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Abstract

Sensory stimuli in animals are encoded into spike trains by neurons. We present1

a signal processing framework that deterministically encodes continuous-time2

signals into spike trains and addresses the question of reconstruction bounds. The3

framework encodes a signal through spike trains generated by an ensemble of4

neurons using a convolve-then-threshold mechanism with various convolution5

kernels. A closed-form solution to the inverse problem, from spike trains to signal6

reconstruction, is derived in the Hilbert space of shifted kernel functions, ensuring7

sparse representation of a generalized Finite Rate of Innovation (FRI) class of8

signals. Additionally, inspired by real-time processing in biological systems, an9

efficient iterative version of the optimal reconstruction is formulated that considers10

only a finite window of past spikes, ensuring robustness of the technique to ill-11

conditioned encoding; convergence guarantees of the windowed reconstruction12

to the optimal solution are then provided. Experiments on a large audio dataset13

demonstrate excellent reconstruction accuracy at spike rates as low as one-fifth14

of the Nyquist rate, while showing clear competitive advantage in comparison to15

state-of-the-art sparse coding techniques in the low spike rate regime.16

1 Introduction17

In most animals, sensory stimuli are communicated to the brain via ensembles of discrete, spatio-18

temporally compact electrical events generated by neurons, known as action potentials or spikes19

Rieke et al. [1999]. The conversion of continuous-time stimuli to spike trains occurs at an early stage20

of sensory processing, such as in the retinal ganglion cells in the visual pathway or spiral ganglion21

cells in the auditory pathway. Nature likely resorts to spike-based encoding due to several advantages:22

sparsity of representation [Olshausen and Field, 1996] and energy efficiency [Laughlin and Sejnowski,23

2003], noise robustness [London and Häusser, 2005], high temporal precision [Buzsáki, 2006] and24

facilitation of downstream computation [Földiák, 1990, Graham and Field, 2007]. Based on how25

neural spike responses are represented, coding models can be broadly divided into two categories26

[Authors, 2023]: 1) rate coding, where spike train responses are converted into an average rate, and27

2) temporal coding, where the precise timing of spikes convey information about the stimuli. In28

the rate coding literature, spike responses to stimuli are converted to an average instantaneous rate29

r(t), and stimulus reconstruction is typically formulated probabilistically by choosing the stimulus30

s that maximizes the likelihood P (s|r). Rate coding is criticized for losing temporal precision,31

especially since studies have shown that neurons can exhibit sub-millisecond precision [Mainen and32

Sejnowski, 1995]. Temporal coding, on the other hand, although emphasizes the precise timing of33

individual spikes, in this literature stimulus reconstruction is often formulated probabilistically (e.g.34

Bayesian Inference [Pillow et al., 2008]) or through a linear transformation of spike-responses (e.g.35

reverse correlation [Rieke et al., 1997]). Probabilistic approaches to reconstruction complicate the36

development of a deterministic signal processing framework from spike trains, while simple linear37

transformations may be too restrictive for representing a generalized class of signals. Recent advanced38

temporal coding schemes, such as those by Sophie et al. [Brendel et al., 2017], leverage recurrent39
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networks and have shown near perfect reconstruction for certain signals. However, these techniques40

involve complex training procedures and do not provide reconstruction guarantees for a generalized41

class of signals. This paper is therefore motivated to build a signal processing framework that42

deterministically encodes continuous-time signals into biologically feasible spike trains, addressing43

questions of representable signal classes and reconstruction bounds. While a preliminary version of44

this framework was introduced in [Chattopadhyay and Banerjee, 2023] for continuous-time signal45

coding and reconstruction, this work extends that framework by analyzing the stability of solutions46

and presenting more comprehensive experimental results. Specifically, the paper extends the analysis47

from section 5 onwards.48

2 Coding49

For encoding, we make the following assumptions: (1) We consider the set of input signals F to be50

the class of all finite-support, bounded functions (formally, F = {X(t)|t ∈ [0, τ ], |X(t)| ≤ b}, for51

some arbitrary but fixed τ, b ∈ R+) that satisfy a finite rate of innovation bound [Vetterli et al., 2002].52

Naturally, X(t) ∈ L2, i.e., square integrable. (2) We assume an ensemble of m spiking neurons53

Φ = {Φj |j ∈ Z+, 1 ≤ j ≤ m}, each characterized by a continuous kernel function Φj(t), where54

∀j,Φj(t) ∈ C[0, τ ], τ ∈ R+. Also we assume that each kernel Φj is normalized, i.e., ||Φj ||2 = 1,∀j.55

(3) Finally, we assume that Φj has a time varying threshold T j(t). The ensemble of kernels Φ encodes56

a given input signal X(t) into a sequence of spikes {(ti,Φji)}, where the ith spike is produced by57

the jith kernel Φji at time ti if and only if:
∫
X(t)Φji(ti − t)dt = T ji(ti).58

In our implementation a threshold function is assumed in which the time varying threshold T j(t)59

of the jth kernel remains constant at C until that kernel produces a spike, at which time an after-60

hyperpolarization potential (ahp) increments the threshold by a value M . This increment then returns61

to zero linearly within a refractory period δ. Formally,62

T j(t) = C +
∑

tjp∈[t−δ,t]

M(1−
t− tjp
δ

) (C,M, δ ∈ R+) (1)

where the sum is taken over all spike times tjp in the interval [t−δ, t] at which the kernel Φj generated63

a spike. We would like to note that the paper adheres to a consistent notation, which is clarified in the64

appendix. Various sections of the appendix include proofs to theorems as well.65

Corollary 0.1. Let Φj be a function in C[0, τ ], where τ ∈ R+ and ||Φj ||2 = 1. Let X(t) ∈66

F = {f(t) | t ∈ [0, τ ′], |f(t)| ≤ b}, where b, τ ′ ∈ R+, be the input to our model. Then: (a)67

The convolution Cj(t) between X(t) and Φj(t), defined by Cj(t) =
∫
X(t′)Φj(t − t′)dt′ for68

t ∈ [0, τ + τ ′], is a bounded continuous function. Specifically, one can show that |Cj(t)| < b
√
τ for69

all t ∈ [0, τ + τ ′] . (b) Suppose the parameter M in the Eq. 1 is chosen such that M > 2b
√
τ . Then70

the interspike interval between any two spikes produced by the given neuron Φj is greater than δ
2 .71

Corollary 0.2. Suppose the assumptions of the Corollary 0.1 hold true. Then, the spike rate generated72

by our framework for any input signal X(t) is bounded. Consequently, the maximum number of73

preceding spikes that can overlap with any given spike is bounded above by a constant value.74

Corollary 0.3. LetX(t) be an input signal and Φj be a kernel. Suppose the convolution betweenX(t)75

and Φj(t) at time tp is denoted by Cj(tp) = ⟨X(t),Φj(tp − t)⟩ > 0, and let the absolute refractory76

period be δ as modeled in Eq. 1. If the baseline threshold C is set such that 0 < C ≤ Cj(tp), then77

the kernel Φj must produce a spike in the interval [tp − δ, tp], according to the threshold model78

defined in Eq. 1.79

Assumption 1. ||PS({ϕ1,...,ϕn−1})(ϕn)|| ≤ β < 1, for some β ∈ R, ∀n ∈ {1, ..., N}, where N is80

the total number of spikes produced by the system. In words, the norm of the projection of every spike81

onto the span of all previous spikes is bounded from above by some constant strictly less than 1.82

Justification: See the appendix for justification of the assumption. This assumption supports the83

subsequent Theorem 1.84

3 Decoding85

The objective of the decoding module is to reconstruct the original signal from the encoded spike86

trains. Considering the prospect of the invertibility of the coding scheme, we seek a signal that87
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satisfies the same set of constraints as the original signal when generating all spikes apropos the88

set of kernels in ensemble Φ. Recognizing that such a signal might not be unique, we choose the89

reconstructed signal as the one with minimum L2-norm. Formally, the reconstruction X∗ of the90

input signal X is formulated to be the solution to:91

92

X∗ = argmin
X̃

||X̃||22 s.t.
∫
X̃(τ)Φji(ti − τ)dτ = T ji(ti); 1 ≤ i ≤ N (2)

where {(ti,Φji)|i ∈ {1, ..., N}} is the set of all spikes generated by the encoder. The choice of93

L2 minimization is in congruence with the dictum of energy efficiency in biological systems. The94

assumption is that, of all signals, the one with the minimum energy that is consistent with the spike95

trains is desirable. Also, an L2 minimization in the objective of (2) reduces the convex optimization96

problem to a solvable linear system of equations as described below.97

4 Signal Class for Perfect Reconstruction98

We observe that in general the encoding of L2[0, T ] signals into spike trains is not an injective map;99

the same set of spikes can be generated by different signals so as to result in the same convolved100

values at the spike times. Naturally, with a finite and fixed ensemble of kernels Φ, one cannot achieve101

perfect reconstruction for all L2[0, T ] signals. Assuming, additionally, a finite rate of innovation, as102

F was previously defined changes the story. We now restrict ourselves to a subset G of F defined103

as G = {X|X ∈ F , X =
∑N
p=1 αpΦ

jp(tp − t), jp ∈ {1, ...,m}, αp ∈ R, tp ∈ R+, N ∈ Z+} and104

address the question of reconstruction accuracy. Essentially G consists of all linear combinations105

of arbitrarily shifted inverted kernel functions. N is bounded above by the total number of spikes106

that the ensemble Φ can generate over [0, T ]. For the class G the perfect reconstruction theorem is107

presented below. The theorem is proved with the help of two lemmas.108

109

Theorem 1. (Perfect Reconstruction Theorem) Let X ∈ G be an input signal. The solution X∗ to110

the reconstruction problem Eq. (2) can be written as: X∗ =
∑N
i=1 αiΦ

ji(ti − t), αi ∈ R. If the111

set of spikes {ti,Φji}Ni=1 produced is linearly independent (as guaranteed by Assumption 1), the112

coefficients can be uniquely solved from a system of linear equations of the form Pα = T (where113

P is an N × N gram matrix with [P ]ik = ⟨Φji(t − ti),Φ
jk(t − tk)⟩ and T is an N-dim vector of114

thresholds T ji(ti)). And therefore, for appropriately chosen time-varying thresholds of the kernels,115

the reconstruction X∗, is accurate with respect to the L2 metric, i.e., ||X∗ −X||2 = 0.116

5 Approximate Reconstruction117

Theorem 1 stipulates the conditions under which perfect reconstruction is feasible in the purview of118

our framework. Specifically the theorem shows the ideal conditions—when the input signal lies in119

the span of shifted kernel functions and the spikes are generated at certain desired locations—where120

perfect reconstruction is attainable. However, under realistic scenarios such conditions may not be121

feasible and hence the need for quantification of reconstruction error as the system deviates from122

the ideal conditions. For example, even though corollary 0.2 shows that a spike can be produced123

arbitrarily close to the desired location by setting the ahp parameters C and the δ of Eq. 1 at124

reasonably low values, it begs the question to what extent the reconstruction suffers due to small125

deviations in spike times. Likewise, the input signal may not perfectly fit in the signal class G, i.e.126

the input may not be exactly representable by the kernel functions due to the presence of internal or127

external noise. Under such non-ideal scenarios how much the reconstruction suffers is addressed in128

the following theorem.129

Theorem 2. (Approximate Reconstruction Theorem). Let the input signal X be represented as130

X =
∑N
i=1 αif

pi(ti− t), where αi ∈ R and fpi(t) are bounded functions on finite support. Assume131

that there is at least one kernel function Φji in the ensemble for which ||fpi(t)− Φji(t)||2 < δ for132

all i ∈ {1, ..., N}. Additionally, assume each kernel Φji produces a spike within a γ interval of133

ti, for some δ,γ ∈ R+, for all i. Further, assume the functions fpi satisfy a frame bound type of134

condition:
∑
k ̸=i⟨fpi(t− ti), fpk(t− tk)⟩ ≤ η ∀ i ∈ {1, ..., N}, and that the kernel functions are135

Lipschitz continuous. Under such conditions, the L2 error in the reconstruction X∗ of the input X136

has bounded SNR.137
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6 Stability of the solution and Windowed Iterative Reconstruction:138

Theorem 2 shows that our technique manages reconstruction error under non-ideal conditions with139

suitable parameter choices in equation 1. This may increase spike rates, worsening the condition140

number of the P matrix and causing instability. The ahp mitigates this by maintaining spike separation,141

but the condition number worsens exponentially with more spikes (see Theorem 4 in appendix). To142

address this, we propose an approximate reconstruction scheme using a smaller window of past143

spikes, ensuring robustness. We then identify conditions for the convergence of this solution in144

assumption 2 and present the Windowing Theorem.145

Windowed iterative reconstruction: Theorem 1 establishes that the reconstruction X∗ is the146

projection onto the span of all spikes, i.e., X∗ = PS({ϕ1,...ϕN})(X). This observation enables us to147

formulate the reconstruction iteratively by updating an existing reconstruction on a set of n spikes148

{ϕi}n1 with each new incoming spike ϕn+1, instead of solving the Pα = T equation for the full set149

of spikes as shown in lemma 1. The iterative update of the reconstruction then follows from:150

151 P
S(

n+1⋃
i=1

{ϕi})
(X) = P

S(
n⋃

i=1
{ϕi})

(X) + ⟨X,ϕ⊥n+1⟩
ϕ⊥n+1

||ϕ⊥n+1||2
(3)

where ϕ⊥n+1 is the orthogonal complement of the additional n+ 1-th spike with respect to the span152

of all previous spikes, i.e. ϕ⊥n+1 = ϕn+1 − PS{ϕ1,...,ϕn}(ϕn+1). The above iterative scheme Eq. 3,153

motivates us to formulate a windowed iterative reconstruction. Here, when a new spike ϕn+1 appears,154

instead of calculating its orthogonal complement with respect to the span of all previous spike, the155

orthogonal projection of ϕn+1 is computed with respect to the span of w previous spikes, where w156

is chosen as a fixed window size. Mathematically, for the (n+ 1)-th incoming spike, we define the157

windowed iterative reconstruction, X∗
n+1,w, for an input signal X with window size w iteratively as:158

X∗
n+1,w = X∗

n,w + ⟨X,ϕ⊥n+1,w⟩
ϕ⊥n+1,w

||ϕ⊥n+1,w||2
(4)

where ϕ⊥n+1,w is defined as:

ϕ⊥n+1,w = ϕn+1 − P
S(

n⋃
n−w+1

{ϕi})
(ϕn+1)

The idea is that ϕ⊥n+1,w closely approximates ϕ⊥n+1 for reasonably large window size w, allowing159

us to formulate an iterative reconstruction based only on a finite window of w spikes rather than160

inverting a large P -matrix of size N × N as formulated in lemma 1. Eq. 4 involves computing161

ϕ⊥n+1,w for each new spike, derived by inverting the w×w gram matrix corresponding to the previous162

w spikes. Since w is chosen as a finite constant independent of N , it speeds up the decoding process163

and holds the condition number of the solution in check as per Theorem 4. The following Theorem 3164

establishes how the window-based solution formulated in Eq. 4 converges to the optimal solution of165

Eq. 1 under an assumption feasible in the context of spikes produced by our framework via biological166

kernels. The assumption, an extension of assumption 1, is stated as follows:167

Assumption 2. ||PS({ϕ1,...,ϕN}\{ϕn})(ϕn)|| ≤ β < 1, for some β ∈ R,∀n ∈ {1, ..., N}. In words,168

the norm of the projection of each spike onto the span of the remaining spikes is bounded above by a169

constant strictly less than 1.170

Justification: Appendix A.5 provides a detailed explanation for extending Assumption 1 and171

demonstrates why it is valid in the context of biological encoding.172

Theorem 3 (Windowing Theorem). For an input signal X with bounded L2 norm, suppose our173

framework produces a set of n + 1 successive spikes S = {ϕ1, ..., ϕn+1}, sorted by their time of174

occurrence and satisfying Assumption 2. The error in the iterative reconstruction of X with respect175

to the last spike ϕn+1 due to windowing, as formulated in Eq. 4, is bounded. Specifically,176

∀ϵ > 0,∃w0 > 0 s.t. ||Pϕ⊥
n+1,w

(X)− Pϕ⊥
n+1

(X)|| < ϵ,

∀w ≥ w0 and w ≤ n (5)
where w0 is independent of n for arbitrarily large n ∈ N.

177

178
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7 Experiments on Real Signals179

The proposed framework was tested on audio signals. Dataset: We chose the Freesound Dataset180

Kaggle 2018, an audio dataset of natural sounds referred in [Fonseca et al., 2018], containing 18,873181

audio files. All audio samples in this dataset are provided as uncompressed PCM 16bit, 44.1kHz,182

mono audio files. Set of Kernels: We chose gammatone filters (atn−1e−2πbt cos(2πft + ϕ)) in183

our experiments since they are widely used as a reasonable model of cochlear filters in auditory184

systems [Patterson et al., 1988]. Results: The proposed framework was tested extensively against185

the mentioned dataset. Comprehensive results with 600 randomly selected audio snippets using186

50 kernels are shown in Figure 1(a). In the experiment, kernels were normalized, and parameters187

for the time-varying threshold function (1) were selected through a systematic grid search on a188

smaller dataset of 20 randomly chosen snippets. In each trial, an audio snippet of length ≈ 2.5s189

was processed with fixed parameter values, except for the refractory period, which was gradually190

decreased leading to improvement in reconstructions at higher spike rates. The refractory period191

varied from approximately 250ms to 5ms. After converting an audio snippet into a sequence of192

spikes, reconstruction was performed iteratively using a fixed-sized window of spikes as described193

in Section 6. The ahp period was systematically varied, but each trial on an audio snippet was run194

with a single value of the ahp period. Correspondingly, the window size was set to be inversely195

proportional to the ahp period, varying from 5k to 15k as per Theorem 3. The results in Figure 1(a)196

show that increasing the spike rate by tuning the refractory period allows near-perfect reconstruction,197

aligning with our theoretical analysis. Some variability in reconstruction accuracy across signals can198

be attributed to dataset idiosyncrasies, e.g. certain audio samples could be noisy or ill-represented in199

the kernels. However, the overall trend shows promise, with an average of ≈ 20dB at 1/5th Nyquist200

Rate. This in conjunction with the fact that signals are represented in this scheme only via set of201

spike times and kernel indexes (thresholds can be inferred) shows potential for an extremely efficient202

coding mechanism. Since the generation of spikes requires scanning through convolutions in a single203

pass, encoding is highly efficient. However, decoding is slightly more time-consuming because it204

involves solving the linear system Pα = T to derive the coefficients. But then reconstruction is205

performed iteratively on a finite window, as described in Section 6. Considering O(w3) as the time206

complexity for inverting a w×w matrix, the overall time complexity of decoding is O(Nw3), where207

N is the length of the signal and w is the chosen window size. Thus the overall process still remains208

linear, making it a suitable choice for lengthy continuous-time signals.209

Comparison With Convolutional Orthogonal Matching Pursuit: Our proposed framework is210

comparable to Convolutional Sparse Coding (CSC) techniques [Garcia-Cardona and Wohlberg, 2018].211

In CSC, the objective is to efficiently represent signals using a small number of basis functions212

convolved with sparse coefficients. Finding sparse code for signals, in general is an NP-Hard213

problem [Davis and Avellaneda, 1997], and several heuristic-based approaches are used to address214

this challenge. In [Chattopadhyay and Banerjee, 2023], the proposed framework was compared215

against one such heuristic-based implementation of CSC, specifically Convolutional Orthogonal216

Matching Pursuit (COMP), using a small dataset of about 20 audio snippets. COMP employs a greedy217

technique to iteratively find dictionary atoms and is relatively slow due to the orthogonalization it218

performs to the atoms in each step. Most of the current leading CSC algorithms [Wohlberg, 2014,219

et. al., 2015, Wohlberg, 2016] use L1 regularization as a relaxation of L0 regularization in their220

sparse reconstruction objectives, making them amenable to efficient optimization methods such as221

the Alternating Direction Method of Multipliers (ADMM). In this paper, we extensively compare our222

technique with the efficient CBPDN algorithm implemented within the state-of-art SPORCO python223

library [Wohlberg, 2017]. In this experiment, we used 200 randomly chosen audio snippets from the224

same dataset, utilizing 10 gammatone kernels. The snippet lengths varied from 0.5s to 3.5s to compare225

processing times as a function of snippet length. Figure 1(b) shows the reconstruction accuracy226

comparison between our framework and CBPDN. CBPDN, which is based on L1 optimization,227

achieved reconstructions at different sparsity levels by varying the regularization parameter λ, while228

our framework achieved different spike rates by varying the ahp period. The results in Figure 1(b)229

reveal that our framework outperforms CBPDN, particularly in the low spike rate regime, achieving230

better SNR values on average at consistently lower spike rates. In the high spike rate regime, CBPDN231

occasionally outperforms our framework. This occurs because our framework is not well suited for232

high spike rates, where spikes begin to overlap significantly, leading to poorer bounds as discussed in233

our theoretical analysis. Additionally, the limited datapoints where CBPDN outperforms (around 30234

dB) make these specific results unreliable.235
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Overall, our framework shows promise as a superior alternative to CSC techniques in specific236

scenarios, particularly for low spike rate representation of natural audio signals with biological237

kernels, as demonstrated in our experiments.
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Figure 1: shows a sample reconstruction in an experiment with 10 kernels after training. (a)
Comprehensive results of experiments on 600 audio snippets with 50 kernels. Scatter plot of
reconstructions where each dot represents a single reconstruction performed on one of the 600 sound
snippet for a particular setting of the ahp parameters as described in Section 7. The plot shows the
SNR value of the reconstructions (x-axis) against corresponding spike-rate of the ensemble (y-axis).
The trend line in purple is generated using seaborn regression fit, and the black dot on the line
highlights the point on the trend line at 20 dB SNR which has an average spike-rate of approximately
one-fifth the Nyquist rate. (b) Experimental results of comparison between our framework and
cbpdn in terms of overall reconstruction accuracy and spike rate. Strip plot comparing spike rates
of reconstruction between our framework and cbpdn. Like (a), the x-axis bins SNR values, and the
strips of dots (red dots for cbpdn and green dots for our framework) in each bin show the distribution
of reconstructions for that bin. The y-axis denotes the spike-rate of the ensemble as a fraction of the
Nyquist rate for each reconstruction. The two lines through the strip plot connect the corresponding
average spike rates of each bin for our framework (green) and cbpdn (red). As is evident, in the
low spike rate regime the green line lies well below the red line, indicating a much lower spike rate
achieved by our framework. Although briefly in the higher SNR regime, cbpdn outperforms our
framework, the very few reconstruction data points available for cbpdn, as evidenced in (a), makes it
challenging to draw reliable conclusions.

238

8 Conclusion239

The experimental results establish the efficiency and robustness of the proposed spike-based encoding240

framework, which clearly outperforms state-of-the-art CSC techniques in the low spike rate regime.241

Notably, this high-fidelity coding and reconstruction is achieved through a simplified abstraction242

of a complex biological sensory processing system, which typically involves numerous neurons243

across multiple layers with diverse goals—such as feature extraction, decision making, classification244

and more—rather than being limited to reconstruction. For context, the human auditory system’s245

cochlear nerve contains about 50,000 spiral ganglion cells (analogous to 50,000 kernels). The fact246

that our framework, with a single layer of roughly 100 neurons using a simple convolve-and-threshold247

model, achieves such high-quality reconstruction underscores the potential of fundamental biological248

signal processing principles. Our framework differs fundamentally from the Nyquist-Shannon theory,249

primarily in its mode of representation and coding. Instead of sampling the value of a function at250

uniform or non-uniform pre-specified points, our coding scheme identifies the non-uniform points251

where the function takes specific convolved values. This efficient coding scheme, combined with252

our proposed window-based fast processing of continuous-time signals, shows great promise for253

achieving significant compression in real-time signal communication.254
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A Appendix / supplemental material307

A.1 Notations followed in the paper:308

• ti: Time of occurrence of the ith spike.309

• Ti: The threshold value.310

• X(t) or X: The input signal. For ease of notation we drop the time t as function argument311

and simply indicate the input as X instead of X(t).312

• X∗: The reconstructed signal.313

• m: The number of kernels that comprise our framework.314

• N : The total number of spikes produced by the system.315

• (ϕji , ti): Tuple denotes the ith spike produced by kernel ϕji at time ti.316

• Φji(ti − t) or ϕi: The kernel function producing the ith spike, inverted and shifted to the317

time of the spike’s occurrence ti. For brevity’s sake, this function is alternatively termed318

as the ith spike instead of the tuple notation (ϕji , ti) and is denoted via the shorthand319

ϕi whenever appropriate. Also, the mathematical definition of the term "spike" must not320

be confused with the real physical object representing the elicitation of a neuron’s action321

potential. These distinctions should be clear from the context.322

• S(V ): Subspace spanned by V in a Hilbert space H, V ⊆ H.323

• Pv(u): In a Hilbert space H, the projection of u on a vector v for u, v ∈ H.324

• PS(V )(u): In a Hilbert space H the projection of u on the subspace S(V ) for u ∈ H, V ⊆ H.325

Note that this notation is similar to the above notation of Pv(u) except here the projection326

is taken w.r.t. a subspace S(V ) instead of a single vector v. This should be clear from the327

context.328

A.2 Proof of Corollary 0.1329

Corollary 0.1: Let Φj be a function in C[0, τ ], τ ∈ R+ and ||Φj ||2 = 1. Let330

X(t) ∈ F = {f(t)|t ∈ [0, τ ′], |f(t)| ≤ b}, where b, τ ′ ∈ R+, be the input to our model.331

Then: (a) The convolution Cj(t) between X(t) and Φj(t) defined by Cj(t) =
∫
X(t′)Φj(t− t′)dt′,332

for t ∈ [0, τ + τ ′], is a bounded and continuous function. Specifically, one can show that333

|Cj(t)| < b
√
τ for all t ∈ [0, τ + τ ′] . (b) Suppose the parameter M in the threshold equation 1 is334

chosen such that M > 2b
√
τ . Then the interspike interval between any two spikes produced by the335

given neuron Φj is greater than δ
2 .336

337

Proof: (a) For showing continuity, we observe that Φj ∈ C[0, τ ] is uniformly continuous.338

Therefore, for t, h ∈ R we have:339

|Cj(t)− Cj(t+ h)| =

|
∫

Φj(t− t′)X(t′)dt′ − Φj(t+ h− t′)X(t′)dt′|

340

≤ (sup
t∈R

|Φj(t)− Φj(t+ h)|)
∫

|X(t′)|dt′

≤ ||Φj(t)− Φj(t+ h)||∞||X||1 → 0 as h→ 0
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where the convergence follows from the fact that Φj(t) is uniformly continuous and ||X||1 is a341

bounded quantity as the input is a bounded function on compact support. A bound on |Cj(t)| can be342

shown as follows-343

|Cj(t)| = |
∫
X(τ)(Φj(t− τ))dτ | ≤

∫
|X(τ)||(Φj(t− τ))|dτ

< b

∫
|(Φj(t− τ)|dτ (since|X(t)| < b)

= b

∫ τ

0

1.|(Φj(τ)|dτ = b||Φj ||2

√∫ τ

0

1dτ ≤ b
√
τ (6)

(Using Cauchy-Schwarz inequality and ||Φj ||2 = 1)

(b) Assume that t0, t1, ..., tk, tk+1, ...tL be a sequence of times at which kernel Φj produced a spike.344

We want to establish the above corollary by induction on this sequence. Let us denote the interspike345

intervals by δi, i.e. δi = ti − ti−1 and the corresponding differences in the spiking thresholds by ∆i,346

i.e. ∆i = T j(ti) − T j(ti−1) = Cj(ti) − Cj(ti−1),∀i ∈ {1, ..., L}. Clearly,
∑k
i=1 ∆i ≥ 0,∀k ∈347

{1, ..., L}, as any deviation from this condition would result in the convolution value falling below348

the baseline threshold C, consequently rendering the system incapable of producing a spike. Also,349

since the convolution Cj(t) is a continuous function with Cj(0) = 0 (by definition) convolution350

value for the first spike equals the baseline threshold, i.e. Cj(t0) = C > 0. Then, based on equation351

6, |Cj(tk) − Cj(t0)| = |
∑k
i=1 ∆i| < b

√
τ , ∀k ∈ {1, ..., L}. The threshold equation 1 formulates352

that for each spike at time ti, due to the ahp effect the threshold value is immediately incremented by353

M and then within time δ the ahp effect linearly drops to zero. Let Aik denote the drop in the ahp354

due to the spike at time ti in the interval δk. Note that Aik = 0 whenever i ≥ k and ΣkA
i
k = M ,355

i.e. the total ahp drop for each spike across all intervals is M . The proof follows by establishing the356

following two invariant by induction on k.357

Ak−1
k =M − Σki=1∆i,

δk <
δ

2
∀k ∈ {1, ..., L}

The base case for k = 1, is clearly true. Because, Cj(t0) = T j(t0) = C and Cj(t1) = T j(t1) =358

C +M(1− δ1
δ I(δ1<δ)) (by equation 1). Here I(δ1<δ) = 1 if δ1 < δ and 0 otherwise. When δ1 < δ,359

we get:360

Cj(t1) = C +M(1− δ1
δ
)

= Cj(t0) + ∆1

⇒ δ1 =
M −∆1

M
δ >

M − b
√
τ

M
δ >

δ

2
.

And the ahp drop due to spike at t0 in the interval δ1 is: A0
1 =M − (Cj(t1)− Cj(t0)) =M −∆1.361

For the other case when δ1 ≥ δ, trivially δ ≥ δ
2 . Also in that case Cj(t1) = C since there is no spike362

in the previous δ interval of t1 and therefore ∆1 = 0. But the ahp drop of the spike at t0 in interval363

δ1 is: A0
1 =M (since total drop is M ) =M −∆1. This establishes the invariants for the base case,364

k = 1.365

366

Now for the induction step we assume that the invariants hold for all k ∈ {1, . . . , n}, for some n < L,367

and we show that the invariants are true for k = n + 1. Specifically, we assume that δk > δ
2 and368

Ak−1
k = M − Σki=1∆i, for all k ≤ n. By assumption, Cj(tn+1) = Cj(tn) + ∆n+1 = T j(tn+1).369

But T j(tn+1), the threshold at time tn+1, is the sum of T j(tn) and the ahp effect of the spike at time370

tn and the ahp drop due to the spike at time tn−1. Note that for T j(tn+1) we don’t need to consider371

the ahp effects of spikes prior to tn−1 since the spikes prior to tn−1 are outside the δ interval of tn+1372
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by induction assumption and therefore have zero ahp effect. Mathematically,373

T j(tn+1) = T j(tn) +M

(
1− δn+1

δ
I(δn+1<δ)

)
−An−1

n+1

⇒ Cj(tn+1) = Cj(tn) +M

(
1− δn+1

δ
I(δn+1<δ)

)
−An−1

n+1

= Cj(tn) + ∆n+1

⇒ ∆n+1 =M

(
1− δn+1

δ
I(δn+1<δ)

)
−An−1

n+1.

Therefore for the case when δn+1 < δ we get:374

∆n+1 =M

(
1− δn+1

δ

)
−An−1

n+1

⇒M
δn+1

δ
=M −∆n+1 −An−1

n+1

≥M −∆n+1 −
n∑
i=1

∆i (since An−1
n+1 +An−1

n ≤M).

⇒M
δn+1

δ
≥M −

n+1∑
i=1

∆i > M − b
√
τ ⇒ δn+1 >

δ

2
.

Since δn + δn+1 > δ, the total drop in ahp during δn and δn+1 due to spike at tn−1 is M , i.e.375

An−1
n+1 +An−1

n =M . But,376

An−1
n+1 +Ann+1 =M −∆n+1

⇒ Ann+1 =M −∆n+1 − (M −An−1
n ) =M −

n+1∑
i=1

∆i,

establishing the invariant. For the case δn+1 ≥ δ, trivially we get δn+1 >
δ
2 . Since the ahp effect377

drops to zero for every spike within time δ , the threshold at time tn+1 must come down to the378

baseline value C, i.e. T j(tn+1) = C = Cj(tn+1) ⇒
∑n+1
i=1 ∆i = 0. Also, since δn+1 ≥ δ, the ahp379

drop due to the spike at tn in interval δn+1 is M , i.e. Ann+1 = M = M −
∑n+1
i=1 ∆i, establishing380

the invariant for this case and hence, completing the proof.381

A.3 Proof of Corollary 0.2382

Corollary 0.2: Suppose the assumptions of the Corollary 0.1 hold true. Then, the spike rate383

generated by our framework for any input signal X(t) is bounded. Consequently, the maximum384

number of preceding spikes that can overlap with any given spike is bounded above by a constant385

value.386

387

Proof: Based on Corollary 0.1, the total spike rate is bounded above by 2m
δ , where m is388

the number of kernels employed by our model. Since each kernel Φj ∈ C[0, τ ] is compact support,389

the maximum number of preceding spikes any given spike can overlap with is bounded above by390

τ 2m
δ , where τ is the maximum length of support for any kernel Φj .391

A.4 Proof of Corollary 0.2392

Corollary 0.3: LetX(t) be an input signal and Φj be a kernel. Suppose the convolution betweenX(t)393

and Φj(t) at time tp is denoted by Cj(tp) = ⟨X(t),Φj(tp − t)⟩ > 0, and let the absolute refractory394

period be δ as modeled in Eq. 1. If the baseline threshold C is set such that 0 < C ≤ Cj(tp), then the395

kernel Φj must produce a spike in the interval [tp − δ, tp], according to the threshold model defined396

in Eq. 1.397

Proof: We prove by contradiction, utilizing the continuity of the convolution function, Cj(t). Case398

1: No spike is produced by the kernel Φj before or at tp. By definition Cj(0) = 0. However, since399
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0 < C ≤ Cj(tp), the continuous function Cj(t) must intersect the baseline threshold C between400

t = 0 and t = tp by the intermediate value theorem. This contradiction implies that the kernel401

Φj must produce a spike prior to or at time tp. Case 2: Assuming spikes occurred before or at402

time tp by the kernel Φj , let tl be the time of last spike produced by Φj before or at tp. Suppose403

tl < tp − δ to ensure no spike in the interval [tp − δ, tp]. Then, by Eq. 1, the threshold of kernel404

Φj at tp is T j(tp) = C. However, Cj(tp) = ⟨X(t),Φj(tp − t)⟩ ≥ C. Since Cj(tl) = T j(tl) and405

Cj(t) is continuous, and considering Eq. 1, where the ahp raises by a high value M at tl and then406

linearly decreases to C before tp, the intermediate value theorem implies that Cj(t) must cross the407

threshold between tl and tp. However, since tl was the last spike of Φj before tp, this contradicts our408

assumption. Hence, there must be a spike in [tp − δ, tp].409

A.5 Justification of Assumption 2410

Corollary 0.1 suggests that for appropriately chosen parameters to the threshold Eq. 1, the spikes411

produced by the same kernel are sufficiently disjoint in time. Therefore, each new spike ϕn comes412

with a component that is disjoint in time with respect to the spikes produced by the same kernel.413

Since the biological kernels of our framework are causal in nature, due to the disjoint component in414

time a new spike maintains an orthogonal component with respect to all the previous spikes by the415

same kernel. For spikes produced by different kernels, we observe that different biological kernels416

correspond to different frequency responses (e.g., it has been observed that the responses of the417

auditory nerves can be well approximated by a bank of linear gammatone filters [Lewicki, 2002,418

Patterson et al., 1988]). Since there are only finitely many kernels in our framework, this leads to the419

fact that a new spike is poorly represented by the previous spikes produced by other kernels. Overall,420

a new spike Φn, for appropriately chosen ahp parameters in Eq. 1 will not be fully represented by421

previous spikes either due to disjoincy in time or frequency. Hence, the overall set of spikes grows as422

a linearly independent set. The technical need for this assumption will become clear in later sections.423

A.6 Detailed Proof of the Perfect Reconstruction Theorem424

The following section provides a detailed proof of the Perfect Reconstruction Theorem as presented425

in the main text. While the main text includes the theorem and its basic proof, this supplementary426

section offers a full proof of Lemma 2 and includes a formal claim that is referenced in the main text427

but not explicitly stated there. These additions provide a more comprehensive understanding and are428

included here to complement the content of the main text.429

The theorem assumes that the input signal belongs to a more restrictive class of signals, G, which is a430

subset of the class F . The class of input signals was initially modeled by F in the Coding Section of431

the main text. The class G is defined as:432

G = {X|X ∈ F , X =
∑N
p=1 αpΦ

jp(tp − t), jp ∈ {1, ...,m}, αp ∈ R, tp ∈ R+, N ∈ Z+}. The433

theorem is restated below exactly as it appears in the main text, followed by its proof using two434

lemmas, as described in the original text.435

Theorem 1. (Perfect Reconstruction Theorem) Let X ∈ G be an input signal. The solution X∗ to436

the reconstruction problem Eq. (2) can be written as: X∗ =
∑N
i=1 αiΦ

ji(ti − t), αi ∈ R. If the437

set of spikes {ti,Φji}Ni=1 produced is linearly independent the coefficients can be uniquely solved438

from a system of linear equations of the form Pα = T (where P is an N × N gram matrix with439

[P ]ik = ⟨Φji(t− ti),Φ
jk(t− tk)⟩ and T is an N-dim vector of thresholds T ji(ti)). And therefore,440

for appropriately chosen time-varying thresholds of the kernels, the reconstruction X∗, is accurate441

with respect to the L2 metric, i.e., ||X∗ −X||2 = 0.442

443

Lemma 1. The solution X∗ to the reconstruction problem Eq. (2) can be written as:444

X∗ =
∑N
i=1 αiΦ

ji(ti − t) where the coefficients αi ∈ R can be uniquely solved from a445

system of linear equations if the set of spikes {ϕi = Φji(ti− t)}Ni=1 produced is linearly independent.446

447

Proof: An argument similar to that of the Representer Theorem [Schölkopf et al., 2001] on (2)
directly results in: X∗ =

∑N
i=1 αiΦ

ji(ti − t) where the αi’s are real valued coefficients. This holds
true because any component of X∗ orthogonal to the span of the Φji(ti − t)’s does not contribute
to the convolution (inner product) constraints. In essence, X∗ is an orthogonal projection of X
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on the span of the spikes {ϕi = Φji(ti − t)|i ∈ {1, 2, ..., N}}. Therefore, the coefficients can be
derived by solving the linear system: Pα = T where P is the N ×N Gram matrix of the spikes, i.e.,
[P ]ik = ⟨Φji(ti − t),Φjk(tk − t)⟩, and T = ⟨T j1(t1), . . . , T jN (tN )⟩T . Furthermore, the system
has a unique solution if the Gram Matrix P is invertible. And the Gram Matrix P would be invertible
if the set of spikes {ϕi}Ni=1 is linearly independent, which in turn follows from the assumption 1. We
claim that even when the P -matrix is non-invertible, a unique reconstruction X∗ can still be obtained
following Eq. (2) in the main text, which can be calculated using the pseudo-inverse of P . □
Next, we prove the claim we just made about the uniqueness of existence of X∗ as per Eq. (2).
before proceeding to the next lemma and the subsequent proof of the theorem.
Claim: Let X be an input signal to our framework, generating a set of N spikes,
{ϕi = Φji(ti − t)}Ni=1. Let X1 and X2 be two possible reconstructions of X from these
N spikes, obtained by solving the optimization problem in Eq. (2) of the main text. Then X1 = X2.
Proof: The uniqueness of the reconstruction of X , as formulated in Eq. (2) follows from
the fact that the reconstruction is essentially the projection of X onto the span of the spikes
{ϕi = Φji(ti − t)}Ni=1. We now provide a formal proof. Let S be the subspace of L2-functions
spanned by {ϕi = Φji(ti − t)}Ni=1 with the standard inner product. Since each Φji(ti − t) is
assumed to be in L2, S is a subspace of the larger space of all L2-functions. Clearly, S is a Hilbert
space with dim(S) ≤ N . Therefore, there exists an orthonormal basis {e1, ..., eM} for S, where
M ≤ N . Assume for contradiction that X1 ̸= X2. Then there exist coefficients {ai} and {bi}
such that X1 =

∑M
i=1 aiei and X2 =

∑M
i=1 biei, where not all ai are equal to the corresponding bi.

Hence, there exists some k such that ak ̸= bk, which implies:

⟨X1, ek⟩ = ak ̸= bk = ⟨X2, ek⟩

However, since ek is in the span of {ϕi = Φji(ti − t)}Ni=1, there exists {c1, ..., cN} such that
ek =

∑N
i=1 ciΦ

ji(ti − t). Therefore:

⟨X1, ek⟩ =
N∑
i=1

ci⟨X1,Φ
ji(ti − t)⟩ =

N∑
i=1

ciT
ji(ti)

Since both X1 and X2 are solutions to the optimization problem in Eq. (2), it follows that:

⟨X1, ek⟩ =
N∑
i=1

ciT
ji(ti) = ⟨X2, ek⟩

This leads to a contradiction to the assumption that ak ̸= bk. Thus,X1 = X2, completing the proof. □448

449

Lemma 2. Let X∗ be the reconstruction of an input signal X by our framework with450

{ϕi = Φji(ti − t)}Ni=1 being the set of generated spikes. Then, for any arbitrary signal X̃ within the451

span of the spikes given by X̃ =
∑N
i=1 aiϕi, ai ∈ R, the following holds: ||X −X∗|| ≤ ||X − X̃||.452

453

Proof:454

||X(t)− X̃(t)|| = ||X(t)−X∗(t)︸ ︷︷ ︸
A

+X∗(t)− X̃(t)︸ ︷︷ ︸
B

||

⟨A,Φji(ti − t)⟩ = ⟨X(t),Φji(ti − t)⟩
− ⟨X∗(t),Φji(ti − t)⟩, ∀i ∈ {1, 2, .., N}

= T ji(ti)− T ji(ti) = 0 (by Eq (2) & (2) of main text)

⟨A,B⟩ = ⟨A,
N∑
i=1

(αi − ai)ϕi⟩ (By Lemma1 X∗(t) =

N∑
i=1

αiϕi)

=

N∑
i=1

(αi − ai)⟨A, ϕi⟩ = 0 ⇒ A ⊥ B

Therefore,
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||X(t)− X̃(t)||2 = ||A+B||2 = ||A||2 + ||B||2 (A ⊥ B)

≥ ||A||2 = ||X(t)−X∗(t)||2

⇒ ||X(t)− X̃(t)|| ≥ ||X(t)−X∗(t)|| □

Proof of the Theorem 1: The proof of the theorem follows directly from Lemma 2. Since the455

input signal X ∈ G, let X be given by: X =
∑N
p=1 αpΦ

jp(tp − t) (αp ∈ R, tp ∈ R+, N ∈ Z+).456

Assume that the time varying thresholds of the kernels in our kernel ensemble Φ are set in such a457

manner that the following conditions are satisfied: ⟨X,Φjp(tp − t)⟩ = T jp(tp) ∀p ∈ {1, ..., N}458

i.e., each of the kernels Φjp at the very least produces a spike at time tp against X (regardless of459

other spikes at other times). Clearly then X lies in the span of the set of spikes generated by the460

framework. Applying Lemma 2 it follows that: ||X −X∗||2 ≤ ||X −X||2 = 0. □461

A.7 Proof of Condition Number Theorem462

Theorem 4 (Condition Number Theorem). Let {Pk} denote the set of all Gram matrices cor-463

responding to any set of k successive spikes {ϕ1, . . . , ϕk}, i.e., Pk[i, j] = ⟨ϕi, ϕj⟩, where each464

spike satisfies the Assumption 1: ||PS({ϕ1,...,ϕi−1})(ϕi)|| ≤ β < 1, ∀i ∈ {2, . . . , k}. If Ck465

denotes the least upper bound on the condition number of the class of matrices {Pk}, then466

(1− β2)−k+1 ≤ Ck ≤ (1 + (k − 1)β)( 1−β
2

2 )−k+1467

.468
Proof: The condition number of Pk is defined as Λmax(Pk)

Λmin(Pk)
, where Λmax(Pk) and Λmin(Pk) denote469

the maximum and minimum eigen values of Pk. First we find the infimum Lk on Λmin over all470

{Pk}, the class of all gram-matrices of k successive spikes. We find the infimum inductively on k.471

By definition,472

Λmin(Pk) = min
e,||e||=1

||Σki=1eiϕi||2

(where e = [e1, ..., ek]
T , a k-vector)

= min
e,||e||=1

[e2k + 2ek⟨ϕk,Σk−1
i=1 eiϕi⟩+ ||Σk−1

i=1 eiϕi||
2]

≥ min
e,||e||=1

[e2k − 2|ek|β
√
1− e2k||Σ

k−1
i=1

ei√
1− e2k

ϕi||+

||Σk−1
i=1

ei√
1− e2k

ϕi||2] (since, ||PS{ϕ1,...,ϕi−1}(ϕi)|| ≤ β)

≥ min
e,||e||=1

[e2k − 2|ek|βz
√

1− e2k + (1− e2k)z
2] (7)

(denoting, z = ||Σk−1
i=1

ei√
1− e2k

ϕi||)

Now we set |ek| = cos θ, |ek| ≤ 1 to obtain:

Λmin(Pk) ≥ min
e,||e||=1

[cos2 θ − 2βz cos θ sin θ + z2 sin2 θ]

≥ min
e,||e||=1

[
1 + z2

2
+

1− z2

2
cos 2θ − βz sin 2θ]

≥ min
e,||e||=1

[
1 + z2

2
−

√
(
1− z2

2
)2 + β2z2︸ ︷︷ ︸

g(z2)

] (8)

But, z2 = ||Σk−1
i=1

ei√
1− e2k

ϕi||2 ≥ Lk−1

(Since, Σk−1
i=1

e2i
1− e2k

= 1 we get this inductively)

Since for |β| < 1 the expression g(z2) in 8 is a monotonic

in z2, and Lk is the infimum of Λmin(Pk), we may write,
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Lk ≥ [
1 + Lk−1

2
−
√
(
1− Lk−1

2
)2 + β2Lk−1] (9)

But Lk is a lower bound of Λmin, and all the inequalities
above are tight. Specifically, Eq. 7 & 8 show how given
Pk−1, a Gram matrix of k − 1 successive spikes with Λmin
= Lk−1, one can choose ϕk and e to result in a matrix Pk, so
that Λmin(Pk) achieves the lower bound of 9. Therefore, the
inequality of 9 can be turned into an equality.

473

Lk = [
1 + Lk−1

2
−
√
(
1− Lk−1

2
)2 + β2Lk−1]

Lk = [
(1− β2)Lk−1

1+Lk−1

2 +
√
( 1−Lk−1

2 )2 + β2Lk−1

] (10)

Since, |β| ≥ 0, setting |β| = 0 in denominator of 10,

Lk ≤ (1− β2)Lk−1 (11)
Again, L1 = 1 and using induction we can get Lk ≤ 1.
Therefore, setting Lk−1 = 1, β = 1 in denominator of 10,

Lk ≥ (1− β2)Lk−1

2
(12)

⇒ (1− β2)Lk−1

2
≤ Lk ≤ (1− β2)Lk−1 (Using 12 & 11)

⇒ (
1− β2

2
)k−1 ≤ Lk ≤ (1− β2)k−1 (13)

Eq. 13 establishes a bound on the infimum of Λmin. To
complete the proof and establish a bound on Ck we need to
show a bound on the supremum of Λmax(Pk), call it Uk.
A bound on Uk can be shown as follows:

Λmax(Pk) ≤ sup
i
(Pk[i, i] +

∑
i ̸=j

|Pk[i, j]|)

(using Gershgorin Circle Theorem)

= sup
i
{⟨ϕi, ϕi⟩+

∑
i̸=j

|⟨ϕi, ϕj⟩|} ≤ (1 + (k − 1)β)

(Since ||PS{ϕ1,...,ϕi−1}(ϕi)|| ≤ β ⇒ |⟨ϕi, ϕj⟩| ≤ β)

⇒ 1 ≤ Uk ≤ (1 + (k − 1)β) (14)
(1 ≤ Uk is trivial because Λmax = 1 for Pk = I)

Combining 13 & 14 we get:

(1− β2)−k+1 ≤ Ck ≤ (1 + (k − 1)β)(
1− β2

2
)−k+1 □

The above theorem provides a tight upper bound on the condition number of the P -matrix and clearly474

shows how the condition number can degrade even if the spikes are sufficiently disjoint in time, i.e.475

β ≈ 0.476

A.8 Proof of Approximate Reconstruction Theorem477

Theorem 2. (Approximate Reconstruction Theorem)478

Let the input signal X be represented as X =
∑N
i=1 αif

pi(ti − t), where αi ∈ R and fpi(t) are479

14



bounded functions on finite support that constitute the input signal. Assume that there is at least480

one kernel function Φji in the ensemble for which ||fpi(t) − Φji(t)||2 < δ for all i ∈ {1, ..., N}.481

Additionally, assume that each of these kernels Φji produces a spike within a γ interval of ti, for482

some δ and γ ∈ R+, for all i. Also, assume that the functions fpi satisfy a frame bound type of483

condition:
∑
k ̸=i⟨fpi(t− ti), fpk(t− tk)⟩ ≤ η ∀ i ∈ {1, ..., N}, and that the kernel functions are484

Lipschitz continuous. Under such conditions, the L2 error in the reconstruction X∗ of the input X485

has bounded SNR. Specifically one can show that ∥X(t)−X∗(t)∥2

∥X(t)∥2 ≤ (δ+Cγ)2(xmax+1)
1−η , where η < 1,486

C is a Lipschitz constant, and xmax ∈ [0, N − 1] is a constant depending on the overlap of the487

components in the input representation.488

Proof: By hypothesis each kernel Φji produces a spike at time t′i ∀i ∈ {1, ..., N} . Let us call these489

spikes as fitting spikes. But the coding model might generate some other spikes against X too. Other490

than the set of fitting spikes {(t′i,Φji)|i ∈ {1, ..., N}}, let {(t̃k,Φj̃k)|k ∈ {1, ...,M}} denote those491

extra set of spikes that the coding model produces for input X against the bag of kernels Φ and call492

these extra spikes as spurious spikes. Here, M is the number of spurious spikes. By Lemma1, the493

reconstruction of X , denoted X∗, can be represented as below:494

X∗ =
∑N
i=1 αiΦ

ji(t′i − t) +
∑M
k=1 α̃kΦ

j̃k(t̃k − t)495496

where αi and α̃k are real coefficients whose values can be formulated again from Lemma1. Let Ti be497

the thresholds at which kernel Φji produced the spike at time t′i as given in the hypothesis. Hence for498

generation of the fitting spikes the following condition must be satisfied:499

⟨X,Φji(t′i − t)⟩ = Ti ∀i ∈ {1, 2, ..., N} (15)

Consider a hypothetical signal Xhyp defined by the equations below:500

Xhyp =

N∑
i=1

aiΦ
ji(t′i − t), ai ∈ R

s.t. ⟨Xhyp,Φ
ji(t′i − t)⟩ = Ti,∀i (16)

Clearly this hypothetical signal Xhyp can be deemed as if it is the reconstructed signal where we are501

only considering the fitting spikes and ignoring all spurious spikes. Since, Xhyp lies in the span of502

the shifted kernels used in reconstruction of X using Lemma 3 we may now write:503

||X −Xhyp|| ≥ ||X −X∗|| (17)

||X −Xhyp||22 = ⟨X −Xhyp, X −Xhyp⟩
= ⟨X −Xhyp, X⟩ − ⟨X −Xhyp, Xhyp⟩
= ⟨X −Xhyp, X⟩ − ΣNi=1ai⟨X −Xhyp,Φ

ji(t− t′i)⟩
= ||X||22 − ⟨X,Xhyp⟩
(Since by construction⟨Xhyp,Φ

ji(t− t′i)⟩ = Ti ∀i ∈ {1...N})
= ΣNi=1Σ

N
k=1αiαk⟨fi(t− ti), fk(t− tk)⟩
− ΣNi=1Σ

N
k=1αiak⟨fi(t− ti),Φ

jk(t− t′k))⟩
= αTFα− αTFKa (18)

(denoting a = [a1, a2, ..., aN ]T , α = [α1, α2, ..., αN ]T ,

F = [Fik]N×N , an N ×N matrix, where Fik =

⟨fi(t− ti), fk(t− tk)⟩ and FK = [(FK)ik]NXN where

(FK)ik = ⟨fi(t− ti),Φ
jk(t− t′k)⟩)

But using Lemma1 a can be written as:

a = P−1T , P = [Pik]NXN , Pik = ⟨Φji(t− t′i),Φ
jk(t− t′k)⟩

And, T = [Ti]N×1 where Ti = ⟨X(t),Φji(t− t′i)⟩
= ΣNk=1αk⟨fk(t− tk),Φ

ji(t− t′i)⟩ = FTKα

⇒ a = P−1FTKα
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Plugging this expression of a in equations (18) we get,

||X −Xhyp||22 = αTFα− αTFKP
−1FTKα (19)

But,(FK)ik = ⟨fi(t− ti),Φ
jk(t− t′k)⟩

= ⟨Φji(t− t′i),Φ
jk(t− t′k)⟩

− ⟨Φji(t− t′i)− fi(t− ti),Φ
jk(t− t′k)⟩

= (P )ik − (EK)ik (20)
(denoting EK = [(EK)ik]N×N ,

where (EK)ik = ⟨Φji(t− t′i)− fi(t− ti),Φ
jk(t− t′k)⟩)

Also, (F )ik = ⟨fi(t− ti), fk(t− tk)⟩
= ⟨fi(t− ti)− Φji(t− t′i) + Φji(t− t′i),

fk(t− tk)− Φjk(t− t′k) + Φjk(t− t′k)⟩
= (E)ik − (EK)ik − (EK)ki + (P )ik (21)

Combining (19), (20) and (21) we get,

||X −Xhyp||22 = αTFα− αTFKP
−1FTKα

= αTEα− αTEKα− αTETKα+ αTPα

− αTPα+ αTEKα+ αTETKα− αTEKP−1ETKα
= αTEα− αTEKP−1ETKα ≤ αTEα

(Since, P is an SPD matrix, αTEKP−1ETKα > 0) (22)

We seek for a bound for the above expression. For that we observe the following:504

|(E)ik| = |⟨fi(t− ti)− Φji(t− t
′

i), fk(t− tk)− Φjk(t− t
′

k)⟩|

= ||fi(t− ti)− Φji(t− t
′

i)||2||fk(t− tk)− Φjk(t− t
′

k)||2.xik
(where xik ∈ [0, 1]. We also note that xik is close to 0 when
the overlaps in the supports of the two components and their

corresponding fitting kernels are minimal.)

⇒ (E)ik ≤ (||(fi(t− ti)− Φji(t− ti)||+

||Φji(t− ti)− Φji(t− t
′

i))||).
(||fk(t− tk)− Φjk(t− tk)||

+ ||Φjk(t− tk)− Φjk(t− t
′

k)||).xik
⇒ (E)ik ≤ xik.(δ + Cγ)2 (23)

(Assuming C is a Lipschitz constant that each kernel Φji

satisfies, and by assumption we have |ti − t
′

i| < δ for all i.)
Now, using Gershgorin circle theorem, the maximum eigen
value of E can be obtained as follows:
Λmax(E) ≤ maxi((E)ii +Σk ̸=i|(E)ik|)

≤ (δ + Cγ)2(xmax + 1) (Using (23)) (24)
(where xmax ∈ [0, N − 1] is a positive number that depends
on the maximum overlap of the supports of the component
signals and their fitting kernels.)
Similarly, the minimum eigen value of F is:
Λmin(F ) = mini((F )ii − Σi ̸=k|⟨fpi(t− ti), fpk(t− tk)⟩|)

≥ 1− η (25)
(By assumption Σi̸=k| < fpi(t− ti), fpk(t− tk) > | ≤ η )
Combining the results from (22), (24) and (25) we get:
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||X(t)−Xhyp(t)||2/||X(t)||2 ≤ αTEα/αTFα
≤ Λmax(E)/Λmin(F )
≤ (δ + Cγ)2(xmax + 1)/(1− η) (26)

Finally using (17) we conclude,
||X(t)−X∗(t)||2/||X(t)||2 ≤ ||X(t)−Xhyp(t)||2/||X(t)||2

≤ (δ + Cγ)2(xmax + 1)/(1− η)

where η < 1, and xmax ∈ [0, N − 1], a constant depending on
the overlap of the components in the input representation. □

A.9 Justification of Assumption 2505

Assumption 2 extends Assumption 1 to the future. For large N , it is possible to construct a506

spike sequence where each spike satisfies Assumption 1, yet the norm of the projection of an507

individual spike onto the set of remaining spikes (including both past and future spikes), i.e.508

||PS(
⋃N

1 {ϕi}\{ϕn})(ϕn)|| → 1. An example illustrating this scenario is shown in Fig. 5, where509

each spike corresponds to one full cycle of a sine wave, and for any given spike ϕn the half wave510

of its tail (head) precisely overlaps with the half wave of the head (tail) of its previous (next) spike511

ϕn−1 (ϕn+1). One can show that in such a scenario ||PS(
⋃N

1 {ϕi}\{ϕn})(ϕn)|| converges to 1 for512

large values of n and N (see Appendix A.10 for details). This convergence occurs because within513

the compact support of a spike, the spike is fully represented by the overlapping components of514

the neighboring spikes. Conversely, if a spike is poorly represented within its compact support by515

the overlapping components of its neighboring spikes, it satisfies the condition of Assumption 2.516

Specifically, if within its compact support, a spike ϕn can produce a component ϕ̂n, orthogonal to517

all overlapping parts of the neighboring spikes with ||ϕ̂n|| > 0, then ϕn satisfies the condition of518

Assumption 2, because ϕ̂n is orthogonal to the overlapping parts of the neighboring spikes and hence519

ϕ̂n is orthogonal to every spike other than ϕn. This observation enables us to assert Assumption520

2 for spikes produced by our framework via the biological kernels (e.g. the gammatone kernels521

corresponding to the auditory processing [Patterson et al., 1988]) which inherently exhibit causal and522

fading memory properties, so that the overlapping parts of the neighboring spikes do not represent523

the given spike within its support. Figure 2 visually illustrates this property using the dot product524

of overlapping portions of gammatone kernels. We show that due to the ahp, overlapping spikes525

corresponding to the same gammatone kernel poorly represent each other as they temporally separate.526

Additionally, spikes corresponding to gammatones of different frequencies poorly represent each527

other, irrespective of temporal shifts. Thus, with appropriately chosen ahp parameters, the spikes528

produced by our framework’s biological kernels are poorly represented within their supports by over-529

lapping components of neighboring spikes, either due to temporal disjoincy or frequency mismatch.530

Since every spike overlaps with only finitely many other spikes (corollary 0.2), Assumption 2 holds.531

A.10 Analysis of Overlapping Kernels in Figure 5532

This section contains an analysis of the overlapping sine kernels scenario depicted in Figure 5. The533

assumption 1 from the main text states that the norm of the projection of each spike onto the span534

of all previous spikes is bounded from above by some constant strictly less than 1. In other words,535

each incoming spike has a component orthogonal to the span of all previous spikes, the norm of536

which is bounded below by some constant strictly greater than 0. However, this assumption does537

not necessarily imply that each spike is poorly represented in the span of the set of all other spikes,538

including both past and future spikes. Figure 5 provides a counterexample to this by constructing a539

sequence of spikes where, despite each spike having a bounded orthogonal component with respect540

to all previous spikes, one can show that a particular spike in this sequence can be almost perfectly541

represented by all others. Specifically, the projection of one spike onto the span of the others542

approaches a norm of 1 as the sequence length increases. In the figure, each spike is generated by a543

kernel function that consists of a single cycle of a sine wave. The spikes are arranged so that tail of544

one spike perfectly overlaps with the head of the previous spike. In this setup, each spike overlaps545

only with one previous spike and one subsequent spike.546

Claim: Let ϕ1, ..., ϕN be the sequence of spikes arranged in time as shown in Figure 5, where547

each spike is generated by a normalized sine wave kernel. In this setup, the projection of any spike548
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Figure 2: Illustration of why a spike produced
by our framework using gammatone kernels

is poorly represented by other overlapping
spikes within its temporal support. (a) Shows

a diagram of five spikes; the central spike
(blue dashed line within the rectangle) over-

laps with two past spikes (red) and two future
spikes (green). Despite the overlaps, the dis-
tinct shapes of the gammatone kernels result
in a poor representation of the central spike,

leaving a component orthogonal to its neigh-
bors (shown in black). (b) Details the interac-
tion between two spikes, ϕ1 and ϕ2 (red and

green curves), both using a gammatone kernel
with a center frequency of 500 Hz. It exam-
ines how well ϕ1 is represented by the over-

lapping tail of ϕ2 (denoted ϕtail2 , green dashed
line), focusing on representation within this
overlapping support only. The graph in blue

measures the dot product |⟨ϕ1,ϕ
tail
2 ⟩|

||ϕ1||||ϕtail
2 || as a

function of the time lag t between the two
spikes, illustrating how the representation de-

teriorates rapidly as the lag increases, thus
demonstrating the poor representational qual-

ity induced by the ahp-effect. (c) A similar
plot of interaction between two spikes, ϕ1 and
ϕ2 as in (b), except here the center frequen-

cies of the corresponding gammatone kernels
are different (500 Hz for ϕ1 and 400 Hz for
ϕ2). The blue graph represents the dot prod-
uct |⟨ϕ1,ϕ

tail
2 ⟩|

||ϕ1||||ϕtail
2 || as a function of time shift t,

highlighting systematic poor representation
due to frequency differences. Each spike’s
time of occurrence is marked by a red dot.

ϕn onto the span of all other spikes in the sequence satisfies ||PS(
⋃N

1 {ϕi}\{ϕn})(ϕn)|| → 1 for549

n→ ∞ and N − n→ ∞.550

Proof: Each spike ϕi can be decomposed into two components: the positive half wave at the tail551

of the spike, denoted ϕti, and the negative half-wave at the head of the spike, denoted ϕhi . By552

assumption, each spike is normalized, so the norm of each component is 1√
2

. Due to how the spikes553

are aligned, ϕhi = −ϕti+1 for all i ∈ [1, N − 1], which means that ⟨ϕi, ϕj⟩ = − 1
2 for |i− j| = 1 and554

0 for |i − j| > 1. To show that a spike ϕn in this sequence is almost perfectly represented by the555

others, we calculate the projection of ϕn onto the span of all the other spikes. This projection can be556

expressed as the sum of two components: one projection onto the span of the preceding spikes and557

one onto the span of the succeeding spikes. The coefficients of these projections can be determined558

by solving a system of linear equations involving the Gram matrix formed by the inner products of559

the spikes similar to the approach used Lemma 1 from the main text. The projection can be written as560

follows:561

562

PS(
⋃N

1 {ϕi}\{ϕn})(ϕn) = PS(
⋃n−1

1 {ϕi})(ϕn)

+ PS(
⋃N

n+1{ϕi})(ϕn)

(As S(∪Nn+1{ϕi}) ⊥ S(∪n−1
1 {ϕi}) due to disjoint support)

⇒ PS(
⋃N

1 {ϕi}\{ϕn})(ϕn) =

n−1∑
i=1

αiϕi +

N∑
i=n+1

αiϕi;αi ∈ R
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563

The values of αi for i ∈ [1, n−1], following Lemma 1 from the main text, can be obtained by solving564

a linear system of equations of the form P1α = T where P1 is an (n − 1) × (n − 1) matrix and565

α = [αn−1, · · · , α1]
T . Similarly, the values of αi for i ∈ [n + 1, N ] can be obtained by solving a566

linear system of equations of the form P2α
′ = T , where P2 is an (N − n)× (N − n) matrix and567

α′ = [αn+1, · · · , αN ]T . Specifically we have the following.568

P1α =


1 − 1

2 0 · · · 0
− 1

2 1 − 1
2 · · · 0

0 − 1
2 1 · · · 0

...
...

...
. . . − 1

2
0 0 0 − 1

2 1


αn−1

...
α1

 =


− 1

2
0
0
...
0

 (27)

In the above equation (27), the matrix P1 is a symmetric tridiagonal matrix with unit diagonal569

elements and constant off-diagonal entries, the inverse of which can be calculated using Chebyshev570

polynomials of the second kind [da Fonseca and Petronilho, 2001]. Specifically, the elements of P−1
1571

are given by:572

(P−1
1 )i,j = (−1)i+j+1 · 2 ·

Ui−1 (−1) · U(n−1)−j (−1)

Un−1 (−1)
, i ≤ j

where Uk denotes order-k Chebyshev polynomial of second
kind. This simplifies to:

⇒ (P−1
1 )i,j =

{
2 · i(n−j)n for i ≤ j

2 · j(n−i)n for i > j (using symmetry)

Now, using this and Eq. (27) we get:αn−1

...
α1

 = P−1
1


− 1

2
0
0
...
0

 =


− 1

2 (P
−1
1 )1,1

− 1
2 (P

−1
1 )2,1
...

− 1
2 (P

−1
1 )n−1,1

 =


−n−1

n
−n−2

n
...

− 1
n


⇒

n−1∑
i=1

αiϕi = −
n−1∑
i=1

i

n
ϕi = −

n−1∑
i=1

i

n
(ϕhi + ϕti)

= −
n−1∑
i=2

i

n
(ϕhi − ϕhi−1)−

1

n
ϕ1

= −n− 1

n
ϕhn−1 +

1

n

n−2∑
i=1

ϕhn−2 −
1

n
ϕt1

(since ϕhi = −ϕti+1 for all i ∈ [1, N − 1] by construction)
Therefore,

||
n−1∑
i=1

αiϕi||2 = (
(n− 1)2

n2
+
n− 2

n2
+

1

n2
)||ϕt1||2 =

n− 1

n
· 1
2

(Since ϕtis are mutually orthogonal and

||ϕhn−1|| = ||ϕhn−2|| = · · · = ||ϕh1 || = ||ϕt1|| =
1√
2

)

⇒ ||
n−1∑
i=1

αiϕi||2 → 1

2
as n→ ∞ (28)

Likewise using symmetrical arguments we can show that:

||
N∑

i=n+1

αiϕi||2 =
N − n− 1

N − n
· 1
2
→ 1

2
as N − n→ ∞ (29)
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Therefore combining (28) and (29) we get:

||PS(
⋃N

1 {ϕi}\{ϕn})(ϕn)||
2

= ||
n−1∑
i=1

αiϕi||2 + ||
N∑

i=n+1

αiϕi||2 → 1 forn,N − n→ ∞ □

A.11 Proof of Lemma 3573

An important consequence of Assumption 2 is that the norm of the projection of every unit vector in574

a subspace of a finite partition of spikes onto the remaining subspace of spikes is strictly less than 1.575

This condition forms the basis for establishing the convergence of windowed iterative reconstruction576

to optimal reconstruction in our subsequent windowing theorem 3. We formally state the condition in577

Lemma 3 before presenting Windowing theorem 3.578

Lemma 3. Let S = {ϕi}Ni=1 denote the set of spikes generated by our framework, satisfying579

Assumption 2, i.e., ∀n ∈ {1, ..., N}, ||PS(
⋃N

i=1{ϕi}\{ϕn})(ϕn)|| ≤ β, where β ∈ R is a constant580

strictly less than 1. Consider a subset V ⊆ S of a finite size d, d < N . Then, for every v ∈ S(V )581

with ||v|| = 1, ∃βd < 1, such that ||PS(S\V )(v)|| ≤ βd where βd is a real constant that depends on582

β and d. Specifically, we can show that β2
d ≤ (1 + 1−β2

d2β2 )
−1 < 1.583

Proof: Let S ⊇ V = {ϕv1 , ...ϕvd} where ϕv1 , ..., ϕvd are d distinct spikes from S. Also, ∀i ∈584

{1, ..., d} let us assume that: ϕ∥vi = PS(S\V )(ϕvi) and ϕ̂vi = ϕvi − ϕ
∥
vi , i.e. each ϕvi is decomposed585

into two components, ϕ∥vi - the component which is the projection of ϕvi in the span of S \ V and586

ϕ̂vi - the component of ϕvi which is the orthogonal complement of ϕ∥vi . By assumption we have the587

following hold true:588

||ϕ∥vi || ≤ β and ||ϕ̂vi ||2 ≥ (1− β2).589

Also for any v ∈ V, ||v|| = 1 let us assume the following:590

v = Σdi=1αiϕvi = Σdi=1αiϕ
∥
vi︸ ︷︷ ︸

Y

+Σdi=1αiϕ̂vi︸ ︷︷ ︸
Z

s.t. ||v||2 = ||Σdi=1αiϕ
∥
vi ||

2 + ||Σdi=1αiϕ̂vi ||2 = 1

Here by definition Y = Σdi=1αiϕ
∥
vi = Σdi=1αiPS(S\V )(ϕvi) = PS(S\V )(v), i.e. Y is the projection591

of v in the span of S \ V and Z = Σdi=1αiϕ̂vi is the orthogonal complement with respect S \ V .592

And hence the objective of the Lemma is to establish an upper bound on ||Y ||. Assume that593

|αm| = max(|α1|, ..., |αd|), for some m ∈ {1, ..., d}.594

||Y ||2 = ||Σdi=1αiPS(S\V )(ϕvi)||2

≤ (Σdi=1|αi|||PS(S\V )(ϕvi)||)2 (Using Triangle inequality)

≤ β2(Σdi=1|αi|)2 ≤ d2β2α2
m (30)

(Since ∀n, ||PS(
⋃N

1 {ϕi}\{ϕn})(ϕn)|| ≤ β)

Again, ||Z||2 = ||αmϕ̂vm +Σi∈{1,...,d}\{m}αiϕ̂vi ||2 (31)

But, ϕ̂vm can be decomposed into two components: ϕ̂∥vm =

PS(∪i{ϕ̂vi
}\{ϕ̂vm})(ϕ̂vm) andϕ̂⊥vm = ϕ̂vm − ϕ̂∥vm , the ortho-

gonal complement of ϕ̂∥vm . But ϕ̂⊥vm can be written as :

ϕ̂⊥vm = ϕ̂vm − ϕ̂∥vm = ϕvm − ϕ∥vm − ϕ̂∥vm

= ϕvm − PS(S\V )(ϕvm)− PS(∪i{ϕ̂vi
}\{ϕ̂vm})(ϕ̂vm)

= ϕvm − PS((S\V )∪(∪i{ϕ̂vi
}\{ϕ̂vm}))(ϕvm)

(since every ϕ̂vi is orthogonal to S \ V )
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But S((S \ V ) ∪ (∪i{ϕ̂vi} \ {ϕ̂vm})) ⊆ S(S \ {ϕvm}) since every ϕ̂vi = ϕvi − PS(S\V )(ϕvi),
except for ϕ̂vm , can be written as a linear combination of spikes in S \ {ϕvm}. Hence, ||ϕ̂⊥vm ||2 =

1−||PS((S\V )∪(∪i{ϕ̂vi
}\{ϕ̂vm}))(ϕvm)||2 ≥ 1−||PS(S\{ϕvm})(ϕvm)||2 ≥ 1−β2 (by assumption)595

(32)
Combining (31) and (32) we get:

||Z||2 = ||αmϕ̂vm +Σi∈{1,...,d}\{m}αiϕ̂vi ||2

≥ α2
m||ϕ̂⊥vm ||2 ≥ α2

m(1− β2) (33)

From (30) and (33) we get:
||Y ||2

d2β2
≤ α2

m ≤ ||Z||2

1− β2
. But,

1 = ||Y ||2 + ||Z||2 ≤ ||Z||2 + d2β2α2
m ≤ d2β2

1− β2
||Z||2+

||Z||2 ⇒ ||Z||2 ≥ 1− β2

1 + (d2 − 1)β2
⇒ β2

d = ||PS(S\V )(v)||2

= 1− ||Z||2 ≤ 1− 1− β2

1 + (d2 − 1)β2
⇒ β2

d ≤ (1 +
1− β2

d2β2
)−1

Here βd is a quantity strictly less than 1 when β < 1 and
d is a finite positive integer. □

A.12 Complete Proof of Windowing Theorem596

The following section presents a detailed proof of the Windowing Theorem as discussed in the main597

text.598

Theorem 3 (Windowing Theorem). For an input signal X with bounded L2 norm, suppose our599

framework produces a set of n + 1 successive spikes S = {ϕ1, ..., ϕn+1}, sorted by their time of600

occurrence and satisfying Assumption 2. The error in the iterative reconstruction of X with respect601

to the last spike ϕn+1 due to windowing, as formulated in Eq. 4, is bounded. Specifically,602

∀ϵ > 0,∃w0 > 0 s.t. ||Pϕ⊥
n+1,w

(X)− Pϕ⊥
n+1

(X)|| < ϵ,

∀w ≥ w0 and w ≤ n (34)
where w0 is independent of n for arbitrarily large n ∈ N.

Import and Proof Idea: The Theorem implies that the error from windowing can be made arbitrarily603

small by choosing a sufficiently large window size w, independent of n, when n is arbitrarily large.604

At first glance, one might think that the condition in Equation 34 is trivially satisfied by choosing605

w = n, i.e., a window inclusive of all spikes. However, the key aspect of the theorem is that w606

should be independent of n when n is arbitrarily large. This allows us to use the same window size607

regardless of the number of previous spikes, even for large signals producing many spikes, thereby608

maintaining the condition number of the overall solution as per Theorem 4. Our proof demonstrates609

this by showing that the reconstruction error converges geometrically as a function of the window610

size, depending only on the spike rate which in turn depends on the ahp parameters in Equation611

1, but not on n. The proof hinges on a central lemma showing that the L2 norm of the difference612

between ϕ⊥n+1,w and ϕ⊥n+1 decreases steadily as w increases, based on the assumptions stated in613

the theorem. This ensures that ϕ⊥n+1,w becomes a good approximation of ϕ⊥n+1. The proof of the614

theorem then follows by establishing a bound on ∥Pϕ⊥
n+1,w

(X)− Pϕ⊥
n+1

(X)∥ for a given choice of615

w for any bounded input X . The lemma is provided below:616

617

Lemma 4. Under the conditions of Theorem 3, for any δ > 0, there exists w0 ∈ N+ such that618

∥ϕ⊥n+1,w − ϕ⊥n+1∥ < δ ∀w ≥ w0, w ≤ n, where the choice of w0 is independent of n for arbitrarily619

large n ∈ N+.620

21



Proof Idea: The proof leverages Corollary 0.2, which states that the maximum number of spikes621

overlapping in time is bounded by a constant d ∈ N+, dependent on the ahp parameters. Using622

this corollary, we partition the set of all spikes in time into a chain of subsets, where each subset623

overlaps only with its neighboring subsets and is disjoint from all others. Each subset contains at624

most d spikes. The proof then demonstrates that the error in approximating ϕ⊥n+1 due to windowing,625

i.e., ∥ϕ⊥n+1,w − ϕ⊥n+1∥, decreases faster than a geometric sequence as more of these partitions are626

included within the window. This convergence is illustrated schematically in Figure 3.627

Proof of Lemma 4: Let the set of spikes S = {ϕ1, ..., ϕn} be partitioned into a chain of subsets628

of spikes v1, ..., vm in descending order of time, defined recursively. The first subset v1 consists629

of all previous spikes overlapping with the support of ϕn+1. Recursively, vi+1 is the set of spikes630

overlapping with the support of any spike in vi for all i ≤ m. This process continues until the631

first spike ϕ1 is included in the final subset vm, where m ≤ n. An example of this partitioning is632

illustrated in Figure 3. The individual spikes in each partition are indexed as follows:633

634 vi = {ϕpi , ..., ϕpi−1−1},∀i ≤ m

where 1 = pm < ... < p1 < p0 = n+ 1.

That is, the ith partition vi consists of spikes indexed from pi to pi−1 − 1. Since the spikes ϕ1, ..., ϕn635

are sorted in order of their occurrence time, if both ϕpi and ϕpi−1−1 are in partition vi, then by636

construction, ϕj ∈ vi for all pi ≤ j ≤ pi−1 − 1.637

Claim 4.1. The number of spikes in every partition, vi ∀i ∈ {1, ...,m}, is bounded by some constant638

d ∈ N+.639

Proof: This corollary follows from the observation that all spikes in a given partition vi+1 overlap640

in time with at least one spike from the preceding partition vi, specifically the spike whose support641

extends furthest into the past, for all i ∈ {2, ..,m} (see fig 3). In the case of the partition v1, each642

spike overlaps with ϕn+1. Then the proof follows from the corollary 0.2. □643

Now, let V1, ..., Vm be subspaces spanned by the subsets of spikes v1, ..., vm respectively. Before644

proceeding with the rest of the proof, we introduce the following notations.645

ϕ̃i = ϕi − P
S(

n⋃
j=i+1

{ϕj})
(ϕi) ∀i ∈ {1, ..., n}

where ϕ̃i denotes the orthogonal complement of the spike ϕi with respect to all the future spikes up646

to ϕn. We also denote,647

Ṽk = S(
pk−1−1⋃
j=pk

{ϕ̃j}) ∀k ∈ {1, ...,m}

where Ṽk is the subspace spanned by spikes in the partition vk, with each spike orthogonalized with648

respect to all future spikes.649

Claim 4.2. For the subspaces defined on the partitions as above, the following holds:650

Ṽk = {x− P∑k−1
j=1 Vj

(x)|x ∈ Vk} = S(
pk−1−1⋃
j=pk

{ϕ̃j}).651

Proof: Denote A = {x − P∑k−1
j=1 Vj

(x)|x ∈ Vk} and B = S(
pk−1−1⋃
j=pk

{ϕ̃j}). We need to show that652

A = B. Before showing that, we rewrite ϕ̃i for pk ≤ i ≤ pk−1 − 1 as follows:653

ϕ̃i = ϕi − P
S(

n⋃
j=i+1

{ϕj})
(ϕi) (pk ≤ i ≤ pk−1 − 1)

= ϕi − P
S((

n⋃
j=pk−1

{ϕj})
⋃
(
pk−1−1⋃
j=i+1

{ϕ̃j}))
(ϕi)

= ϕi − P∑k−1
j=1 Vj

(ϕi)−
pk−1−1∑
j=i+1

Pϕ̃j
(ϕi) (35)

(As
k−1∑
j=1

Vj and all ϕ̃i’s are mutually orthogonal
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for pk ≤ i ≤ pk−1 − 1)

Using the formulation in 35, we will show A = B. First, we show that A ⊆ B. Let there be any654

y ∈ A. Then by assumption, we can write y as follows:655
656

y = x− P∑k−1
j=1 Vj

(x), for some x =

pk−1−1∑
i=pk

αiϕi, αi ∈ R

⇒ y =

pk−1−1∑
i=pk

αiϕi − P∑k−1
j=1 Vj

(

pk−1−1∑
i=pk

αiϕi)

=

pk−1−1∑
i=pk

αi(ϕi − P∑k−1
j=1 Vj

(ϕi)) (by linearity of projection)

⇒ y =

pk−1−1∑
i=pk

αi(ϕ̃i +

pk−1−1∑
j=i+1

Pϕ̃j
(ϕi)) (using (35)) (36)

Equation (36) shows that y is written as a linear combination of ϕ̃i for pk ≤ i ≤ pk−1 − 1, and hence657

y ∈ B. This proves that A ⊆ B.658

To prove B ⊆ A, we observe that any z ∈ B can be written as a linear combination of659

ϕ̃i for pk ≤ i ≤ pk−1 − 1. So it suffices to show that ϕ̃i ∈ A for pk ≤ i ≤ pk−1 − 1. We660

do that via induction on the set {ϕ̃pk−1−1, ..., ϕ̃pk}, starting with ϕ̃pk−1−1 as the base case. The661

base case is trivially true, i.e., ϕ̃pk−1−1 ∈ A, because by equation 35, we immediately obtain662

ϕ̃pk−1−1 = ϕpk−1−1 − P∑k−1
j=1 Vj

(ϕpk−1−1).663

For the induction step, assume that ϕ̃i ∈ A for all isuch that i ∈ [n, pk−1 − 1] for somen ∈664

N+ and pk < n ≤ pk−1 − 1. We need to show that ϕ̃n−1 ∈ A. For that, we again use equa-665

tion (35) to observe the following:666

ϕ̃n−1 = (ϕn−1 − P∑k−1
j=1 Vj

(ϕn−1))−
pk−1−1∑
j=n

Pϕ̃j
(ϕn−1) (37)

Analyzing the expression for ϕ̃n−1 on the right-hand side of equation (37), we observe that the667

expression (ϕn−1−P∑k−1
j=1 Vj

(ϕn−1)) ∈ A by construction, and the expression
∑pk−1−1
j=n Pϕ̃j

(ϕn−1),668

a linear combination of ϕ̃i, n ≤ i ≤ pk−1 − 1, is also in A because by induction hypothesis, each669

ϕ̃i, for n ≤ i ≤ pk−1 − 1 is in A. Thus, we obtain ϕ̃n−1 ∈ A. This proves that B ⊆ A. Therefore,670

A = B. □671

Following the claim, we define the subspace Uk as below:672

Uk =

m∑
i=k

Ṽi = S(
pk−1−1⋃
j=1

{ϕ̃j}) (38)

= {x− P∑k−1
j=1 Vj

(x)|x ∈
m∑
i=k

Vi} (39)

where the equality between 38 and 39 follows from the Claim 4.2. Lastly, define ϕ⊥n+1,vk
as:

ϕ⊥n+1,vk
= ϕn+1 − P∑k

i=1 Vi
(ϕn+1)

i.e. ϕ⊥n+1,vk
is the orthogonal complement of ϕn+1 with respect to window of spikes up to partition673

vk. Now we proceed to quantify the norm of the difference of ϕ⊥n+1 and ϕ⊥n+1,vk
. For that denote ek674

as follows:675

ek = ||ϕ⊥n+1,vk
− ϕ⊥n+1||

= ||P∑k
i=1 Vi

(ϕn+1)− P∑m
i=1 Vi

(ϕn+1)||
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= ||P∑k
i=1 Vi

(ϕn+1)− P∑k
i=1 Vi+Uk+1

(ϕn+1)|| (by def. of Uk)

= ||P∑k
i=1 Vi

(ϕn+1)− (P∑k
i=1 Vi

(ϕn+1) + PUk+1
(ϕn+1))||

(Since by construction Uk+1 ⊥ Σki=1Vi)

⇒ ek = ||PUk+1
(ϕn+1))|| (40)

Note that by definition em = 0 and by Assumption 2 we get,
ek = ||PUk+1

(ϕn+1))|| ≤ |β| < 1, ∀k ∈ {1, ...,m} (41)
Now Assume that:

PUk+1
(ϕn+1)) = αkψ̃k,where αk ∈ R, ψ̃k ∈ Uk+1

Then it follows from the definition of Uk+1 and Claim 4.2

that ψ̃k is of the form:

ψ̃k = ψk − P∑k
j=1 Vi

(ψk) for some ψk ∈
m∑

i=k+1

Vi

W.L.O.G. assume ||ψk|| = 1 by appropriately choosing αk.

Since αkψ̃k is a projection of ϕn+1 we obtain:

αk =
⟨ϕn+1, ψ̃k⟩
||ψ̃k||2

(42)

For k > 0 from 42 and 40 we obtain,

ek = ||αkψ̃k|| = |αk|||ψ̃k|| =
|⟨ϕn+1, ψ̃k⟩|

||ψ̃k||

=
|⟨ϕn+1, ψk − P∑k

j=1 Vj
(ψk)⟩|

||ψ̃k||

=
|⟨ϕn+1,P∑k

j=1 Vj
(ψk)⟩|

||ψ̃k||
=

|⟨ϕn+1,P∑k−1
j=1 Vj+Ṽk

(ψk)⟩|

||ψ̃k||

(for k > 0, ψk ∈
m∑

i=k+1

Vi ⊥ ϕn+1 due to disjoint support)

=
|⟨ϕn+1,P∑k−1

j=1 Vj
(ψk) + PṼk

(ψk)⟩|

||ψ̃k||
(by def. Ṽk ⊥

k−1∑
j=1

Vj)

⇒ ek =
|⟨ϕn+1,PṼk

(ψk)⟩|
||ψ̃k||

(k > 0, ψk ∈
m∑

i=k+1

Vi ⊥
k−1∑
j=1

Vj) (43)

Likewise, ek−1 = ||PUk
(ϕn+1))|| = ||PUk+1+Ṽk

(ϕn+1))||

⇒ e2k−1 = ||PUk+1
(ϕn+1))||2 + ||PṼk

(ϕn+1))||2

(Since by construction Uk+1 ⊥ Ṽk)

⇒ e2k−1 = e2k + ||PṼk
(ϕn+1))||2 (44)

Assume that PṼk
(ϕn+1) = βkθ̃k, where θ̃k ∈ Ṽk, βk ∈ R

⇒ ||PṼk
(ϕn+1))|| = ||βkθ̃k|| =

|⟨ϕn+1, θ̃k⟩|
||θ̃k||

(45)

From 44 & 45 we get, e2k−1 = e2k +
|⟨ϕn+1, θ̃k⟩|2

||θ̃k||2
(46)

Again, for k > 0 we further analyze ek from 43 to obtain:
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ek =
|⟨ϕn+1,PṼk

(ψk)⟩|
||ψ̃k||

=
|⟨ϕn+1,PS({θ̃k})(ψk) + PṼk/S({θ̃k})(ψk)⟩|

||ψ̃k||
The last line above is essentially written by breaking ψk

into two mutually orthogonal subspaces: S({θ̃k}), subspace

of Ṽk spanned by θ̃k, and Ṽk/S({θ̃k}, the subspace of Ṽk

orthogonal to the subspace S({θ̃k}). Also, observe that

ϕn+1 ⊥ Ṽk/S({θ̃k}) since PṼk
(ϕn+1)) = βkθ̃k. Therefore,

ek =
|⟨ϕn+1,PS({θ̃k})(ψk)|

||ψ̃k||
=

|⟨ϕn+1,
⟨ψk,θ̃k⟩θ̃k
||θ̃k||2

⟩|

||ψ̃k||

⇒ ek =
|⟨ϕn+1, θ̃k⟩|

||θ̃k||

|⟨ψk, θ̃k
||θ̃k||

⟩|

||ψ̃k||
(47)

Combining 46 and 47 we obtain:

e2k−1 = e2k + e2k
||ψ̃k||2

|⟨ψk, θ̃k
||θ̃k||

⟩|2
(48)

Since both ψk and
θ̃k

||θ̃k||
are unit norm |⟨ψk,

θ̃k

||θ̃k||
⟩| ≤ 1.

⇒ e2k−1 ≥ e2k(1 + ||ψ̃k||2) (49)

676

Eq. 49 demonstrates that the sequence {ek} converges geometrically to 0 when (1 + ||ψ̃k||2) > 1,677

i.e. ||ψ̃k|| > 0. To complete the proof of Lemma 4, we need to establish a positive lower bound on678

||ψ̃k||, ensuring the convergence of the sequence ek. The following Corollary provides the necessary679

lower bound on ||ψ̃k||.680

Claim 4.3. Following Claim 4.1, if the number of spikes in each partition vi is bounded by d, then681

||ψ̃k||2 ≥ 1− β2
d , where βd > 0 is as defined in Lemma 3.682

Proof: ψ̃k = ψk − PṼk
(ψk), ||ψk|| = 1.

Let, PṼk
(ψk) = βkη̃k for some η̃k ∈ Ṽk, ||η̃k|| = 1

⇒ βk = ⟨ψk, η̃k⟩
⇒ Pψk

(η̃k) = ⟨ψk, η̃k⟩ψk, (Since, ||ψk|| = 1) (50)

But η̃k ∈ Ṽk =⇒ η̃k = ηk − P∑k−1
i=1 Vi

(ηk)

for some ηk ∈ Vk. Also,

||ηk||2 = 1 + ||P∑k−1
i=1 Vi

(ηk)||2 (51)

We observe,Pψk
(η̃k) = Pψk

(ηk − P∑k−1
i=1 Vi

(ηk))

= Pψk
(ηk) (Since ψk ⊥

k−1∑
i=1

Vi) (52)

Now, consider the vector ηk
||ηk|| ∈ Vk. Here ηk

||ηk|| is an unit vector in Vk, the span of a finite partition683

of spikes vk, the size of which is bounded from above by some constant d according to Claim684

4.1. Therefore, based on the assumption stated in the theorem 3, we can infer that the norm of any685

projection of ηk
||ηk|| on any subspace spanned by a set of spikes other than those in vk, would bounded686
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from above by some constant βd > 1. Hence, we can write the following.687

||PS({ψk})+
∑k−1

i=1 Vi
(
ηk

||ηk||
)||2 ≤ β2

d (|βd| < 1)

⇒
||Pψk

(ηk)||2 + ||P∑k−1
i=1 Vi

(ηk)||2

||ηk||2
≤ β2

d

⇒
||Pψk

(ηk)||2 + ||P∑k−1
i=1 Vi

(ηk)||2

1 + ||P∑k−1
i=1 Vi

(ηk)||2
≤ β2

d (using 51)

⇒ ||Pψk
(ηk)||2 ≤ β2

d(1 + ||Pψk
(ηk)||2)− ||Pψk

(ηk)||2

⇒ ||Pψk
(ηk)||2 ≤ β2

d − (1− β2
d)||Pψk

(ηk)||2

⇒ ||Pψk
(ηk)||2 ≤ β2

d (Since|βd| < 1)

⇒ ||Pψk
(η̃k)||2 = ||Pψk

(ηk)||2 ≤ β2
d

⇒ ||Pη̃k(ψk)|| = ||Pψk
(η̃k)|| ≤ β2

d

(Since both η̃k and ψk are unit vectors)

Therefore, ||ψ̃k||2 = ||ψk − PṼk
(ψk)||2 = 1− ||Pη̃k(ψk)||2

(Since by assumption PṼk
(ψk) = βkη̃k and ||ψk|| = 1)

⇒ ||ψ̃k||2 ≥ 1− β2
d (|βd| < 1) □

Finally, combining 49 with Claim 4.3, we obtain:688

e2k−1 ≥ e2k(1 + (1− β2
d)) ⇒ e2k ≤

e2k−1

γ2
(53)

where γ2 = (1 + (1− β2
d)) is a constant strictly greater than 1. Since em = 0, Eq. 53 shows that the

sequence {ek}mk=1 converges to 0 faster than geometrically. Thus, ∀δ > 0,∃k0 ∈ N+such that ek <
δ, for all k ≥ k0 and m ≥ k. Given the geometric drop in Eq. 53 and the bound e1 < 1 (Eq.
41), for arbitrarily large m (hence n) the choice of k0 is independent of m and depends only on
βd, which is determined by the ahp parameters in Eq. 1). Since the number of spikes in each
partition is bounded by d (Claim 4.1), choosing a window size w0 = k0 ∗ d ensures ∀δ > 0,∃w0 ∈
N+ such that ||ϕ⊥n+1,w − ϕ⊥n+1|| < δ for all w ≥ w0 and w ≤ n. For arbitrarily large n, the choice
of w0 is independent of n. □
Proof of Theorem 3: Having established a bound on the norm of the difference between ϕ⊥n+1 and
ϕ⊥n+1,w, we now need to bound the norm of the difference between the projections of the input signal
X with respect to these two vectors. Specifically, we seek to bound ||Pϕ⊥

n+1,w
(X) − Pϕ⊥

n+1
(X)||

based on the window size. We use the following notations:

X̃ = PS({ϕ⊥
n+1,w,ϕ

⊥
n+1})(X)

Xu = Pϕ⊥
n+1

(X)

Xv = Pϕ⊥
n+1,w

(X)

So that X̃,Xu and Xv lie in the same plane (see Fig. 4). Assume the angle between X̃ and ϕ⊥n+1}) is689

a, and the angle between X̃ and ϕ⊥n+1,w}) is b. Hence, the angle between ϕ⊥n+1,w and ϕ⊥n+1 is a− b690

(see Fig. 4). Note that the input X may not necessarily lie in the same plane as Xu and Xv. Hence,691

for our calculation, we consider the projection X̃ of X onto this plane. We also denote:692

pw = ϕ⊥n+1,w − ϕ⊥n+1 (54)

= (ϕn+1 − PS({ϕn−w+1,...,ϕn})(ϕn+1))

− (ϕn+1 − PS({ϕ1,...,ϕn})(ϕn+1))

(by definition) and thus:
pw = PS({ϕn−w+1,...,ϕn})(ϕn+1)
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− PS({ϕ̃1,...,ϕ̃w}∪{ϕn−w+1,...,ϕn})(ϕn+1)

= PS({ϕ̃1,...,ϕ̃w}(ϕn+1)

(Since S({ϕ̃1, ..., ϕ̃w} ⊥ S({ϕn−w+1, ..., ϕn})
= PS({ϕ̃1,...,ϕ̃w}(ϕn+1 − PS({ϕn−w+1,...,ϕn})(ϕn+1))

= PS({ϕ̃1,...,ϕ̃w}(ϕ
⊥
n+1,w)

⇒ pw = ϕ⊥n+1,w − ϕ⊥n+1 = PS({ϕ̃1,...,ϕ̃w}(ϕ
⊥
n+1,w)

⇒ pw ⊥ ϕ⊥n+1

(Since PS(x) ⊥ (x− PS(x)) for any x ∈ H, S ⊆ H)
Therefore, from Figure 4, we observe:

sin2(a− b) =
||pw||2

||ϕ⊥n+1,w||2
(55)

Now, we can quantify the norm of the difference in two the projections of X with respect to ϕ⊥n+1693

and ϕ⊥n+1,w as follows:694

||Pϕ⊥
n+1,w

(X)− Pϕ⊥
n+1

(X)|| = ||Xu −Xv||2

= ||Xu||2 + ||Xv||2 − 2||Xu||||Xv||cos(a− b)

= ||X̃||2[cos2 a+ cos2 b− 2 cos a cos b cos(a− b)]

(using the geometry of Figure 4)

= ||X̃||2[ 1 + cos 2a

2
+

1 + cos 2b

2
− (cos(a− b) + cos(a+ b)) cos(a− b)]

= ||X̃||2[ 1
2
− cos 2(a− b)

2
] = ||X̃||2 sin2(a− b)

= ||X̃||2 ||pw||2

||ϕ⊥n+1,w||2
(from Eq. (55))

≤ ||X||2

1− β2
||ϕ⊥n+1,w − ϕ⊥n+1||2

(Since ||X̃|| ≤ ||X|| and ||ϕ⊥n+1,w|| ≥ ||ϕ⊥n+1|| ≥ (1− β2)

by assumption)

Finally, since the input signal has a bounded L2 norm (i.e. ||X|| is bounded), setting δ = ϵ

√
1−β2

||X||695

in Lemma 4 gives a window size w0 such that ||Pϕ⊥
n+1,w

(X) − Pϕ⊥
n+1

(X)|| ≤ ||X||√
1−β2

||ϕ⊥n+1,w −696

ϕ⊥n+1|| < ϵ,∀ϵ > 0,∀w ≥ w0 and w ≤ n. The choice of w0 is independent of n for arbitrarily large697

n ∈ N. This completes the proof of the theorem. □698
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…
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…
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ϕ𝑛+1,𝑣1
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ϕ𝑛+1,𝑣𝑘+1
⊥
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Figure 3: Illustration of Lemma 4. The diagram shows the convergence of the windowed orthogonal
complement ϕ⊥n+1,w of spike ϕn+1 to ϕ⊥n+1 by orthogonalizing ϕn+1 across the partitions of spikes.
(a) Displays all spikes up to ϕn+1 (black), with partitions circled: v1 (green), vk (red), and vk+1

(blue). Spikes contained in each partition are shaded accordingly, with the time of each spike marked
by a purple dot. (b), (c), and (d) show orthogonal complements ϕ⊥n+1,v1 , ϕ⊥n+1,vk

, and ϕ⊥n+1,vk+1

respectively. The support of ϕ⊥n+1,w extends as more partitions are included, with the extending tail
for each additional partition highlighted in red. This tail’s diminishing energy as more partitions are
added illustrates Lemma 4.
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Figure 4: Figure illustrating the vector projections of the input signal X onto vectors ϕ⊥n+1 and
ϕ⊥n+1,w. The red vector represents X̃ , the projection of X within the plane formed by ϕ⊥n+1 and
ϕ⊥n+1,w. The vectors ϕ⊥n+1 and ϕ⊥n+1,w, as well as the projections Xu and Xv of X̃ onto them, are
indicated in blue. The vector pw, representing the difference between ϕ⊥n+1,w and ϕ⊥n+1, is also
shown in blue. The angles a between X̃ and Xu, b between X̃ and Xv, and a− b between ϕ⊥n+1,w

and ϕ⊥n+1 are marked.

… …

ϕ! ϕ!"#ϕ!$#

Figure 5: The scenario illustrating the need for Assumption 2. See text for details. For derivation of
||PS(

⋃N
1 {ϕi}\{ϕn})(ϕn)|| → 1 see appendix A.10.
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