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Abstract
A theoretical understanding of how algorithmic abilities emerge in the learning of language models
remains elusive. In this work, we provide a tight theoretical analysis of the emergence of semantic
attention in a solvable model of dot-product attention and consider a non-linear self-attention
layer with trainable tied and low-rank query and key matrices. In the asymptotic limit of high-
dimensional data and a comparably large number of training samples we provide a tight closed-form
characterization of the global minimum of the non-convex empirical loss landscape. We show that
this minimum corresponds to either a positional attention mechanism (with tokens attending to each
other based on their respective positions) or a semantic attention mechanism (with tokens attending
to each other based on their meaning), and evidence an emergent phase transition from the former to
the latter with increasing sample complexity.

1. Introduction

Self-attention layers [60] have been instrumental in advancing the abilities of language models, as
they provide an efficient method of extracting information from sentences – both the information
encoded in the ordering (i.e. positions) of the words, and that encoded in the meaning (i.e. semantics)
of the words. In theory, attention layers can learn to leverage both types of information, by having to-
kens attend to each other based on their respective positions (a mechanism called positional attention
in [27], through some form of positional encodings [24, 28, 46, 50, 52]) and/or respective meanings
(henceforth referred to as semantic attention). A growing body of work on mechanistic interpretabil-
ity aims to empirically understand which precise algorithmic mechanisms a neural network learns and
has shown that attention layers are able to implement a wide range of different algorithms using both
positional and semantic attributes of the inputs [1, 11, 38, 43, 44, 51, 65]. Simultaneously, empirical
studies have provided evidence for the emergence of specific algorithmic mechanisms (abilities)
in the learning of language models that lead to qualitative improvements of the model capabilities
[51, 61, 62]. Despite these efforts, it remains an open question how to theoretically characterise the
conditions under which such an ability emerges in the model. Even the nature of this algorithmic
emergence is unclear, i.e. whether it constitutes a fast but smooth change in performance or it is
due to a sharp boundary between fundamentally different regimes of learning [48]. While there is
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a plethora of work on the theory of attention investigating various aspects such as their expressivity
[16, 18, 23], inductive bias [47, 56, 57], training dynamics [9, 27, 29, 59], and in-context learning
[3, 8, 21, 30, 64], these studies do not allow to capture sharp changes in the behaviour of attention
mechanisms such as phase transitions or do not capture an emergent phenomenon [3, 18, 27, 45].

In our work, we take inspiration from physics, where a similar theoretical questions about
the nature of phase transitions and emergent phenomena were posed a century ago for models of
interacting particles, such as the famous Ising model [25, 39] and more recently in the theory of
feed-forward fully connected neural networks, e.g. [2, 4, 5, 22, 33, 49, 53]. Here, for the first time,
we bring this type of study to the analysis of neural networks with attention layers. We introduce and
analyse a tractable model that permits a sharp high-dimensional characterisation for attention layers.
In particular, we describe a model with a single self-attention layer with tied, low-rank query and key
matrices, with Gaussian input data and realizable labels:

(1) We show that this model exhibits a phase transition in terms of sample complexity between a
semantic and a positional mechanism.

(2) We analyse this model in the asymptotic limit where the embedding dimension d of the tokens
and the number n of training samples grow proportionally to infinity and provide a tight
closed-form characterization of the test error and training loss achieved at the minima of the
non-convex empirical loss.

(3) Using this high-dimensional characterization, we locate the positional-semantic phase transi-
tion, thus providing the first theoretical result about the emergence of sharp phase transitions
in a model of dot-product attention.

2. Tied low-rank attention model
Input data model We consider a model of embedded sentences with uncorrelated (1-gram) words.
More precisely, a sentence x ∈ RL×d, where L is the sentence length and d represents the embedding
dimension, consists of L tokens {xℓ}1≤ℓ≤L independently drawn from a Gaussian distribution
xℓ ∼ N (0,Σℓ) with covariance Σℓ ∈ Rd×d. In the following, we denote the probability distribution
of x as px. Note that while this sentence model does not involve in itself statistical correlations
between tokens, the task (target function) will entail interactions between different tokens.
Target function The target function (teacher) is assumed to be of the form

y(x) = T

[
1√
d
xQ⋆

]
x, (1)

for a function T : RL×rt → RL×L. The term T [1/
√
dxQ⋆] ∈ RL×L in (1) should be interpreted

as the target attention matrix, which mixes the tokens of the input x. This attention matrix is
parametrized by the target weights Q⋆ ∈ Rd×rt .
Tied attention We consider the learning of the target (1) by a single attention layer

fQ(x) = S

[
1√
d
(x+ p)Q

]
(x+ p). (2)

In (2), p ∈ RL×d is a fixed matrix, corresponding to positional encodings, and Q ∈ Rd×rs is a
trainable weight matrix. We denote subsequently pℓ ∈ Rd the ℓ−th row of p. Like the target (1),
the parametric function (2) takes the form of a data-dependent attention matrix S [1/

√
d(x+ p)Q] ∈

RL×L mixing the tokens of the input x.
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Empirical risk minimization We study the learning of the attention layer (2), when a training set
D = {xµ, y(xµ)}nµ=1 with n independently sampled sentences {xµ}nµ=1, and the associated labels
{y(xµ)}nµ=1, is available. The target (1) can be learnt by carrying out an empirical risk minimization,
with the generalization error measured at test time by the mean squared error (MSE)

Q̂ = argmin
Q∈Rd×r

 n∑
µ=1

1

2d
∥y(xµ)− fQ(xµ)∥2 + λ

2
∥Q∥2

 ; ϵg ≡
1

dL
Ex∼px

∥∥∥y(x)− fQ̂(x)
∥∥∥2 .

(3)
3. Closed-form characterization of the training loss
We analyze the learning problem (3) in the limit where the embedding dimension d and the number of
training samples n jointly tend to infinity, while their ratio α = n/d, the sample complexity, stays of
order Θd(1). We further assume the sentence length L, the ranks rs, rt of the weights Q,Q⋆, and the
norm of the positional embeddings ∥p∥ to be Θd(1). This limit has been considered in a stream of pre-
vious works (e.g. [14, 32, 36]) and allows to derive closed-form characterization of the ERM problem
(3). It also exhibits a particularly rich learning phenomenology which we further explore in Section 4.

The main technical result of the present work is a closed-formed characterization of the test MSE
and training loss (3) achieved in the high-dimensional limit for the model (2) trained via the empirical
risk minimization of (3), and we state it stated in Appendix A. The derivation is exploiting a mapping
of the model (2) to a (variant of) a Generalized Linear Model (GLM) [34, 37]. The summary statistics
characterized by the self-consistent state evolution equations (8) [26] asymptotically describe the
fixed points of a Generalized Approximate Message Passing (GAMP) algorithm [42] (A). The fixed
points of GAMP in turn correspond to critical (zero-gradient) points of the non-convex empirical
loss landscape (3). Therefore, while the technical Result 1 is stated as a characterization of the
global minimum of (3), which is the main concern of the present work, solutions of (8) also describe
local minima and saddles. Note that Appendix B provides an alternative derivation of the result for
different losses using the replica method from statistical physics [40]. The methodology we use is
similar to many recent work that study asymptotics of a large number of high-dimensional problems,
e.g. [7, 15, 17, 19, 31].

4. Positional-to-semantic phase transition
Rank one dot-product attention In the following, we turn to a special case of tied low-rank
attention (2) – namely a dot-product attention layer, with the student

S

[
1√
d
(x+ p)Q

]
= softmax

(
1

d
(x+ p)QQ⊤(x+ p)⊤

)
, (4)

and a specific case of target attention matrix (1) of the form

T

[
1√
d
xQ⋆

]
= (1− ω)softmax

(
1

d
xQ⋆Q

⊤
⋆ x

⊤
)
+ ωA· (5)

with A ∈ RL×L a fixed matrix. In (5), the parameter ω ∈ [0, 1] tunes the relative strength of the
dot-product term and the fixed matrix term, and interpolates between a fully positional and a fully
semantic task: With ω = 0 we have a purely semantic target as the i, j−th element of the score matrix
softmax(1/dxQ⋆Q

⊤
⋆ x

⊤) only depends on the tokens xi,xj and not explicitely on their respective
placements i, j inside the sentence. For ω = 1, the attention matrix A associated thereto is purely
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Figure 1: Mixed positional/semantic teacher for ω = 0.3. Setting is rs = rt = 1, L = 2, A =
((0.6, 0.4), (0.4, 0.6)),Σ1 = Σ2 = 0.25Id, p1 = 1d = −p2 and Q⋆ ∼ N (0, Id). We
compare the solutions of (8) in Result 1 (solid lines) with the models (2) trained using
gradient descent initialized resp. at Q⋆ and at p1 (markers). The green dashed line is the
theoretical prediction for the threshold αc(ω) above which the semantic solution of (8) in
Result 1 has lower loss than the positional solution. (left) Difference in training loss ∆ϵt
for ω = 0.3. (center) overlap θ between the learnt weights Q̂ and the target weights Q⋆

Overlap m between the learnt weights Q̂ and the positional embedding p1, where only
the solution of (8) corresponding to the lowest found training loss is represented. (right)
Empirical difference in training loss for a range of ω, α.

positional, in the sense that Aij is a function of i, j but not of xi,xj . To complete the learning task,
a positional mechanism then needs to be learnt. The parameter ω thus allows to tune the amount of
semantic/positional content in the target (5), and thus the extent to which the task requires the model
to implement semantic attention (small ωs) or rather positional attention (large ωs). In the following,
for definiteness, we further assume rs = rt = 1 and set Q⋆ to be a fixed random Gaussian vector
drawn from N (0, Id), and choose the positional encodings p1 = −p2 = 1d. Finally, for simplicity,
we consider sentences with two tokens L = 2 and isotropic token covariances Σ1 = Σ2 = σ21d.

Semantic and positional mechanisms The summary statistics θℓ,mℓ describing the global min-
imizer of the empirical loss minimization (3) of the dot-product attention (4) on the target (5) are
captured alongside the corresponding test error (3) and training loss (3), by Result 1. The solution
of the system of equations (8) is not unique, and different stable fixed points describe different
corresponding critical points of the non-convex empirical loss landscape (3). In practice, we find two
solutions of (8), corresponding to two minima associated with different mechanisms implemented
by the dot-product attention (4) when approximating the target (5):
–Positional solution One solution of (8) correspond to vanishing overlap θ = 0 between the trained
weights Q̂ and the semantic target weights Q⋆, and non-zero m > 0 between the trained weights
Q̂ and the positional embedding p1 = −p2. Consequently, the argument of the dot-product attention
Q̂(x+ p) has a sizeable token-independent –thus positional– contribution Q̂p, alongside a token-
dependent semantic part Q̂x. Because of the positional terms, the resulting learnt attention matrix
softmax(1/d(x+ p)Q̂Q̂⊤(x+ p)⊤) implements a partly positional mechanism.
–Semantic solution Another solution of the system of equations (8) is associated with a van-
ishing overlap m = 0 between the learnt weights Q̂ and the positional embeddings, and a fi-
nite overlap θ > 0 with the target weights Q⋆. Therefore the resulting learnt attention matrix
softmax(1/d(x+ p)Q̂Q̂⊤(x+ p)⊤) ≈ softmax(1/dxQ̂Q̂⊤x⊤) is largely semantic.
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Positional-to-semantic phase transition While the system of self-consistent equations (8) may
admit other solutions, we did not find solutions with lower training loss than the two aforedescribed
fixed points. Which of these solution corresponds to the global minimum – and thus the solution of the
optimization (3)– depends on the sample complexity α and the positional/semantic parameter ω (5).
For a fixed parameter ω in (5), an analysis of equations (8) (Appendix B), reveals that for a sizeable
range of ω there exists a threshold αc for the sample complexity so that for α < αc, the global
minimum of (3) corresponds to a positional mechanism, and is described by the positional solution
of (8) of Result 1 with θ = 0,m > 0. For α > αc, the global minimum of (3) corresponds to a
semantic mechanism, and is described by the semantic solution of (8) of Result 1 with θ > 0,m = 0.

The dot-product attention thus displays a phase transition in sample complexity from a positional
mechanism to a semantic mechanism, implementing the simpler positional mechanism when having
access to small amounts of data, and only learning the semantic content of the target (5) when
presented sufficient data. The critical sample complexity αc generically grows with the positionality
ω of the target function (5), as the semantic content – i.e. the first term of (5)– is less apparent
for larger ω, and thus requires larger amounts of data to be identified and approximated by the
dot-product attention (4). In Fig. 1 (left) for ω = 0.3 the difference in training loss ∆ϵt between the
positional and semantic solutions of (8) is represented, alongside the difference in training loss at
convergence experimentally reached by gradient descent. For small (resp. large) sample complexity
α < αc (resp. α > αc), the training loss of the positional (resp. semantic) minimum is lower, and
thus corresponds to the global minimum.

Experimentally, the positional minimum can be reached for α < αc via gradient descent by ini-
tializing the weights Q of the attention (4) close to the positional embedding p1. By the same means,
the semantic minimum can be reached from an initialization at the teacher weights Q⋆ (5). Note that
the semantic initialization is informed in nature, in that it necessitates the knowledge of the target pa-
rameters Q⋆. We conduct numerical experiments from a random initialization of Q in Appendix C.3,
and show that the dynamics may reach either of the local minima, or get stuck in a different one.

In Fig. 1 (center), we compare our analytical characterizations for different metrics at the global
mimimum – the summary statistics θ,m (middle), and the test MSE (right)–, with the corresponding
experimental estimates, obtained by optimizing (3) with the Pytorch implementation of gradient
descent, from a positional (resp. semantic) initialization for α < αc (resp. α > αc), displaying
overall good agreement. In Appendix C.1 we further verify that in the scaling limit of our analysis,
namely n, d→∞ for α = O(1), the agreement improves with growing n, d. Overall, we obsevere
the emergence of semantic learning as a function of the task and the sample complexity in Fig. 1.

Conclusion
We explored the interplay between positional and semantic attention, through the prism of tied
low-rank self-attention in high dimensions. In a theoretically controlled setting, we characterized the
global optimum of the empirical loss, when learning a target attention layer. This global optimum was
found to correspond to either a positional or a semantic mechanism, with a phase transition between
the two mechanisms occurring as the sample complexity increases. We believe the present asymp-
totic analysis of the inner workings of attention mechanisms opens up exciting research directions.
Considering untied query and key matrices, appending a readout network after the attention layer, or
addressing more practical training procedures such as masked language modelling, are some possible
extensions which will hopefully pave the way towards a satisfactory theoretical comprehension of
attention mechanisms.
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Appendix A. Derivation of Main Result

In this Appendix, we provide a detailed derivation our works main technical result, as stated in
subsection A.1. In subsection A.3 we introduce a Generalized Approximate Message Passing
algorithm (GAMP) [42]. Subsection A.4 then establishes that equations (8) of Result 1 track the
dynamics of summary statistics describing the GAMP algorithm. In particular, the equations (8)
describe the fixed points of GAMP. Finally, subsection A.5 shows that fixed points of GAMP
correspond to critical (zero-gradient) points of the empirical loss landscape (3), thus establishing that
equations 8 of Result 1 describe fixed points of GD.

A.1. Main Result

Assumption 1 The covariances {Σℓ}Lℓ=1 admit a common set of eigenvectors {ei}di=1. We further
note {λℓ

i}di=1 the eigenvalues of Σℓ. The eigenvalues {λℓ
i}di=1 and the projection of the positional

embedding {pℓ}Lℓ=1 and the teacher columns {Q⋆
j}

rt
j=1 on the eigenvectors {e⊤i pℓ}i,ℓ, {e⊤i Q⋆

j}i,j
are assumed to admit a well-defined joint distribution ν as d→∞ – namely, for γ = (γ1, ..., γL) ∈
RL,π = (π1, ..., πrt) ∈ Rrt and τ = (τ1, ..., τL) ∈ RL:

1

d

d∑
i=1

L∏
ℓ=1

δ
(
λℓ
i − γℓ

)
δ
(√

de⊤i pℓ − τℓ

) rt∏
j=1

δ
(
e⊤i Q

⋆
j − πj

)
d→∞−−−→ ν (γ, τ, π) . (6)

Result 1 Under Assumption 1, in the limit n, d → ∞, ∥p∥, n/d, L, rs, rt = Θd(1), the summary
statistics

ρℓ ≡
Q⊤

⋆ ΣℓQ⋆

d
∈ Rrt×rt , qℓ ≡

Q̂⊤ΣℓQ̂

d
∈ Rrs×rs ,

mℓ ≡
Q̂⊤pℓ

d
∈ Rrs , θℓ ≡

Q̂⊤ΣℓQ⋆

d
∈ Rrs×rt (7)

concentrate in probability, and are solutions of the set of finite-dimensional self-consistent equations

qℓ =
∫
dν(γ, τ, π)γℓ

(
λIr +

L∑
κ=1

γκV̂κ

)−1
(

L∑
κ=1

γκq̂κ +
( L∑
κ=1

m̂κτκ + γκθ̂κ · π
)⊗2
)(

λIr +
L∑

κ=1
γκV̂κ

)−1

Vℓ =
∫
dν(γ, τ, π)γℓ

(
λIr +

L∑
κ=1

γκV̂κ

)−1

mℓ =
∫
dν(γ, τ, π)τℓ

(
λIr +

L∑
κ=1

γκV̂κ

)−1( L∑
κ=1

m̂κτκ + γκθ̂κ · π
)

θℓ =
∫
dν(γ, τ, π)γℓ

(
λIr +

L∑
κ=1

γκV̂κ

)−1( L∑
κ=1

m̂κτκ + γκθ̂κ · π
)
π⊤.

(8)

q̂ℓ = αEΞ,UV
−1
ℓ

(
prox(Ξ, U)ℓ − q

1
2
ℓ ξℓ −mℓ

)⊗2

V −1
ℓ

V̂ℓ = θ̂ℓθ
⊤
ℓ q

−1
ℓ −αEΞ,UV

−1
ℓ

(
prox(Ξ, U)ℓ −q

1
2
ℓ ξℓ −mℓ

)
ξ⊤ℓ q

− 1
2

ℓ

m̂ℓ = αEΞ,UV
−1
ℓ

(
prox(Ξ, U)ℓ − q

1
2
ℓ ξℓ −mℓ

)
θ̂ℓ = αEΞ,UV

−1
ℓ

(
prox(Ξ, U)ℓ − q

1
2
ℓ ξℓ −mℓ

)(
uℓ − ξ⊤ℓ q

−1/2
ℓ θℓ

)⊤ (
ρℓ − θ⊤ℓ q

−1
ℓ θℓ

)−1

(9)
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In (8), U = {uℓ}Lℓ=1 and Ξ = {ξℓ}Lℓ=1, with uℓ ∼ N (ξ⊤ℓ q
−1/2
ℓ θℓ, ρℓ− θ⊤ℓ q

−1
ℓ θℓ) and ξℓ ∼ N (0, Irs),

and ·⊗2 denotes the outer product of a vector with itself. Finally, the resolvents {prox(Ξ, U)ℓ}Lℓ=1

are defined as the minimizers of the Moreau envelope

M(Ξ, U) = inf
z1,...,zL

{
L∑

ℓ=1

Tr

[
V −1
ℓ

(
xℓ−q

1/2
ℓ ξℓ−mℓ

)⊗2
]
+Tr

[
S(Z)ρΣS(Z)⊤

]
−2Tr

[
T(U)ρΣS(Z)⊤

]}
.

We noted Z ∈ RL×rs (resp. U ∈ RL×rt) the matrix whose rows are zℓ (resp. uℓ) and:

ρΣ ≡ diag

[(∫
dν(γ, τ, π)γℓ

)L

ℓ=1

]
∈ RL×L. (10)

In the same limit, the test error (3) converges in probability to

ϵg =EhTr
[
S[h]ρΣS[h]

⊤
]
+ Eh⋆ Tr

[
T[h⋆]ρΣT[h

⋆]⊤
]
− 2Eh,h⋆ Tr

[
S[h]ρΣT[h

⋆]⊤
]
. (11)

where the average bears on h ∈ RL×rs , h⋆ ∈ RL×rt with independent rows with statistics

(hℓ, h
⋆
ℓ ) ∼ N

[(
mℓ

0

)
,

(
qℓ θℓ
θ⊤ℓ ρℓ

)]
(12)

Finally, the training loss ϵt converges in probability to

ϵt = αEY,ΞM−
1

2

L∑
ℓ=1

Tr[q̂ℓVℓ] +
λ

2

∫
dν(γ, τ)Tr

[(
λ+

L∑
ℓ=1

γℓV̂ℓ

)−1
 L∑

ℓ=1
γℓq̂ℓ+

(
L∑

ℓ=1
τℓm̂ℓ+θ̂ℓ·π

)⊗2

]
. (13)

A.2. Notations

For simplicity, we place ourselves in the setting rs = 1 explored in Section 4 of the main text, but
allow the length L of the sentences to be arbitrary, and allow a generic learning model S (2), i.e. not
necessarily the dot-product attention model analyzed in Section 4. The case rs ≥ 2 follows identical
derivation steps, modulo the replacement of all variables by tensor objects. We provide another
alternative derivation of Result 1 in full generality in Appendix B, using the replica method from
statistical physics. Let us note {Xℓ}1≤ℓ≤L a series of L n× d matrices, with Xℓ corresponding to
the ℓ−th rows (tokens) of each input sentence xµ stacked vertically, and normalized by

√
d. We

denote X̃ℓ ≡ Xℓ + Pℓ, where P ∈ Rn×d is the matrix with all rows equal to the ℓ−th positional
encoding pℓ. Let us further define ρ ∈ Rn×L×L the tensor corresponding to the sequence of n
matrices 1

dx
µ(xµ)⊤ ∈ RL×L. Finally, let us denote T ∈ Rn×L×L the tensor so that the µ−th row of

T satisfies y(xµ) = Tµxµ, see equation (1). In other words, T corresponds to the concatenation of
the target attention matrices.

Before detailing the derivation, we first highlight a simplifying observation. Note that a loss item
can be expanded as

1

d

∥∥∥∥y(xµ)− S

[
1√
d
(xµ + p)Q

]
xµ
∥∥∥∥2 =∥y(xµ)∥2+Tr S

[
1√
d
(xµ + p)Q

]
ρΣS

[
1√
d
(xµ + p)Q

]⊤
− 2Tr T

[
1√
d
xℓQ⋆

]
ρΣS

[
1√
d
(xµℓ + pℓ)Q

]⊤
, (14)
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where we used that with high probability in the considered asymptotic limit, for all 1 ≤ µ ≤ n,

xx⊤ = (x+ p)(x+ p)⊤ = x(x+ p)⊤ = ρΣ. (15)

Since the first term of (14) does not depend on the weights Q, it can be without loss of generality
substracted from the loss. Without loss of generality, one can thus consider the equivalent empirical
risk minimization problem

Q̂ = argmin
Q∈Rd×r

n∑
µ=1

1

2d

[
Tr S

[
1√
d
(xµ+p)Q

]
ρΣS

[
1√
d
(xµ+p)Q

]⊤
−2Tr T

[
1√
d
xℓQ⋆

]
ρΣS

[
1√
d
(xµ

ℓ +pℓ)Q
]⊤]

+
λ

2
∥Q∥2.

(16)

The risks (16) and (3) are equivalent, and we shall use the former in the following.
Finally, for arguments T ∈ RL×L, ρ ∈ RL×L, ω ∈ RL, V ∈ RL×L we introduce the resolvent

prox(T, ρ, ω, V ) ≡

arginf
x={xℓ∈R}Lℓ=1

{
L∑

ℓ,κ=1

(xℓ − ωℓ)(V
−1)ℓκ(xκ − ωκ)− 2Tr

[
S[x]ρT⊤

]
+Tr

[
S[x]ρS[x]⊤

]}
(17)

Note that the latter part of the bracketed term corresponds to the simplified loss (14) derived in the
beginning of Appendix B, which is the one we shall without loss of generality consider in the present
appendix. For ease of presentation, we place ourselves under Assumption 1, where all the input
covariances {Σℓ}ℓ are codiagonalizable. In the following, without loss of generality, we thus assume
them diagonal, by placing ourselves in the common basis {ei}1≤i≤d of Assumption 1.

A.3. AMP algorithm

We are now in a position to state the AMP algorithm:
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Algorithm 1 GAMP

Inputs : {X̃ℓ ∈ Rn×d}Lℓ=1, T ∈ Rn×L×L, ρ ∈ Rn×L×L

Initialize Q̂0 =∼ N (0, Id), ĉ
0 = Id, {f0

ℓ = 0n}Lℓ=1

for t ≤ tmax do
∀1 ≤ ℓ, κ ≤ L, V t

ℓκ = (X̃ℓ ⊙ X̃κ)ĉ
t

∀1 ≤ ℓ ≤ L, ωt
ℓ = X̃ℓQ̂

t −
L∑

κ=1
V t
ℓκf

t−1
κ

∀1 ≤ ℓ ≤ L, f t
ℓ =

∑
κ
(V −1)ℓκ(prox(T, ρ, ω

t, V t)κ − ωt
κ)

∀1 ≤ ℓ, κ ≤ L, gtℓκ = ∂ωℓ
f t
κ

At = −
L∑

ℓ,κ=1

(X̃ℓ ⊙ X̃κ)
⊤gtℓκ

bt =
L∑

ℓ=1

X̃⊤
ℓ f t

ℓ +At ⊙ Q̂t

Q̂t+1 = (λId +At)−1bt

ĉt+1 = (λId +At)−1

end for

return Estimator Q̂

The GAMP algorithm can be derived in standard fashion from the Belief Propagation (BP)
algorithm, see e.g. [6, 42] or [63] for an overview. Compared to the standard GAMP iterations for
Generalized linear models, one needs to account for the fact that there exist different sources of data
Xℓ (corresponding to the ℓ− th tokens of each input sentence), and for the fact that the output of the
equivalent GLM are RL×L- valued attention matrices. In the following subsection, we show that the
fixed points of GAMP 1 correspond to critical points of the empirical loss (3), i.e. fixed points of
Gradient Descent (GD), allowing to connect Result 1 to our numerical experiments using GD.

A.4. State evolution

In this section we show that the dynamics of the GAMP Algorithm 1 are tracked by the summary
statistics of Result 1. In particular, the equations (8) describe the statistics of the GAMP fixed points.
To see this, it is convenient to take as a starting point the relaxed Belief Propagation (rBP) equations,
which are a step upstream in the derivation of the GAMP iterations, and which are asymptotically
equivalent– see e.g. [63] for a review or e.g. [12], Appendix A, for a detailed walkthrough. The rBP
equations read

As conventional, we note ·µ the version of a variable ·µ→i where the summation also encompasses
the index i, and ·i the version of a variable ·i→µ where the summation also encompasses the index µ.
Note that in all cases above the two variables differ by at most Θd(1/

√
d).

Concentration of (V t
µ→i)ℓκ We first study the statistics of V t

µ→i, A
t
i→µ, remembering that the data

x̃µℓi ≡ (xµ
ℓ )i/

√
d + (pℓ)i/

√
d in the notation of the main text, with (xµℓ )i = Θd(1), (pℓ)i = Θd(1/

√
d).
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Algorithm 2 rBP

Inputs : {X̃ℓ ∈ Rn×d}Lℓ=1, T ∈ Rn×L×L, ρ ∈ Rn×L×L

Initialize ∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, Q̂0
i→µ = 0, ĉ0i→µ = 1, {f0

ℓµ→i = 0}Lℓ=1

for t ≤ tmax do
∀1 ≤ ℓ, κ ≤ L, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, (V t

µ→i)ℓκ =
∑
j ̸=i

(x̃µℓj)(x̃
µ
κj)ĉ

t
j→µ

∀1 ≤ ℓ, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, ωt
ℓ,µ→i =

∑
j ̸=i

x̃µℓ,iQ̂j→µ

∀1 ≤ ℓ, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, f t
ℓ,µ→i =

∑
κ
(V −1

µ→i)ℓκ(prox(Tµ, ρµ, ω
t
µ→i, V

t
µ→i)κ−ωt

κ,µ→i)

∀1 ≤ ℓ, κ ≤ L, 1 ≤ µ ≤ n, 1 ≤ i ≤ d, gtℓκ,µ→i = ∂ωℓ
f t
κµ→i

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d,At
i→µ = −

L∑
ℓ,κ=1

∑
ν ̸=µ

(x̃νℓi)(x̃
ν
κi)g

t
ℓκ,ν→i

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, bti→µ =
L∑

ℓ=1

∑
ν ̸=µ

xνℓif
t
ℓ,ν→i

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, Q̂t+1
i→µ = (λId +At

i→µ)
−1bti→µ

∀1 ≤ µ ≤ n, 1 ≤ i ≤ d, ĉt+1
i→µ = (λId +At

i→µ)
−1

end for

return Estimator Q̂

Replacing in the rBP updates:

(V t
µ→i)ℓκ =

∑
j ̸=i

(x̃µℓj)(x̃
µ
κj)ĉ

t
j→µ

=
1

d

∑
j ̸=i

(xµℓ )j(x
µ
κ)j ĉ

t
j→µ︸ ︷︷ ︸

δℓκΘd(1)+(1−δℓκ)Θd(1/
√
d)

+
1

d

∑
j ̸=i

(xµℓ )j(pκ)j ĉ
t
j→µ + (ℓ↔ κ)︸ ︷︷ ︸

Θd(1/d)

+
1

d

∑
j ̸=i

(pℓ)j(pκ)j ĉ
t
j→µ︸ ︷︷ ︸

Θd(1/d)

= δℓκ
1

d

∑
j

(Σℓ)jj ĉ
t
j ≡ V t

ℓ (18)

Distribution of ωt
ℓ,µ→i Let us first introduce the teacher local field

hµ,ℓ =
∑
i

(xµℓ )iQ
⋆
i . (19)

Like e.g. [12], Appendix A, we first ascertain the joint distribution of hµ,ℓ, ωt
ℓ,µ→i with respect to the

data. These variables have mean

E[ωt
ℓ,µ→i] =

p⊤ℓ Q̂
t

√
d
≡ mt

ℓ (20)
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and respective variance

V[ωt
ℓ,µ→iω

t
κ,ν→j ] = δµνδℓκ

1

d

∑
i,j

Q̂t
i(Σℓ)ijQ̂

t
j ≡ δµνδℓκq

t
ℓ (21)

E[hµℓhνκ] = δµνδℓκ
1

d

∑
i,j

Q⋆
i (Σℓ)ijQ

⋆
j ≡ δµνδℓκρℓ (22)

E[hµℓω
t
κ,ν→j ] = δµνδℓκ

1

d

∑
i,j

Q⋆
i (Σℓ)ijQ̂

t
j ≡ δµνδℓκθ

t
ℓ (23)

Distribution of bti→µ Let us ascertain the distribution of bti→µ.

bti→µ =
∑
ℓ

∑
ν ̸=µ

(x̃νℓ )i (V
t
ℓ )

−1
(
prox(Tν , ρν , {ωt

κ,ν→i}κ, V t
ν→i)ℓ − ωt

ℓ,ν→i

)︸ ︷︷ ︸
≡ ˜prox(Tν ,ρν ,{ωt

κ,ν→i}κ,V t
ν→i)ℓ

=
∑
ℓ

∑
ν ̸=µ

1/
√
d((xνℓ )i + (pℓ)i)

[
˜prox(T[{hν→i,κ}κ], ρν , {ωt

κ,ν→i}κ, V t
ν→i)ℓ

+ 1/
√
d

∑
γ

(xνγ)iQ
⋆
i ∂hγ ˜prox(T[{hν→i,κ}κ], ρν , {ωt

κ,ν→i}κ, V t
ν→i)ℓ

]
, (24)

leading asymptotically to

E[bti→µ] =
∑
ℓ

(
√
dpℓ)i αEH={hκ}Ξ={ξκ} ˜prox(T[H], ρΣ, {mt

κ +
√
qtκξκ}κ, {V t

κ}κ)ℓ︸ ︷︷ ︸
≡m̂t

ℓ

+Q⋆
i

∑
ℓ

(Σℓ)ii αEH,Ξ∂hℓ
˜prox(T[H], ρΣ, {mt

κ +
√
qtκξκ}κ, {V t

κ}κ)ℓ︸ ︷︷ ︸
≡θ̂tℓ

(25)

where the expectations bear over ξℓ ∼ N (0, 1) and hℓ ∼ N (ξℓθ
t
ℓ/
√

qtℓ, ρℓ − (θt
ℓ)

2/qtℓ). The variance is
given by

V[bti, b
t
j ] = δij

∑
ℓ

(Σℓ)ii αEH,Ξ ˜prox(T[H], ρΣ, {mt
κ +

√
qtκξκ}κ, {V t

κ}κ)2ℓ︸ ︷︷ ︸
≡q̂tℓ

(26)

Concetration of At
i→µ Similarly to the derivation for V t

µ→i, A
t
i→µ concentrates to

At
i→µ =

∑
ℓ

−α 1

V t
ℓ

(
EH,Ξ∂ωℓ

prox(T[H], ρΣ, {mt
κ +

√
qtκξκ}κ, {V t

κ}κ)ℓ − 1
)

︸ ︷︷ ︸
≡V̂ t

ℓ

(Σℓ)ii (27)

Recovering Result 1 Wrapping up, we now massage these equations to recover equations (8) from
Result 1 of the main text. Starting from (18):

V t
ℓ =

1

d

∑
j

(Σℓ)jj
1

λ+
∑
κ
V̂ t−1
κ (Σκ)

=

∫
dν(γ, τ)γℓ

(
λ+

∑
κ

V̂ t−1
κ γκ

)−1

. (28)
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Next, for qtℓ (21):

qtℓ =
1

d

∑
i

(Σℓ)ii

(∑
κ

(
√
d(pκ)im̂

t−1
κ +Q⋆

i (Σκ)iiθ̂κ

)2

+ (Σκ)iiq̂
t−1
κ

(λ+
∑
κ

V̂ t−1
κ (Σκ)

)−2

=

∫
dν(γ, τ, π)γℓ

(∑
κ

m̂t−1
κ τκ + θ̂κγκπκ

)2

+ γκq̂
t−1
κ

(λ+
∑
κ

V̂ t−1
κ γκ

)−2

(29)

For θtℓ(21):

θtℓ =
1

d

∑
1

(Σℓ)iiQ
⋆
i

(∑
κ

(
√
d(pκ)im̂

t−1
κ +Q⋆

i (Σκ)iiθ̂κ

)(
λ+

∑
κ

V̂ t−1
κ (Σκ)

)−1

+ od(1)

=

∫
dν(γ, τ, π)γℓπℓ

(∑
κ

m̂t−1
κ τκ + θ̂κγκπκ

)(
λ+

∑
κ

V̂ t−1
κ γκ

)−1

. (30)

Finally for mt
ℓ (20):

mt
ℓ =

1

d

∑
i

(
√
dpℓ)i

(∑
κ

(
√
d(pκ)im̂

t−1
κ +Q⋆

i (Σκ)iiθ̂κ

)(
λ+

∑
κ

V̂ t−1
κ (Σκ)

)−1

+ od(1)

=

∫
dν(γ, τ, π)τℓ

(∑
κ

m̂t−1
κ τκ + θ̂κγκπκ

)(
λ+

∑
κ

V̂ t−1
κ γκ

)−1

. (31)

For m̂t
ℓ (25):

m̂t
ℓ = αEH,Ξ

1

V t
ℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
, (32)

while for θ̂tℓ (25):

θ̂tℓ = αEH,Ξ
1

V t
ℓ

∂hℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
= αEH,Ξ

1

V t
ℓ

hℓ − θt
ℓ/
√

qtℓξℓ
ρℓ − (θt

ℓ)
2/qtℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
. (33)

Now turning to q̂tℓ:

q̂tℓ = αEH,Ξ

[(
1

V t
ℓ

proxℓ −
√

qtℓξℓ −mt
ℓ

)2
]
. (34)

18
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Finally, for V̂ t
ℓ (27):

V̂ t
ℓ = −αEH,Ξ

1

V t
ℓ

[∂ωℓ
proxℓ − 1]

= −αEH,Ξ
1

V t
ℓ

 1√
qtℓ

∂ξ(proxℓ −
√
qtℓξℓ −mℓ)


= αEH,Ξ

1√
qtℓV

t
ℓ

 θtℓ√
qtℓV

t
ℓ

hℓ −
√

qtℓξℓ

ρℓ − (θt
ℓ)

2/qtℓ
− ξ

 (proxℓ −
√
qtℓξℓ −mℓ)


=

θtℓθ̂
t
ℓ

qtℓ
− αEH,Ξ

1√
qtℓV

t
ℓ

(proxℓ −
√
qtℓξℓ −mℓ)ξℓ (35)

Summary : State evolution equations The state evolution equations asymptotically describing
the dynamics of the GAMP algorithm 1 thus read

V t
ℓ =

∫
dν(γ, τ)γℓ

(
λ+

∑
κ
V̂ t−1
κ γκ

)−1

qtℓ =
∫
dν(γ, τ, π)γℓ

((∑
κ
m̂t−1

κ τκ + θ̂κγκπκ

)2

+ γκq̂
t−1
κ

)(
λ+

∑
κ
V̂ t−1
κ γκ

)−2

θtℓ =
∫
dν(γ, τ, π)γℓπℓ

(∑
κ
m̂t−1

κ τκ + θ̂κγκπκ

)(
λ+

∑
κ
V̂ t−1
κ γκ

)−1

mt
ℓ =

∫
dν(γ, τ, π)τℓ

(∑
κ
m̂t−1

κ τκ + θ̂κγκπκ

)(
λ+

∑
κ
V̂ t−1
κ γκ

)−1

.

(36)



V̂ t
ℓ =

θtℓθ̂
t
ℓ

qtℓ
− αEH,Ξ

1√
qtℓV

t
ℓ

(proxℓ −
√
qtℓξℓ −mℓ)ξℓ

q̂tℓ = αEH,Ξ

[(
1
V t
ℓ
proxℓ −

√
qtℓξℓ −mt

ℓ

)2]
θ̂tℓ = αEH,Ξ

1
V t
ℓ

hℓ−θtℓ/
√

qtℓξℓ
ρℓ−(θtℓ)

2/qtℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
m̂t

ℓ = αEH,Ξ
1
V t
ℓ

[
proxℓ −

√
qtℓξℓ −mt

ℓ

]
(37)

which exactly recovers equations (8) of Result 1 of the main text, for the case rs = 1 considered
in the present Appendix. Again, we mention that the case rs ≥ 2 should follow straightforwardly
with the exact same derivation steps, using tensor variables (see e.g. [13]). This subsection has thus
established that the equations (8) (with time indices) describe the summary statistics capturing the
dynamics of GAMP iterations 1. In particular, (8) describe the fixed points of GAMP. The next
subsection further shows that the (stable) fixed points of GAMP correspond to critical (zero-gradient)
points of the empirical landscape (3), i.e. fixed points of gradient descent. Finally, we provide
in Appendix B an alternative derivation of the state evolution equations (8)(36), using the replica
method from statistical physics [40, 41].

A.5. Fixed points of GAMP are fixed points of GD

In this subsection, we show that fixed points of GAMP 1, as asymptotically described by (8) in Result
1, correspond to critical (zero gradient) points of the empirical landscape (3). Again, we present the
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result for rs = 1 for clarity, the generalization to rs ≥ 2 being straightforward (see e.g. [13]). In the
previous notations, let us denote the (simplified, see (14)) empirical loss as

L({X̃ℓQ}ℓ) + g(Q) (38)

where we introduced the shorthands

L({hℓ} ∈ Rn) ≡
n∑

µ=1

(
−2Tr

[
S[{hµℓ }ℓ]ρµT

⊤
µ

]
+Tr

[
S[{hµℓ }ℓ]ρµS[{h

µ
ℓ }ℓ]

⊤
])

(39)

g(Q) ≡ λ

2
∥Q∥2, (40)

i.e. respectively the simplified empirical loss (3) and the regularization, as functions with matrix
arguments. The empirical minimization problem (3) can thus be written compactly as

Q̂ = argmin
Q∈Rd

{
L({X̃ℓQ}ℓ) + r(Q)

}
(41)

with the critical (zero-gradient) condition being given by

L∑
ℓ=1

X̃⊤
ℓ ∂ℓL({X̃ℓQ}ℓ) + ∂g(Q)

!
= 0. (42)

Let us choose a diagonal definite A ∈ Rd×d, and a sequence {Vµ}1≤µ≤n of symmetric definite
L × L matrices. Group them into a block diagonal matrix V̌ ∈ RLn×Ln, so that the µ− th block
of V̌ corresponds to Vµ. It shall prove useful to further introduce the matrices ˇ̃X ∈ Rd×nL (resp.
∂̌L( ˇ̃X) ∈ RnL), defined as the concatenation of the matrices X̃1, ..., X̃L (resp. ∂1L, ..., ∂LL),
viewed as n blocks of length L. Then without loss of generality the zero-gradient condition can be
rewritten as

ˇ̃X⊤V −1
(
V ∂̌L( ˇ̃X)− ˇ̃XQ

)
+A(A−1∂g(Q) +Q)

!
= ˇ̃X⊤V −1 ˇ̃XQ+AQ. (43)

Similarly to [13], let us introduce

ω̌ ≡ V ∂̌L( ˇ̃X)− ˇ̃XQ. (44)

This can be written in terms of a resolvent as

ˇ̃XQ = prox(ω̌) (45)

where

prox(ω̌) ∈ RnL = argmin
x̌∈RnL

{
1

2
∥x̌− ω̌∥2V +L(x̌)

}
(46)

which corresponds to (17). Similarly, we denote

b ≡ A−1∂g(Q) +Q (47)
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So that

Q = proxg(b) = argmin
x∈Rd

{
1

2
∥x− b∥2A−1+g(x)

}
(48)

In the particular case of an ℓ2 regularization g(·) = λ/2∥·∥2, note that

proxg(b) = (λId +A)−1Ab. (49)

The zero-gradient condition can now be rewritten as{
ˇ̃X⊤V −1 (prox(ω̌)− ω̌) = A(b− proxg(b))
ˇ̃Xproxg(b) = prox(ω̌)

(50)

One is now in a position to expand the concatenated variables ·̌ into a sequence of L n−dimensional
parameters. For u = prox(ω̌), ω̌ let us denote uµℓ (1 ≤ µ ≤ n, 1 ≤ ℓ ≤ L) the ℓ−th component of
the µ−th block. Introduce

fµℓ ≡
∑
κ

(V −1
µ )ℓκ(prox(ω̌)µκ − ω̌µκ). (51)

Denote fℓ ≡ (fµℓ)1≤µ≤n ∈ Rn, ωℓ ≡ (ωµℓ)1≤µ≤n ∈ Rn. The system of equations (50) can then be
rewritten as (further redefining b←− Ab):


∑
ℓ

X̃⊤
ℓ fℓ = b−A(λId +A)−1b

X̃ℓ(λId +A)−1b =
∑
κ
Vℓκfκ − ωℓ

(52)

We used the assumption that g(·) is an ℓ2 regularization. Finally, introducing Q̂ = proxg(A
−1b) =

(λId +A)−1b, on reaches 
∑
ℓ

X̃⊤
ℓ fℓ = b−AQ̂

X̃ℓQ̂ =
∑
κ
Vℓκfκ − ωℓ

(53)

which corresponds to the fixed-point equations of GAMP (Algorithm 1). This finishes to show
the correspondence between the fixed points of GAMP and the critical points of the empirical
landscape (3). To summarize, we have shown that equations (8) describe the zero-gradient points of
the empirical loss landscape (3), i.e. fixed points of GD.

A.6. Towards a rigorous proof of result 1

While the connection between the GAMP fixed point and the extrema of the loss is sound, and has
been at the roots of many rigorous results for convex losses, see e.g. [7, 15, 17, 19, 31], there exist
technical difficulties in adapting these rigorous arguments to the present setting, and a fully rigorous
proof would warrant sizable work. While we leave this challenging task for future work, we wish
to discuss how it can be potentially achieved. The first task would require the proof of point-wise
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convergence of GAMP, as indeed, the identification of the GAMP estimates with the one of the
extrema of the loss function requires to be at the fixed point of the iteration. This difficulty, discussed
in detail in, e.g. [10, 19, 31], can be in principle addressed by computing the convergence criterion
from the state evolution equations (see [10] the discussion in Lemma 7 in [19]), a criterion sometimes
called the "replicon" in the context of replica theory [35].

Provided the replicon criterion is satisfied, all converging fixed point described by our theory thus
correspond rigorously to fixed point of the loss. The last task would be to prove that the minimum
of the loss is indeed the fixed point we found with minimum energy. A potential strategy to prove
this would be to use the Gordon-Minimax approach of [20]. While it is used in many situations for
convex problems (e.g. [54, 55, 58]), only one side would be required for our (non-convex) problem
thanks to the GAMP matching bound. We hope that our results would provide inspiration for further
research in this direction.

Appendix B. Derivation of the Main Result with the replica method

In the Appendix we provide an alternative derivation of Result 1, which sharply characterizes the
global minimum of the empirical loss (3), using the heuristic replica method from statistical physics
[40, 41] in its replica-symmetric formulation. First observe that for any test function ϕ(Q̂) of the
minimizer Q̂ of (3),

ϕ(Q̂) = lim
β→∞

ED
1

Z

∫
dQϕ(Q)e−βR[Q], (54)

where we denoted R[Q] the empirical loss (3), and

Z ≡
∫

dQe−βR[Q] (55)

the normalization factor, also known as the partition function in statistical physics. We remind that
D refers to the training set. In order to access key summary statistics and learning metrics associated
to Q̂, it is therefore reasonable to seek to compute the generating function associated to the measure
(54), namely E lnZ. Such computations can be addressed using the replica method from statistical
physics [40, 41], building on the identity

lnZ = lim
s→0

Zs − 1

s
. (56)

The backbone of the derivation thus lies in the computation of EZs.Below, we detail the derivation
for a generic convex regularizer g : Rd → R+ and later specialize to the case of ℓ2 regularization.
The replicated partition function thus reads

EZs =

∫ s∏
a=1

dQae
−β

s∑
a=1

g(Qa)

n∏
µ=1

Exe
−β

s∑
a=1

(
Tr S

[
1√
d
(x+p)Qa

]
ρΣS

[
1√
d
(x+p)Qa

]⊤
−2Tr T

[
1√
d
xℓQ⋆

]
ρΣS

[
1√
d
(x+p)Qa

]⊤)
.

(57)
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Introduce the local fields

ha ≡ xQa√
d
∈ RL×r, h⋆ ≡ xQ⋆√

d
∈ RL×t (58)

and the overlaps

ma ≡
pQa√

d
∈ RL×r, (59)

with rows mℓ
a. These fields have statistics

Ex[h
a
ℓ (h

b
κ)

⊤] = δℓκ
Q⊤

a ΣℓQb

d
≡ qℓab (60)

Ex[h
⋆
ℓ (h

⋆
κ)

⊤] = δℓκ
Q⊤

⋆ ΣℓQ⋆

d
≡ ρℓ (61)

Ex[h
a
ℓ (h

⋆
κ)

⊤] = δℓκ
Q⊤

a ΣℓQ⋆

d
≡ θℓa. (62)

Thus

EZs =

∫
dmdm̂dθdθ̂dqdq̂ e

−d
∑
a

∑
ℓ
[m̂ℓ⊤

a mℓ
a+Tr(θℓaθ̂ℓ⊤a )]−d

∑
ℓ

∑
1≤a≤b≤s

Tr(qℓabq̂
ℓ⊤
ab )︸ ︷︷ ︸

esdΨt∫ s∏
a=1

dQae
−β

s∑
a=1

g(Qa)+
∑
a

∑
ℓ
(
√
dm̂ℓ⊤

a Q⊤
a pℓ+Tr[θℓaQ⊤

⋆ ΣℓQa])+
∑

1≤a≤b≤s

∑
ℓ
Tr[qℓabQ

⊤
b ΣℓQa]

︸ ︷︷ ︸
e
sdΨQ[

Eh⋆,{ha}sa=1
e
−β

s∑
a=1

(Tr S[ha+ma]ρΣS[h
a+ma]⊤−2Tr T[h⋆]ρΣS[h

a+ma]⊤)
]αd

︸ ︷︷ ︸
esαdΨy

, (63)

where we decomposed the replicated free entropy into the trace, entropic and energetic potentials
Ψt,ΨQ,Ψy. Note that all exponents are scaling with d→∞. Therefore the integral in (63) can be
computed using a Laplace saddle-point approximation.

B.1. Replica-Symmetric ansatz

We have thus rephrased the analysis of the measure (54) as a optimization problem over the order
parameters {qℓab, θℓa,ma}, and the associated conjugate variables. However, these still represent
2L(s2 + 1) + 2s variables, and s→ 0. In order to make progress, we assume that the maximizer is
of replica-symmetric (RS) form [40, 41]

qℓab = (rℓ − qℓ)δab + qℓ (64)

mℓ
a = mℓ (65)

θℓa = θℓ (66)

q̂ℓab = − (r̂ℓ/2 + q̂ℓ) + q̂ℓ (67)

m̂ℓ
a = m̂ℓ (68)

θ̂ℓa = θ̂ℓ (69)
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The RS ansatz holds in a number of machine learning settings, notably for convex problems and
Bayes-optimal settings, see e.g. [63] for a review. In the present setting, since the empirical loss (3)
is non-convex, we emphasize that the RS ansatz constitutes a heuristic technical assumption of our
analysis.

B.2. Entropic potential

We now turn to the entropic potential Ψw. It is convenient to introduce the variance order parameter

V̂ℓ ≡ r̂ℓ + q̂ℓ. (70)

The entropic potential can then be expressed as

eβsdΨQ

=

∫ s∏
a=1

dQae
−β
∑
a
g(Qa)+

L∑
ℓ=1

s∑
a=1

(
√
dm̂⊤

ℓ Q⊤
a pℓ+Tr[Q̂⊤

⋆ ΣℓQa])− 1
2

L∑
ℓ=1

s∑
a=1

Tr[V̂ℓQaΣℓQ
⊤
a ]+ 1

2

L∑
ℓ=1

∑
a,b

Tr[q̂ℓQaΣℓQ
⊤
b ]

=

∫ L∏
ℓ=1

DΞℓ∫ dQe
−βg(Q)− 1

2
Tr

[
L∑

ℓ=1
V̂ℓQΣℓQ

⊤

]
+

(
L∑

ℓ=1
(
√
dm̂ℓp

⊤
ℓ +θ̂ℓQ

⊤
⋆ Σℓ)+

L∑
ℓ=1

Ξℓ⊙(q̂k⊗Σk)
1
2

)
⊙Q


s

= EΞ

∫ dQe
−βg(Q)− 1

2
Q⊙
[

L∑
ℓ=1

V̂ℓ⊗Σℓ

]
⊙Q+

(
L∑

ℓ=1
(
√
dm̂ℓp

⊤
ℓ +θ̂ℓQ

⊤
⋆ Σℓ)+

L∑
ℓ=1

Ξℓ⊙(q̂ℓ⊗Σℓ)
1
2

)
⊙Q


s

. (71)

Therefore

βΨw =
1

d

∫
EΞ ln

∫ dQe
−βg(Q)− 1

2
Q⊙
[

L∑
ℓ=1

V̂ℓ⊗Σℓ

]
⊙Q+

(
L∑

ℓ=1
(
√
dm̂ℓp

⊤
ℓ +θ̂ℓQ

⊤
⋆ Σℓ)+

L∑
ℓ=1

Ξℓ⊙(q̂ℓ⊗Σℓ)
1
2

)
⊙Q

 .

(72)

For a matrix Ξ ∈ Rr×d and tensors A,B ∈ Rr×d⊗Rr×d, we denoted (Ξ⊙A)kl =
∑

ij Ξ
ijAij,kl

and (A⊙B)ij,kl =
∑

rsAij,rsBrs,kl.

24



PHASE TRANSITION BETWEEN POSITIONAL AND SEMANTIC LEARNING

B.3. Energetic potential

The computation of the energetic potential Ψy is rather standard and follows the same lines as in e.g.
[2], yielding

βΨy =

∫
RL×t

dY DZ

∫
RL×r

DΞ

L∏
ℓ=1

δ

[
yℓ − (ρℓ − θ⊤ℓ q

−1
ℓ θℓ)

1
2 zℓ − θ⊤ℓ q

1
2
ℓ ξℓ

]

× ln

∫
RL×r

dX

L∏
ℓ=1

e
− 1

2

(
xℓ−q

1
2
ℓ ξℓ

)⊤
V −1
ℓ

(
xℓ−q

1
2
ℓ ξℓ

)
det (2πVℓ)

e−βTr S[x+m]ρσS[x+m]⊤−2Tr T[y]ρΣS[x+m]⊤



=

∫
RL×t

dY

∫
RL×r

DΞ

L∏
ℓ=1

e
− 1

2

(
yℓ−θ⊤ℓ q

1
2
ℓ ξℓ

)⊤
(ρℓ−θ⊤ℓ q−1

ℓ θℓ)
−1

(
yℓ−θ⊤ℓ q

1
2
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−1
ℓ θℓ)
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≡EY,Ξ
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e
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2

(
xℓ−q

1
2
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V −1
ℓ

(
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1
2
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)
det (2πVℓ)

e−βTr S[x+m]ρσS[x+m]⊤−2Tr T[y]ρΣS[x+m]⊤


(73)

B.4. Zero-temperature limit

We now take the limit β →∞. Rescaling

βV̂ℓ ← V̂ℓ,
1

β
Vℓ ← Vℓ, βm̂ℓ ← m̂ℓ, βθ̂ℓ ← θ̂ℓ, β2q̂ℓ ← q̂ℓ (74)

The entropic potential then reduces to

Ψw =
1

2d
EΞTr

( L∑
ℓ=1

V̂ℓ ⊗ Σℓ

)
⊙

(
L∑

ℓ=1

(√
dm̂ℓp

⊤
ℓ + θ̂ℓQ

⊤
⋆ Σℓ

)
+

L∑
ℓ=1

Ξℓ ⊙ (q̂ℓ ⊗Σℓ)
1
2

)⊗2


− 1

d
EΞMg(Ξ) (75)

where we defined the entropic Moreau enveloppe

Mg(Ξ) ≡ inf
Q

1

2

∥∥∥∥∥
(

L∑
ℓ=1

V̂ℓ⊗Σℓ

)1/2
Q−

(
L∑

ℓ=1
V̂ℓ⊗Σℓ

)−1(
L∑

ℓ=1
(
√
dm̂ℓp

⊤
ℓ +θ̂ℓQ

⊤
⋆ Σℓ)+

L∑
ℓ=1

Ξℓ⊙(q̂ℓ⊗Σℓ)
1
2

)
∥∥∥∥∥
2

+ g(Q)

 .

(76)

The energetic potential can be similarly recast into a more compact form

Ψy = −EY,ΞM(Y,Ξ) (77)
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where the Moreau envelope is defined as

M(Y,Ξ) =inf
X

1

2

{
L∑

ℓ=1

Tr

[
V −1
ℓ

(
xℓ − q

1/2
ℓ ξℓ −mℓ

)⊗2
]
+Tr

[
S(X)ρΣS(X)⊤

]
− 2Tr

[
T(Y )ρΣS(X)⊤

]}
.

(78)

B.5. Replica free entropy

One finally reaches an expression for the replica free entropy as

Φ =
1

2

L∑
ℓ=1

(
Tr V̂ℓqℓ − Tr q̂ℓVℓ

)
−

L∑
ℓ=1

m̂⊤
ℓ mℓ −

L∑
ℓ=1

Tr θ̂⊤ℓ θℓ −
1

d
EΞMg(Ξ)

+
1

2d
EΞTr

( L∑
ℓ=1

V̂ℓ ⊗ Σℓ

)
⊙

((√
dm̂ℓp

⊤
ℓ + θ̂ℓQ

⊤
⋆ Σℓ

)
+

L∑
ℓ=1

Ξℓ ⊙ (q̂ℓ ⊗Σℓ)
1
2

)⊗2
− αEy,ξM(y, ξ)

(79)

B.6. Saddle-point equations : general regularizer

The extremization of the free entropy (79) yields, similarly to [14], the following system of self-
consistent equations on the summary statistics:


Vℓ =

1
dEΞ

[(
proxg ⊙ (q̂ℓ ⊗Σℓ)

− 1
2 ⊙ (Ir ⊗Σℓ)

)
Ξ⊤

ℓ

]
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1
dEΞ

[
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⊤
g

]
mℓ =

1√
d
EΞ

[
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]
θℓ =

1√
d
EΞ

[
proxgΣℓQ⋆

] (80)


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2
ℓ ξℓ −mℓ
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1
2
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(
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1
2
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)(
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)⊤ (
ρℓ − θ⊤ℓ q

−1
ℓ θℓ

)−1

, (81)

where the proximals proxg and proxℓ respectively refer to the arginf in Q (resp. xℓ) of the envelopes
Mg (76) (resp.M 78).
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B.7. Saddle-point equations : ℓ2
We now specialize the saddle-point equations (80) to the case of an ℓ2 regularizer g(·) = 1/2∥·∥ the
entropic potential admits the simple form

ΨQ =
1

2d
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2
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(82)

The replica free energy thus reads

Φ =
1

2

L∑
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(
Tr V̂ℓqℓ − Tr q̂ℓVℓ

)
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2
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(83)

leading to the saddle point equations
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)−1


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∫
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(
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γκV̂κ

)−1
(
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κ=1

γκq̂κ +

(
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m̂κτκ + γκθ̂κ · π

)⊗2
)(

λIr +
L∑

κ=1
γκV̂κ

)−1

Vℓ =
∫
dν(γ, τ, π)γℓ

(
λIr +

L∑
κ=1

γκV̂κ

)−1

mℓ =
∫
dν(γ, τ, π)τℓ

(
λIr +

L∑
κ=1

γκV̂κ

)−1( L∑
κ=1

m̂κτκ + γκθ̂κ · π
)

θℓ =
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dν(γ, τ, π)γℓ

(
λIr +

L∑
κ=1

γκV̂κ

)−1( L∑
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m̂κτκ + γκθ̂κ · π
)
π⊤.

(84)
which finishes to recover (8). Let us finally mention that the update equations (8) for the summary
statistics (7) do not describe the dynamics of gradient descent, but rather that of an Approximate
Message Passing algorithm [6], which we elicit in Appendix A for completeness. q.e.d.
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B.8. test MSE

The generalization performance is measured by the test error

ϵg ≡ EDEx

∥∥∥∥T [ 1√
d
xQ⋆

]
x− S

[
1√
d
(x+ p)Q̂

]
(x+ p)

∥∥∥∥2 . (85)

Expliciting this expression in terms of the correlated Gaussian variables xQ⋆, xQ allows to straight-
forwardly show that ϵg admits the sharp asymptotic characterization in terms of the summary statistics
characterized by (84):

ϵg = EX Tr
[
S[X]ρΣS[X]⊤

]
+ EY Tr

[
T[Y ]ρΣT[Y ]⊤

]
− 2EX,Y Tr

[
S[X]ρΣT[Y ]⊤

]
, (86)

where the average bears on X ∈ RL×r, Y ∈ RL×t with independent rows with statistics

(xℓ, yℓ) ∼ N
[(

m

0

)
,

(
qℓ θℓ
θ⊤ℓ ρℓ

)]
(87)

B.9. Training loss

We finally turn to the training loss. It is reasonable to expect, from statistical physics, that the training
loss should be equal to the free energy −Φ at zero temperature. We provide below an alternative
derivation, for simplicity in the case of ℓ2 regularization g = 1/2∥·∥2. First note that the training loss
ϵt can be expressed as

ϵt = − lim
β→∞

∂β
1

d
lnZ(β)︸ ︷︷ ︸
Φ(β)

(88)

Where Φ(β) is the free entropy at finite temperature. The trace potential Ψt bears no explicit
dependence on β. On the other hand,

βΨQ =− 1

2
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⊤
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(89)

Thus

∂β(βΨQ) =−
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2
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(90)
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Finally, going through the same rescaling steps to take the β →∞ limit,

lim
β→∞

∂β(βΨQ) = −
λ
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Tr
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ℓ=1

V̂ℓ ⊗Σℓ

)−2

⊙

 L∑
ℓ=1

q̂ℓ ⊗Σℓ +

(
L∑

ℓ=1

(
√
dm̂ℓp

⊤
ℓ + θ̂ℓQ

⊤
⋆ Σℓ

)⊗2


(91)

By the same token, it is straightforward to see that

lim
β→∞

∂β(βΨy) = −EY,Ξ

M(Y,Ξ)− 1

2
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We used the self-consistent equations (8) to identify the term in underbrace. Putting everything
together,

−ϵt = lim
β→∞

∂βΨ(β) =− λ

2

∫
dν(γ, τ) Tr

(λ+
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γℓV̂ℓ

)−1
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− αEY,Ξ [M(Y,Ξ)] +
1

2

L∑
ℓ=1

Tr[q̂ℓVℓ]. (93)

This constitutes a sharp asymptotic characterization of the training loss ϵt as a function of the
summary statistics characterized in Result 1.
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For completeness, we finally explicit the connection between ϵt and the negative free entropy (i.e.
the free energy in statistical physics). We go back to massage the expression for the free entropy
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= −ϵt (94)

In other words, the training loss is equal to the zero-temperature free energy.

Appendix C. Supplementary Experiments

C.1. Empirical scaling of α = d/n

In the following we verify that our experiments are consistent with the scaling behaviour predicted
from the theory. We jointly increase d and n for a fixed value of α. In Fig. 2 we indeed observe the
expected behaviour for an exemplary value of α = 2. The same holds for the summary statistics θ
and m, which concentrate as d and n jointly grow, shown in Fig. 1 (center) in the main text.

C.2. Alternative hyperparameters

We provide supplementary results for different parameter settings. Fig. 3 on the left shows more
slices from the phase diagram that appears in the main Fig. 1. For the experimental section of the
main text, we chose a specific A for definiteness. In the following, we present the same results for a
different A with a stronger off-diagonal and a higher rank,

A =

(
0.3 0.7
0.8 0.2

)
. (95)

In Fig. 4 we present the analogous simulations to Fig. 1. While the global phenomena match the
previous example, the details of the transitions location differ.
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Figure 2: Scaling d and n jointly for α = 1.5 approaches the theoretical prediction of the generaliza-
tion error of the positional and semantic local minima. Experimental settings as in Fig. 1,
with 70 runs per datapoint.
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Figure 3: Alternative Parameters. Mixed positional/semantic teacher for ω = 0.3. Settings is
rs = rt = 1, L = 2, A = ((0.6, 0.4), (0.4, 0.6)),Σ1 = Σ2 = 0.25Id, p1 = 1d = −p2

and Q⋆ ∼ N (0, Id). While keeping all other settings the same, we vary from left to right:
The target positionality ω, the student regularizer λ and the standard deviation σ (which is
0.5 =

√
Σ1) . Experiment settings as in Fig. 1.

C.3. Uninformed initialization and training via Adam

In or experiments, to obtain the empirical results, we initialize the GD optimizer in an informed
fashion, i.e. initializing Q⋆ of the student with r = 1 as either p1 (positional) or Q⋆ (semantics). GD
then converges in the two local optima described by our theory.

Since our theory only ascertains that these solutions predicted are indeed fixed points of GD for
large sizes, this does not have direct implications for other types of optimization algorithms. In Fig. 5
we show that indeed running the Adam optimizer from an uninformed initialization may lead one to
either of the local minima for d = 100. For larger d we observe the semantic minimum is reached
less often than the positional minimum, and a considerable number of times the algorithm simply
does not find either of them.
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Figure 4: Alternative Positional Matrix. rs = rt = 1, L = 2,Σ1 = Σ2 = 0.25Id, p1 = −p2 and
p1,Q⋆ ∼ N (0, Id) independently. Here, we use a definite matrix A from (95) , which
differs form the one used in the main text. Experiments were conducted as in Fig. 1.
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Figure 5: Comparing GD and Adam. Settings as in Fig. 1 for the sample complexity α = 2.
The student parameter Q is obtained via either (left) positional and semantic informed
initialization and (right) GD training from a random initialization are compared. Each
point represents a single run. For the informed GD, we used the same optimization
parameters as in Fig. 1 (24 runs per initialization). For Adam we trained on the same data,
but for 2, 500 epochs with learning rate η = 0.01 (showing 140 runs).
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