offering no direct feedback077

on which specific sentence combinations optimally078

support answer generation. Finally, the combinato-079

rial explosion of candidate evidence sets in lengthy080

documents creates an enormous search space, mak-081

ing it computationally intensive to efficiently iden-082

tify the optimal set of evidence.083

To address these challenges, as depicted in Fig-084

ure 1, we propose ETS, a novel evidence retrieval085

framework with Evidence Tree Search. To capture086

the complex inter-dependencies among evidence087

sentences, ETS model evidence retrieval as a dy-088

namic tree expansion process, where each node089

represents a sentence and every root-to-leaf path090

constitutes a candidate evidence set. This hierar-091

chical structure inherently captures inter-sentence092

dependencies — during tree growth, new sentences093

are selected based on accumulated contextual ev-094

idence along the current path, enabling holistic095

evaluation of sentence combinations’ collective rel-096

evance to the query. In order to assess the qual-097

ity of evidence sets, we introduce Monte Carlo098

Tree Search (MCTS) (Silver et al., 2017) to guide099

the exploration of potential evidence combinations.100

Through iterative MCTS simulations, rewards de-101

rived from reader correctness given the candidate102

evidence set are back-propagated to update node103

values, providing dense training signals for optimiz-104

ing evidence selection. To combat the exponential105

search space, we propose pruning the search space106

using a value model trained on reward signals de-107

rived from the evidence tree constructed through108

MCTS annotation. By leveraging this model, the109

framework efficiently narrows down the search110

space, retaining only the most promising evidence111

combinations. Additionally, to further reduce in-112

ference latency, we introduce Early Terminating113

during the expansion phase of beam search. This114

technique terminates the generation of candidate115

sentences early when a sentence prefix uniquely 116

identifies its position in the original context, signifi- 117

cantly improving computational efficiency without 118

compromising accuracy. 119

Our contributions are summarized as follows: 120

• We propose ETS, a tree-based framework that 121

enhances LLMs’ evidence-grounding through 122

a tree expansion process. 123

• We introduce MCTS to assess evidence qual- 124

ity and Early Terminating Beam Search to 125

reduce search space and improve selection ef- 126

ficiency. 127

• Extensive experiments on five datasets show 128

our method outperforms existing approaches 129

across different readers. 130

2 Background 131

In Retrieval-Augmented Generation (RAG), a re- 132

triever first retrieves relevant text evidence D from 133

a corpus C given a query q. The retrieved evidence 134

is then used by a reader LLM to generate an an- 135

swer: 136

D = Retriever(q, C), A = Reader(q,D), 137

The retriever can be implemented using open- 138

source models (e.g., DPR (Karpukhin et al., 2020)) 139

or commercial search engines (e.g., Google), while 140

the reader is typically a LLM. 141

In practice, retrievers often return lengthy docu- 142

ments (e.g., web pages or articles) instead of con- 143

cise evidence, making it difficult for the reader to 144

generate accurate answers. To address this, evi- 145

dence retrieval aims to identify and extract a subset 146

of key text spans, referred to as supporting evidence 147

T = {t1, . . . , tk} ⊂ D, that are most relevant to 148

answering the query q. This selection process can 149

be formalized as a mapping function f(·): 150

T = {t1, . . . , tk} = f(D). 151

In this work, we define f(·) as a tree expansion 152

process, where each node represents a sentence, 153

and the path from the root node to a leaf node 154

represents the selected evidence. 155

3 Approach 156

3.1 Overview 157

Figure 3 presents an overview of our framework. 158

The process begins with the application of the 159
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Figure 2: Single iteration of MCTS Annotation. The iteration is repeated until the maximum number of iterations is
reached or no further nodes in the tree can be expanded.

Monte Carlo Tree Search (MCTS) algorithm to con-160

struct evidence trees for the queries in the training161

dataset. From these trees, we extract both correct162

and incorrect paths, which are subsequently uti-163

lized to train the policy model and the value model,164

respectively. During the inference phase, we in-165

troduce an early terminating beam search mech-166

anism. This approach efficiently minimizes the167

search space and terminates the generation process168

once the prefix uniquely identifies the evidence,169

thereby optimizing computational efficiency and170

accuracy. Next, we will first illustrate the process171

of the MCTS annotation.172

3.2 MCTS Annotation173

Given an input query, a long article is retrieved174

using a search engine and segmented into individ-175

ual sentences, which serve as the initial candidate176

set. However, due to the excessive length of the177

article, the candidate set can become prohibitively178

large, with many sentences being irrelevant to the179

query. This not only increases the computational180

complexity of MCTS but also introduces noise into181

the labeling process. To address this issue, we intro-182

duce a filtering mechanism that leverages the BGE183

model (Xiao et al., 2023) to compute the similar-184

ity between the query and each candidate sentence.185

By retaining only the most semantically similar186

sentences, we significantly reduce the candidate187

set, thereby improving the overall efficiency and188

accuracy of the annotation process.189

During the search process, MCTS runs for mul-190

tiple simulations. This process terminates when191

the maximum iteration number is reached or no192

paths can be expanded. For the i-th simulation, it193

conducts four operations to expand the tree:194

Selection During the i-th simulation of the195

MCTS, the process begins with s0, which repre-196

sents the input query. The algorithm then proceeds197

to explore the tree by selecting nodes according 198

to the Upper Confidence Bound for Trees (UCT) 199

criterion (Rosin, 2011). This selection process is 200

mathematically represented as: 201

UCT (st) = V (st) + w

√
lnNparent(st)

N(st)
(1) 202

where w controls the balance between exploration 203

and exploitation. The node value V (st) and its vis- 204

iting count N(st) will be updated as the search pro- 205

gresses. Nparent(st) represents the visiting count 206

of the parent node of st. 207

Expansion After selecting the node to be ex- 208

panded, the next step is to choose the most suitable 209

sentence from the candidate set. A straightforward 210

way to evaluate the quality of the evidence set is to 211

measure the likelihood of the reader generating the 212

correct answer when the evidence set is used as the 213

model input. To accelerate the labeling process, we 214

employ parallel expansion, where we concurrently 215

compute the likelihood of outputting the correct 216

answer after incorporating each candidate sentence 217

into the evidence set. This is expressed as: 218

R(st) = P (y|q, dt) (2) 219

where y represents the correct answer, and dt de- 220

notes the evidence set after adding the candidate 221

sentence st. From these calculations, we select the 222

top M sentences that are most likely to lead to the 223

final correct answer as the expansion nodes. 224

Simulation The simulation phase aims to deter- 225

mine whether the current path can lead the reader 226

to generate the final correct answer. To achieve 227

this, for each node, we construct the evidence set 228

by concatenating the sentences from the root node 229

to the current node. The reader then answers the 230

question based on this evidence set. If the reader 231
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Figure 3: Overview of the proposed method: Given an input query, a long article is retrieved using a search engine
and segmented into individual sentences, which serve as the initial candidate set. Then the MCTS algorithm
constructs evidence trees for the input query from which correct and incorrect paths are extracted to train the policy
and value models. During inference, the early terminating beam search minimizes the search space and terminates
generation once the generated prefix uniquely identifies a sentence in the candidate set.

provides the correct answer, indicating that suffi-232

cient evidence has been identified, the reward is set233

to 1. Otherwise, the reward is defined as the like-234

lihood of the reader outputting the correct answer235

based on the evidence set.236

Backpropagation At the end of the i-th simula-237

tion, each edge along the path from the leaf node238

st to the root undergoes a backward pass update.239

The updates to their values and visiting counts are240

executed according to the following rule:241

N(st)← N(st) + 1

V (st)← V (st) +
1

N(st)
(R(st)− V (st))

(3)242

where N(st) represents the visiting count of node243

st, and V (st) denotes its value.244

3.3 Model Training245

In our framework, the policy model πθ is initial-246

ized with a pre-trained LLM. We extend this model247

to derive the value model Vϕ by adding an auxil-248

iary linear layer with a Sigmoid activation func-249

tion. This layer operates alongside the traditional250

softmax layer responsible for token prediction, as251

illustrated in the rightmost panel of Figure 3. This252

design ensures that the policy model and the value253

model share the majority of their parameters, pro-254

moting parameter efficiency and joint optimization.255

To construct the training signals for the policy256

model and the value model, we sample solution257

paths from the tree constructed through multiple258

rounds of MCTS. These paths are denoted as x+259

(correct solutions) and x− (incorrect solutions). We260

then apply a multi-task loss function to jointly up-261

date both models:262

L = − log πθ(x
+|q) + β ·

T (x)∑
t=1

∥Vϕ(st)− V (st)∥2 (4)263

Here, the first term represents the negative log- 264

likelihood loss for next-token prediction in correct 265

solutions, which guides the policy model to gener- 266

ate accurate predictions. The second term captures 267

the loss in value prediction for both correct and 268

incorrect solutions, ensuring the value model pro- 269

vides reliable estimates of expected rewards at each 270

node. T (x) denotes the number of steps in the so- 271

lution path x, and β is a tunable hyperparameter 272

that controls the weight of the value loss term. 273

3.4 Model Inference 274

After obtaining the trained policy model, it can 275

be directly used to generate grounding evidence. 276

However, this iterative generation process has two 277

limitations: it fails to fully explore the evidence 278

space, and the generation can be slow due to the 279

large input length. To address these issues, we pro- 280

pose an early terminating beam search mechanism, 281

which efficiently explores the evidence space while 282

bypassing unnecessary decoding steps. 283

Early Terminating Beam Search Specifically, 284

given the input query and the long article, the pol- 285

icy model is used to generate multiple candidate 286

sentences. Since the generation target originates 287

directly from the source text, once the generation 288

prefix is determined, the generated prefix can be 289

used to locate the corresponding text in the source 290

article. This allows us to skip decoding intermedi- 291

ate tokens, significantly speeding up the process. 292

The value model is then employed to evaluate the 293

quality of the expanded sentences, retaining only 294

the most valuable nodes. This process is iterated 295

until the maximum depth is reached or no further 296

paths can be expanded. Finally, the answer with 297

the highest value is selected as the output. 298
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Model 2WikiMulti HotpotQA MusiQue MultiField Qasper AVG

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Qwen2.5-14B-Instruct-1M
BM25 32.00 30.08 39.50 38.32 13.50 12.09 25.33 39.90 16.00 16.30 25.27 27.34
BGE-base-en 37.50 37.01 40.50 38.45 19.50 19.98 27.33 44.07 21.50 23.74 29.27 32.65
LLM-Embedder 36.00 36.91 39.50 36.56 20.50 20.21 26.67 45.92 25.50 26.97 29.63 33.31

ChatGLM3-6B 32.50 30.90 30.00 31.59 14.00 15.03 16.00 33.61 21.50 23.14 22.80 26.85
Qwen2.5-7B 40.50 37.20 46.00 42.59 18.50 18.67 24.00 41.50 22.50 23.74 30.30 32.74
GLM-4-9B 37.50 37.25 43.50 44.28 25.00 24.85 28.67 42.05 19.00 18.94 30.73 33.47
Qwen2.5-14B 35.00 32.11 42.00 40.42 22.00 22.06 22.67 41.07 25.00 27.06 29.33 32.54
Qwen2.5-32B 42.50 36.39 43.00 41.81 18.50 19.01 19.33 32.66 15.00 15.38 27.67 29.05
Qwen2.5-72B 41.00 38.09 43.00 43.68 19.50 21.96 24.67 37.07 13.50 14.60 28.33 31.08

CFIC-7B 45.00 42.52 45.50 39.06 27.50 26.06 28.67 45.94 26.00 27.92 34.53 36.30
ETS-7B 58.00 56.23 51.00 51.26 39.50 39.85 29.33 48.38 27.00 29.02 40.97 44.95

Qwen2.5-72B-Instruct
BM25 31.00 28.59 42.00 40.45 12.00 14.62 23.33 39.96 16.50 20.52 24.97 28.83
BGE-base-en 41.00 40.83 43.50 42.98 19.50 19.79 28.67 46.02 24.50 27.23 31.43 35.37
LLM-Embedder 40.00 40.36 41.50 41.56 21.00 21.65 27.33 45.11 27.50 30.10 31.47 35.75

ChatGLM3-6B 41.50 33.19 39.50 35.39 15.00 15.32 13.33 32.13 18.50 22.08 25.57 27.62
Qwen2.5-7B 44.00 43.25 46.50 44.50 20.50 22.09 24.00 41.14 20.50 27.26 31.10 35.65
GLM-4-9B 43.50 38.55 48.00 44.10 25.50 27.13 28.67 45.95 21.00 24.93 33.33 36.13
Qwen2.5-14B 43.00 41.21 43.00 42.42 23.00 25.42 21.33 40.19 22.00 27.10 30.47 35.27
Qwen2.5-32B 52.00 41.37 47.00 44.23 21.50 22.90 18.00 35.68 17.50 23.31 31.20 33.50
Qwen2.5-72B 53.00 38.79 47.50 42.77 23.50 25.50 22.67 39.90 15.50 21.58 32.43 33.71

CFIC-7B 54.00 43.67 53.00 48.46 30.50 31.26 29.33 46.83 29.00 30.81 39.17 40.21
ETS-7B 60.50 54.82 60.50 57.72 40.00 40.84 30.00 47.87 31.00 34.91 44.40 47.23

Table 1: Main experiment results on five QA datasets across two reader LLMs. The best results are in bold. The
AVG column shows the average EM and F1 scores across all datasets.

4 Experiments299

4.1 Datasets and Metrics300

We conduct experiments on five datasets from301

LongBench (Bai et al., 2023), including 2Wiki-302

MultihopQA (Ho et al., 2020), HotpotQA (Yang303

et al., 2018), MuSiQue (Trivedi et al., 2022), Mul-304

tiFieldQA (Bai et al., 2023), and Qasper (Dasigi305

et al., 2021). Following the LongBench benchmark,306

we use the EM score and F1-score as evaluation307

metrics. For further details on LongBench, please308

refer to Bai et al. (2023). The statistical information309

of all datasets is provided in Table 4.310

4.2 Baselines311

In this study, we benchmark our method against312

the following three categories of baselines:313

Retrieval-Based Methods Retrieval-based meth-314

ods typically segment lengthy documents into315

smaller passages and use retrieval techniques to316

prioritize relevant passages. For a fair compari-317

son, we use sentences as the retrieval unit and em-318

ploy BM25 (Yang et al., 2017), BGE-base-en-v1.5 319

(Xiao et al., 2023), and LLM-Embedder (Zhang 320

et al., 2023b) as retrieval models. The highest- 321

ranking sentences are selected as input context for 322

the reader to support QA tasks. 323

Extraction-Based Methods For extraction- 324

based methods, we evaluate state-of-the-art long- 325

context models, including ChatGLM3-6B-128K 326

(GLM et al., 2024), Qwen2.5-7B-Instruct-1M 327

(Team, 2025), GLM-4-9B-Chat-1M (GLM 328

et al., 2024), Qwen2.5-14B-Instruct-1M (Team, 329

2025), Qwen2.5-32B-Instruct (Team, 2024), and 330

Qwen2.5-72B-Instruct (Team, 2024). These 331

models refine lengthy documents into concise text 332

evidence, which serves as context for the reader 333

LLM to support QA tasks. 334

Learning-Based Methods Unlike the above 335

methods, which use off-the-shelf models, learning- 336

based methods fine-tune models specifically for 337

the task of evidence retrieval to improve perfor- 338

mance. We implement the current state-of-the-art 339

5



model, CIFC (Qian et al., 2024), following its open-340

sourced code and data.341

To ensure fairness, all models provide a compa-342

rable volume of textual evidence for the reader.343

4.3 Implementation Details344

During the MCTS annotation process, the345

Qwen2.5-7B-Instruct-1M model is utilized as the346

reader. The maximum number of iterations is con-347

figured to 20. Following Chen et al. (2024), the348

parameter w, β is set to 1.4 and 0.1, respectively.349

For the training dataset, we sample 6,000 correct350

paths and 6,000 incorrect paths. The policy model351

is initialized using the Qwen2.5-7B-Instruct-1M.352

Training involves fine-tuning the model for two353

epochs with a batch size of 1 and a learning rate of354

1× 10−6, utilizing 8 NVIDIA A100 80GB GPUs.355

To evaluate the generalizability of our approach, we356

employ two additional reader models: Qwen2.5-357

14B-Instruct-1M and Qwen2.5-72B-Instruct. We358

intend to open-source the code to facilitate the re-359

producibility of our methodology. For more imple-360

mentation details, please refer to Appendix B.361

4.4 Main Results362

In this section, we present the experimental re-363

sults on five QA datasets using Qwen2.5-14B-364

Instruct-1M and Qwen2.5-72B-Instruct as the read-365

ers. Based on the results shown in Table 1, we can366

have the following observations:367

First, our method consistently outperforms base-368

lines across all datasets and readers, demonstrat-369

ing its effectiveness. Notably, with Qwen2.5-14B-370

Instruct-1M as the reader, our approach achieves371

a 22% relative average improvement over the best-372

performing baseline. By modeling evidence re-373

trieval as a tree expansion process, we enable the374

policy model to thoroughly explore the sentence375

space, significantly enhancing performance.376

Second, among the baselines, smaller retrieval377

models such as BGE-base-en exhibit strong per-378

formance compared to extraction-based methods,379

aligning with findings from Qian et al. (2024). This380

is attributed to the retrieval method’s ability to pre-381

cisely compare query-sentence relevance, whereas382

extraction-based methods may overlook specific383

sentences, leading to information loss.384

Third, the performance gap between Qwen2.5-385

14B-Instruct-1M and Qwen2.5-72B-Instruct is rel-386

atively small despite their substantial difference in387

parameter sizes. This underscores the effectiveness388

of our policy model, which alleviates the reader’s389

(a) Remove Beam Search (b) Remove Early Termination

EM

La
te

nc
y

Figure 4: We conduct an ablation study by removing
beam search and early termination. The latency is calcu-
lated using the latency of our method as the basic unit.

burden by precisely identifying relevant evidence. 390

As a result, users can choose smaller reader mod- 391

els without sacrificing model performance. This 392

finding is particularly impactful, as it highlights 393

the potential to substantially reduce inference costs 394

while maintaining high-quality results. 395

4.5 Discussion 396

Ablation Study During inference, we propose 397

early terminating beam search to accelerate the 398

process while ensuring comprehensive exploration 399

of the sentence space. To evaluate its impact, we 400

systematically remove beam search and early ter- 401

mination, conducting experiments on the 2Wiki- 402

MultihopQA, HotpotQA, and MusiQue datasets. 403

The results are shown in Figure 4. 404

Removing beam search significantly degrades 405

performance, as the model fails to fully explore 406

the sentence space, leading to suboptimal evidence 407

retrieval. In contrast, removing early termination 408

substantially improves latency, as the model can 409

uniquely identify the location of the original sen- 410

tence early in the decoding process, eliminating the 411

need to decode subsequent tokens. Additionally, 412

as the input length increases across the datasets, 413

the inference latency grows significantly. How- 414

ever, with early termination, the additional latency 415

caused by longer inputs is minimal, demonstrating 416

its effectiveness in long-input scenarios. These re- 417

sults highlight the importance of both components 418

in balancing performance and efficiency. 419

Hyperparameter Study In our method, beam 420

search is employed to efficiently explore the 421

sentence space, with two key hyperparam- 422

eters—Expansion Size B1 and Beam Size 423

B2—playing a crucial role. To investigate their 424

impact on model performance, we conduct experi- 425

ments on the 2WikiMultihopQA, HotpotQA, and 426

MusiQue datasets, tuning these parameters within 427

the range of 1 to 5. 428
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Size
HotpotQA 2WikiMulti MusiQue

EM F1 EM F1 EM F1

Expansion Size B1

1 49.00 50.72 55.00 53.98 29.00 29.63
2 50.50 50.41 60.50 56.80 35.50 34.80
3 51.00 51.26 58.00 56.23 39.50 39.85
4 55.00 55.30 59.50 58.21 39.00 38.70
5 53.00 55.28 61.00 60.52 37.00 36.74

Beam Size B2

1 49.00 51.76 56.00 54.21 32.50 33.33
2 50.50 51.68 61.00 58.88 35.50 36.20
3 51.00 51.26 58.00 56.23 39.50 39.85
4 51.50 52.86 61.50 59.65 32.50 33.37
5 51.00 51.76 60.50 57.91 31.00 32.37

Table 2: Hyperparameter study. We tune the parameters
using Qwen2.5-14B-Instruct-1M as the reader.

Expansion size indicates the number of sen-429

tences expanded at each layer while beam size430

refers to the number of sentences retained at each431

layer during the search process. The results reveal432

a consistent pattern: performance peaks when the433

beam size or expansion size is set to approximately434

4. Values smaller or larger than this threshold lead435

to a decline in performance. This is primarily be-436

cause a larger beam size or expansion size offers437

the model a broader scope to explore potential sen-438

tences, increasing the likelihood of identifying the439

most relevant and optimal candidates. However,440

when these values exceed a certain threshold, the441

model encounters challenges in effectively ranking442

and selecting the best sentences from the expanded443

pool. This inefficiency arises because the increased444

search space introduces more noise and less rel-445

evant candidates, making it harder for the model446

to discern the best options. Additionally, increas-447

ing these values incurs higher computational costs,448

highlighting the need for a balanced configuration.449

Effect of Input Length In this section, we ana-450

lyze the effect of input length on model perfor-451

mance. Specifically, we vary the input length452

across {5000, 10000, 30000, 50000, 70000} and453

observe the resulting performance changes, com-454

paring our method with using the full article as455

grounding evidence.456

As shown in 5, both models exhibit a perfor-457

mance decline as input length increases. However,458

our method consistently outperforms the full-article459

input approach. While the performance of the460

full-article method drops significantly, our method461

shows only a slight decrease, demonstrating its462

(a) Qwen2.5-14B-Instruct-1M (b) Qwen2.5-72B-Instruct

Figure 5: Effect of input length. We vary the input
length and observe the performance change.

robustness. This is because long-context models 463

struggle to effectively capture the interaction be- 464

tween the query and the entire sentence set as input 465

length grows. Our method addresses this challenge 466

by modeling the process as node expansion, where 467

the policy model is guided to thoroughly explore 468

the sentence space at each step, ensuring robust 469

performance even with longer inputs. 470

4.6 Case Study 471

In this section, we compare the evidence retrieval 472

results of different methods using the MusiQue 473

dataset. Based on the examples shown in Table 3, 474

several observations can be made: 475

First, both the retrieval-based method BGE-base- 476

en and the extraction-based method Qwen2.5-72B 477

fail to accurately locate the relevant grounding text, 478

leading to the generation of irrelevant information 479

for downstream tasks. Although CFIC-7B can iden- 480

tify the location of the grounding text, it lacks the 481

necessary background information, making it diffi- 482

cult for the reader to deduce the correct answer. In 483

contrast, both GPT-4 and our method successfully 484

identify two critical entities: Adam Smith and the 485

University of Cambridge. However, our method 486

distinguishes itself by offering a more detailed and 487

comprehensive grounding text. Specifically, our 488

approach provides a clearer explanation of the rela- 489

tionship between Adam Smith and the Lectures on 490

Jurisprudence, which is crucial for understanding 491

the context. This enhanced clarity and depth of 492

information make it significantly easier for read- 493

ers to deduce the correct answer, as the grounding 494

text not only identifies the relevant entities but also 495

elaborates on their connections in a way that is both 496

informative and accessible. Given the large param- 497

eter size gap between GPT-4 and our method, we 498

believe our approach demonstrates strong perfor- 499

mance at a minimal computational cost. 500
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Query: Who gives out the prize named after the author of Lectures on Jurisprudence?
Answer: University of Cambridge

BGE-base-en: Lectures on Jurisprudence, also called Lectures on Justice, Police, Revenue and Arms (1763) is a collection of
Adam Smith’s lectures... The prize winner receives a monetary award and will complete a lecture tour within the UK.

Qwen2.5-72B: The prize - named after Scottish philosopher and economist Adam Smith - was originally established in 1891
and awarded triennially for the best submitted essay on a subject of the writer’s choice..

CFIC-7B: "A library of his scholarly works, notes, and correspondences is held by the University of Cambridge. The Nobel
Prize was not awarded between 1940 and 1942 due to the outbreak of World War II.

GPT-4: The Adam Smith Prizes are prizes currently awarded for the best overall examination performance and best dissertation
in Part IIB of the Economics Tripos ... at the University of Cambridge.

ETS-7B: Lectures on Jurisprudence, also called Lectures on Justice ... is a collection of Adam Smith’s lectures... The Adam
Smith Prizes are prizes currently awarded for the best overall examination ... at the University of Cambridge.

Table 3: Examples of evidence retrieval on dataset MusiQue. The text colored with teal refers to the key information
related to the user query.

5 Related Work501

5.1 Retrieval-Augmented Generation502

Despite significant progress, Large Language Mod-503

els (LLMs) still produce responses that contain504

hallucinated facts and inaccuracies (Ji et al., 2023;505

Shuster et al., 2021; Zhang et al., 2023a), undermin-506

ing their overall reliability. To address this issue,507

Retrieval-Augmented Generation (RAG) has been508

introduced as a method to integrate external knowl-509

edge and enhance the accuracy of model responses510

(Ram et al., 2023; Shi et al., 2023; Rashkin et al.,511

2021; Gao et al., 2022; Bohnet et al., 2022; Menick512

et al., 2022).513

Among existing approaches, some studies pro-514

pose retrieving information only once at the begin-515

ning of the generation process (Shi et al., 2023;516

Wang et al., 2023b; Zhang et al., 2023c; Yu et al.,517

2023a,c). Other works (Qian et al., 2023; Yu518

et al., 2023b) suggest retrieving information mul-519

tiple times throughout the generation process, of-520

fering greater flexibility in determining when and521

what to retrieve. For example, Jiang et al. (2023) ad-522

vocate for retrieval only when the generation model523

produces low-confidence tokens, while Ram et al.524

(2023) recommend refreshing retrieved documents525

every n tokens, a method shown to outperform sin-526

gle retrieval approaches. Additionally, Wang et al.527

(2023a); Asai et al. (2023); Zhao et al. (2023b) pro-528

pose retrieving information only when the LLM529

determines it is necessary, further improving re-530

trieval efficiency.531

5.2 Evidence Retrieval in RAG532

While RAG has demonstrated strong performance,533

it faces challenges when dealing with lengthy and534

complex retrieved documents. To address this limi-535

tation, techniques like chunking and retrieval have 536

been developed to improve passage relevance. For 537

instance, Mao et al. (2021) introduced a chunking 538

and retrieval method to enhance evidence selec- 539

tion, while Guu et al. (2020); Lin et al. (2023) pro- 540

posed jointly training the retriever and generator 541

to improve knowledge utilization and contextual 542

understanding. 543

However, chunking can often be suboptimal, as 544

determining the appropriate granularity for chunk- 545

ing is a challenging task. Improper chunking can 546

disrupt the semantic coherence of the document, 547

leading to less accurate evidence selection. Other 548

approaches (Ratner et al., 2022; Xu et al., 2023) 549

focus on adapting large language models to process 550

longer contexts by training them on extended text 551

lengths. For example, Chen et al. (2023) extended 552

the context size of LLMs via parameter-efficient 553

fine-tuning. Qian et al. (2024) proposed a chunking- 554

free method to identify relevant evidence for user 555

queries. Similarly, FILCO (Wang et al., 2023b) fil- 556

ters the input context with a context-filtering model. 557

Despite these advancements, these methods often 558

struggle to model the complex interactions between 559

sentences in long contexts and may fail to accu- 560

rately pinpoint the grounding evidence. 561

6 Conclusion 562

In this paper, we propose ETS, a novel framework 563

that enhances evidence retrieval in RAG systems. 564

By modeling evidence retrieval as a tree expansion 565

process and leveraging MCTS and Early Terminat- 566

ing Beam Search, ETS effectively addresses the 567

challenges of complex evidence interdependencies, 568

lack of supervision signals, and large search spaces. 569

Our extensive experiments demonstrate that ETS 570

outperforms existing methods. 571
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Limitations572

In this paper, we propose a tree expansion method573

for evidence retrieval. We acknowledge two limita-574

tions of our method. First, The MCTS annotation575

requires multiple simulations, which can result in576

additional labeling costs. Second, due to resource577

constraints, we conduct experiments using only578

Qwen2.5-7B-Instruct-1M as the model backbone.579

We leave experiments with larger model backbones580

for future work.581

Ethics Statement582

This work complies with the ACL Ethics Policy.583

All datasets and LLMs used are publicly available.584

Our research focuses on evidence retrieval, and we585

do not anticipate any negative ethical impacts.586
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A Dataset Statistics826

Settings 2WikiMultihopQA HotpotQA MuSiQue MultiFieldQA Qasper
(Ho et al., 2020) (Yang et al., 2018) (Trivedi et al., 2022) (Bai et al., 2023) (Dasigi et al., 2021)

Task Multi-doc QA Multi-doc QA Multi-doc QA Single-doc QA Single-doc QA
Train Data 5,000 5,000 5,000 0 0
Test Data 200 200 200 200 200
Average Length 29,495 56,446 69,269 28,947 23,640
Metrics EM, F1 EM, F1 EM, F1 EM, F1 EM, F1

Table 4: Statistics and experimental settings of different tasks/datasets.

B Training Details827

Dataset Construction We sample 5000 queries from the training data of 2WikiMultihopQA, HotpotQA,828

and MuSiQue datasets and conduct the MCTS annotations. We then sample 6,000 correct paths and 6,000829

incorrect paths, and the correct paths are used to train the policy model, while both paths are used to train830

the value model.831

Training Process The policy model is initialized using the Qwen2.5-7B-Instruct-1M. Training involves832

fine-tuning the model for two epochs with a batch size of 1 and a learning rate of 1× 10−6, utilizing 8833

NVIDIA A100 80GB GPUs. During inference, the expansion size and the beam search size are set to 3.834

C Model Sources835

• BGE-base-en-v1.5: https://huggingface.co/BAAI/bge-base-en-v1.5836

• LLM-Embedder: https://huggingface.co/BAAI/llm-embedder837

• ChatGLM3-6B-128K: https://huggingface.co/THUDM/chatglm3-6b-128k838

• Qwen2.5-7B-Instruct-1M: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M839

• GLM-4-9B-Chat-1M: https://huggingface.co/THUDM/glm-4-9b-chat-1m840

• Qwen2.5-14B-Instruct-1M: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M841

• Qwen2.5-32B-Instruct: https://huggingface.co/Qwen/Qwen2.5-32B-Instruct842

• Qwen2.5-72B-Instruct: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct843

D Prompts844

Extraction Prompt

Extract sentences from the following documents to answer the question. Do not alter the content of the sentences.
Documents: {background}
Question: {query}
Relevant Sentences:

Answering Prompt

Use only the information from the following documents to answer the question with one short phrase.
Documents: {background}
Question: {query}
Output:
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