
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NON-INCREMENTAL BOTTOM-UP KNOWLEDGE
COMPILATION OF NEURO-ANSWER SET PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neuro-Probabilistic Answer Set Programming offers an intuitive and expressive
framework for representing knowledge involving relations, non-determinism, log-
ical constraints, and uncertainty-aware perception. Such a high expressivity comes
at a significant computational cost. To mitigate that, Knowledge Compilation
(KC) approaches translate the logic program into a logic circuit for which infer-
ence and learning can be performed efficiently. Top-down KC approaches employ
an intermediary step of translating the logic program into a CNF propositional
formula, before the actual KC step. This has the drawback of requiring the use
of auxiliary variables and a fixed variable ordering. Bottom-up KC approaches
instead construct a circuit representation compositionally, by employing circuit
operations that represent the subparts of the logic program, without the need of
auxiliary variables and allowing dynamic variable ordering. However, interme-
diary circuits can grow quite large even when the end circuit is succinct. In this
work, we develop a non-incremental bottom-up KC strategy that provably and
empirically reduces the size of the intermediary representations compared to its
incremental counterpart. We explore heuristics for v-tree initialization and dy-
namic variable reordering. Experimental results show that our method achieves
state-of-the-art performance for a large class of programs.

1 INTRODUCTION

Answer Set Programming (ASP) is a powerful declarative programming language for representing
and solving combinatorial problems and commonsense reasoning (Eiter et al., 2009). In short, an
ASP program conveniently describes a problem as a set of facts, if-then rules, disjunctions and higher
order constructs such as aggregates (sum, count, etc), arithmetic expressions and inequalities.

Probabilistic Answer Set Programming (PASP) extends ASP with the ability to represent probabilis-
tic uncertain knowledge (Poole, 1993; Baral et al., 2004; Cozman & Mauá, 2020). By associating
probabilities to the output of neural classifiers, Neural PASP programs provide an elegant formalism
for developing neuro-symbolic AI systems that combine the learning and sub-symbolic represen-
tation capabilities of deep neural networks with the precise and justifiable reasoning abilities of
symbolic systems (Manhaeve et al., 2018; Yang et al., 2020; Geh et al., 2024). Importantly, such
systems can be then trained end-to-end using a distance learning approach.

The main computational approach for inference and parameter learning with PASP involves trans-
lating the program into a propositional logic formula using Clark completion (Clark, 1977). This
formula is then compiled into a tractable logic circuit (Fierens et al., 2015; Li et al., 2023; Totis et al.,
2023; Azzolini & Riguzzi, 2023), a process known as Knowledge Compilation (KC) (Darwiche &
Marquis, 2002). Tractable here means that the circuit satisfies certain properties that ensure that
desired queries can be answered in linear time in the size of the circuit.

KC can generally be performed in two ways. Top-down approaches take a CNF formula as input
and build a circuit as the trace of a DPLL procedure that enumerates models (Darwiche et al., 2004;
Muise et al., 2012; Fierens et al., 2015; Eiter et al., 2024). This requires introducing auxiliary vari-
ables to avoid a blown up of the CNF representation and breaking cycles, which creates difficulties
for variable selection heuristics and ultimately produce unnecessarily large circuits (Vlasselaer et al.,
2014). Even though there are approaches to reduce the number of auxiliary variables introduced
(Fandinno & Hecher, 2023), the resulting circuits can still be significantly larger than necessary.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Bottom-up KC, instead, builds a circuit compositionally, by translating rules into circuits that are
then combined via circuit operations (Wang et al., 2024). This dispenses the need of auxiliary
variables, and allows for dynamic circuit minimization, which can lead to more succinct encodings.
In incremental bottom-up KC, one obtains the result circuit by sequentially conjoining an incumbent
representation with a circuit representation of a rule. As de Colnet (2023) noted, such an approach
can produce large intermediary circuits even when the resulting circuit is small. They proposed
instead to adopt a non-incremental approach that decomposes a CNF formula into variable-disjoint
components, compiles components separately, then conjoin them. Such an approach is proven to
bound the maximum size of the intermediary circuits. de Colnet (2023) however assumed that the
input is a CNF formula that can be decomposable into disjoint components.

The main contribution of this work is the non trivial task of developing a non-incremental bottom-
up KC approach for PASP programs without translation into CNF (which would require adding
auxiliary variables). To accomplish that, we develop a heuristic to decompose a PASP program into
a disjoint set of rules that are separately translated into circuit and jointly conjoined. We extended the
results by de Colnet (2023) to show theoretical linear upper bounds of the size of the intermediary
circuits. Our bottom-up strategy also allows us to take advantage of more efficient encoding of
ASP-specific constructs such as cardinality constraints (Vlasselaer et al., 2014).

2 BACKGROUND

We start with an overview of key concepts in Neuro–Probabilistic Answer Set Programming and
Knowledge Compilation relevant to this work.

2.1 ANSWER SET PROGRAMMING

For simplicity, we consider only ground programs, since the semantics of ASP programs are de-
fined on their grounded versions (Eiter et al., 2009). Hence, a simple atom is an expression
p(c1, . . . , cm) where p is a predicate name and each ci is a constant. A cardinality atom is of
the form l{a1, . . . , an}u, where l ≤ u are integers and ai is a simple atom. Intuitively, they repre-
sent that at least l and at most u of the atoms a1, . . . , an must be simultaneously true (Syrjänen &
Niemelä, 2001). Choice atoms are written as {a1, . . . , an}, where each ai is an atom; they express
that each subset of those atoms should be considered as a candidate solution. An ASP program is a
finite set of disjunctive rules, written as:

a1; . . . ; ak :− b1, . . . , bm, not c1, . . . , not cn. , (1)

where each ai, each bi and ci is an atom. The atoms ai form the head of the rule, bi are the positive
body, and ci are the negative body (the positive and negative parts form the body of the rule). If a
rule has an empty head (i.e., k = 0), it is called a(n integrity) constraint, representing a condition
(the body) that must not be violated. If a rule has an empty body (m = n) and a single simple head
atom it is called a fact. A rule with a single simple head and only simple atoms (k = 1) is a normal
rule.

An interpretation I is a subset of the atoms of the program. An interpretation satisfies an atom,
expression or rule as in a classic propositional logic sense, for instance, if some atom of the body is
false or if both the body and the head are satisfied by I . A model is an interpretation satisfying all
rules. A model I is minimal if there is no other model J such that J ⊂ I . The reduct of a program P
w.r.t. an interpretation I , denoted by P I , is the program obtained by removing all rules whose body
is not satisfied by I , then removing the negative bodies of the remaining rules. An interpretation I
is a stable model iff it is a minimal model of P I .

The dependency graph of a program is a directed graph whose nodes are the atoms appearing in
the program and there is an edge b → a for each rule where a appears in the head and b is in the
body. If b appears negated, then we say the edge is negative otherwise the edge is positive. A normal
program is stratified if it contains no directed cycle that goes through a negative edge. A stratified
program has exactly one stable model; programs that can be broken into a stratified part and a set of
integrality constraints have either 0 or 1 stable model. A normal program is tight if it contains no
directed cycle that contains only positive edges. Tight programs can be translated into semantically
equivalent normal programs in polytime (Linke et al., 2004).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The Clark completion (Clark, 1977) obtains a propositional formula that represents the supported
models of the program by :∧

a∈A(P)

a ⇔
∨

r∈R(P,a)

∧
b∈body(r)

b ∧
∧

a′∈head(r)\a

¬a′
 , (2)

where A(P) is the set of propositional atoms that appear in P , R(P, a) is the set of rules in P that
have a as the head, body(r) is the set of literals in the body of rule r, and head(r) is the set of atoms
in the head of rule r. Every stable model is a (propositional) model of the Clark completion but the
converse is not necessarily true. It is true for example when the program is tight (Ben-Eliyahu &
Dechter, 1994). In general, a stable model is a model of the Clark completion which also satisfies
additional constraints known as loop formulas (Lee & Lifschitz, 2003). That property is used by
many competitive ASP solvers to compute answer sets by a reduction to propositional satisfiability
(Giunchiglia et al., 2006). As SAT solvers typically take CNF encodings as input, such an approach
either resorts to incremental encodings or require the addition of a significant amount of auxiliary
variables (e.g., worst-case quadratic in the number of atoms) to enable succinct CNF encodings.
Also, loop formulas might incur in an exponential blow up in size (Lifschitz & Razborov, 2006).

2.2 NEURO-PROBABILISTIC ANSWER SET PROGRAMMING

One can extend an ASP program to cope with uncertainty by equipping it with annotated disjunc-
tions, written as π1 :: a1; . . . ;πk :: ak, where πi are probabilities that sum to 1, and ai are simple
atoms. Those probabilities can result from the outcome of a neural probabilistic classifier, thus
connecting symbolic and subsymbolic representations. For our purposes here, however, we con-
sider such probabilities as fixed parameters (the extension to end-to-end neural network learning
is straightforward (Yang et al., 2020)). For simplicity, we assume that annotated disjunctions are
disjoint, meaning that no atom appears in more than one annotated disjunction. We also assume that
atoms in an annotated disjunction do not appear as heads of (non-probabilistic) rules. Under such as-
sumptions, annotated disjunctions can be interpreted as representing categorical random variables,
as follows. We also write π :: a to denote a probabilistic fact, that is, an annotated disjunction
π :: a; 1− π :: a′, where a′ is some auxiliary atom not appearing in the program.

Let D(P) denote the set of annotated disjunctions in a PASP program P . A total choice θ is a
mapping from each π1 :: a; . . . , πk :: ak in D(P) to an atom ai; let Pr(ai) = πi. Each total
choice induces a (non-probabilistic) ASP Pθ formed by the rules of the program and facts a for
each a ∈ θ. By assuming independence of choices, such a program is generated with probability
(Taisuke, 1995):

P(θ) =
∏

r∈D(P)

Pr(θ(r)) . (3)

Each generated ASP Pθ is associated with a set of answer sets Γ(θ). Because of the assumptions of
disjointedness of annotated disjunctions, Γ(θ) ∩ Γ(θ′) for θ ̸= θ′. We follow most approaches and
assume that Γ(θ) is non-empty for any θ (a condition called consistency). See (Totis et al., 2023)
and (Mauá et al., 2024) for a discussions on lifting such a restriction.

The classification of programs according to their dependency graph extends to PASP programs, by
simply including atoms in annotated disjunctions as nodes in the graph. Thus, a (consistent) stratified
PASP program admits a unique extension of the probability of total choices Pr(θ) to the probability
of answer sets of the induced programs

⋃
θ Γ(θ). Non-stratified PASP programs however admit more

than one such extension. Two commonly adopted approaches are the: credal semantics Cozman &
Mauá (2020) and the maximum-entropy (maxent) semantics (Baral et al., 2004; Totis et al., 2023).
The credal semantics considers all possible extensions from Pr(θ) to the distribution of answer sets⋃

θ Γ(θ). Inferences are then usually focused on the respective upper and lower probability bounds:

P(a) =
∑

θ:a∈∩Γ(θ)

P(θ) , P(a) =
∑

θ:a∈∪Γ(θ)

P(θ) , (4)

where a is an atom and the notation ∩S (∪S) denotes the conjunction (disjunction) of elements in
S. The maxent semantics instead averages the probabilities:

P(a) =
∑
θ

∑
I∈Γ(θ):a∈I

P(θ)
|Γ(θ)|

. (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1

2

A B

C

(a) A V-tree.

∧

A B

(b) SDD for A∧B.

∨

∧ ∧

¬A ⊤ ⊤ ¬C
(c) SDD for ¬A ∨ ¬C.

∧

∧

A B

∨

∧ ∧

¬A ⊤ ⊤ ¬C
(d) Conjoin of SDDs in Fig. 1b and 1c.

Figure 1: Bottom-up compilation of (A∧B)∧ (¬A∨¬C) into a str-DNNF that respects V -tree 1a.

2.3 KNOWLEDGE COMPILATION

Knowledge Compilation (KC) translates a propositional theory into a target representation for which
certain inferences are performed efficiently. We focus on a specific class of target representations
called structured decomposable Negation Normal Form (str-DNNF). Formally, a Negated Normal
Form (NNF) is a rooted directed acyclic graph whose inner nodes denote either conjunctions (AND)
or disjunctions (OR) and whose leaves are propositional literals. A Decomposable NNF (DNNF)
satisfies decomposability of AND-nodes: the variable sets of any two input circuits are disjoint.
Deterministic DNNF (d-DNNF) additionally satisfies determinism of OR-nodes, meaning that the
logical formulae represented by any two input subcircuits are contradictory (i.e., have no common
model). Finally, structured DNNFs (str-DNNF) satisfy structural decomposability (str-DNNF) of
OR-nodes, which required the concept of a V -tree. Given set of variables A, a V -tree is a full,
rooted binary tree whose leaves are in one-to-one correspondence with the variables in A (Figure
1a). We say a decomposable circuit is str-DNNF if it respects a V -tree T . This means that for every
conjunction α ∧ β, there exists a node t ∈ T such that the scope of α (β) is contained within the
left (right) sub-tree of t. Sentential Decision Diagrams (SDDs) are a special case of str-DNNFs that
(unlike general str-DNNFs) allow for efficient Boolean operations such as Conjoin (AND), Disjoin
(OR), NEG (Negation) or ITE (If-Then-Else). This is at the core of bottom-up KC strategies, as
exemplified in Figure 1.

Notably, d-DNNFs allow for efficient Weighted Model Counting (WMC):

WMC(C) =
∑
ω|=C

∏
ℓ∈ω

weight(ℓ), (6)

where C is a propositional formula (possibly represented as a circuit), the sum ranges over the models
ω of C, the product ranges over the literals ℓ in ω, and weight(ℓ) is a nonnegative function.

When weight functions are associated to neural network outputs, WMC defines a loss function for
learning under propositional logical constraints. Similarly, generalizations of WMC such Alge-
braic Model Counting (AMC) (Kimmig et al., 2017) and Second Order Algebraic Model Counting
(2AMC) Kiesel et al. (2022) capture probabilistic inference and gradient-based learning of Neural
PASP programs under credal and maxent semantics (Wang et al., 2024).

3 RELATED WORK

NeurASP (Yang et al., 2020) extends ASP with neural predicates under the maxent semantics to pro-
vide a PASP-based neuro-symbolic framework. Inference and learning is performed by enumerating
probabilistic choices and stable models (calling an external ASP solver), which limits their use to
programs with few uncertain facts . dPASP Geh et al. (2024) extends NeurASP with the credal se-
mantics and other generalizations (e.g., interval probabilities), but also uses an enumerative scheme
to perform inference and learning.

In contrast, DeepProbLog (Manhaeve et al., 2018) and Scallop (Li et al., 2023) limit input to strat-
ified PASP programs with neural predicates. Both the frameworks compile the program into SDDs
using an incremental bottom-up compilation strategy, while differing in the approach to produce the
formula (either Clark completion or forward chaining) (Fierens et al., 2015; Vlasselaer et al., 2014;
2016).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Totis et al. (2023) adopted a similar KC approach for non-stratified PASP programs under maxent
semantics. However, their method uses top-down compilation with unconstrained sd-DNNFs as tar-
get language (Muise et al., 2012), followed by an enumerative re-normalization step. Consequently,
this final enumerative step causes the approach to scale poorly with the number of answer sets.

Another top-down KC framework is described by Azzolini & Riguzzi (2023), who adapted the
methods for Second Order Answer Set Model Counting by Eiter et al. (2024); Kiesel et al. (2022)
to perform probabilistic inference under credal semantics. Their approach uses an X-first sd-DNNF
as the target language. The role of different circuit properties, such as X-firstness, for various prob-
abilistic semantics is further explored by Wang et al. (2024). They show that while X-firstness
suffices for decision-dNNFs (Darwiche et al., 2004) and is implied by X-constrained SDDs (Oztok
et al., 2016), it is neither necessary nor sufficient for maxent semantics in general.

To our knowledge, this is the first attempt to perform non-incremental bottom-up compilation of
general PASP programs to generate succinct representations. Although SDDs have been used for this
task by Eiter et al. (2024), their approach relies exclusively on top-down KC, which does not exploit
the advantages of bottom-up compilation for generating more compact circuits without auxiliary
variables.

4 BOTTOM-UP COMPILATION

We now present novel algorithms and techniques for non-incremental bottom-up PASP knowledge
compilation. Our approach extends the bottom-up compilation method by Vlasselaer et al. (2014) to
handle the more expressive stable model semantics with disjunctive rules, and integrity and cardinal-
ity constraints (Eiter et al., 2009); credal and maxent semantics of PASP can thus be implemented by
imposing additional constraints during the compilation process (Wang et al., 2024). We assume that
the input for our compilation process is a (ground) PASP program, where annotated disjunctions
have been turned into choice rules. This is a common intermediary step among other compilers
(Eiter et al., 2024; Azzolini & Riguzzi, 2023). The output is a circuit representation whose input
is the atoms of the original program; this circuit can be then used to efficiently perform algebraic
model counting inferences (including parameter learning) (Kimmig et al., 2017; Eiter et al., 2024).

4.1 COMPILATION

Adapting bottom-up compilation in stratified PASP (Vlasselaer et al., 2014) to non-stratified PASP
semantics requires overcoming some challenges, such as disjunctions in the head and constraints.
Additionally, the credal and maxent semantics require the compiled circuit to satisfy X-determinism
(Wang et al., 2024). This is because the credal and maxent semantics implement a two-level AMC,
unlike stratified PASP. This involves an inner semiring that counts over answer sets and an outer
semiring that performs weighted model counting over the probabilities (Kiesel et al., 2022).

The original bottom-up algorithm of (Vlasselaer et al., 2014) does not consider disjunctive rules,
since it uses the completion of an atom a as a ⇔

∨
r∈R(P,a)

∧
b∈body(r) b. Hence, to cope with such

disjunctive rules, the main modification that must be made to the bottom-up algorithm is to use Eq. 2
as the completion. In particular, the Clark completion of Eq. 2 can also be applied to integrity con-
straints, as these can be interpreted as ⊥ ⇐⇒

∨
r∈R(P,⊥)

∧
b∈body(r) b, where R(P,⊥) represents

the set of integrity constraints. Thus, constraints can be viewed as a “sub-case” of the algorithm.

Choice atoms are an essential part of PASP and they require special attention when performing
bottom-up compilation. When an atom a is neither a fact nor appears as head of any rules in the
program, we find that its equation in the Clark completion is equivalent to a ⇐⇒ ⊥ and, thus, a
must be compiled to represent false. This is not the case for both annotated disjunctions (including
probabilistic facts) and choice atoms. For these atoms, we should just not compile their respective
Clark completion, since both can be either true or false, as both are candidates for a solution.

Another key challenge in PASP compilation is the representation of cardinality constraints. While
there are well-studied methods in the literature capable of encoding such constraints more succinctly,
such as Sequential Counters (Marques-Silva & Lynce, 2007) and Totalizers (Bailleux & Boufkhad,
2003), they introduce auxiliary variables, which our approach aims to mitigate. Thus, we propose a
method to compile an upper cardinality constraint by calling Upper(A, 0, u). This is an adaptation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of (Abı́o et al., 2012) that leverages bottom-up compilation to avoid introducing auxiliary variables:

Upper(A, c, t) =


false, if c > t;

true, if |A| ≤ t− c;

ITE(Upper(A \ {a}, c+ 1, t)),Upper(A \ {a}, c, t)), otherwise.
(7)

where A represents the set of atoms inside the cardinality constraint, c is a counter of the current
number of true atoms at the time of the function call, and u is the upper value of the constraint. Even
though Eq. 7 only encodes an upper cardinality constraint, it is fairly straightforward to generalize it
for a lower bound or an “exactly k” constraint. The “exactly k” constraints are of special importance,
since annotated disjunctions can be seen as “exactly one” cardinality constraints. Usually, annotated
disjunctions are encoded using a method proposed by (Shterionov et al., 2015), which essentially
encodes a Sequential Counter (Marques-Silva & Lynce, 2007) by introducing auxiliary variables.

Finally, if one were to compile a non-tight program, there are two approaches to cope with the pos-
itive cycles: cycle-breaking (Eiter et al., 2021); or compilation of loop-formulas (Lee & Lifschitz,
2003). The state of the art for top-down KC applies cycle-breaking algorithms in order to circumvent
positive cycles in the program, due to the possible blow-up of the number of loop formulas. How-
ever, our experimental results show that, in classes of programs, directly compiling loop formulas
might lead to more succinct circuits, since this approach does not introduce auxiliary variables.

Although the proposed method thus far results in a circuit that represents the answer sets of the
underlying ASP program, it misrepresents the probabilistic semantics we consider do to lack of
constraints (Wang et al., 2024). However, to correctly represent such semantics, we can constrain
the circuit to be X-deterministic by restricting its V-tree to have its probabilistic variables on the
left and the logical ones on the right. It is important important to note that this algorithm does not
require the target language to be an SDD. The algorithm can be adapted to use any target language
that supports both efficient bottom-up compilation, (weighted) model counting, and X-determinism.
For example, by imposing X-determinism to str-DASCs (Onaka et al., 2025), one can obtain a
compact representation for PASP programs that does not require the application of determinism to
perform model counting (Onaka et al., 2025; Wang et al., 2024) for PASP semantics (Eq. 4 and 5).

4.2 V-TREE OPTIMIZATION

The size of an SDD strongly depends on its V-tree. One of the key challenges in SDD compilation
is finding a good V-tree that minimizes the size of the compiled circuit, without introducing a large
computational overhead. Although research on good heuristics for circuit ordering initialization
is a well-explored topic in the domain of CNFs (Darwiche, 2011), CNFs do not possess as well-
structured relationships between their variables as is the case with Probabilistic Logic Programs
(PLPs). Therefore, one of the proposals of this work is an heuristic for obtaining good variable
orderings for V-tree generation, using the structure of the program to guide the search space.

The initialization heuristic for V-trees proposed in this work is based on the program; and can be
employed in other PLPs (Fierens et al., 2015; Li et al., 2023). First, we construct the dependency
graph of the program, where each node represents an atom and each edge represents a dependency
between two atoms (whether it is a positive or negative dependency). Then we compute the number
of descendants for each node in the graph. Finally, we sort the atoms in descending order of the
number of descendants. The only restriction that we apply to PASP’s case is that the V-tree must be
X-constrained, so the probabilistic variables have precedence over the (logical) variables.

4.3 NON-INCREMENTAL COMPILATION

A key challenge in Knowledge Compilation are the intermediary circuits that are generated during
the compilation process. Although certain formulas can be represented in a compact form, with
polynomial size, the compilation process itself can lead to an exponential blow-up in the size of
the circuit when compiling the program (de Colnet, 2023). Thus, we present a theorem that shows
that PASP non-incremental compilation can lead to more efficient circuits, specially in cases where
others approach would lead to exponential blow-up when compiling intermediate circuits. The core
idea behind this approach is illustrated in Figure 2, where the compilation of ∆ ∧ Σ is performed
by dividing the compilation task into different clusters, that are independently compiled and then
conjoined; as opposed to the standard incremental compilation, which linearly conjoins.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

∆ ∧ Σ

∆ ∧ Σ1

∆

∆1 ∆2

Σ1

Σ2

(a) Incremental

∆ ∧ Σ

∆

∆1 ∆2

Σ

Σ1 Σ2

(b) Non-incremental

Figure 2: Example of incremental and non-incremental approaches for compiling ∆ ∧ Σ.

In more detail, we create an undirected dependency graph of the Clark Completion of the program,
were nodes are indexed by all the heads that are present in the program, and we have edges between
nodes u and v iff they have an atom in common, either as a head or in the body. With this graph, we
are able to detect disjoint subsets c1, . . . , cm of the Clark Completion rules by applying a connected
components algorithm, such as Union-Find; and then compile each component ci into a circuit ∆i

by using bottom-up algorithm. Finally, we conjoin all ∆i to obtain the representation of Eq. 2.

Although this approach works well for programs that are disjoint by nature, it can not be applied to
programs that have only one connected component, which can be the case if one desires to express
more complex PASP programs with inherent interdependencies. In these cases, we propose applying
an algorithm to find a set of nodes that, when removed from the previous graph, will render the graph
disconnected into disjoint components, allowing application of the non-incremental compilation.
The only special consideration is that, after compiling the disjoint components into a circuit ∆, one
also needs to compile the logical constraints that were removed from the graph into another circuit
Σ. The final circuit is then obtained by conjoining ∆ ∧ Σ.

This bottom-up algorithm is theoretically proven to reduce overall memory requirements by avoid-
ing large intermediary circuits, which can render an incremental compilation process intractable
(de Colnet, 2023). We formalize this argument in the following theorem:

Theorem 1. Given a program P , we can determine m disjoint subsets of the program in polynomial
time, that can be non-incrementally compiled into an circuit of size at most (m − 1) +

∑m
i=1 |Si|,

where Si is the size of the largest circuit obtained by compiling each subset using the bottom-up KC.

Proof (Sketch). The poly-time complexity of determining the disjoint subsets is guaranteed by the
use of a min-vertex-cut algorithm (Skiena, 1998). Since the variables in each Si are pairwise dis-
joint and we consider only str-DNNFs in when performing bottom-up compilation, Lemma 13 in
(de Colnet, 2023) guarantees that the size of the final circuit is at most the sum of the maximum
sizes of the intermediate circuits created during the compilation of each component Si.

5 EXPERIMENTS

Infrastructure All experiments were conducted on a machine with a Ryzen 5 9600x CPU and
64GB of RAM, with a timeout of 30 minutes for each instance. For the top-down knowledge com-
pilers, we used C2D (Darwiche et al., 2004) (with dt method = 3) and adaptations of D4 (Lagniez
& Marquis, 2017) and SHARPSAT (Korhonen & Järvisalo, 2021) that enforce the necessary con-
straints for PASP inference (Eiter et al., 2024). The bottom-up compilation was implemented using
the SDD library (Darwiche, 2011).

Datasets For benchmarking the performance of our non-incremental algorithm, we propose using
the benchmark proposed by (Azzolini & Riguzzi, 2024). We chose this benchmark over others,
such as those from (Eiter et al., 2024; Kiesel & Eiter, 2023), because those works typically compare
PASP KC techniques using CNF compilation benchmarks. Our approach, in contrast, focuses on
directly compiling the program to the target representation, skipping the CNF translation step, which
makes those benchmarks inapplicable. This benchmark corresponds to 4 classes of PASP programs:
Graph Coloring; a non-stratified encoding of the Smokers dataset (Vlasselaer et al., 2014) (one of
the most popular PLP programs in the literature); IRL and IRN, which corresponds, respectively,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10 3 10 2 10 1

10 3

10 2

10 1

100

101

(a) Compilation time (seconds).

50 100 150 200 250 300

100

200

300

400

500

600

(b) Peak memory usage (mb).

Figure 3: Comparison between incremental (y-axis) and non-incremental (x-axis) compilation as we
increase the number of nodes (darker colors) of the graph Coloring program. The dotted black line
represents the baseline; points above it indicate that the incremental approach performed worse.

to classes of programs where we fix: the number of rules and increase the body size; fix the body
size and increase the number of rules. To create random graphs for the graph coloring, we employ
the approach of (Wang et al., 2020) alongside snowball sampling. For the non-stratified Smokers,
we use a fully connected graph, as in the original bottom-up compilation article (Vlasselaer et al.,
2014).

Research Questions We analyze the results with respect to the following aspects.

Q1: Does the non-incremental approach generate smaller intermediary circuits? Figure 3 indi-
cates that the non-incremental approach was able to use considerably less memory when compiling
instances of the Graph Coloring program; and also compile larger instances (up to 15 nodes),
whereas the incremental approach timed out on smaller instances (at 12 nodes).

Q2: Does the proposed initialization heuristic generate more succinct representations? Table
1 also supports the usefulness of the proposed heuristic, showing that it is distinct from other tech-
niques in the literature. It was able to compile larger instances of the Coloring dataset in competitive
time while producing more succinct intermediary representations.

Q3: Is the bottom-up compilation of loop-formulas more succinct than cycle-breaking? Now
that we’ve confirmed that using both the non-incremental compilation and proposed heuristic can be
beneficial, we tackle one of the most common assumptions on the PLP compilation: cycle-breaking
is always the best choice (which was also employed in the original bottom-up compilation paper
(Vlasselaer et al., 2014)). Table 2 shows that not applying cycle-breaking can result in significantly
smaller compilation times, or even compiling a larger instance size. This loop formulas compilation
is an advantage specific of bottom-up compilers, since they can circumvent costly translations of
DNF to CNF when compiling loops.

#Nodes Paper MinDegree MinFill
mb s mb s mb s

13 374 2.42 10020 229 805 4.07
14 387 5.48 - - 754 7.21
15 997 32.2 - - 2939 31.99
16 9640 279 - - - -
17 10411 588 - - - -

Table 1: Comparison of memory (mb) and time
(seconds) between the proposed heuristic, Min-
Degree and MinFill for V -tree initialization, in
the Coloring dataset for non-incremental KC.

#People Cycle Loop Cycle+Min Loop+Min

2 0.004 0.004 0.006 0.005
3 0.006 0.005 0.028 0.014
4 0.028 0.014 0.310 0.129
5 0.713 0.070 21.51 1.413
6 492.6 1.156 - 36.56
7 - 58.506 - -

Table 2: Comparison of execution time (sec-
onds) across instances of the Smokers program:
with(out) dynamic minimization (Min), and for
cycle-breaking or looping variants.

Q4: The bottom-up compilation generates more succinct circuits than top-down compilers?
Finally, we analyze Figure 4, benchmarking the non-incremental bottom-up compilation against

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

102 103

102

103

104

105

(a) IRL

102 103

102

103

104

105

(b) IRN

102 103 104 105 106102

103

104

105

106

(c) Coloring

102 103

102

103

104

105

106

(d) Smokers

Figure 4: Succinctness comparison across the four datasets, with x-axis and y-axis representing the
size of the circuit produced by the bottom-up and top-down compilers, respectively. Cyan, magenta
and yellow represent, respectively: C2D, D4 and SHARPSAT-TD. The black dotted line acts as
baseline: if a top-down compiler was placed above/below, it generated less/more succinct circuits.

the top-down approaches. Our initial expectation was that the bottom-up approach would excel in
programs like Smokers and IRN, where atoms appear as heads of multiple rules, and perform worse
on Coloring and IRL. The results confirm this expectation for Smokers and IRN, where our non-
incremental approach was able to compile larger instances and generate considerably more succinct
circuits than the top-down methods. Notably, our method also demonstrated superior performance
on the IRL dataset, surpassing all top-down compilers. This unexpected success is attributed to our
method’s dynamic V-tree restructuring capability, which effectively optimized the compilation.

6 CONCLUSION

We’ve presented novel methods for non-incremental Probabilistic Answer Set Programming (PASP)
Knowledge Compilation (KC), alongside theoretical results demonstrating their potential for effi-
cient compilation. A key innovation in our approach lies in its non-incremental nature: we de-
compose the original program into disjoint subsets, compile each independently, and then conjoin
their respective circuits to form the program’s final representation. Furthermore, we’ve adapted
bottom-up KC to effectively handle PASP-specific constraints, including cardinality constraints and
probabilistic semantics. Overall, our methods demonstrate potential for significant improvements in
the efficiency and scalability of PASP inference, because it avoids introducing auxiliary variables
during compilation. By moving beyond standard top-down pipelines and exploring alternative cir-
cuit compilation, we enable the generation of considerably more intricate circuits. This enhanced
compilation capability, in turn, allows neuro-symbolic AI systems to encode more complex real-
world constraints. This deep integration of neural perception with robust PASP reasoning can be
further leveraged by recent advances in the encoding of circuits on GPUs (Maene et al., 2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our work is designed to be highly reproducible, with every effort made to ensure that our results
can be independently verified. All theoretical claims are formally stated in the main paper, and any
theorems or algorithms that build upon existing work are duly referenced to their original sources.

For computational experiments, we have included a comprehensive code package in the supplemen-
tary materials. This includes all source code for data preprocessing and running our experiments.
A detailed README file provides step-by-step instructions for downloading and executing the top-
down compilers used for comparison and running our own code. To further guarantee replicability,
we have ensured the code is clear and well-commented, and we used fixed random seeds and a
consistent dataset.

We have fully documented our experimental setup, including the computing infrastructure, hardware
specifications, and the names of all relevant software libraries. All datasets used, including any novel
ones, are fully described in the supplementary materials and will be made publicly available with a
license that permits free usage for research purposes. While our primary analysis focuses on direct
performance summaries, all necessary data and methods are provided for others to perform more
detailed statistical analyses.

REFERENCES

Ignasi Abı́o, Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-Carbonell, and Valentin Mayer-
Eichberger. A new look at bdds for pseudo-boolean constraints. Journal of Artificial Intelligence
Research, 45:443–480, 2012.

Damiano Azzolini and Fabrizio Riguzzi. Inference in probabilistic answer set programming under
the credal semantics. In AIxIA 2023: Advances in Artificial Intelligence, pp. 367–380, 2023.

Damiano Azzolini and Fabrizio Riguzzi. Inference in probabilistic answer set programs with impre-
cise probabilities via optimization. In Proceedings of the Fortieth Conference on Uncertainty in
Artificial Intelligence, pp. 225–234, 2024.

Olivier Bailleux and Yacine Boufkhad. Efficient cnf encoding of boolean cardinality constraints.
In International conference on principles and practice of constraint programming, pp. 108–122.
Springer, 2003.

Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning with answer sets. In
Logic Programming and Nonmonotonic Reasoning, pp. 21–33, 2004.

Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial intelligence, 12:53–87, 1994.

Keith L Clark. Negation as failure. In Logic and data bases, pp. 293–322. Springer, 1977.

Fabio Gagliardi Cozman and Denis Deratani Mauá. The joy of probabilistic answer set program-
ming: semantics, complexity, expressivity, inference. International Journal of Approximate Rea-
soning, 125:218–239, 2020.

A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research, 17:229–264, September 2002. ISSN 1076-9757. doi: 10.1613/jair.989. URL http:
//dx.doi.org/10.1613/jair.989.

Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

Adnan Darwiche et al. New advances in compiling cnf to decomposable negation normal form. In
Proc. of ECAI, pp. 328–332. Citeseer, 2004.

Alexis de Colnet. Separating Incremental and Non-Incremental Bottom-Up Compilation. In Meena
Mahajan and Friedrich Slivovsky (eds.), 26th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2023), volume 271 of Leibniz International Proceedings in In-
formatics (LIPIcs), pp. 7:1–7:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum

10

http://dx.doi.org/10.1613/jair.989
http://dx.doi.org/10.1613/jair.989

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

für Informatik. ISBN 978-3-95977-286-0. doi: 10.4230/LIPIcs.SAT.2023.7. URL https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.7.

Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set programming: A
primer. Springer, 2009.

Thomas Eiter, Markus Hecher, and Rafael Kiesel. Treewidth-aware cycle breaking for algebraic
answer set counting. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, volume 18, pp. 269–279, 2021.

Thomas Eiter, Markus Hecher, and Rafael Kiesel. aspmc: New frontiers of algebraic answer set
counting. Artificial Intelligence, 330:104109, 2024. ISSN 0004-3702.

Jorge Fandinno and Markus Hecher. Treewidth-aware complexity for evaluating epistemic logic
programs. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intel-
ligence, pp. 3203–3211, 2023.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon,
Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory and Practice of Logic Programming, 15(3):358–401, 2015.

Renato Lui Geh, Jonas Gonçalves, Igor C. Silveira, Denis D. Mauá, and Fabio G. Cozman. dpasp:
A probabilistic logic programming environment for neurosymbolic learning and reasoning. In
Proceedings of the 21st International Conference on Principles of Knowledge Representation
and Reasoning, pp. 731–742, 2024.

Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. Answer set programming based on propo-
sitional satisfiability. Journal of Automated Reasoning, 36:345–377, 2006.

Rafael Kiesel and Thomas Eiter. Knowledge compilation and more with sharpsat-td. In Proceedings
of the 20th IInternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 406–416. IJCAI Organization, 2023.

Rafael Kiesel, Pietro Totis, and Angelika Kimmig. Efficient knowledge compilation beyond
weighted model counting. Theory and Practice of Logic Programming, 22(4):505–522, 2022.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting. Journal of
Applied Logic, 22:46–62, 2017.

Tuukka Korhonen and Matti Järvisalo. Integrating tree decompositions into decision heuristics of
propositional model counters. In 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021), pp. 8–1. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2021.

Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight pre-
diction in weighted signed networks. In Data Mining (ICDM), 2016 IEEE 16th International
Conference on, pp. 221–230. IEEE, 2016.

Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrahma-
nian. Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 333–341. ACM, 2018.

Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf compiler. In IJCAI, volume 17,
pp. 667–673, 2017.

Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic programs. In Proc. 19th
International Conference, pp. 451–465, 2003.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming,
2023. URL https://arxiv.org/abs/2304.04812.

V. Lifschitz and A Razborov. Why are there so many loop formulas? ACM Transactions on Com-
putational Logic, 7:261–268, 2006.

11

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.7
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.7
https://arxiv.org/abs/2304.04812

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Linke, Hans Tompits, and Stefan Woltran. On acyclic and head-cycle free nested logic
programs. In International Conference on Logic Programming, pp. 225–239. Springer, 2004.

Jaron Maene, Vincent Derkinderen, and Pedro Zuidberg Dos Martires. Klay: Accelerating neu-
rosymbolic ai. arXiv preprint arXiv:2410.11415, 2024.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information process-
ing systems, 31, 2018.

Joao Marques-Silva and Inês Lynce. Towards robust cnf encodings of cardinality constraints. In
Principles and Practice of Constraint Programming–CP 2007: 13th International Conference,
CP 2007, Providence, RI, USA, September 23-27, 2007. Proceedings 13, pp. 483–497. Springer,
2007.

Denis Deratani Mauá, Fabio Gagliardi Cozman, and Alexandro Garces. Probabilistic logic pro-
gramming under the l-stable semantics. In Proceedings of the 22nd International Workshop on
Nonmonotonic Reasoning, pp. 24–33, 2024.

Christian Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric Hsu. DSHARP: Fast d-DNNF
Compilation with sharpSAT. In Canadian Conference on Artificial Intelligence, 2012.

Ryoma Onaka, Kengo Nakamura, Masaaki Nishino, and Norihito Yasuda. An and-sum circuit with
signed edges that is more succinct than sdd. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 15100–15108, 2025.

Umut Oztok, Arthur Choi, and Adnan Darwiche. Solving pp pp-complete problems using knowl-
edge compilation. In Fifteenth International Conference on the Principles of Knowledge Repre-
sentation and Reasoning, 2016.

David Poole. Logic programming, abduction and probability: —a top-down anytime algorithm for
estimating prior and posterior probabilities—. New Generation Computing, 11:377–400, 1993.

Dimitar Shterionov, Joris Renkens, Jonas Vlasselaer, Angelika Kimmig, Wannes Meert, and Gerda
Janssens. The most probable explanation for probabilistic logic programs with annotated disjunc-
tions. In Inductive Logic Programming: 24th International Conference, ILP 2014, Nancy, France,
September 14-16, 2014, Revised Selected Papers, pp. 139–153. Springer, 2015.

Steven S Skiena. The algorithm design manual, volume 2. Springer, 1998.

Tommi Syrjänen and Ilkka Niemelä. The smodels system. In International Conference on Logic
Programming and NonMonotonic Reasoning, pp. 434–438. Springer, 2001.

SATO Taisuke. A statistical learning method for logic programs with distribution semantics. In
Proceedings of ICLP, pp. 715–729, 1995.

Pietro Totis, Luc De Raedt, and Angelika Kimmig. smproblog: stable model semantics in problog
for probabilistic argumentation. Theory and Practice of Logic Programming, 23(6):1198–1247,
2023.

Jonas Vlasselaer, Joris Renkens, Guy Van den Broeck, and Luc De Raedt. Compiling probabilistic
logic programs into sentential decision diagrams. In Proceedings Workshop on Probabilistic
Logic Programming (PLP), pp. 1–10, 2014.

Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. Tp-
compilation for inference in probabilistic logic programs. International Journal of Approximate
Reasoning, 78:15–32, 2016.

Benjie Wang, Denis Deratani Mauá, Guy Van den Broeck, and YooJung Choi. A compositional atlas
for algebraic circuits. In The Thirty-Eight Annual Conference on Neural Information Processing
Systems (NeurIPS 2024), 2024.

Shaobo Wang, Hui Lyu, Jiachi Zhang, Chenyuan Wu, Xinyi Chen, Wenchao Zhou, Boon Thau Loo,
Susan B Davidson, and Chen Chen. Provenance for probabilistic logic programs. In International
Conference on Extending Database Technology (EDBT), 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set
programming. In Proceedings of the 29th International Joint Conference on Artificial Intelligence,
pp. 1755–1762, 2020.

A APPENDIX

We report here details about the datasets used in the experiments. For each dataset, we provide the
(non-grounded) program definition, a more in depth discussion about its motivation, and present
results that may not be included in the main text, including tables and images where applicable.

The programs in Sections A.1, A.2, A.3 and A.4 were used in the main article, and their encodings
were obtained from (Azzolini & Riguzzi, 2024). The programs in Sections A.5, A.6 and A.7, on the
other hand, are from our own authorship.

A.1 3-COLORING

This class of logic programs encodes 3-coloring graph problems, which consist in partitioning the
nodes of a graph intro three sets such that no edge contains both endpoints in the same part.

PROGRAM DEFINITION

We use the same encoding as in (Azzolini & Riguzzi, 2024) for the 3-Coloring programs. To popu-
late these programs, we create random graphs of various sizes (1 to 30 nodes) by applying snowball
sampling to the Bitcoin OTC dataset (Kumar et al., 2016; 2018), a methodology similar to that of
(Wang et al., 2020).

% Grounded Coloring Program
0.5::edge(X, Y). % Probability of edge between nodes X and Y
node(X). % Fact also derived from the dataset
% A node can have only one of three colors
red(X) :- node(X), not green(X), not blue(X).
green(X) :- node(X), not red(X), not blue(X).
blue(X) :- node(X), not red(X), not green(X).
% Symmetry between edges
e(X, Y) :- edge(X, Y).
e(X, Y) :- edge(Y, X).
% 3 graph coloring codification as
:- e(X, Y), red(X), red(Y).
:- e(X, Y), green(X), green(Y).
:- e(X, Y), blue(X), blue(Y).

RESULTS

Here, we present the results regarding Q1 of the main paper in larger plots, to facilitate visualization.
Figures 5a and 5b show a comparison between incremental (y-axis) and non-incremental (x-axis)
compilation, while Table 3 presents the same analysis via a table.

Regarding Q2 of the article, Figure 4 presents a more in depth comparison between the different
heuristics used for the graph coloring problem, this time including the impact on circuit size. Note
that, while the Min Fill heuristic was able to consistently generate smaller circuits, it was not able
to compile instances that the proposed heuristic could.

Finally, regarding Q4, Figure 6 shows, in larger scale, a comparison between top-down and bottom-
up compilation.

A.2 PIN (NON-STRATIFIED SMOKERS)

The PIN dataset models the dynamics of a disease spread across contact network. Individuals can get
infected either by contact with other infected individual of the network or by an external event (in-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

10 3 10 2 10 1

10 3

10 2

10 1

100

101

(a) Compilation time (seconds).

50 100 150 200 250 300

100

200

300

400

500

600

(b) Peak memory usage (mb).

Figure 5: Comparison between incremental (y-axis) and non-incremental (x-axis) compilation as
we increase instance size (darker colors) of the graph Coloring program. The dotted black line
represents the baseline for the non-incremental approach (being above it is worse).

102 103 104 105 106102

103

104

105

106

Figure 6: Performance comparison on the Coloring dataset, with x-axis representing the size of
the circuit produced by the bottom-up compiler and the y-axis by the top-down approaches. Cyan,
magenta and yellow represent, respectively: C2D, D4 and SHARPSAT-TD. The black dotted line
acts as baseline: if a top-down compiler was placed above, it generated less succinct than the bottom-
up; if below, otherwise.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Memory and Time Results for Bottom-Up Compilation Approaches for the 3-Coloring
dataset.

#Nodes Incremental Non-Incremental Non-Incremental+Heuristic

Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)

2 0.00063 55.81 0.00056 55.63 0.00056 66.43
3 0.00153 60.53 0.00121 59.14 0.00126 59.17
4 0.00281 67.61 0.00218 63.85 0.0203 63.80
5 0.0062 85.32 0.00339 72.17 0.01741 130.16
6 0.01741 130.16 0.00631 89.54 0.00622 89.23
7 0.04606 217.46 0.01221 118.74 0.01292 118.21
8 0.11868 267.05 0.01366 125.56 0.01358 125.48
9 1.2354 374.65 0.04364 232.51 0.04499 232.05

10 3.54144 645.18 0.10215 321.42 0.10524 321.46
11 30.07836 2049.47 0.16216 344.08 0.17608 343.30
12 - - 0.70257 273.18 0.7225 272.5312
13 - - 2.36851 374.75 2.4229 374.47
14 - - 5.45878 387.08 5.4767 387.26
15 - - 32.06292 998.11 32.2010 997.81
16 - - 272.25984 9640.56 278.54 9640.16
17 - - 584.34 10411.66 588.93 10411.08

Table 4: Comparison of memory (mb), time (seconds), and circuit size (#nodes + #edges) be-
tween the proposed heuristic for V -tree initialization, Min Degree and Min Fill, in the 3-Coloring
dataset for non-incremental compilation (without dynamic minimization). Instances with timeout
are represented with “-”.

#Nodes Proposed MinDegree MinFill

mb s Size mb s Size mb s Size

10 321 0.11 20051 367 0.62 20807 298 0.09 13157
11 343 0.18 24172 650 1.95 21941 234 0.24 26334
12 272 0.72 65303 1608 6.91 53071 385 1.17 64370
13 374 2.42 127032 10020 229 143930 805 4.07 129018
14 387 5.48 163629 - - - 754 7.21 153725
15 997 32.2 482389 - - - 2939 31.99 301560
16 9640 279 1506435 - - - - - -
17 10411 588 1741436 - - - - - -

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Circuit size comparison (in terms of number of nodes and edge in the circuit) for the 3-
Coloring Problem.

#Nodes Non-Inc C2D D4 SharpSAT-TD

Node Size Edge Size Node Size Edge Size Node Size Edge Size Node Size Edge Size

2 37 79 73 129 99 109 101 130
3 98 221 132 247 187 212 173 236
4 227 511 173 335 262 297 241 330
5 328 746 237 463 353 404 311 430
6 660 1532 270 538 428 489 381 530
7 1054 2625 329 659 519 596 451 630
8 1255 2954 370 744 602 690 521 730
9 3511 9556 426 862 694 806 604 863

10 5575 14476 484 981 768 882 661 930
11 6860 17312 534 1084 960 1096 730 1033
12 18078 47225 584 1187 934 1074 801 1130
13 34881 92151 634 1290 1017 1172 871 1230
14 45917 117712 681 1390 1109 1282 948 1349
15 129208 353181 729 1486 1292 1480 1010 1433
16 400509 1105926 802 1635 1400 1603 1096 1559
17 493948 1301488 826 1686 1358 1586 1166 1665
18 - - 879 1795 1539 1764 1220 1733
19 - - 946 1935 1540 1775 1307 1856
20 - - 982 2007 1596 1840 1361 1930

dicated by the probabilistic predicate contaminated). An infected individual might be symptomatic
or not; non symptomatic individuals are called vectors of the disease.

This type of network displays the typical transitivity closure often used to evaluate logic program
inferences (like the Smokers dataset). Relative to the Smokers program, this program contains also
challenges relative to non-stratified negation and cyclic dependencies, as the vector and symptomatic
contradictory nature increase considerably the complexity of the inference process, requiring X-
determinism to ensure tractability.

PROGRAM DEFINITION

Unlike the 3-Graph Coloring dataset, we use a fully connected graph for the non-stratified Smokers
program, following the methodology of the original bottom-up compilation article (Vlasselaer et al.,
2014).

% Probabilistic Interaction Network
0.5::contaminated(1..N).
0.5::friend(1..N, 1..N).
infected(X) :- contaminated(X).
infected(X) :- friend(X, Y), infected(Y).
healthy(X) :- not infected(X).
symptomatic(X) :- infected(X), not vector(X).
vector(X) :- infected(X), not symptomatic(X).

RESULTS

Another interesting research question (call it Q4) that was not explored in the main paper is the
following: Is the bottom-up compilation of loop-formulas more succinct than cycle-breaking? This
can be answered by Table 6, where we can see that using cycle-breaking is not always the best
choic. It is easy to see that directly compiling the positive cycles via loop formulas can result in
significantly smaller compilation times, or even allow the compilation of larger instance sizes. This
loop formulas compilation is an advantage specific of bottom-up compilers, since the bottom-up
approach can more easily circumvent the costly translations of DNF to CNF when compiling loops.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Cycle Breaking and Loop Formulas Comparison for PIN Dataset

#People Cycle Breaking Information

Loop Formulas Aux Atoms Aux Head Rules Aux Body Rules

1 0 0 0 0
2 1 2 2 2
3 5 9 15 12
4 20 28 64 48
5 84 75 215 160
6 409 186 636 480
7 2365 441 1743 1344
8 16064 1016 4544 3584
9 125664 2295 11439 9216

10 1112073 5110 28060 23040

Table 8: Circuit sizes for the PIN dataset across different configurations. Dashes indicate time-out.

#People C2d D4 Bottom-Up SharpSAT-TD

#Edges s #Edges s #Edges s #Edges s

1 28 0.002 26 0.0001 21 0.0043 41 1.0014
2 134 0.002 127 0.0002 159 0.0046 170 1.0014
3 1273 0.002 885 0.0006 707 0.006 887 1.0029
4 34601 0.015 18875 0.0137 5570 0.0274 10061 1.0153
5 1995714 1.336 2835725 2.6578 116184 0.7363 2777131 1.4128
6 – – – – 5590 1.1560 – –
7 – – – – 29299 58.5064 – –

#People Cycle Loop Cycle+Min Loop+Min

2 0.004 0.004 0.006 0.005
3 0.006 0.005 0.028 0.014
4 0.028 0.014 0.310 0.129
5 0.713 0.070 21.51 1.413
6 492.6 1.156 - 36.56
7 - 58.506 - -

Table 6: Comparison of execution time (seconds) across instances of the Smokers program:
with(out) dynamic minimization (Min), and for cycle-breaking or looping variants.

Also regarding Q4, Table 7 shows that, even though the number of loop formulas can greatly increase
(specially in this fully connected example of the PIN dataset), the number of auxiliary atoms and
rules introduced by cycle-breaking also increases significantly. This possibly explains why the top-
down approaches are not able to compete with the bottom-up compiler in terms of circuit size when
trying to compile larger instances (of size 6 or 7).

Similarly to the previous section, Figure 7 and Table 8 show, in larger scale and depth, that the top-
down approaches are not able to compete with the bottom-up compiler in terms of circuit size and
inference time.

A.3 IRL

The IRL dataset represents a sequence of probabilistic facts and logical rules. It is designed to test
the scalability of encoding techniques with respect to the size of the body of the rules, with a fixed
number of rules in the program. It is a fairly simple dataset, that acts a baseline and should, in theory,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

102 103

102

103

104

105

106

Figure 7: Performance comparison on the PIN dataset, with x-axis representing the size of the circuit
produced by the bottom-up compiler and the y-axis by the top-down approaches. Cyan, magenta and
yellow represent, respectively: C2D, D4 and SHARPSAT-TD. The black dotted line acts as baseline:
if a top-down compiler was placed above, it generated less succinct than the bottom-up; if below,
otherwise.

behave specially well for top-down compilers, since there is no need to introduce auxiliary variables
in the Clark completion.

PROGRAM DEFINITION

Given the simplicity of the IRL dataset (Azzolini & Riguzzi, 2024), we varied the parameter N from
1 to 500.

% IRL Problem
0.5::a(1..N).
qr :- a(X0), a(X2), a(X4), ..., a(Xeven).
qr :- a(X1), a(X3), ..., a(Xodd), not nqr.
nqr :- a(X1), a(X2), ..., a(Xn), not qr.

RESULTS

Again, Figure 8 shows in larger scale that the top-down compilers C2D and D4 have an slight ad-
vantage over the non-incremental bottom-up approach, while the SHARPSAT-TD was consistently
worse than the other approaches.

A.4 IRN

Similarly to the IRL dataset, the IRN dataset is designed to test the scalability of encoding techniques
with respect to the number of rules in the program, with bodies of fixed (almost) unitary length. the
body of the rules. It is more complicated than the IRL dataset, since an atom can happen due to
multiple rules being satisfied, and there are many rules creating negative cycles between both qr
and nqr. This is an example where the bottom-up approach should be more efficient than the top-
down approach, due to the increasing number of auxiliary variables required to encode the Clark
completion.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

102 103

102

103

104

105

Figure 8: Performance comparison on the IRL dataset, with x-axis representing the size of the circuit
produced by the bottom-up compiler and the y-axis by the top-down approaches. Cyan, magenta and
yellow represent, respectively: C2D, D4 and SHARPSAT-TD. The black dotted line acts as baseline:
if a top-down compiler was placed above, it generated less succinct than the bottom-up; if below,
otherwise.

PROGRAM DEFINITION

For the IRN dataset (Azzolini & Riguzzi, 2024), we employed a similar strategy, varying the param-
eter N from 1 to 500.

% IRN Problem
0.5::a(1..N).
qr :- a(Xeven).
qr :- a(Xodd), not nqr.
nqr :- a(Xodd), not qr.

RESULTS

Figure 9 shows the performance comparison on the IRN dataset, where we have attenuated results,
with the top-down approaches being considerably worse than the bottom-up approach.

A.5 N-QUEENS

The N-Queens dataset models a probabilistic version of the classical N-Queens problem, where
queens must not attack each other. It demonstrates the effectiveness of encoding techniques in han-
dling spatial constraints. Due to the high number of possible conflicts, it is expected that representing
this problem via a top-down approach will lead to quick blowups in circuit sizes.

PROGRAM DEFINITION

For the N -Queens dataset, we vary the number of queens from 1 to 13.

rows(1..N).
% N-Queens Problem

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

102 103

102

103

104

105

Figure 9: Performance comparison on the IRN dataset, with x-axis representing the size of the circuit
produced by the bottom-up compiler and the y-axis by the top-down approaches. Cyan, magenta and
yellow represent, respectively: C2D, D4 and SHARPSAT-TD. The black dotted line acts as baseline:
if a top-down compiler was placed above, it generated less succinct than the bottom-up; if below,
otherwise.

% For each row, there is a queen with a random
% distribution over the columns.
1/N::queen(R, 1), ..., 1/N::queen(R, N).
% We encode both satisfiable and unsatisfiable instances
% so there should always be a model
conflict :- queen(R1, C1), queen(R2, C2), abs(R1 - R2) == abs(C1 - C2).
conflict :- queen(R, C1), queen(R, C2), C1 != C2.
conflict :- queen(R1, C), queen(R2, C), R1 != R2.

We note that another common encoding of this problem uses cardinality constraints of the type “ex-
actly one queen per row/column/diagonal”. This encoding favors even more the proposed bottom-up
KC approach by dispensing with the need of auxiliary variables.

RESULTS

The probabilistic version of the N-Queens problem encoding both satisfiability and unsatisfiability
constraints is shown to be more efficiently encoded using a bottom-up approach, as one can see
in Table 9. The bottom-up configuration was able to compute instances of double the size of the
top-down ones in less than a second, and further tests shown that the bottom-up approach was able
to compute instances of triple the size (12 queens) in less than 12 minutes.

A.6 FOOD

The Food dataset represents a preference selection problem, where the majority needs to decide on
item to be selected (the typy of food they will have). This dataset is used to evaluate the impact of
different encodings of cardinality constraints including constraints other than “exactly-one-of”. The
number of food can be fixed in order to vary the number of people and, thus, increasing only the
cardinality constraints for the majority vote and annotated disjunctions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: Circuit sizes for the N-Queens dataset across different configurations. Dashes “–” indicate
time-out.

#Queens C2D D4 Bottom-Up SharpsAT-TD

#Edges s #Edges s #Edges s #Edges s

2 110 0.002 83 0.000102 18 0.004346 121 1.001351
3 2731 0.004 2946 0.000821 91 0.004507 2890 1.002867
4 134796 0.13 789178 0.147791 326 0.005276 152153 1.025344
5 – – – – 414 0.009839 – –
6 – – – – 1110 0.020791 – –
7 – – – – 3417 0.074062 – –
8 – – – – 10098 0.225670 – –

PROGRAM DEFINITION

When creating instances of the Food dataset, we kept the number of food items, M , constant as 4.
This effectively fixed the number of voting options and allowed us to study the effects of varying the
number of voters, N , from 1 to 25.

% Food Preference Problem
% Define the domains of people and food
person(1..N). food(1..M).
% Annotated disjunctions encode preferences
1/M::prefers(P,1); ...; 1/M::prefers(P,M) :- person(P).
% Exactly one food type must be chosen
1 { chosen(F) : food(F) } 1.
% Someone agrees if their prefered food is chosen
agrees(P) :- person(P), prefers(P,F), chosen(F).
% Constraint: More than half must agree
:- { P : agrees(P) } n//2.

RESULTS

The analysis of the impact of increasing the complexity of cardinality constraints can be seen in
Table 10, where we’ve fixex the number of foods (parameter M) as 4. If one were to use the
standard encoding of the program, unrolling cardinality constraints, without any optimizations (like
Sequential Counters or Totalizers), both the C2D and D4 could only compile up to instances with
14 people; while the SHARPSAT-TD could only compile up to instances with 12 people. By using
better encodings techniques, the top-down compilers were able to compile more instances, but the
resulting circuit size was considerably larger than the one produced by the bottom-up compiler.

A.7 HMM

The HMM dataset models a hidden Markov model with probabilistic facts and logical rules. It
evaluates the ability of encoding techniques to handle sequential dependencies. It is very similar to
the IRN dataset, with small bodies of rules, and an increasing number of rules. The main difference
is that atoms may appear at most two times as heads of rules, which can be very advantageous for
top-compilers, since their Clark completion auxiliary variables increase linearly with instance size.

PROGRAM DEFINITION

For the HMM dataset, we systematically varied the size of the underlying Hidden Markov Chain
from 1 to 16.

% HMM Problem
0.5::a(1..N). 0.5::b(1..N).
x(1) :- a(1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: Circuit size comparison for increasing problem size as measured by number of edges for
the Food Dataset. For each compiler, we selected the best encoding technique: Bottom-Up used
unrolling all constraints, as sequential counter and totalizer encodings performed worse; C2D used
sequential counters; D4 and SharpSAT-TD used totalizer encodings. Dashes indicate time-out.

#People Bottom-Up C2D D4 SharpSAT-TD

16 6180 902711 188505744 172898394
17 8121 1165241 – 159943522
18 11591 1482106 – 40013987
19 11185 1867561 – 71239591
20 15249 2319095 – 232070177
21 15956 2864934 – 1624658814
22 16372 3495186 – 1451328317
23 22618 4244445 – –
24 19731 5106888 – –
25 25319 6118494 – –

2 4 6 8 10 12 14 16
number of instances (n)

101

102

103

104

105

106

107

nu
m

be
r o

f e
dg

es

Unconstrained + Heuristic + Minimization
c2d
X-constrained + Heuristic + Minimization
X-constrained + Heuristic
Unconstrained + Heuristic
Unconstrained
X-constrained

Figure 10: Performance comparison on the HMM dataset, with x-axis representing the instance
size (size of the HMM chain) and the y-axis the number of edges in the circuits produced by the
compilers.

x(X) :- a(X), x(X-1).
y(X, 0) :- x(X), not y(X, 1).
y(X, 1) :- x(X), not y(X, 0).

RESULTS

Finally, we present the results of our experiments on the HMM dataset. We compare the performance
of the c2d compiler with the bottom-up compiler, under a vast range of configurations, in order to
show the impact of: imposing an X-constrained V-tree, using the proposed heuristic and how a top-
down compiler can benefit from a program that has few auxiliary variables being introduced due to
the low number of atoms appearing as heads of multiple rules.

22

	Introduction
	Background
	Answer Set Programming
	Neuro-Probabilistic Answer Set Programming
	Knowledge Compilation

	Related Work
	Bottom-Up Compilation
	Compilation
	V-Tree Optimization
	Non-Incremental Compilation

	Experiments
	Conclusion
	Appendix
	3-Coloring
	PIN (Non-Stratified Smokers)
	IRL
	IRN
	N-Queens
	Food
	HMM

