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Abstract

Explainable artificial intelligence (XAI) promises to provide information about
models, their training data, and given test inputs to users of machine learning sys-
tems. As many XAI method are algorithmically defined, the ability of these method
to provide correct answers to relevant questions needs to be theoretically verified
and/or empirically validated. Prior work (Haufe et al., 2014; Wilming et al., 2023)
has pointed out that popular feature attribution methods tend to assign significant
importance to input features lacking a statistical association with the prediction
target, leading to misinterpretations. This phenomenon is caused by the presence
of dependent noises and is absent when all features are mutually independent. This
motivates the question whether whitening, a common preprocessing effectively
decorrelating the data before training, can avoid such misinterpretations. Using
an established benchmark (Clark et al., 2024b) comprising ground truth-based
definitions of explanation correctness and quantitative metrics of explanation per-
formance, we evaluate 16 popular feature attribution methods in combination with
5 different whitening transforms, and compare their performance to baselines. The
results show that whitening’s impact on XAI performance is multifaceted, with
some whitening techniques showing marked improvement in performance, though
the degree of this improvement varies by XAI method and model architecture. The
variability revealed in the experiments can be explained by the complexity of the
relationship between the quality of pre-processing and the subsequent effectiveness
of XAI methods, which underlines the significance of pre-processing techniques
for model interpretability.

1 Introduction

In recent years, there has been a growing focus on empirically validating the performance of so-called
explainable artificial intelligence (XAI) methods by examining the accuracy of their explanations
(such as, Tjoa & Guan, 2020; Li et al., 2021; Zhou et al., 2022; Arras et al., 2022; Gevaert et al.,
2022; Agarwal et al., 2022; Oliveira et al., 2024; Wilming et al., 2024). While some such studies use
ground-truth explanations, they often face limitations in their objective assessment of explanation
correctness, the variety of XAI methods analyzed, and the complexity of the explanation tasks. Many
existing ground-truth problems are designed in a way that avoids realistic correlations between class-
related and class-unrelated features (such as image foreground versus background). In real-world
scenarios, however, such dependencies can introduce suppressor variables, noisy features that are
not directly associated with the prediction target but can be utilized by the model (for example, for
denoising, e.g., Haufe et al., 2014). For instance, in image data, background elements representing
lighting conditions could act as suppressor variables. A model may leverage this information to
adjust for lighting variations, thereby enhancing object detection. More comprehensive discussions
on suppressor variables are available in Conger (1974); Friedman & Wall (2005); Haufe et al. (2014);
Wilming et al. (2023).
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A common XAI paradigm is to assign an ‘importance’ score to each feature of a given input. It has
been shown, though, empirically and theoretically, that various popular feature attribution methods
tend to systematically assign importance to suppressor variables even in linear settings (Wilming
et al., 2022, 2023). Extending this result, the work of Clark et al. (2024b) introduces the XAI-TRIS
datasets, composed of four binary image classification problems, one linear and three non-linear. In
each dataset, different types and combinations of tetrominoes (Golomb, 1996), geometric shapes
consisting of four blocks, need to be distinguished from one another. These tetromino images are
overlaid on different types of noisy backgrounds: white noise (WHITE) and correlated (CORR)
background; the latter induces a suppression effect through Gaussian smoothing.

The tetrominoes then represent discriminative features serving as ground truth explanations. Clark
et al. (2024b) show that contemporary XAI methods fail to highlight tetrominoes consistently and, in
some cases, are outperformed by model-ignorant edge detectors.

It is assumed that the suppression effect degrades explanation performance, and one potential
approach to reduce this impact is to use data whitening techniques. Whitenings are multivariate
linear transformations that transform the original features into a new space in which all features are
uncorrelated and have unit variance, thus reducing feature redundancy. Notably, some whitening
transformation maintain a 1:1 correspondence between original and transformed features, making it
possible to visualize importance attributions in input space and assessing their efficacy as explanations.

In this paper, we take the XAI-TRIS datasets and use the associated experimental pipeline proposed
by Clark et al. (2024b) to assess whether the use of whitening techniques can improve the performance
of XAI methods with respect to correctness of the explanations produced. The data scenario where
the WHITE background type gets utilized serves as a baseline due to having no correlations between
features of the background, hence we are not applying whitening methods. Then we test if applying
whitening methods to the CORR background type can reduce the impact of suppressor variables.
Here, we hypothesize explanations to be more aligned with discriminative features, and hence to see
improved explanation performance.

2 Methods

Our general workflow of applying and benchmarking post-hoc XAI methods follows previous work
(Wilming et al., 2022; Clark et al., 2024b,a). We take a dataset generated with explicitly known
class-related features defining the classification task and the ground truth for explanations, and
train a machine learning model. The trained model is then applied to test inputs, for which output
explanations are computed by XAI methods. We exclusively consider feature attribution methods,
which assign an ‘importance’ score to each feature of the input. We then apply two performance
metrics to compare produced explanations and the ground truth explanation for the given sample,
giving us measures of the explanation performance of each method. Below, we highlight each of
these steps, with more depth and the exact parameterizations given in the appendices.

2.1 Data Generation

We utilize the datasets supplied by the XAI-TRIS suite (Clark et al., 2024b), providing four binary
image classification problems. We make use of the 8× 8-px variant with two background types – the
uncorrelated (WHITE) and correlated (CORR) backgrounds. The CORR background type takes the
WHITE background and smoothes it with a Gaussian filter, inducing correlations between features.
This also induces a suppression effect where background pixels overlapping with the placed tetromino
are correlated to nearby background pixels. The data generation process is described in full detail in
Appendix Section A, however briefly, the four classification scenarios are defined as:

1. Linear (LIN) In the linear case, the classification problem is between a T-shaped tetromino
versus an L-shaped tetromino pattern placed at the same fixed positions of the image
throughout the entire dataset.

2. Multiplicative (MULT) The multiplicative scenario is similar to the LIN scenario with
classifying T- versus L-shaped tetrominoes, however here each tetromino is multiplied with
the background to induce non-linearity.
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3. Translations and rotations (RIGID) Here, the T- and L-shaped tetromino patterns are not
in a fixed position and are randomly translated and rotated anywhere in the sample, and
added together with the underlying background.

4. XOR Both of the T- and L- shaped tetrominoes are present in each sample, but the classifica-
tion problem is defined as the XOR configurations of adding or subtracting both tetrominoes
from the background versus adding/subtracting one of each tetromino in the other class.

2.1.1 Data whitening methods

Data whitening is achieved by applying a linear transformation that adjusts the direction and scale
of the data. The process typically involves eigenvalue decomposition of the covariance matrix and
normalizing the eigenvalues (Kessy et al., 2018). We study the following five techniques for which
the Appendix B contains more details.

Sphering This standard whitening technique multiplies the data with the inverse square root of
the covariance matrix. Geometrically, this means first rotating the data onto the principal axes, then
scaling the data to have unit variance across all principal axes, and then finally to rotate the data back
into input space. As such, there is a one-to-one correspondence between original and transformed
features (Kessy et al., 2018).

Symmetric Orthogonalization The method of Symmetric Orthogonalization (Annavarapu, 2013)
transforms data into mutually uncorrelated variables such that the difference between original and
transformed features is least-squares minimized. The overlap matrix is calculated as the covariance
matrix without removing the mean values, and it is diagonalized through eigenvalue decomposition,
A one-to-one correspondence between original and transformed features is therefore available.

Optimal Signal Preservation Whitening Similar to symmetric orthogonalization, this technique
aims to preserve the signal of each feature while removing redundancy among features (Kessy et al.,
2018). Instead of using the overlap matrix of symmetric orthogonalization, the correlation matrix is
diagonalized - similar to sphering.

Cholesky Whitening Cholesky whitening (Kessy et al., 2018) applies the Cholesky decomposition
to the covariance matrix. This decomposition leads to a lower triangular transformation matrix that
leads to uncorrelated uniform-variance transformed features. Notably, the triangular structure induces
an ordering, whereby the first feature remains unchanged, the second feature gets orthogonalized w.r.t.
the first, the third feature gets orthogonalized w.r.t to the first two, and so on. Hence, this whitening
depends on the order of pixels, which in our case is (H,W ) for H, the height of the image and W, the
width. The top-left pixel in the image remains unchanged, with the subsequent orthogonalization
following horizontally across each row of pixels.

Partial Regression In contrast to the global approaches of the previous methods, partial regression
(Velleman & Welsch, 1981) focuses on removing the linear dependence of each feature on the others,
one at a time. This approach involves regressing each feature against all others and replacing it with
the residuals of this regression. While this method does not directly ensure uncorrelated features with
unit variance, it aims to remove some of the shared information between them.

For each of these whitening and related techniques, the XAI-TRIS data is initially centered, and the
resulting covariance matrix is regularized to ensure numerical stability. This is done by adding a value
slightly larger than the absolute minimum eigenvalue to the diagonal of the covariance matrix, if the
smallest eigenvalue is negative or very close to zero. Here, we compare the minimum eigenvalue to
the threshold 1× 10−16.

2.2 Classifiers

Following the approach of Clark et al. (2024b), three different architectures are employed: (1) a Linear
Logistic Regression (LLR) model, a single-layer fully-connected neural network; (2) a Multi-Layer
Perceptron (MLP) with four fully-connected layers, using ReLU activations; and (3) a Convolutional
Neural Network (CNN) with four ReLU-activated convolutional layers followed by max-pooling.
All models lead to a two-neuron softmax-activated output layer. We train a model for each CORR
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scenario and also for each whitening method applied to the respective CORR scenario, making use
of the appropriate whitened data for each model. We ensure that each trained model achieves at
least 80% test accuracy, so that the resulting trained models have comparative performance. Specific
details are described in Appendix D.

2.3 XAI Methods

We analyze sixteen widely recognized methods within the domain of XAI. The core discussion is
centered around the evaluation of four distinct XAI methods: Local Interpretable Model-Agnostic
Explanations (LIME) (Ribeiro et al., 2016), Layer-wise Relevance Propagation (LRP) (Bach et al.,
2015), Gradient SHAP (Lundberg & Lee, 2017), and Integrated Gradients (Sundararajan et al.,
2017). The full list of methods studied and the associated results can be seen in Appendix Section E.
Predominantly, default parameters are adhered to, with exceptions noted where a baseline b = 0 is
explicitly defined, reflecting a widely recognized convention in the field (Mamalakis et al., 2022).

The input for an XAI method is a trained ML model, the given test sample or batch of multiple
samples designated for explanation, and (where relevant) the baseline test reference b = 0. The full
results presented in the appendices (Figures 6 and 7) make use of four model-ignorant techniques to
establish baselines of explanation performance. This enables the assessment of whether the often
intricate XAI methods genuinely offer superior explanations compared to approaches devoid of
model-specific insights. The first method considered is the Sobel filter, employing both horizontal
and vertical filter kernels to estimate the first-order derivatives of data. The second method utilized is
the Laplace filter, which approximates the second-order derivatives of data using a single symmetrical
kernel. Both methodologies serve as edge detection operators and are applied to each test sample.
Additionally, random samples from a uniform distribution and the rectified test data sample itself are
employed as ‘explanations’ for comparison purposes.

2.4 Explanation Performance Metrics

We define a ‘correct’ explanation as one which highlights truly important features for the classification
task (i.e. any subset of features forming the tetrominoes) and does not place false-positive importance
on features outside of said ground truth. We adopt the quantitative metrics used by Clark et al. (2024b),
namely precision and earth mover’s distance (EMD). These metrics serve as an objective and empirical
foundation for analyzing how well a model’s explanations align with a set of class-dependent features
identified as ground truth.

The precision metric is calculated as the ratio of the correctly identified features within the top k
features ranked by their absolute importance scores to the total number of truly important features
identified in the sample. The focus on the highest-ranking features reflects the real-world scenario
where only the most influential factors are typically considered in decision-making processes (e.g., a
doctor using a subset of symptoms to form a diagnosis).

The EMD quantifies the minimal expenditure required to transform one distribution into another. It is
also known as the optimal transport distance. Applied in our context, this involves the cost needed to
transform a continuous-valued explanation into the ground truth, with both distributions normalized
to have equal ‘mass’. The calculation of EMD utilizes the Euclidean distance between pixels as the
ground metric. To calculate the EMD, we use the algorithm introduced by Bonneel et al. (2011) as
implemented in the Python Optimal Transport library by Flamary et al. (2021). A normalized EMD
performance score is defined by taking the optimal transport from an explanation to ground truth and
dividing by the maximum euclidean distance possible. In practice we take one minus this score such
that a score of 1.0 is the ‘perfect’ explanation.

As discussed by Clark et al. (2024b), both metrics assess the model’s ability to highlight features
that are truly relevant, as per the ground truth, while minimizing the inclusion of less significant
(false-positive) features.
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3 Results

3.1 Qualitative Analysis

Appendix Figure 2 depicts the absolute-valued global importance heatmaps, the mean of all explana-
tions for every correctly-predicted sample, for the LIN, MULT, and XOR scenarios. As the RIGID
scenario has no static ground truth pattern, calculating a global importance map is not possible. Shown
are results for four XAI methods (Gradient SHAP, LIME, LRP, and Integrated Gradients respectively)
for each of the three models (LLR, MLP, CNN respectively) followed by the model-ignorant Laplace
filter. This is shown for a random correctly-predicted sample, including the RIGID scenario, in
Appendix Figure 3.

Interestingly, not all whitening techniques impact XAI interpretations uniformly. The Cholesky
whitening and partial regression techniques demonstrate slightly more focused attributions but still
show notable activity in regions outside the foreground signal. This indicates that while some varied
amount of suppression of background noise is achieved, overall the techniques seem more prone to the
negative influence of suppressor variables on explanation performance. Contrasting that, the optimal
signal preservation and sphering methods, designed to preserve more of the data structure, only subtly
modify explanations and can be observed to yield importance maps that more closely aligned with
the true signal, indicating a stronger reduction of potential suppressor variable influence. Symmetric
orthogonalization presents the most concentrated patterns of importance, closely mirroring the ground
truth and demonstrating the highest resilience to the potentially misleading effects of suppressor
variables among the examined whitening techniques. Appendix Figure 3 presents the importance
maps obtained for a correctly-predicted data sample, for data with no whitening applied and data
for which the symmetric orthogonalization whitening method was applied. Within the variety of
XAI methods, gradient-based methods like Gradient SHAP and Integrated Gradients illustrate an
observable evolution from more dispersed attribution patterns in the non-whitened case, to more
concentrated patterns as the data undergoes the various types of whitening.

3.2 Quantitative Analysis

From Figure 1, it can be observed that the precision of XAI methods tends to decline when operat-
ing on the correlated background (compared to the uncorrelated case), confirming the notion that
correlated noise negatively impacts the ability of XAI methods to accurately identify features of
importance, due to the induction of suppressor variables. This decline is rectified to varying extents
by the application of whitening techniques, which aim to remove the correlation between features in
the dataset, thereby mitigating these potential suppressor variables that could lead to false attributions
of importance. In this regard, Sphering, Optimal Signal Preserving, and Symmetric Orthogonalization
stand out as the most effective techniques in restoring precision, indicating their strength in clarifying
the data’s structure and enhancing the ability of XAI methods to discern true signals from noise. As
with the precision metric, sphering, symmetric orthogonalization and the optimal signal preserving
transformation demonstrate the highest EMD values, reinforcing their effectiveness. Formulated
on similar principles with the main difference being the choice of matrix to be diagonalized in
the eigenvalue decomposition, symmetric orthogonalization (diagonalizing the overlap matrix) and
optimal signal preservation (diagonalizing the correlation matrix) have near identical results. Only
the lower quartile EMD performance for symmetric orthogonalization looks to be slightly higher
than for optimal signal preservation. For both metrics, it can be observed that partial regression and
Cholesky whitening, while sometimes improving upon the correlated scenario, fall short compared
to the other techniques. This suggests that while they do have a positive impact, they might not be
as capable of dealing with complex correlations or might introduce artifacts that prevent the XAI
methods from reaching the accuracy levels of the other techniques.

Appendix Figures 4 and 5 expand on the results of Figure 1 by splitting up results for each problem
scenario and background type, and by the four main XAI methods studied. Appendix Figures 6 and 7
go even further by illustrating the EMD and precision results for all sixteen XAI methods studied and
four baselines for the non-whitened case, compared to the top performing whitening technique as
identified by the qualitative analysis – symmetric orthogonalization. While we can see improvement
in explanation performance in many cases where whitening is used, the results are not consistent
across all XAI techniques.
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Figure 1: Average earth mover’s distance (left) and precision (right) across all samples, XAI methods,
and XAI-TRIS scenarios. This is split by background type, where the WHITE background serves as
a ‘baseline’ with the CORR background type serving as the base for whitening. Each subsequent row
therefore shows the application of different whitening methods to the underlying CORR background
scenarios. Both metrics follow a similar trend of which whitening methods improve the correctness,
where the sphering, symmetric orthogonalization, and optimal signal preserving methods perform the
best – nearly reaching the performance levels of the WHITE results.

4 Discussion and Implications

The presented analysis highlights the intricate relationship between data preprocessing techniques,
specifically whitening, and the explanation performance provided by various XAI methods across
different ML models. While whitening aims to simplify model training and improve numerical
stability, its impacts on XAI interpretability are multifaceted and were the main point of investigation
in this paper.

The observed results demonstrate that whitening does not offer a fundamental protection against
spurious importance attributions to suppressor variables. Such an general effect could only be
expected if the observed features are linear combinations of at most as many independent underlying
signal or noise factors as there are features. For more underlying signals than features, whitening
will inevitable need to mix discriminative and non-discriminative signal components into novel
features, which could lead to worse explanations. Future work will theoretically analyze the impact
of whitening on explanations in low dimensional examples involving suppressor variables, extending
previous work of Wilming et al. (2023).

Despite these considerations, whitening did have a positive effect on explanation performance
depending on the method used. Each technique modifies the data in distinct ways, leading to
unique alterations in the interpretability maps generated by the XAI methods. This is evident by the
consistent trend where whitening techniques both lead to a shift from diffused to localised importance
patterns (that better match the ground truth as seen in the global absolute-valued importance maps)
and produced better quantitative results compared to the correlated background case in which no
whitening method was applied. Specifically, optimal signal preserving whitening and symmetric
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orthogonalization appear to be the most effective in this context, while Cholesky whitening and partial
regression seem to be the least effective among the investigated whitening techniques. For partial
regression, this may be explained by the methods’ inability to fully decorrelate features. Cholesky
decomposition, on the other hand, depends on the feature ordering. Here we only tested one out of
N ! possible orderings - leaving the top-left pixel intact while successively transforming pixels while
moving from the left to the right edge of the image, row by row. This somewhat arbitrary sequential
orthogonalization approach clearly demonstrates a clear disadvantage compared to the globally
optimal maximal signal preservation achieved by symmetric orthogonalization and optimal signal
preserving whitening. The complexities introduced by suppressor variables in XAI interpretations
reinforce the need for careful consideration of background noise and its correlation structures when
evaluating the performance of XAI methods. XAI methods may require additional mechanisms to
distinguish between true predictors and correlated suppressors to maintain adequate explanation
performance.

5 Conclusion

The findings advocate for a tailored approach to data preprocessing, aimed at aligning whitening
techniques with specific interpretative goals for the user’s problem. It becomes apparent that achieving
clear and understandable AI systems necessitates context-sensitive preprocessing strategies that do not
compromise the depth and accuracy of explanations. The findings also call for continued exploration
into the interplay between suppressor variables, model architecture, whitening techniques, and XAI
method efficacy, with the goal of fostering the development of balanced AI systems that are both
high-performing and interpretable. This balance is crucial for measuring that the developed systems
are not only accurate and efficient but also transparent and understandable, ensuring their responsible
and ethical application in real-world scenarios.
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A Data Generation

Following from Clark et al. (2024b), each dataset consists of images of size 8 × 8, formulated as
D = {(x(n), y(n))}Nn=1, containing independent and identically distributed observations (x(n) ∈
RD, y(n) ∈ {0, 1})Nn=1 with N = 10000 and the dimensionality of the feature space D = 64. The
entities x(n) and y(n) represent instances of the stochastic variables X and Y , governed by a joint
probability density function pX,Y (x, y). In each defined scenario, the instance x(n) is synthesized
by integrating a signal pattern a(n) ∈ RD, which encapsulates the critical features that constitute
the ground truth for a model explanation, with background noise η(n) ∈ RD. In the analysis, a
scenario is also considered where the signal pattern a(n) undergoes a random spatial rigid body
transformation (involving translation and rotation of the tetromino) R(n) : RD → RD. In all other
scenarios, the identity transformation is utilized, such that R(n) ◦ a(n) = a(n). The transformed
signal and noise components, (R(n) ◦ a(n)) and (G ◦ η(n)), are horizontally concatenated into
matrices A =

{
(R(1) ◦ a(1)), . . . , (R(N) ◦ a(N))

}
and E =

{
(G ◦ η(1)), . . . , (G ◦ η(N))

}
. The

signal and background components are then normalized by the Frobenius norms of A and E:
(R(n) ◦ a(n)) ← (R(n) ◦ a(n))/∥A∥F and (G ◦ η(n)) ← (G ◦ η(n))/∥E∥F , where the Frobenius

norm of a matrix A is defined as ∥A∥F :=
(∑N

n=1

∑D
d=1(a

(n)
d )2

)1/2

. Additionally, the weighted
sum of the signal and background components is computed, where the scalar parameter α ∈ [0, 1]
determines the SNR. Two distinct generative models are adopted, diverging based on their method of
combining these two elements either additively or multiplicatively. For data generated through either
process, each sample x(n) ∈ RD is scaled to the range [−1, 1]D, such that x(n) ← x(n)/max |x(n)|,
where max |x(n)| denotes the maximum absolute value of the sample x(n).

A.1 Additive Generation

In scenarios where the model is additive, the data generation formula for the n-th sample is defined
as:

x(n) = α(R(n) ◦ a(n)) + (1− α)(G ◦ η(n)) (1)

where the signal pattern a(n) ∈ RD varies, embodying tetromino shapes based on the binary class
label y(n) which is distributed according to a Bernoulli process with a success probability of 0.5. The
noise component η(n), indicative of a non-informative background, is derived from a multivariate
normal distribution N (0, ID), resulting in white Gaussian noise with zero mean and an identity
covariance matrix ID. This setup ensures that noise in each feature dimension is independent and
follows a standard-normal distribution, designated as the WHITE scenario. In each classification
task, an alternate background context, termed CORR, is specified where a two-dimensional Gaussian
spatial smoothing filter G : RD → RD modifies the noise element η(n), with the smoothing parameter
(spatial standard deviation of the Gaussian) set to σsmooth = 3.

A.2 Multiplicative Generation

In scenarios where the model is multiplicative, the sample-wise data generation process is defined as:

x(n) =
(
1− α

(
R(n) ◦ a(n)

))(
G ◦ η(n)

)
(2)

where a(n), η(n), R(n), and G are defined as previously stated, with A and E being Frobenius-
normalized, and 1 ∈ RD. This elaborate approach in generating datasets ensures the creation of
a controlled setting crucial for the accurate and systematic assessment of XAI methods. Such an
approach also serves to certify that the generated data accurately simulates various realistic scenarios
while clearly separating signal from noise, which is pivotal for the analysis and interpretation phases
that follow (Clark et al., 2024b).

A.3 Suppressors Emergence

In the scenarios where background noise is correlated, the presence of suppressor variables is induced
in both the additive and the multiplicative data generation cases. A suppressor, in this context, is
identified as a pixel not part of the foreground R(n) ◦a(n), while its activity still finds correlation with

10



a foreground pixel through the application of the smoothing operator G. Drawing on characteristics of
suppressor variables previously reported (Conger, 1974; Friedman & Wall, 2005; Haufe et al., 2014;
Wilming et al., 2023), it is anticipated that XAI methods might erroneously attribute importance to
suppressor features in both linear and non-linear settings. This misattribution can lead to decreased
explanation performance when compared to scenarios involving white noise backgrounds.

A.4 Scenarios

Four distinct types of scenarios are introduced using tetrominoes (Golomb, 1996), which are geometric
shapes consisting of four features. They are then utilized to define each signal pattern a(n) ∈ R8×8.
Tetrominos were chosen as the basis for signal patterns as they allow a fixed and controllable amount
of features (pixels) per sample. Specifically, the T-shaped and L shaped tetrominoes were selected
due to their four unique appearances under 90-degree rotations. These tetrominos are used to induce
statistical associations between the features and the target in the previously mentioned four different
binary classification problems (Clark et al., 2024b).

Linear (LIN) In the linear case, the additive generation model from equation (1) is employed,
where R(n) represents the identity transformation, combining the pure signal pattern and the Gaussian
white noise background additively. T-shaped tetromino patterns aT and L-shaped tetromino patterns
aL are utilized for signal patterns, positioned near the top-left corner if y = 0 and near the bottom-
right corner if y = 1, respectively, thus constituting the binary classification problem. Each four-pixel
pattern is encoded such that for each pixel in the tetromino pattern, positioned at the i-th row and j-th
column, aT/L

i,j = 1, and zero otherwise.

Multiplicative (MULT) The multiplicative generation process (2) with signal patterns aT , aL is
defined with the same tetrominoes as in the linear case, while transformation R(n) remains the identity
transform. In this scenario, a degree of non-linearity is introduced as the foreground tetromino pattern,
when overlaying the background noise, is reduced towards zero. Therefore, values either increase or
decrease depending on their original sign. The complexity introduced by the non-linearity renders
linear classifiers unable to solve this classification problem effectively (Clark et al., 2024b). This
configuration is meant to evaluate how different machine learning methods can adjust to and manage
intricate, interconnected data presentations that are not linear.

Translations and rotations (RIGID) In the RIGID scenario, the defining tetrominoes for each
class, denoted as aT/L, undergo random translations and rotations. This alteration adheres to a rigid
body transform R(n), with the requirement that the entire 4-pixel tetromino must remain within the
confines of the image space. Such a constraint ensures that despite the randomness of movement
and orientation, the integrity of the tetromino shape is preserved within the visible boundaries of the
dataset samples. This process is classified as an additive manipulation, consistent with the guidelines
established in equation (1). In this context, the complexity introduced by the spatial transformations
prevents the effective application of standard linear methods for resolving the classification challenges
presented. Instead, such intricate scenarios often necessitate the usage of more sophisticated solutions,
typically involving specialized neural network architectures such as Convolutional Neural Networks
(CNNs). These architectures are specifically engineered to address the challenges posed by spatial
variations within image data, making them better suited for capturing and interpreting the nuanced
shifts and rotations applied to the tetromino shapes within the RIGID framework.

Exclusive or (XOR) In the XOR configuration, an additive challenge is presented where both
tetromino variants, denoted as aT/L, are utilized in each sample, with the transformation R(n)

maintaining its role as the identity transform. Within this setup, the class membership is defined such
that for the first class (where y = 0), a combination of both tetromino shapes is superimposed on the
image background, either in a positive or negative overlay, expressed as aXOR++ = aT + aL and
aXOR−− = −aT − aL. Conversely, for the second class (where y = 1), the tetromino shapes are
displayed in a contrasting manner; one shape is overlaid positively, and the other negatively, denoted
as aXOR+− = aT − aL and aXOR−+ = −aT + aL. This ensures that all four XOR configurations
are represented with equal frequency within the dataset.
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B Whitening Techniques

B.1 Mathematics of Whitening

Whitening represents a linear transformation applied to a D-dimensional random vector x =
(x1, . . . , xD)⊤, which has a mean E[x] = µ = (µ1, . . . , µd)

⊤ and a positive definite d × d co-
variance matrix var[x] = Σ. This transformation maps x to a new random vector:

z = (z1, . . . , zd)
⊤ = Wx (3)

where z maintains the same dimension d and has a "white" covariance with unit diagonal, var[z] = I.
The d× d matrix W is termed the whitening matrix. Whitening is especially critical in multivariate
data analysis for both computational and statistical simplification and is frequently utilized in
preprocessing and as part of modeling (Zuber & Strimmer, 2009; Hao et al., 2015). Whitening
extends beyond merely standardizing a random variable, which is performed through:

z = V− 1
2x (4)

with V = diag(σ2
1 , . . . , σ

2
d) containing the variances var[xi] = σ2

i . This leads to var[zi] = 1,
although it does not address correlations. Standardization and whitening transformations are often
coupled with mean-centering of x or z to ensure E[z] = 0, though this is not mandatory for
ensuring unit variances or white covariance. The whitening transformation as defined requires
selecting a suitable whitening matrix W. Since var[z] = I, it follows that WΣW⊤ = I, thus
W(ΣW⊤W) = W, under the condition that

W⊤W = Σ−1. (5)
Nevertheless, this condition does not uniquely specify the whitening matrix W. In fact, given Σ,
there are infinitely many matrices W that fulfill this condition, each leading to a distinct whitening
transformation producing orthogonal yet differently sphered random variables (Kessy et al., 2018).

For all whitening techniques, we regularize the covariance (or correlation, in the case of Optimal
Signal Preserving) matrices before further calculation. This is done by checking if the smallest
eigenvalue is negative or close to zero (under a threshold of 1×10−16), and then adding a regularizing
value slightly larger than the absolute minimal eigenvalue to the diagonal values of the covariance
matrix.

B.2 Cholesky Whitening

Cholesky whitening utilizes the Cholesky decomposition to transform a dataset into one where all
features are uncorrelated and possess unit variance. This technique ensures that the transformed
features have a simpler structure, facilitating more stable numerical computations. The Cholesky
whitening procedure encompasses the following steps:

1. Compute the covariance of the data matrix Σ

2. Perform Cholesky decomposition on Σ, which results in:

Σ = LL⊤ (6)
Here, L is a lower triangular matrix with real and positive diagonal entries.

3. Apply the whitening transformation to obtain the decorrelated feature matrix Xwhite, com-
puted as:

Xwhite = L−1(X−X) (7)
where X denotes the data matrix and X is the mean vector of the columns.

The utilization of the Cholesky whitening matrix leads to the formation of both a cross-covariance
matrix and a cross-correlation matrix. These matrices are distinctive for being lower-triangular
with positive diagonal elements (Kessy et al., 2018). The adoption of Cholesky factorization for
whitening purposes inherently implies a specific ordering of the variables involved. This ordering is
particularly beneficial for time series analysis, as it facilitates the incorporation of auto-correlation
effects as highlighted by Pourahmadi (2011). The Cholesky whitening process is also recognized
for its computational efficiency. Compared to alternative methods such as eigenvalue or singular
value decompositions, Cholesky decomposition is generally quicker due to its simpler computational
requirements.
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B.3 Partial Regression Whitening

While not a whitening technique in the above sense, the primary objective of using partial regression
as a whitening-like method is to modify each independent variable to isolate its unique variance,
minimizing the influence of other variables. The procedure begins by first centering the data, which
is an important step for ensuring that each variable contributes equally to the analysis by removing
mean bias. Then follows the iterative residual calculation step which aims to reduce the influence of
other features on each target feature, thereby whitening the dataset:

1. For each feature, separate it as the target (to be considered as a temporary dependent
variable) from the matrix of remaining features (treated as independent variables), such that
ỹd = xN,d for the N sample values in the d-th feature of the N ×D data matrix X.

2. Taking X̃d = [xN,0, . . . ,xN,d−1,xN,d+1, . . . ,xN,D], perform the regression

ỹd = X̃dβd. (8)

3. Compute regression weights by applying the pseudo-inverse X̃+
d of the matrix of independent

variables X̃d to the target feature
βd = X̃+

d ỹd. (9)

4. Calculate and extract the residuals, which are the portions of the target feature not explained
by its linear relationship with the other features. These residuals represent the "whitened"
features, such that

Xwhite
d = ỹd − X̃dβd. (10)

B.4 Symmetric Orthogonalization

Symmetric orthogonalization, specifically Löwdin symmetric orthogonalization, is a method designed
to convert a set of linearly independent, non-orthogonal vectors into an orthonormal set. This
procedure is critical in quantum chemistry for orthogonalizing hybrid electron orbits, among other
applications in computer science, mathematics, statistics, biology, and neuroscience (Annavarapu,
2013; Colclough et al., 2015). The steps involved are:

1. The first step involves computing the overlap matrix S through the equation S = X⊤X,
where X represents the matrix of basis vectors. The overlap matrix quantifies the non-
orthogonality among the basis vectors.

2. S is diagonalized, leading to the formation of S = UDU⊤, where U contains the eigenvec-
tors, and D is a diagonal matrix of eigenvalues.

3. The orthogonalization matrix P is then formed as P = UD− 1
2U⊤. Applying P to the

initial set of basis vectors yields an orthonormal set Xwhite = PX⊤, aligning with the
principle of minimizing deformation from the original vectors in the least-squares sense
(Annavarapu, 2013).

Löwdin symmetric orthogonalization stands apart from sequential methods like Cholesky Whiten-
ing by treating all vectors simultaneously, thereby preserving symmetry and ensuring minimal
deformation of the basis vectors.

B.5 Optimal Signal Preservation Whitening

Optimal Signal Preservation (OSP) Whitening (Kessy et al., 2018) is a variant of whitening designed
to remove linear correlations among variables in a dataset while preserving the signal as effectively as
possible. The process of whitening through OSP is similar to Löwdin symmetric orthogonalization,
with the main difference being that the correlation matrix is diagonalized in the eigenvalue decompo-
sition for OSP, not the overlap matrix. Similar to symmetric orthogonalization, OSP whitening strives
to retain the original characteristics of the data. The whitening process involves the following steps:

1. The mean from each feature of the dataset is subtracted to ensure that the data is centered
around zero. This step is critical for removing any bias that could distort the correlation
analysis.
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2. The correlation matrix from the centered data is calculated as ρX = Σ⊘ σXσ⊤
X, where ⊘

is the element-wise division operator. The correlation matrix is regularized as described
at the end of Appendix Section B.1, instead of the overlap matrix used by symmetric
orthogonalization. This method focuses on the normalized measure of the variables’ linear
relationships, providing a standardized basis for decorrelation.

3. The transformation matrix P is computed by inverting the square root of the regularized
correlation matrix and scaling it by the diagonal matrix of the inverse square root of the
data variance, such that P = ρX

−1/2diag(σX)−1. This creates a whitening matrix that
decorrelates the variables and equalizes their variance without relying on the eigenvalue
decomposition.

4. The whitening transformation is applied to the centered data Xwhite = X ·P⊤, resulting in a
set of uncorrelated variables with unit variance. This step effectively whitens the data while
aiming to preserve the original signal structure as much as possible.

C Defining Ground-Truth Feature Importance

Ground truth feature importance is quantitatively defined through the identification of significant
pixels, where the significance of a pixel is determined by its statistical relationship with the target
outcome (Wilming et al., 2023). This leads to the establishment of ground truth sets for significant
pixels, considering the positions occupied by tetromino patterns within the dataset, formalized as:

F+(x(n)) := {d|
(
R(n) ◦ a(n)

)
d
̸= 0, d ∈ {1, . . . , 64}}. (11)

In the contexts of both LIN and MULT, each dataset sample includes either a T or an L shaped
tetromino, each anchored at predetermined positions, corresponding respectively to the patterns
aT and aL. This structured approach ensures that the absence of a tetromino shape at one specific
location is considered as informative as the presence of the alternate shape in a different location,
enhancing the comprehensive nature of the pixel importance set in these contexts as:

F+(x(n)) := {d|(H ◦ aT )d ̸= 0 ∨ (H ◦ aL)d ̸= 0, d ∈ {1, . . . , 64}}. (12)

This conceptual framework is identical to equation 11 for the XOR challenge and adheres to the
operational definition of feature importance as established by Wilming et al. (2023), applied uniformly
across the LIN, MULT, and XOR scenarios. In these analyzes, a feature is recognized as significant
if it demonstrates a statistical relationship with the target outcome across the dataset under review.
Consequently, the most important criterion for any optimal explanation method within this framework
is to assign significance exclusively to elements within the set F+(x(n)), thereby ensuring that the
attribution of importance is directly tied to statistically relevant features (Clark et al., 2024b).

D Classifiers

Convolutional layers in the CNN architecture are defined with parameters set to enable comprehensive
feature analysis: four filters, a kernel size of two, a stride of one, and padding designed to preserve
the dimensional integrity between input and output shapes. This padding not only enhances pixel
utilization throughout each convolution but also serves to prevent the reduction of output sizes
from the already compact images by introducing zero-value filler pixels at the peripheries (Clark
et al., 2024b). Some widely recognized CNN features like batch normalization are omitted due to
compatibility issues with various XAI methodologies. For the parameterization θ and the training
dataset Dtrain, classifiers denoted as fθ : RD → Y are trained. The training of each network spans
over 500 epochs, utilizing the Adam optimizer without regularization. A distinct learning rate
is applied based on the scenario: 0.004 for the LIN, MULT, and XOR scenarios, and a reduced
rate of 0.0004 for the RIGID scenario to account for its increased complexity. During training,
the validation dataset Dval plays a crucial role at each epoch, offering insights into the model’s
generalization capabilities on unseen data. The validation loss, computed at every epoch, serves as a
marker for assessing when the classifier has attained its optimal performance. This is determined by
recording the model state at the epoch where the validation loss is at its minimum, a strategy that
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aids in circumventing typical issues of model overfitting. Upon concluding the training phase, the
test dataset Dtest is employed to evaluate the finalized model’s performance, which is also pivotal
in the subsequent analysis of XAI methodologies. A classifier is considered to have effectively
generalized the classification challenge if it achieves a test accuracy that meets or surpasses an 80%
threshold. To accommodate experimentation across a diverse array of XAI methods, each network is
constructed within both PyTorch and Keras environments, leveraging a TensorFlow backend. This
dual-implementation approach allows for compatibility with a wide range of XAI tools, including
those supported by the Captum (Kokhlikyan et al., 2020) and iNNvestigate (Alber et al., 2018)
frameworks.

E XAI Methods

Table 1: Summary of XAI Methods Analyzed as per Clark et al. (2024b)

XAI Method Description Reference, Framework, parameterization

Permutation Feature Importance (PFI) Measures the change in prediction error of the
model after permuting each feature’s value.

Fisher et al. (2019), Captum, Default,

Integrated Gradients Computes gradients along the path from a base-
line input to the input sample and cumulates these
through integration to form an explanation.

Sundararajan et al. (2017), Captum, Default, Zero input baseline

Saliency Computes the gradients with respect to each input
feature.

Simonyan et al. (2014), Captum, Default

Guided Backpropagation Computes the gradient of the output with respect to
the input but ensures only non-negative gradients
of ReLU functions are backpropagated.

Springenberg et al. (2015), Captum, Default

Guided GradCAM Computes the element-wise product of guided
backpropagation attributions with respect to a
class-discriminative localization map in the final
convolution layer of a CNN.

Selvaraju et al. (2017), Captum, Default

Deconvolution Uses a Deconvolutional network to map features
to pixels, ensuring only non-negative gradients of
ReLU functions are backpropagated.

Zeiler & Fergus (2014), Captum, Default

DeepLift Compares the activation of each neuron to its ’refer-
ence activation’ and produces an explanation based
on this difference.

Shrikumar et al. (2017), Captum, Default, Zero input baseline

Shapley Value Sampling Approximates Shapley values by repeatedly sam-
pling random permutations of input features and
calculating the contribution of each feature to the
prediction.

Castro et al. (2009), Captum, Default, Zero input baseline

Gradient SHAP Approximates Shapley values by computing the
expected values of gradients when randomly sam-
pled from the distribution of baseline samples.

Lundberg & Lee (2017), Captum, Default, Zero input baseline

Kernel SHAP Approximates Shapley values through the use of
LIME, setting the loss function weighting kernel
and regularization term in accordance with the
SHAP framework.

Lundberg & Lee (2017), Captum, Default, Zero input baseline

Deep SHAP Approximates Shapley values through the use of
DeepLift, computing the DeepLift attribution for
each input sample with respect to each baseline
sample.

Lundberg & Lee (2017), Captum, Default, Zero input baseline

Locally-interpretable Model Agnostic Explanations (LIME) Learns a linear surrogate model locally to an in-
dividual prediction, perturbing and weighting the
dataset in the process, then builds an explanation
by interpreting this local model.

Ribeiro et al. (2016), Captum, Default

Layer-wise Relevance Propagation (LRP) Propagates the model output back through the net-
work as a measure of relevance, decomposing this
score for each model layer.

Bach et al. (2015), Captum, Default

Deep Taylor Decomposition (DTD) Applies a Taylor decomposition from a speci-
fied root point to approximate the network’s sub-
functions, building explanations backward from
the output to input variables.

Montavon et al. (2017), iNNvestigate, Default

PatternNet Estimates activation patterns per neuron through
signal estimator and back-propagates this through
the network.

Kindermans et al. (2018), iNNvestigate, Default

PatternAttribution utilizes the theory of PatternNet to estimate the root
point for Deep Taylor Decomposition and yields
the attribution for weight vector and positive acti-
vation patterns.

Kindermans et al. (2018), iNNvestigate, Default
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F Results

F.1 Qualitative Results

F.2 Quantitative Results
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Figure 2: Absolute-valued global importance maps calculated as the mean importance value over all
correctly predicted samples, for selected XAI methods and baselines.
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Figure 3: Absolute-valued importance maps obtained for a random correctly-predicted data sample,
for data with no whitening applied and data for which the symmetric orthogonalization whitening
method was applied. Note, different samples are visualised for both cases.
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Figure 4: Boxplots of EMD scores across all problem scenarios and background types, where each
plot is separated for each of the four main XAI methods studied.
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Figure 5: Precision scores across all problem scenarios and background types, where each plot is
separated for each of the four main XAI methods studied.
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Figure 6: EMD results for all investigated XAI methods and baselines visualised as boxplots of
median and quartile scores. The top plot shows the case where no whitening methods are applied to
any scenario, and the bottom shows the equivalent where Symmetric Orthogonalization is applied to
every scenario, even the WHITE background scenarios. A slight increase in EMD performance can
be seen when whitening is applied, whilst retaining the same general trend in XAI method results.
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Figure 7: Mean and standard deviation Precision results for all investigated XAI methods and
baselines. The top plot shows the case where no whitening methods are applied to any scenario, and
the bottom shows the equivalent where Symmetric Orthogonalization is applied to every scenario,
even the WHITE background scenarios. A slight increase in EMD performance can be seen when
whitening is applied, whilst retaining the same general trend in XAI method results.
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