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Abstract
Solving mathematics problems has been an in-
triguing capability of language models, and many
efforts have been made to improve reasoning by
extending reasoning length, such as through self-
correction and extensive long chain-of-thoughts.
While promising in problem-solving, advanced
long reasoning chain models exhibit an undesired
uni-modal behavior, where trivial questions re-
quire unnecessarily tedious long chains of thought.
In this work, we propose a way to allow models
to be aware of inference budgets by formulating
it as utility maximization with respect to an infer-
ence budget constraint, hence naming our algo-
rithm Inference Budget-Constrained Policy Opti-
mization (IBPO). In a nutshell, models fine-tuned
through IBPO learn to “understand” the difficulty
of queries and allocate inference budgets to harder
ones. With different inference budgets, our best
models are able to have a 4.14% and 5.74% ab-
solute improvement (8.08% and 11.2% relative)
on MATH500 using 2.16x and 4.32x inference
budgets respectively, relative to LLaMA3.1 8B In-
struct. These improvements are approximately 2x
those of self-consistency under the same budgets.

1. Introduction
Complex reasoning has been an intriguing ability of large
language models (LLMs), with application in for exam-
ple mathematical problem-solving (Cobbe et al., 2021;
Hendrycks et al., 2021b; Lightman et al., 2023) or cod-
ing (Chen et al., 2021; Austin et al., 2021; Hendrycks et al.,
2021a), which does not only require nature language com-
prehending but also logical and critical “thinking”. An

1Department of Computer Science, The University of Illinois
Chicago, USA 2MetaAI, Menlo Park, USA. Correspondence to:
Zishun Yu <zyu32@uic.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

observation merged in the LLM reasoning literature is that
longer reasoning traces often leads to improved reasoning
soundness and correctness. The seminal work of chain-of-
thought (CoT) (Wei et al., 2022) is an excellent example
of how enriching reasoning details, by decomposing rea-
soning traces into steps, improves its problem-solving ca-
pability. CoT has been considered a standard technique
in reasoning, recent works extend CoT by allow LLMs
to expand its reasoning steps, by for example CoT with
more steps (Jin et al., 2024) (as explicitly required by in-
struction), self-reflection/correction (Madaan et al., 2024;
Zelikman et al., 2022; Yan et al., 2024; Qu et al., 2024),
multi-turn reasoning (Kumar et al., 2024) or multi-agent
debate (Liang et al., 2023; Pham et al., 2023) (as a hetero-
geneous case of multi-turn). It was conjectured that scaling
the test-time compute or the reasoning length unleashes
LLMs’ potential for reasoning (Snell et al., 2024), which
has been empirically verified by recent hype of ultra-long
reasoning models, such as OpenAI-o1 (Jaech et al., 2024)
and DeepSeek-R1 (DeepSeek-AI et al., 2025). We’ll later
categorizes these type of responses as (standard) CoT re-
sponses, extended responses, and (ultra-)long responses,
respectively, given the nature of their reasoning lengths.

While scaling reasoning length is promising in problem-
solving, advanced long reasoning-chain models show an
undesired uni-modal behavior that trivial questions may re-
quire unnecessarily tedious long reasoning trace, an example
is shown in Appendix A. This uni-modal behavior creates
unnecessarily higher inference costs and increased carbon
footprints (Henderson et al., 2020; Anthony et al., 2020). To
partially address this, we study how to enable multi-modal
behavior for reasoning models in a way the length of reason-
ing traces are automatically adjusted according to the hard-
ness level of the queries. From the aspect of query-adaptive
reasoning length, some heuristic methods (e.g. Aggarwal
et al., 2023; Xu et al., 2024a; Wang et al., 2024) have been
making effort towards better token efficiency, by which is
meant better accuracy with (hopefully) less token overhead.
We take a reinforcement learning (RL) perspective, where
the accuracy gain over the token overhead is nothing but a
non-differentiable objective to be optimized. One could, for
instance, take the negative response length or a metric of this
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sort as an intrinsic reward (Chentanez et al., 2004; Pathak
et al., 2017). However, balancing the intrinsic and extrin-
sic (accuracy) rewards might also be challenging (Liu et al.,
2021), and might be vulnerable to reward hacking (Pan et al.,
2022; Skalse et al., 2022; Karwowski et al., 2023).

Instead explicit modeling the length of responses, we take
a more abstract formulation, where we consider labeling
each response y with an unique group label Gi : i ∈ JGK
for total number of G groups, so that the union of these
disjoint groups exactly form the response space ∪iGi = Y .
For example G could be the group of CoT responses (with
standard length) or extended responses. We could then im-
pose an density constraint on each or a set of groups, by
caping Ex∼µEy∼π(x)[1{y∈Gi}] ≤ qi for some prompt distri-
bution µ and some response distribution π(x), induced from
LLMs, conditioned on a prompt x. This naturally formu-
lates a constrained RL (Garcıa & Fernández, 2015; Altman,
2021) problem. Also this group definition is motivated by
the resource-allocation literature (Chenery & Kretschmer,
1956; Ibaraki & Katoh, 1988; Karlin, 2003), from the opti-
mization and econometric communities, which have been
later applied in many machine learning applications (e.g.
Zemel et al., 2013; Badanidiyuru et al., 2018). This general-
ization allows potential broader application of our algorithm
as discussed in Section 6. We’ve now set our goal:

A constrained RL framework controlling how
response groups {Gi} are distributed.

Therefore, one could control how responses of different
lengths (which are supposed to belong to different groups)
are distributed. Our rationale of algorithm design is given
in Section 2, derived from an optimization perspective but
ended as a very simple generalization of iterative super-
vised fine-tuning (SFT) methods such as reward-ranking
fine-tuning (RAFT) (Dong et al., 2023) and rejection sam-
pling fine-tuning (RFT) (Ouyang et al., 2022; Touvron et al.,
2023), see details in Section 3. Given the motivation of
our algorithm, we call the resulted algorithm as Inference
Budget-Constrained Policy Optimization (IBPO).

Paper structure. Section 2 present the derivation of our
algorithm from an optimization view, resulting in a simple
weighted iterative SFT update. Section 3 provides further
details on practical implementation, including the base al-
gorithm and the reward design. Section 4 introduces some
experimental settings. The empirical results of our IBPO are
presented in Section 5. And Section 6 concludes our work
with limitations, broader impact, and further discussions.

2. Algorithm Design
Problem setup. To make the notation compact, we take

the sequence-level notation (or the bandit notation), com-
monly used in LLMs (Ziegler et al., 2019; Rafailov et al.,
2024), especially in preference modeling, that suppresses
the transition probabilities and intermediate rewards, and see
a response as a whole. In particular, a policy π : X → ∆(Y)
takes a prompt x ∈ X and draw a response a1◦a2 · · ·◦aT =:
y ∈ Y from the produced probability simplex ∆(Y), where
◦ denotes concatenation, ai ∈ V corresponds to the i-th
token drawn from the vocabulary V , and T is the maxi-
mum length. A LLM is a parametric policy πθ ∈ Πθ ⊆ Π,
where Πθ and Π are the parametric and non-parametric
policy space respectively. Let J (π;µ, r) or sometimes
J (π) be a general objective function, defined by a prompt
distribution µ ∈ ∆(X ), and a bounded reward function
r : X × Y → [−Rmax, Rmax]. Also, we define µΩ as an
empirical distribution induced from Ω, a set of prompts.

As aforementioned, we define G disjoint groups Gi such
that ∪iGi = Y and Gi ∩ Gj = ∅ for all i ̸= j. Each re-
sponse y ∈ Y is attached to exactly one group, in the sense
that y ∈ Gi for some i. In the context of LLM reason-
ing, without loss of generality, we consider two groups for
brevity: G◦ and G+, corresponding to regular-length CoT
responses and extended responses (with low and high in-
ference costs), respectively. To conclude the formulation
of constrained RL with resource allocation constraints, we
could in general define the feasible set as a convex polytope,
ΦG := {π : ExEy∼π(x)[1{y∈Gi}] ≤ qi for all i}, that caps
the total density mass of each group Gi by qi. In our setting,
we only need to cap the total mass of extended responses
to optimize the inference efficiency, posing a half-space
Φ+ := {π : ExEy∼π(x)[1{y∈G+}] ≤ q+} for some q+ > 0.

Background. With the bandit setup, our setting draw a lot
connections to the online learning literature, especially on-
line/bandit convex optimization (Hazan et al., 2016; Slivkins
et al., 2019), although we optimize a fixed function the train-
ing data is however collected in an online fashion. In the
sense of distributing resources across groups, it is connected
to for example knapsack bandits (Badanidiyuru et al., 2018)
and statistical parity (Zemel et al., 2013), aka group fairness.
Although the definition of groups and optimization pro-
grams could be different. This allocation optimization point
of view allows us to further extend our method to broader
LLM applications. To the end of policy optimization with
constraints, common techniques include projection (Zinke-
vich, 2003; Flaxman et al., 2004; Bubeck et al., 2015; Yang
et al., 2020), Lyapunov-based (Chow et al., 2018; Cayci
et al., 2022), or Lagrangian methods (Ray et al., 2019).

Non-parametric space Π. In our case, our goal is to solve:

maxπθ∈Πθ
J (πθ) s.t. πθ ∈ Φ+ (1)

where Πθ is the parameterized policy space. Solving Eq. (1)
is however intractable due to the LLM parameterized pol-
icy space Πθ. A common practice is alternating gradients
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between reward maximization and constraint satisfaction.
For example in Lagrangian methods such as TRPO/PPO-
Lagrangian (Ray et al., 2019), one could do alternating up-
date πθ and the Lagrangian multiplier. Another workaround
is to first obtain a solution π⋆ in the non-parametric pol-
icy space Π := ∆(X × Y), aka tabular representations,
and project π⋆ onto the parameteric one Πθ, as a technique
used in many (constrained) RL works (Peters et al., 2010;
Montgomery & Levine, 2016; Zhang et al., 2020).

The advantage of working in the non-parametric space Π
is: solving maxπ∈Π J (π) s.t. π ∈ Φ+ is easy, on the
conditions that (i) J (π) is concave in π so that it is a con-
vex program, and (ii) sampling and evaluating the reward
function r(·, ·) and the cost indicator 1{·} are cheap. The
condition (i) is sometimes true, for instances: bandit ob-
jective (Slivkins et al., 2019); the LP formulation (Manne,
1960; Denardo, 1970; Nachum & Dai, 2020; Nachum et al.,
2019) and (relative) entropy regularized RL (Ziebart, 2010;
Haarnoja et al., 2017; 2018) are often concave in occupancy
measure ρ. However, in rare case condition (ii) holds, RL
works (Haarnoja et al., 2018; Peng et al., 2019; Zhang et al.,
2020) often resort to value function approximation, making
it is easy, for discrete action space, to evaluate Q-values (or
alternatively advantages) for all actions for a specific state. It
is then tractable to obtain closed-form solution (optimal w.r.t.
the value/advantage approximations) in Π. Once an optimal
policy π⋆ is found, one could then project it onto Πθ through
(reverse) information projection θ = argminθ KL(π⋆∥πθ)
(often done approximately by taking gradient steps).

Stochastic optimization. With a LLM, it is obviously in-
tractable to sample and evaluate the reward function r(x, y)
for all (x, y) ∈ X × Y , similarly for the cost indicator
1{·}. To avoid the training of additional value models for
LLMs (Snell et al., 2022; Yu et al., 2023), which can cre-
ate significant overhead in terms of memory usage, imple-
mentation complexity, and training stability, we consider
a stochastic optimization. The stochastic counterpart as
described in Eq. (2) solves an approximate π̂⋆ using a man-
ageable number of samples rather than directly solving for
the global optimum π⋆, still, in the non-parametric space Π:

π̂⋆(X,Y) ∈ argmaxπ∈Π Ĵ (π;X,Y) s.t. π ∈ Φ̂+(X,Y)

Ĵ (π;X,Y) := 1
nm

∑n
i

∑m
j [π(yij |xi)r(xi, yij)]

Φ̂+(X,Y) :={π :
∑

i

∑
j [π(yij |xi)

(
1{yij∈G+} − q+

)
] ≤ 0}

(2)
where X ∈ Xn is a vector of n sampled prompts and Y ∈
Yn×m is a matrix of responses, with m responses for each of
the n prompts; we explicitly write Ĵ with the conventional
expected reward maximization for notational convenience,
though alternative objectives are not restricted.

Since the empirical problem (2) is a convex program with
relative small sample size, it is now manageable. Comb-

ing the aforementioned projection step, we could write the
program as a bi-level stochastic optimization:

πθ = argminπθ∈Πθ
Ex

[
KL(π̂⋆

X,Yθ
∥πθ)[x]

]
s.t. π̂⋆

X,Yθ
∈ argmaxπ∈Π∩Φ̂+(X,Yθ)

Ĵ (π;X,Yθ)
(3)

where Yθ∼πθ(X), hence π̂⋆ is indirectly a function of θ.

Practical update. For general bi-level optimization prob-
lems, iteratively solving the upper and lower-level problems
by alternatively fixing one while optimizing the other could
be expensive (Zhang et al., 2024). We’ve however already
setup a manageable inner problem, making it easy to solve
for example using convex solvers. One could therefore do
iterative gradient updates on the upper level while directly
solving the lower-level at each iteration:

θ′ = θ − α∇θEx∼µX

[
KL(π̂⋆

X,Yθ
∥πθ)[x]

]
s.t. π̂⋆

X,Yθ
∈ argmaxπ∈Π∩Φ̂+(X,Yθ)

Ĵ (π;X,Yθ)
(4)

where θ and θ′ are the parameters of current and next itera-
tion, respectively; and the projection step is also done with
samples (X,Yθ) of the current iteration.

Note that π̂⋆ is indirectly a function of θ through the sam-
ples (X,Yθ). The gradient ∇θKL(π̂⋆

X,Yθ
∥πθ) hence re-

quires differentiation through π̂⋆
X,Yθ

, meaning differentiate
through an argmax operator, which can in principle be
achieved through implicit differentiation (Amos & Kolter,
2017; Lorraine et al., 2020). However, to avoid additional
implementation and computation overhead, instead we use
the semi-gradient ∇θKL(SG{π̂⋆

X,Yθ
}∥πθ), where SG{·} is

a stop gradient operator. This stop-gradient trick is quite
common in many ML applications (Sutton, 2018; Foerster
et al., 2018; Chen & He, 2021), leading to the update:

θ′ = θ − α∇θEx∼µX

[
KL(SG{π̂⋆

X,Yθ
}∥πθ)[x]

]︸ ︷︷ ︸
approximate projection / weighted SFT

s.t. π̂⋆
X,Yθ

∈ argmaxπ∈Π∩Φ̂+(X,Yθ)
Ĵ (π;X,Yθ)︸ ︷︷ ︸

optimization for weight

(5)

The semi-gradient leads to weighted SFT update (via π̂⋆) as
∇θKL(SG{π̂⋆}∥πθ)[xi] = −

∑
j π̂

⋆(yij |xi)
∂
∂θ logπθ(yij |xi).

This observation creates an extremely simple update with
negligible implementation overhead.

Discussion. The update rule ended up aligning many it-
erative weighted SFT algorithms, such as RAFT (Dong
et al., 2023) and RFT (Ouyang et al., 2022; Touvron et al.,
2023). In hindsight, our algorithm is motivated by the ob-
servation that these extremely successful algorithms can be
interpreted as projecting empirical solutions onto a paramet-
ric space. Consequently, it is reasonable to use the empirical
estimate in Eq. (2), as RAFT and RFT have demonstrated
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Table 1: SFT methods from our optimization point-of-view.
(w)-XE denotes (weighted) cross-entropy loss. RM stands
for reward model. Binary reward indicates correctness. π̂⋆

are (unnormalized) weights for the subsequent XE update.

ALGO loss L reward r
feas.
set Φ

acceptance
or weight π̂⋆

SFT XE constant Π constant
RFT w-XE binary Π 1{r(x, y) = 1}
RAFT
(Best-of-N )

w-XE RM Π
1{r(xi, y) = r⋆},
r⋆=maxjr(xi, yij)

Ours w-XE Sec. 3 Eq. (2) Eq. (2)

strong practical performance despite the inherent bias in-
troduced by the non-linearity of these estimations. Since
it is essentially generalizes SFT by re-weighting a sample
pair (xi, yij) by π̂⋆(yij |xi), at each iteration based on the
solution of an optimization problem π̂⋆, we create a Table 1
to outline the corresponding interpretation for some iterative
SFT methods, from this optimization point-of-view.

The optimization problems for RFT and RAFT are trivial,
as they assign π̂⋆(y|x) = 1 to accepted responses and to the
response with the highest reward model score, respectively.
Formulating these methods as optimization does not offer
much advantages. However, this perspective provides flexi-
bility for future work to extend our framework, allowing for
feasible sets and weighting tailored to specific applications.

3. Practical Implementation
Yet, as we are working in an algorithm-agnostic fashion, we
are now ready to select a specific RL algorithm, define its
corresponding objective J , and specify a reward function r.

Reward function. Since we are working on mathematical
problem-solving, a ground-truth reward could be obtained
through string matching (Cobbe et al., 2021; Hendrycks
et al., 2021b) of the model’s solution against the ground truth
solution, yielding a binary reward function rmatch : X ×
Y → {0, 1} that indicates correctness. On top of the binary
reward, we define our reward r∆ as the reward margin. To
formally construct the margin, we first define the expected
reward of a set G such that r̄π(x,G) := Ey∼π[rmatch(x, y) |
y ∈ G]. We then define the reward margin r∆ as the reward
advantage of a group G against all other groups Y \ G:

r∆(x, y ∈ G) := r̄π(x,G)− r̄π(x,Y \ G) (6)

We have r∆(x, y∈G+)= r̄π(x,G+)−r̄π(x,G◦), in our case,
and similarly for G◦. r∆ may appear odd for not counting the
correctness of individual y. This is handled subsequently.

RL objective. For the learning algorithm, our choice is Con-
straint Generative Policy Optimization (CGPO) (Xu et al.,
2024b), which is designed for multi-objective constrained

optimization of LLMs. The choice is driven by implementa-
tion considerations: CGPO’s modular constraint-handling
design makes it straightforward to incorporate additional
constraints, such as the group density constraint in our case.
CGPO in a nutshell can be viewed as a generalized Best-of-
N (BoN), though depending on the specific CGPO settings.
It operates by defining a feasible set Ξ over the sample space
X × Y , which are designed to capture constraint adherence
for, e.g. correctness, factuality, and safety (Xu et al., 2024b).
In short, (x, y) /∈ Ξ will be rejected. In the context of math
reasoning, the objective of CGPO can be summarized as:

max
π

ExEy∼π[r(x, y)] s.t.
∑

y[π(y|x)1{y∈Ξx}] ≥ 1 ∀x

Ξx:={y :rmatch(x, y)=1︸ ︷︷ ︸
correctness

}∩{y :K̂L(y;x, πref)≤KLmax︸ ︷︷ ︸
empirical KL

}

(7)
This objective essentially optimizes reward over the feasible
sets Ξx such that feasible response y is correct and within
an KL range of KLmax, where the KL constraint is mea-
sured using point estimate of the (forward) KL defined as
K̂L(y;x, πref) := log π(y|x)− log πref(y|x).

Resulted update (IBPO w/ OPTIuB). Recap our update is
defined as θ′ = θ − α∇θEx∼µX

[
KL(SG{π̂⋆

X,Yθ
}∥πθ)[x]

]
s.t. π̂⋆

X,Yθ
∈argmaxπ∈Π∩Φ̂+(X,Yθ)

Ĵ (π;X,Yθ). And we
have now defined the RL objective J and the margin reward
function r∆. We are now ready to put everything together:

π̂⋆
X,Yθ

∈ argmaxπ Ĵ∆(π;X,Yθ) :=
1

nm

∑n
i

∑m
j [π(yij |xi)r∆(xi, yij)]

s.t. π ∈ Π ∩ Φ̂+(X,Yθ) and∑
y∈Yθ

[π(y|x)1{y∈Ξx}]≥1 ∀ x∈X︸ ︷︷ ︸
shorthanded as OPTIuB (inference under budget)

(8)

In addition, as CGPO is a generalization of BoN (with tie
breaking randomly), π̂⋆ will be a pure strategy instead of
stochastic one, meaning at most one y will be accepted for
each x, for subsequent projection (SFT).

Intuition. Behind this update our intuition can be verbally
interpreted as: If a prompt x is hard, the margin of extended
responses r∆(x, y ∈ G+) = r̄π(x,G+)− r̄π(x,G◦) is likely
to be large for y ∈ G+. Therefore π̂⋆ will more likely to
assign positive weight to an extended response y ∈ G+ so
that the objective receive larger margin reward. In contrast,
if a query x is simple, r∆(x, y ∈ G+) is likely to be small.
Hence π̂⋆ will possibly assign positive weight to regular re-
sponses y ∈ G◦, so that one could save some density budget
for harder queries. See a concrete example in Table 2.

Reward models. Note that the original CGPO implemen-
tation has reward models for BoN ranking. We however
intentionally excludes reward models, in our OPTIuB formu-
lation as shown in Eq. (8), to highlight our methodologi-
cal contributions, by decoupling reward modeling efforts.
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Table 2: An example of OPTIuB compared to OPTcgpo-Eq. (7)-
with tie broken randomly, resulting in potentially non-unique
π̂⋆. This table shows several such π̂⋆ solutions but not all.
KL is omitted for brevity. Given the rewards below we have
r̄(x1,G◦) = r̄(x1,G+) = r̄(x2,G+) = 1 and r̄(x2,G◦) = 0.5.
Suppose the cap q+=0.5, allowing at most 50% of accepted
responses are extended y ∈G+. For a solution matrix π̂⋆, 1
and 0 represent accepted and rejected response, respectively.

prompt x1 (easy) x2 (hard)

responses y11, y12 ∈ G◦ y21, y22 ∈ G◦
y13, y14 ∈ G+ y23, y24 ∈ G+

r(x, y)

(
1 1
1 1

) (
1 0
1 1

)
r∆(x, y)

(
0 0
0 0

) (
− 1

2 − 1
2

1
2

1
2

)
π̂⋆
1 = OPTcgpo

†
(
0 0
1 0

) (
1 0
0 0

)
π̂⋆
2 = OPTcgpo

‡
(
0 0
0 1

) (
0 0
1 0

)
π̂⋆ = OPTIuB

♯

(
1 0
0 0

) (
0 0
1 0

)
† CGPO case 1: for x2 (hard), y21 ∈ G◦ is accepted even though
G+ has higher expected reward r̄(x2,G+); ‡ case 2: y14 and y23
are both accepted, which exceeds the density budget q+ = 0.5.

♯ Ours: accepts y11 and y23 to maximize margin, r∆(x2, y23)=
0.5, while adhering to the density cap q+ = 0.5.

Nonetheless, using reward models remains possible. To
avoid introducing additional notation, we elaborate verbally:
OPTIuB essentially selects either group G+ or G◦ for a query
x. Within a group G, all responses receive the same re-
ward r∆(x,G), leaving it possible to further rank responses
within each group using reward models.

Implementation & solvers. A pseudo-code of our IBPO
with OPTIuB is listed in Algorithm 1. The essential change
is to replace the constrained reward ranking OPTCGPO with
a general optimization problem, in our case the mar-
gin maximization under budget denoted as OPTIuB. The
OPTIuB problem is a (integer) linear programming prob-
lem that could be solved by off-the-shelf solvers, such as
CPLEX (Cplex, 2009), Gurobi (Gurobi Optimization, LLC,
2024), or SciPy (Virtanen et al., 2020) which is our choice.

4. Naı̈ve Construction of G+

Yet we work on abstract groups G◦ and G+. In this sec-
tion, we present the details of our constructions of extended
length responses, i.e. the group G+. However developing
long reasoning models is beyond the scope of this work, as
our focus is on the constrained optimization of LLMs. Our
constructions are for demonstrative purpose only.

Algorithm 1 Inference Budget-Constrained PO (IBPO)

Require: prompt set D, batch size n, number of responses
m, init policy π0 = πref , num of iters T , budgets q+

1: for t = 1, . . . , T do
2: prompt sampling: Xn ∼ µD
3: response generation: Yn×m

θ ∼ πθt(X)
4: evaluate correctness: Rn×m

c = rmatch(X,Y)

5: empirical KL: K̂L
n×m

= K̂L(Y;X, πref)
6: if CGPO (i.e. w/o IuB) then
7: solve BoN (7): π̂⋆

X,Yθ
∈OPTcgpo(X,Yθ,Rc,K̂L)

8: end if
9: if IBPO (i.e. w/ IuB) then

10: solve Eq. (8): π̂⋆
X,Yθ

∈OPTIUB(X,Yθ,Rc,K̂L,q+)
11: end if
12: grad step: −

∑
i

∑
j π̂

⋆
X,Yθ

(yij |xi)
∂
∂θ log πθ(yij |xi)

∣∣
θ=θt

13: end for

Due to the intricate details and the space limit, we defer the
full version of this section to Appendix B, including details
of prompting, dataset construction, training pipelines, etc.

Figure 1 provides examples of our constructions, which
should be visually telling. In a nutshell, we use the step CoT
(SCoT) format from Dubey et al. (2024) as G◦, and construct
a sequential voting (SV) response as G+. SV serves as a
unimodal baseline to demonstrate the performance of our
construction. Adaptive SV (ASV) generates a mixture of
SCoT and SV responses, allowing us to optimize its ability
to adaptively choose between the two. For further details
about the constructions, refer to Figure 1 and Appendix B.

Notations., we use LLaMA to refer to instruction-tuned
LLaMA 3.1 8B (Dubey et al., 2024). ASV-SFT-α denotes
ASV models that are supervise fine-tuned with a coefficient
α (see Appendix B). ASV-IuB-q+ refers to ASV models
optimized by our Algorithm 1 with a budget constraint q+.

5. Evaluation of IBPO w/ OPTIuB

In this section, we show that: (i) SV is a valid construction
with reasonable absolute improvement (Table 3) and scales
as good as majority vote (MV, aka self-consistency (Wang
et al., 2022)) (Figure 2a & 2b); (ii) ASV-SFT does not
achieve good efficiency (Figure 2a & 2b) as SFT does not
optimize efficiency as an optimization objective; (iii) ASV-
IuB optimized by IBPO achieves better efficiency (Figure 2a
& 2b), adherence to constraints (Figure 2c), and allocation
of inference to harder quires (Figure 2e & Figure 2f).

5.1. Absolute Improvement (Table 3)

“Baselines”. To put SV/ASV in comparison with other
baselines in literature, we gather several baselines from
the self-correction literature as essentially these methods in-
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SV Prompt (Simplified)

You are asked to give at most eight diverse solutions in
different way, without referencing to the previous trials.
If a solution occurs three times, it is considered as a
consensus and will be used as the final answer.

ASV Prompt (Simplified)

For medium and hard level problems, you are asked to
give at most eight diverse solutions in different way, with-
out referencing to the previous trials.
For easy level problems, you are allowed only one attempt,
which will be considered your final answer.

Voting Response G+ (SV, ASV Case 1)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A2 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]

The answer A1 has occurred three times, and is consid-
ered as a consensus.
The final answer is A1 . I hope it is correct.

Non-Voting Response G◦ (ASV Case 2)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
Terminated due to difficulty level.

Figure 1: Example of prompts and responses. For G◦, we
use standard step CoT (SCoT). To construct G+, the model is
prompted to sequentially generate up to 8 trials encapsulated
within the special tokens [TRIAL] and [/TRIAL], followed
by a consensus answer. The SV prompt instructs the model
to output only voting responses, allowing us to later evaluate
its performance and show that it is a reasonable construction.
The ASV prompt asks the model to decide whether to output
a voting or non-voting response, facilitating our further
optimization of budget allocation in Section 5.

crease inference length, though not extensively as Jaech et al.
(2024). The results in Table 3 are mainly gathered from Qu
et al. (2024); Kumar et al. (2024). The self-correction base-
lines often admit a multi-turn structure, similarly to the
multi-trial construction of SV. We therefore include a col-
umn of inference cost measured by number of turns/trials for
a rough comparison. The SFT comparators we include are
(reproduced) Self-Refine (Madaan et al., 2024), STaR (Ze-

Table 3: Comparison of approaches on their improvements
versus base models. †, ‡, †† indicate results duplicated
from Qu et al. (2024); Yan et al. (2024); Kumar et al. (2024),
respectively. ∗ indicates our methods/constructions and the
improvements are relative to LLaMA model.

approach pass@1 improv. turns/trials
per response

SFT/Prompting-based

SV-SFT∗

LLaMA 56.8 5.54 5.67x
ASV-SFT-1∗

LLaMA 55.6 4.43 5.74x

SFT-RISE†

setting 1 (table 1 of †) 5.5 -0.3 5x
setting 2 (table 1 of †) 5.0 0.0 5x

SFT-SCoRe††
setting 1 (table 1 of ††) 54.2 1.8 2x
setting 2 (table 1 of ††) 55.0 0.0 2x

RISE†

LLaMA2 Base 1.4 -0.5 5x
+ boosting 5.5 0.0 5x

S3C‡

not studied
LLaMA3-8B 33.14 2.56
Mistral-7B 25.48 1.44
DeepSeek-Math-Base-7B 41.40 3.18
Qwen2-Math-7B 51.76 0.44

Self-Refine†
Base 1.9 0.0 3x
GPT-3.5 36.5 -3.2 3x
Mistral-7B 7.1 -0.4 3x
Eurus-7B-SFT 9.0 -3.3 3x

STaR††

setting 1 (table 1 of ††) 54.0 0.4 2x
setting 2 (table 1 of ††) 41.2 -14.2 2x

Online Iterative/RL

ASV-IuB-q+∗

q+ = 25% 54.2 2.94 2.24x
q+ = 50% 55.4 4.14 2.16x
q+ = 75% 57.0 5.74 4.32x

RISE†

+ Iteration 1 9.7 3.4 5x
+ Iteration 2 10.4 4.6 5x

SCoRe††
Gemini 1.5 Flash 64.4 4.4 2x
+ more turns (fig. 8††) ≈66 ≈6 5x-10x

likman et al., 2022), S3C (Yan et al., 2024), SFT-RI and
SFT-SCoRe, where SFT-RI and SFT-SCoRe are SFT com-
parators implemented in Recursive Introspection (RI) (Qu
et al., 2024) and SCoRe (Kumar et al., 2024) respectively.

ASV experiments. SV-SFT follows our training pipeline
of Exp 1.2 in Table 7 (Appendix B) and is an voting only
baseline. ASV-SFT-α follows our Exp 2.1 setup and is an
adaptive baseline, meaning model decide whether to vote or
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(a) performance of last checkpoints

(b) best checkpoints (steps in parentheses)

(c) voting ratio of correct responses (train)

(d) voting response ratio (test set)

(e) voting ratio by difficulty (q+ = 50%)

(f) voting ratio by difficulty (q+ = 25%)

Figure 2: Column 1: Comparison of pass@1 (maj@N for MV) against the average number of trials per response (x-axis).
OSS refers to LLaMA. The interpolation between OSS and SV-SFT (aligning with MV) serves as a hypothetical efficiency
boundary. ASV-SFT shows lower efficiency relative to this boundary, whereas ASV-IuB consistently achieves better
efficiency (i.e. above the boundary). Column 2: Voting response ratio versus training steps. Dashed line denotes the budget
q+. On the training set, IuB formulation follows the budget constraints almost exactly. Due to distribution shift, the constraint
on testing set is not entirely exact, but still it is noticeable that the voting ratio follows the order of 75% ≻ 50% ≻ 25%.
Column 3: The IuB formulation enables the model to dynamically allocate voting budget to harder problems.

not for a query. We report ASV-SFT-1 only as it is empiri-
cally the best ASV-SFT-α baseline, though still fall short in
terms of efficiency. The ASV-IuB-q+ experiments, initial-
ized from ASV-SFT-1, are our RL-tuned adaptive models,
optimized by IBPO with OPTIuB as inner optimization.

Observations. We would like to first emphasize that the
comparison in Table 3 is not intended to demonstrate that
SV outperforms SFT-based self-correction or that our ASV-
IuB surpasses RL-based self-corrections. These efforts are
orthogonal, as our focus is on constrained optimization. As
observed, our SFT constructions—SV-SFT and ASV-SFT-1
achieve a clear improvement in pass@1 with high inference
costs (5+ times the number of trials). The ASV-IuB-q+
formulation, particularly with q+ = {50%, 75%}, shows
significant improvement while reducing costs by 4.14%
at 2.16× and 5.74% at 4.32×. This performance is on
par with SCoRe, a state-of-the-art RL-based self-correction
method. Note that the performance of ASV-IuB-q+ is re-
ported using the best checkpoints. Results from the last
checkpoint are shown in Figure 2a. Additionally, training
curves are presented in Appendix E, which shows consistent

improvements. As a somewhat tangential yet potentially
intriguing observation, it is evident that prompting-based
and SFT-based methods struggle with both absolute im-
provement (Table 3) and efficiency (Figure 2), support-
ing the conjecture that SFT alone does not enable self-
correction capabilities (Huang et al., 2023; Kumar et al.,
2024). This observation is also partially supported by con-
current work (DeepSeek-AI et al., 2025), which suggests
that such self-correction emerges automatically during RL
rather than manually created by prompting or SFT.

5.2. Efficiency, Budget Adherence & Allocation

Table 3 shows that our ASV-IuB-q+ models achieve results
comparable to RL-based self-correction models, simply by
inference budget management. In this subsection, we extend
our discussion on: (i) performance-budget efficiency, (ii)
constraint satisfaction, and (iii) inference budget allocation.

Performance-budget efficiency. In Figure 2a and 2b, we vi-
sually assess the performance-budget efficiency, compared
to a hypothetical efficiency boundary. This boundary is
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an interpolation between OSS LLaMA model and SV-SFT.
It is reasonable to consider it as a hypothetical boundary
for two reasons: (i) OSS and SV-SFT are two extremes of
ASV-IuB-q+, corresponding to the cases of q+ = 0 and
q+ = 1 respectively; and (ii) this interpolation achieves an
increase comparable to MV, if not slightly better. The SFT
version of ASV is generally much worse than the bound-
ary, as SFT alone does not optimize resource allocation as
a mathematical objective. For ASV-IuB-q+ optimized by
IBPO, we report both the last and best checkpoint results
in Figure 2a and Figure 2b, respectively. Our formulation
achieves, in general, better performance-budget efficiency,
except q+ = 75% in Figure 2a. We will extend our discus-
sion on this unsuccessful case in subsequent paragraphs.

Constraint satisfaction. We then evaluate how effectively
the constraints are enforced. In Figure 2c, the budget
constraints are successfully maintained during training for
q+ = {25%, 50%, 75%}. Due to distribution shifts, exact
adherence to these constraints is not expected on the test
set. Nevertheless, Figure 2d demonstrates that constraints
are still upheld at the end of training for q+ = {25%, 50%},
and the ratio of voting responses follows the order 75% ≻
50% ≻ 25%. (Figure 2c illustrates that our model meets
the budget constraints for the set of correct responses. The
constraints also hold for all responses, see Appendix E.)

Difficulty-adaptive allocation. We have show improved
efficiency and adherence to constraints, we would like to fur-
ther validate the intuition of our design: that more challeng-
ing problems may require longer reasoning steps, whereas
simpler problems can be resolved with just SCoT responses.
Ideally, the model should allocate more voting responses to
problems with higher difficulty levels. To this end, we use
the difficulty levels from the metadata of Hendrycks MATH
and plot the ratio of voting responses for each difficulty level.
Figure 2f and 2e illustrates that for both q+ = {25%, 50%},
more challenging problems, such as those at levels 4 and
5, receive a higher allocation of budgets. This allocation
pattern is particularly evident for the case of q+ = 25%,
where only 2% of level 1 problems receive voting responses.

Discussion on the unsuccessful case. There is one ob-
served unsuccessful case in Figure 2a: the last checkpoint
of ASV-IuB-75%, which falls on the hypothetical boundary
rather than above it. This outcome is arguably expected, as
observed in Figure 2d, where ASV-IuB-75% outputs almost
exclusively voting responses at the end of training. As a
result, this model is not adaptively allocating resources, and
thus no improvement in efficiency is anticipated. This unsuc-
cessful case is hence caused by the distribution shift between
the training set and the testing set. It is possible that scaling
the training set—given that our training set DRL contains
approximately 10k prompts, which is relatively small—will
make the testing set more likely to be in-distribution and

thereby alleviate the distribution shift issue.

6. Conclusion & Discussions
We derived a constrained policy optimization framework,
IBPO, from an optimization perspective, resulting in a sim-
ple weighted SFT update that resembles successful iterative
SFT algorithms such as RFT and RAFT. In each iteration,
the optimal weight is obtained by solving an (integer) linear
program. The practical implementation of IBPO is build
on top of CGPO, and is evaluated on a math reasoning task
with inference budget constraints. Empirical evaluations
show that our framework enables the model to adhere to
constraints and dynamically allocate the inference budget.

Batch optimization & solver time. Since we solve an opti-
mization problem per iteration (i.e. per mini-batch), limited
computational resources can result in smaller sample sizes
for the inner optimization problem, leading to larger vari-
ance. This issue can be mitigated through “sample accumu-
lation”, accumulating samples across multiple consecutive
steps, similar to gradient accumulation practice in LLMs.
A pseudo-code for sample accumulation can be found in
Appendix H. In addition, though integer linear program-
ming is NP-hard (Vazirani, 1997), the number of variables
in our batch-level optimization is typically small, resulting
in minimal computational overhead. Refer to the wall-time
plot for the SciPy solver in Appendix H for details.

Broader applications. Our framework has only been evalu-
ated with inference in math, the resource allocation problem
however has far-reaching implications within the ML com-
munity. As a result, our framework can be potentially ex-
tended to further LLM applications. For example, a promis-
ing application is statistical parity (Zemel et al., 2013), aka
group fairness. In this context, one could consider attribut-
ing responses to their respective social groups, and cap
the density of responses that correspond to socially privi-
leged groups, to encourage more inclusive and equitable
responses across different demographics. Another poten-
tial application is the balanced expert activation in mixture
of experts (Jacobs et al., 1991; Shazeer et al., 2017; Lep-
ikhin et al., 2020) systems, which is sometimes achieved by
adding an auxiliary balancing loss (Wei et al., 2024). Alter-
natively, this balance can be possibly achieved by enforcing
a minimal total activation density for each expert. This
may help to prevent over-reliance on a subset of experts,
and hence enhancing the overall robustness and efficiency.
We leave the exploration of broader applications and their
implementations as future directions.

Impact Statement
This paper presents work whose goal is to advance the field
LLMs. There are many potential societal consequences of
our work, none of which we feel must be highlighted here.
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A. Motivating Example
Figure 3 is an example that advanced reasoning model spent more than enough time on a trivial problem.

Figure 3: A long reasoning-chain model spent more than enough inference time on a trivial problem.

B. Full Version of Section 4: Acronyms, Naı̈ve Construction of G+ & Training Pipelines
Yet we work on abstract groups G◦ and G+. In this section, we present the details of our constructions of extended length
responses, i.e. the extended group G+. However developing long reasoning models is beyond the scope of this work, as
our focus is on the constrained optimization of LLMs. Our constructions are for demonstrative purpose only. Due to the
intricate details involved in prompts, datasets, and training pipelines, this section may appear somewhat dense. To make
it more approachable, we have structured our writing in a way that readers can, if they wish, focus on the broader ideas
without delving deeply into the specifics of constructions. A TL;DR version of this section is provided below.

TL;DR. We construct two types of illustrative extended responses: Sequential Voting (SV) and Adaptive Sequential Voting
(ASV). Figure 4 visually explains how these constructions are implemented. The goal of the SV is to establish a baseline that
generates only responses in G+, thereby serving as an uni-modal comparator. SV scales roughly as well as vanilla majority
voting (MV), aka self-consistency (Wang et al., 2022). In contrast, ASV outputs a mixture of responses of y ∈ G◦ and
y ∈ G+. This allows the model to adaptively decide which type of response to produce based on the query. The goal of ASV
is to further enable IBPO optimization, as IBPO implicitly assumes the model generates both regular and extended-length
responses. In Section 5, we show that ASV optimized by IBPO, achieves better allocation of the inference budget.

B.1. Construction of Sequential Vote

Acronyms. For clarity, we explicitly define key terms to hopefully resolve any potential ambiguities. Response: A response
refers to a sequence generated until a terminal token is encountered. For precision, we sometimes refer to these as voting
responses or SCoT responses, as illustrated in Figure 4, after introducing our sequential voting baselines. Trial: A trial
denotes a solution instance, which is demarcated by the special tokens [TRIAL] . . . [/TRIAL], as shown in the voting
response example in Figure 4. While a voting response contains multiple trials, a SCoT response or a non-voting response
contains exactly one trial, as also depicted in Figure 4.

For the description of training and testing details, we use LLaMA and LLaMA-b to denote the instruction-tuned and base
versions of the LLaMA 3.1 8B models (Dubey et al., 2024), respectively. MATH refers specifically to the training split of
the Hendrycks MATH dataset (Hendrycks et al., 2021b), while the 500-sample subset of the testing split is referred to as
MATH500 (Lightman et al., 2023). SDPO stands for step-DPO (Lai et al., 2024) dataset, a curated step-annotated dataset
from which we retain only the prompts and positive responses (ground truth solutions), excluding any step signals (see
Appendix G for details). It is important to note that while we leverage their curated dataset, the original SDPO method is not
relevant to this work. The SDPO dataset was chosen because its ground truth responses follow the SCoT format of LLaMA
responses, making it convenient to run supervised fine-tuning (SFT) mixed with LLaMA samples.

Construction details. To be more specific, the naı̈ve sequential voting baselines, as the “expensive” group G+, have
increased inference costs by simply sequentially output multiple trials and find the sequential majority vote until stop
condition met. In particular, the early-stopping sequential voting (SV) baseline is created to show that such naı̈ve baseline
could achieve performance gain, on par with vanilla majority voting (MV). The adaptive sequential voting (ASV) allows
model to output both SCoT response y◦ and sequential voting response y+, allowing us to further conduct the budget
controll experiments in Section 5.

• Early Stopping Sequential Vote (SV): For a single response, model are allowed to output at most 8 trials, and conclude
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SCoT Prompt + Cond.

Solve the following math problem efficiently and clearly:
- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.
- For complex problems (3 steps or more):
Use this step-by-step format:
## Step 1: [Concise description]
[Brief explanation and calculations]
## Step 2: [Concise description]
[Brief explanation and calculations]
...
Regardless of the approach, always conclude with:
Therefore, the final answer is: $\\boxed{answer}$. I hope
it is correct.
Where [answer] is just the final number or expression that
solves the problem.
[Condition Description]
Problem: {{ problem }}

SCoT Response

## Step 1: ... steps omitted
The final answer is: A1 . I hope it is correct.

SV Cond.

You are asked to give at most eight diverse solutions in
different way, without referencing to the previous trials.
Each trial should be contained in a separate [TRIAL] trial
solution [/TRIAL] block.
If a solution occurs three times, it is considered as a consen-
sus and will be used as the final answer.
If there is no consensus, use the solution from the most
plausible trial.

ASV Cond.

For medium and hard level problems, you are asked to give
at most eight diverse solutions in different way, without
referencing to the previous trials.
Each trial should be contained in a separate [TRIAL] trial
solution [/TRIAL] block.
If a solution occurs three times, it is considered as a consen-
sus and will be used as the final answer.
If there is no consensus, use the solution from the most
plausible trial.
For easy level problems, you are allowed only one attempt,
which will be considered your final answer.

Voting Response (SV, ASV Case 1)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A2 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]

The answer A1 has occurred three times, and is considered
as a consensus.
The final answer is A1 . I hope it is correct.

Non-Voting Response (ASV Case 2)

[TRIAL] ## Step 1: ... steps omitted
The final answer is: A1 . [/TRIAL]
Terminated due to difficulty level.

Figure 4: Prompt templates. For G◦, we use the SCoT prompt without including an additional [condition description] and
generate a standard SCoT response. For G+, we simply insert the corresponding condition into the [condition description]
placeholder to create a new prompt. In the case of SV, the SV condition is integrated into the prompt, and the model is asked
to perform repeated trials to reach a consensus. The ASV prompt instructs the model to output either a voting response (case
1) or a non-voting response (case 2), with the decision made by the model itself.

with majority of trials. In addition to the terminal condition of maximum 8 trials, model will early stop if an answer
appears 3 times and this answer will be considered as the majority answer.

• Adaptive Sequential Vote (ASV): Model is allowed to choose either vote (case 1, i.e. y+) or not (case 2, i.e. y◦).
This baseline is created to further allow model-driven resource allocation. We later, in Section 5, show that one could
optimize the ability of resource allocation with our IBPO.

Dataset. We define our construction of dataset as a product of a problem set Q, format template of question Tq and answer
Ta, and a response set A, subjected to some filtration F . Formally, a dataset D is defined as: D := (F ◦ Tq ◦ Ta)(Q× A),
where F removes undesired question-answer pairs, such as incorrect responses when A are model generated; The templates
Tq and Ta collectively transform each question-answer pair into a specific text format, as shown in Figure 4; Slightly
abusing the notation, the Cartesian product Q× A is used to pair each response with its corresponding question, defined as:
Q× A := {(qi, aij) : ∀i, j}.

Specifically, we summarize the datasets used in subsequent sections in Table 4. For instance, for SV training, we construct
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Table 4: Summary of constructed datasets for different
experimental purposes. DSV, DESSV and DASV uses the
same set of prompts but different prompt/response tem-
plates. QSDPO and AGOLDEN

SDPO are from Lai et al. (2024)
with details deferred to Appendix G. ASV1 and ASV2
correspond to ASV case 1 and 2 (see Section B.1) re-
spectively.

Set Tq Ta F Q A

DSV SV SV G QMATH ASAMPLE
MATHDASV1 ASV ASV1

DASV2 ASV ASV2 - QSDPO AGOLDEN
SDPODSCOT SCoT SCoT -

DRL ASV - - QSDPO ∅

Table 5: Stopping conditions.

stopping conditions

SV (i) max 8 trials; (ii) if an answer occurs 3 times.

ASV voting (case 1): (i) max 8 trials; (ii) if an answer
occurs 3 times; non-voting (case 2): exact 1 trial.

Table 6: Prompt and response sources.

Set Query-Response Source

Training QMATH & ASAMPLE
MATH MATH & LLaMA samples

QSDPO & AGOLDEN
SDPO (Lai et al., 2024)

Testing QMATH500 MATH500

Table 7: Training pipelines. For Sec. B.2, we aim to create a demonstration experiment showing that with the same
model (of roughly same math knowledge) SV can achieve reasonable performance-cost efficiency on par with MV.
Sec. 5 further show we can optimize performance-cost efficiency through our IuB generalization of CGPO, where α in
row 2.1 is a coefficient of DASV2.

Exp. Sec. Type Init. Ckpt. Dataset Purpose

1.1 Sec. B.2 SFT LLaMA-b DSV ∪ DSCOT Allow model follow both SV and SCoT prompt.1.2 Sec. 5 SFT LLaMA

2.1 Sec. 5 SFT LLaMA DASV1 ∪ αDASV2 Follow the ASV instruction to let model decide vote or not.
2.2 RL Exp. 2.1 DRL Optimize the capability of dynamic budget allocation.

(a) (Nested) MV measured with number of responses (b) (Nested) MV measured with number of tokens

Figure 5: SV tested on MATH500. MV stands for vanilla majority voting, aka self-consistency (Wang et al., 2022), with
SCoT responses. Nested MV refers to majority voting with our (early-stopping) SV responses. It is “nested” as each SV
response is already a voting, as shown in Figure 4. The SV method has “clear” gains when performance is measured with
the number of responses. When measured with the number of tokens, SV aligns the performance-cost efficiency of vanilla
MV. This is another indicator that one should worry about token efficiency when measuring reasoning performance.

DSV with question set QMATH from Hendrycks et al. (2021b) and LLaMA generated responses ASAMPLE
MATH using the SV templates
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defined in Figure 4, subjected to data selection described in Appendix G.

Training pipelines. We summarize our training pipelines for our toy experiments in Section B.2 and our IuB experiments in
Section 5. For instance, experiment 2.2 (Section 5) in Table 7 is the summary of our IBPO training, using dataset DRL as
constructed in Table 4 and initialized from ASV models from experiment 2.2. Further details of each training can be found
in Appendix G and F.

B.2. Performance of Naiv̈e Sequential Vote

We start by evaluating the performance of SV compared to vanilla MV, following the setup of Exp. 1.1 in Table 7. This toy
experiment is designed to demonstrate: (i) SV scales approximately as well as MV, thereby qualifying it as an example of
G+; and (ii) measuring performance based on the number of responses is inadequate, therefore we later measure performance
relative to the number of tokens/trials in Section 5.

Metrics. The metrics we use are pass@k and majority@k, both of which are widely used in the literature (Hendrycks et al.,
2021b; Wang et al., 2022). We occasionally refer to pass rate as pass@1. In both metrics, k specifically denotes the number
of responses, regardless of the number of trials per response. Since our voting methods may involve multiple trials, we
may use the average number of trials (as illustrated in Figure 2) on the x-axis for cost-aware comparisons. In addition,
we evaluate “performance-cost” efficiency by comparing each method’s scaling efficiency to that of MV, following the
comparison in Snell et al. (2024).

As shown in Figure 5a, SV exhibits significant improvements—nearly 10%—in terms of majority@k when performance
is measured by the number of responses. However, this improvement is misleading since each SV response effectively
consists of multiple SCoT responses. Therefore, measuring performance with taking length into consideration provides
a more reasonable assessment. As demonstrated in Figure 5b, SV’s scaling performance aligns with that of vanilla MV,
supporting its role as a suitable construction example for G+.

C. Batch Accumulation
This is a batch accumulation implementation of Algorithm 1. For brevity, we use OPTIUB as an example. One could increase
the optimization problem size of n×m to (n · kb)× (m · kr) using Algorithm 2, where superscripts indicate matrix shape,
left subscripts denote accumulation indices (distinguishing them from element indices).

Algorithm 2 IBPO with Sample Accumulation

Require: prompt set D, batch size n, number of responses m, init policy π0 = πref , num of iters T , budgets q+
1: for t = 1, . . . , T do
2: for i = 1, . . . , kb do
3: prompt sampling: iX

n ∼ µD
4: for j = 1, . . . , kr do
5: response generation: ijY

n×m ∼ πθt(iX)
6: end for
7: end for
8: prompt accumulation: X̃(n·kb) = [1X, 2X, · · · , kb

X]

9: response accumulation: Ỹ(n·kb)×(m·kr) = [11Y, 12Y, · · · , 1kr
Y; · · · ; kb1

Y, kb2
Y, · · · , kbkr

Y]

10: evaluate correctness and empirical KL: Rmatch = rmatch(X̃, Ỹ) and K̂L = K̂L(Ỹ; X̃, πref)

11: margin maximization: π̂⋆
X̃,Ỹ

∈ OPTIUB(X̃, Ỹ,Rmatch, K̂L, q+) as defined in Eq. (8)

12: gradient update: with −
∑n·kb

i=1

∑m·kr

j=1 π̂⋆
X̃,Ỹ

(yij |xi)
∂
∂θ log πθ(yij |xi)

∣∣
θ=θt

13: end for
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D. Sample Responses
We show a couple of example responses of ASV-IuB-50%, the omitted prompt could be found in Figure 4.

Voting Example

Prompt omitted ...

Problem: Compute arcsin
(
− 1

2

)
. Express your answer in radians.

[TRIAL] ## Step 1: Recall the definition of arcsine The function arcsinx is the inverse of the sine function. It returns the angle
whose sine is x.
## Step 2: Use the unit circle to find the angle From the unit circle, we know that sin

(
−π

3

)
= − 1

2
.

## Step 3: Determine the value of arcsin
(
− 1

2

)
Since sin

(
−π

3

)
= − 1

2
, we have arcsin

(
− 1

2

)
= −π

3
.

The final answer is: −π

3
. [/TRIAL]

[TRIAL] ## Step 1: Recall the sine function values for common angles. The sine of π
3

is
√
3

2
.

## Step 2: Use the relationship between sine and arcsine. Given sin(θ) = − 1
2

, we are looking for arcsin
(
− 1

2

)
.

## Step 3: Identify the angle whose sine is − 1
2

. From the unit circle or trigonometric identities, we know that sin
(
−π

6

)
= − 1

2
.

## Step 4: Express the answer in radians. Therefore, arcsin
(
− 1

2

)
= −π

6
.

Therefore, the final answer is: −π

6
[/TRIAL]

[TRIAL] ## Step 1: Recall the sine function’s relationship with the unit circle. The sine of an angle in a right triangle is the ratio
of the length of the side opposite the angle to the length of the hypotenuse. For angles in the unit circle (a circle with radius 1),
the sine of an angle is the y-coordinate of the point where the terminal side of the angle intersects the circle.
## Step 2: Identify the angle with a sine of − 1

2
. From the unit circle, we know that sin

(
π
3

)
= 1

2
. Since sine is negative in the

third and fourth quadrants, and we are looking for an angle whose sine is − 1
2

, the angle must be in either the third or fourth
quadrant.
## Step 3: Determine the angle in the correct quadrant. Considering the unit circle, the reference angle for π

3
is π

3
itself. Since

we are looking for an angle with a sine of − 1
2

, and knowing that sine is negative in the third and fourth quadrants, the angle we
are looking for is in the fourth quadrant because sin

(
5π
3

)
would indeed be negative.

## Step 4: Calculate the angle. The angle whose sine is − 1
2

is 5π
3

.

Therefore, the final answer is:
5π

3
[/TRIAL]

[TRIAL] ## Step 1: Recall the definition of arcsine The function arcsinx is the inverse of the sine function. It returns the angle
whose sine is x.
## Step 2: Use the sine function to find the angle We want to find the angle whose sine is − 1

2
. We can use the sine function to

find this angle.
## Step 3: Recall common angles and their sines From the unit circle or trigonometric identities, we know that sin

(
π
6

)
= 1

2
.

Since sine is an odd function, sin
(
−π

6

)
= − 1

2
.

## Step 4: Determine the angle Therefore, the angle whose sine is − 1
2

is −π
6

.

Therefore, the final answer is: −π

6
[/TRIAL]

[TRIAL] ## Step 1: Recall the sine function’s values for common angles. The sine function has well-known values for certain
angles. Specifically, sin

(
π
6

)
= 1

2
.

## Step 2: Use the symmetry and periodicity of the sine function. Given that sin
(
π
6

)
= 1

2
, and knowing that sine is an odd

function, we have sin
(
−π

6

)
= − 1

2
. This step utilizes the property of odd functions where f(−x) = −f(x).

## Step 3: Solve for arcsin
(
− 1

2

)
. Given that sin

(
−π

6

)
= − 1

2
, the angle whose sine is − 1

2
is −π

6
. This is because the inverse

sine function, arcsin, returns the angle whose sine is a given value.

Therefore, the final answer is: −π

6
[/TRIAL]

The answer −π

6
has occured three times and is considered as a consensus. The final answer is −π

6
. I hope it is correct.
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Non-voting Example

Prompt omitted ...
Problem: If f(x) = 3x−2

x−2
, what is the value of f(−2) + f(−1) + f(0)? Express your answer as a common fraction.

[TRIAL] ## Step 1: Substitute x = −2 into the function f(x). To find f(−2), substitute x = −2 into the function:

f(−2) =
3(−2)− 2

−2− 2
=

−6− 2

−4
=

−8

−4
= 2.

## Step 2: Substitute x = −1 into the function f(x). To find f(−1), substitute x = −1 into the function:

f(−1) =
3(−1)− 2

−1− 2
=

−3− 2

−3
=

−5

−3
=

5

3
.

## Step 3: Substitute x = 0 into the function f(x). To find f(0), substitute x = 0 into the function:

f(0) =
3(0)− 2

0− 2
=

0− 2

−2
=

−2

−2
= 1.

## Step 4: Sum the values of f(−2), f(−1), and f(0). Sum the calculated values:

f(−2) + f(−1) + f(0) = 2 +
5

3
+ 1.

## Step 5: Simplify the sum to express it as a common fraction. To combine the terms into a common fraction, convert the whole
numbers to fractions with a common denominator:

2 +
5

3
+ 1 =

6

3
+

5

3
+

3

3
=

6 + 5 + 3

3
=

14

3
.

Therefore, the value of f(−2) + f(−1) + f(0) is 14
3

.

Therefore, the final answer is:
14

3
[/TRIAL]

Terminated due to difficulty level.

E. Training Curves & Further Discussions
Budgets constraints. In Section 5, we show that the constraints hold exactly on the training set, for responses that are
correct. Figure 6b further shows the ratio of voting responses for all online samples. It’s clear that the constraints also hold.

(a) Voting ratio of correct responses (training set) (b) Voting ratio of all responses (training set)

Figure 6: Voting response ratio versus training steps. Dashed line denotes the budget q+. On the training set, IuB formulation
follows the budget constraints almost exactly for both: (a) correct responses; (b) all responses.
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CGPO on DRL w/ LLaMA. To further understand the results we presented in Section 5 is benfit from our budget-aware
formulation or from the prompt set of Lai et al. (2024). We further run CGPO with open-sourced LLaMA model and the
SDPO dataset in the SCoT format. Figure 7 compares the training dynamics of CGPO with LLaMA versus our ASU-IuB-q+
experiments. In general, the SDPO prompt set does not provide much additional knowledge as suggested by the OSS w/
vanilla CGPO experiment, but ASV-IuB-q+ experiments are able to achieve noticable gain.

Figure 7: Training curves: each point corresponds an evaluation of MATH500 test set, and dashed line is the pass@1 of
LLaMA 8B Instruct.

Controlled setting. Our experiment setting is minimal: we do not use reward models; we use only an 8B model to generate
any set of sampled responses, ASAMPLE. Our RL training set, DRL, contains only 10k prompts, leaving the setting quite
controlled and providing room for improvement through engineering efforts.

Limitations. Our work is limited in its choice of RL algorithms and applications. While it should be straightforward to
apply our framework to different RL frameworks, additional effort is required to derive an optimization problem for different
application tasks. Future work may include extending our constrained policy optimization framework to a broader range of
LLM applications or scaling up our experiments.
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F. Hyperparameters
We list the hyperparameters used for experiments setup 1.2, 2.1, 2.2, as described in Table 7. And we conduct our experiments
with NVIDIA-A100-80Gs. (Please refer to Xu et al. (2024b) for the definition of some RL-specific hyper-parameters.)

Table 8: Hyperparameters for Experiment setups 1.2, 2.1, and 2.2

Hyperparameter Setup 1.2 Setup 2.1 Setup 2.2

prompt size 11295 11295 10795
number of nodes 4 4 8
learning rate 1e-6 1e-6 5e-7
batch size (per node) 8 16 4
num of steps 1024 2048 240
optimizer AdamW AdamW AdamW
scheduler constant constant constant
packing yes yes -
max sequence length 32768 32768 6144
gradient accumulation 1 2 1

RL-specific params

num generation per prompt 8
max generation length 4096
temperature 1.0
top-p 0.9
KL-threashold 1024
batch accumulation kb 4
response accumulation kr 1

G. Data Construction
We elaborate on the details of QSDPO, AGOLDEN

SDPO , QMATH, ASAMPLE
MATH , and the filteration function F .

SDPO dataset. Lai et al. (2024) create a dataset (see their Section 3.2) contains 10,795 step-wise preference pairs, where
the winning response is a correct solution, the losing response is incorrect starting from certain step. For our purpose of
SFT and RL training, we do not need losing responses, hence we create AGOLDEN

SDPO with only wining (correct) responses. The
step-formatted response (see an example below) is the reason we choose the dataset from Lai et al. (2024), as it adhere the
SCoT format of LLaMA models. Therefore, one do not need to worry about potential format changes.

SDPO question-response example

Problem: Sides of a rectangular park are in the ratio 3: 2 and its area is 3750 sq m, the cost of fencing it at 40 ps per meter is?
## Step 1: Let’s assume the sides of the rectangle are 3x and 2x. The area of the rectangle is the product of its sides, so we have
3x · 2x = 6x2 = 3750. Solving for x, we get x2 = 3750

6
= 625, so x =

√
625 = 25.

## Step 2: So the sides of the rectangle are 3x = 3 · 25 = 75 meters and 2x = 2 · 25 = 50 meters.
## Step 3: The perimeter of the rectangle is 2× (75 + 50) = 2× 125 = 250 meters.
## Step 4: The cost of fencing is 40 paise per meter, so the total cost of fencing is 250× 40 = 10000 paise. Since 1 rupee is
equal to 100 paise, the cost in rupees is 10000

100
= 100 rupees.

Therefore, the final answer is: 100

SV dataset for MATH. We also created datasets, DSV and DASV1, for SFT so that a model could follow the SV instructions.
We take DSV as an example and DASV1 could be created similarly. To do so, we first generate 32 responses per prompt for the
entire MATH training split with a temperature of 1.2 and top-p of 0.9. We then apply our SV templates Tq and Ta to create
corresponding SV question and answer pairs. The procedure of creating a SV response is given by Algorithm 3. While we
have include an example of SV responses in Figure 8, we make it more concrete the SV response template below,

We then apply some filtration F to the created dataset. We remove SV responses whose final answers are incorrect. From the
remaining set, we sub-sample 500 question-response pairs. These pairs are selected from problems that have between 4 and
8 distinct answers out of 32 samples, ensuring that we construct sequential responses with a diverse trials. The distribution of
trial counts and distinct answer counts are shown in Figure 9. It can be observed that the filtered data is diversely distributed.
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SV template: Ta(A1, · · · , Ak,final answer) (if con-
sensus found)

[TRIAL] {A1} [/TRIAL]
[TRIAL] {A2} [/TRIAL]
· · ·
[TRIAL] {Ak} [/TRIAL]
The answer final answer has occurred three times, and is
considered as a consensus.
The final answer is final answer . I hope it is correct.

SV template: Ta(A1, · · · , A8,final answer) (if no
consensus found)

[TRIAL] {A1} [/TRIAL]
[TRIAL] {A2} [/TRIAL]
· · ·
[TRIAL] {A8} [/TRIAL]
Maximum trials reached but no consensus found due to a
tie; the most plausible answer is final answer .

The final answer is final answer . I hope it is correct.

Figure 8: SV response templates. Left: suppose a consensus is found at k-th answer; Right: no consensus found. Note the
subscript i of Ai only denotes index of answer, Ai and Aj could still have same final answer for i ̸= j.

Algorithm 3 Creating SV Response for SFT .

Require: template Tq , Ta, a problem Q, a set of shuffled responses {Ai : i = 1, 2, · · · ,K}
1: create prompt: Tq(Q) replace problem placeholder with Q
2: responses = []; final answer = [INVALID ANSWER]; found = False
3: for i = 1, 2, · · · ,K do
4: responses.append(Ai)
5: majority = find majority(responses)
6: majority count = count majority(responses, majority)
7: if majority count == 3 then
8: found = True; final answer = majority; break
9: end if

10: end for
11: if found == False and responses contain correct solution then
12: final answer = random pick a correct solution
13: end if
14: create SV response: Ta(responses, final answer)

(a) Distribution of number of trials per response (b) Distribution of number of distinct answers

Figure 9: The distribution of filtered prompt-responses subset, which suggests that the construct data is generally diversely
distributed.
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H. Integer Linear Program Solving
We use SciPy MILP solver, available here, to solve an integer LP every iter. Figure 1 is a Pythonic pseudo-code. And the
wall-time consumed could be found in Figure 10. As the problem size is small, so the computational overhead is negligible.

1 import numpy as np
2 from scipy.optimize import milp, LinearConstraint, Bounds
3

4 def solve_iub(acceptance, is_vote, budget):
5 """ solves a Inference under Budget (IuB) problem. Parameters:
6 - acceptance: an n x m array where each element is 1 if accepted, 0 otherwise.
7 - is_vote: an n x m array indicating whether response is voting (1) or non-voting (0).
8 - budget: the fractional budget (q+) constraint for the problem. """
9 n, m = acceptance.shape

10 # calculate pass rates for vote-based and non-vote-based responses
11 vote_pass_rate = np.mean(acceptance * is_vote, axis=1, keepdims=True)
12 sample_pass_rate = np.mean(acceptance * (1 - is_vote), axis=1, keepdims=True)
13 margin = vote_pass_rate - sample_pass_rate # (n, 1)
14 # flattern acceptance and vote indicator, tile the margin
15 acceptance = np.reshape(acceptance, -1) # (n x m, )
16 is_vote = np.reshape(is_vote, -1) # (n x m, )
17 margin = np.reshape(np.tile(margin, [1, m]), -1) # (n x m, )
18

19 # define the objective function coefficients
20 c = -1 * margin * is_vote + margin * (1 - is_vote)
21 # acceptance constraints: ensure each prompt meets acceptance criteria
22 A_acceptance = np.eye(len(acceptance))
23 b_acceptance = acceptance
24 # one response per problem constraint (BoN)
25 A_problem = np.zeros((n, n * m))
26 for i in range(n):
27 A_problem[i, i * m:(i + 1) * m] = 1
28 b_problem = np.ones(n)
29 # voting responses budget constraint
30 A_vote_budget = np.where(is_vote == 1, 1, 0).reshape(1, -1)
31 vote_budget = np.round(budget * len(acceptance))
32

33 # combine all constraints into a single matrix
34 A = np.vstack([A_acceptance, A_problem, A_vote_budget])
35 b_lower = -np.inf * np.ones(A.shape[0]) # lower bounds for constraints
36 b_upper = np.hstack([b_acceptance, b_problem, vote_budget]) # upper bounds
37 # solve the MILP problem using the defined objective and constraints
38 result = milp(c, integrality=np.ones(len(c)), bounds=Bounds(0, 1),
39 constraints=LinearConstraint(A, b_lower, b_upper))
40 return result

Listing 1: Pythonic code snippet for solving IuB with SciPy: Note that this is for demonstration purposes, and error-free
execution is not guaranteed, due to omitted corner cases.

Figure 10: Wall time (averaged across ranks) spent by solver in seconds.
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